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Abstract. Well-integrated water management can notably re-
quire estimating low flows at any point of a river. Depending
on the management practice, it can be needed for various re-
turn periods. This is seldom addressed in the literature. This
paper shows the development of a full analysis chain includ-
ing quality analysis of gauging stations, low-flow frequency
analysis, and building of a global model to assess low-flow
indices on the basis of catchment physical parameters.

The most common distributions that fit low-flow data in
Wallonia were two-parameter lognormal and gamma. The
recession coefficient and percolation were the most explana-
tory variables, regardless of the return period. The determi-
nation coefficients of the models ranged from 0.51 to 0.67 for
calibration and from 0.61 to 0.80 for validation. The regres-
sion coefficients were found to be linked to the return period.
This was used to design a complete equation that gives the
low-flow index based on physical parameters and the desired
return period (in a 5 to 50 yr range).

The interest of regionalisation and the development of re-
gional models are also discussed. Four homogeneous regions
are identified, but to date the global model remains more ro-
bust due to the limited number of 20-yr-long gauging sta-
tions. This should be reconsidered in the future when enough
data will be available.

1 Introduction

It is now recognised that river low flows can lead to se-
vere consequences in water quality and river ecological sta-
tus (Whitehead et al., 2009). Navigation and power supply
sectors can also be affected by low flows (Middelkoop et
al., 2001). Furthermore, as pressures on rivers become more

important during low flows, some conflicts between the dif-
ferent water uses can arise, especially between instream wa-
ter use and water abstraction demand (Hébert et al., 2003).
Water managers therefore need to be able to quantify low
flows at any point of a river, in magnitude as well as in fre-
quency.

Low flows can have different meanings depending on the
definitions of authors. In this study, low flows are consid-
ered as the lowest discharge values observed in a river, which
usually occur between May and November in Wallonia (Bel-
gium). The index chosen to characterise low flows is MAM7
which stands for mean annual minimum flow on a 7-day av-
erage basis.

In gauged catchments, the value of MAM7 is calculated
on a yearly basis. Then, a distribution can be fitted to the
data in order to find a relationship between low flows and
probabilities of non-exceedance (1/T ). The distribution that
best fits is chosen according to statistically and graphically
based tests, and its parameters can be calculated by different
methods (Smakhtin, 2001). Matalas (1963), Joseph (1970),
Condie and Nix (1975), Tasker (1987), Leppärjärvi (1989)
and Yue and Pilon (2005), amongst many others, have com-
pared various distributions and methods to estimate param-
eters. The best-adjusted distribution is usually different ac-
cording to the study region and the low-flow index (Abi-Zeid
and Bob́ee, 1999). In other methods, the understanding of the
generating processes of low flows contributes to the choice of
distribution (Pacheco et al., 2006).

Low-flow calculation and frequency analysis are easy
to handle for long-time gauged catchments. For ungauged
catchments, however, low-flow index has to be inferred us-
ing neighbouring gauged catchment data.
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Regarding the estimation of low flows in ungauged river
catchments, Smakhtin (2001) reviewed all possible tech-
niques but cited regional regression approach as the most
widely used. The other methods use time-series simulation,
regional prediction curves, or spatial interpolation. Regional
regression consists in delineating hydrologically homoge-
neous regions based on catchment characteristics and devel-
oping, for each region, a regression model relating the low-
flow index to these characteristics. As this approach is based
on physical parameters of catchments, it allows a better un-
derstanding of low flows from a physical point of view, in ad-
dition to estimating them. This technique has been employed
by numerous scientists, e.g. Nathan and McMahon (1992) for
south-eastern Australia, Laaha and Blöschl (2006) for Aus-
tria, Vezza et al. (2010) for north-western Italy, and Tsakiris
et al. (2011) for the state of Massachusetts in the USA. How-
ever, only a few of them included the return period in their
analysis.

The temporal and spatial components of low-flow hydrol-
ogy such as frequency and regional distribution, respectively,
are closely related according to Smakhtin (2001), but arti-
cles that deal with both at the same time are rare. Some of
them have aimed at assessing low flow for fixed return peri-
ods. Kim and Lee (2010) used Bayesian multiple regression
analysis for regional low-flow frequency in south-east Korea
and utilised the developed model to predict 7-day minimum
flow at ungauged sites for a fixed 10 yr return period. Com-
paring to conventional techniques based on at distribution,
the Bayesian analysis resulted in lower confidence intervals
for parameter estimates. After a low-flow frequency anal-
ysis comparing nine distributions, Ouarda and Shu (2009)
developed models to estimate low flows in Quebec, em-
ploying single and ensemble artificial neural networks, for
three different return periods and taking into account seven
physiographical and meteorological variables. In Virginia,
Hayes (1991) used the Pearson type III distribution for fre-
quency analysis. Then, he developed regression models to
estimate the annual minimum average 7-consecutive-day dis-
charge from basin and climate characteristics at ungauged
sites for two different return periods. Saravi et al. (2010) ap-
plied the regional regression approach for frequency analysis
of annual peak maximum series of flood flows and also used
the models to estimate flood quantiles at ungauged sites for
several return periods. They considered seven climatic and
physical catchment characteristics.

The only study which aimed at assessing a low-flow index
for a range of return period is that of Chen et al. (2006). They
performed a frequency analysis of low flows comparing five
distributions and usingL moments for the Dongjiang basin
in South China. The quantile function of the 3-parameter log-
normal distribution, which was the most appropriate distri-
bution for the study data set, was then integrated into this re-
gression model in order to establish the formula of the mean
7-day low flow for any return period. But they used a limited

data set of 14 sites and used the catchment area as the only
characteristic to assess the mean 7-day low flow.

To date, there is no mean to estimate low-flow indices in
ungauged rivers for a range of return periods, on the basis of
a set of meaningful physical parameters. Hence, in the case
of droughts, different measures to maintain a minimum flow
in rivers could need this information (e.g. “Plan d’Action
Sécheresse” in France, drought plans in the UK).

The aim of this study is to propose a complete method to
build a model that can estimate low flows for any return pe-
riod in ungauged rivers. We propose a full analysis chain:
a selection of quality gauging stations and a low-flow fre-
quency analysis with comparison of different distributions
are first carried out, followed by the development of a regres-
sion model that uses physical parameters of the catchments.
We aim at obtaining a formula that can be used for any re-
turn period between 5 and 50 yr. To do so, we propose a new
approach which evaluates the relationships between regres-
sion coefficients and the return period. The regionalisation
of low flows is also tested in order to improve the model per-
formances.

2 Material and methods

2.1 Study area

The Walloon Region of Belgium covers an area of
16 844 km2. The two main catchments crossing this region
are the Meuse (70 % of the area of Wallonia) and the Scheldt
(20 % of Wallonia) catchments. Wallonia is characterised by
a high number of small basins (70 % of gauged catchments
are smaller than 200 km2).

2.2 Choice of low-flow index

The mean annual minimum of 7-day average flows (MAM7),
which is one of the most widely used indices, was selected
for this study. The main advantages of this parameter are that
it eliminates day-to-day variations and allows analyses to be
less sensitive to measurement errors. Moreover, 7-day low
flows are not very different from 1-day low flows (Smakhtin,
2001). Averaging over some days also allows smoothing out
some human influences on flows such as variation of hourly
flows due to hydropeaking and little abstraction from farm-
ers.

2.3 Selection of gauging stations

More than 240 gauging stations have been installed in Wallo-
nia during the last 40 yr. From those, we selected the stations
that fulfilled the following criteria:

– minimum of 20 yr of data (Laaha and Blöschl, 2005);

– homogeneous data: homogeneity tests, through tests of
equality of means, were carried out for stations that

Hydrol. Earth Syst. Sci., 17, 1319–1330, 2013 www.hydrol-earth-syst-sci.net/17/1319/2013/



M. Grandry et al.: A method for low-flow estimation at ungauged sites 1321

have been moved or for which the reference level has
changed following the replacement of measurement de-
vices;

– no human influence on flows (dams, abstraction, etc.);

– no data extrapolated from another station in the same
catchment, to avoid errors in flow values and hetero-
geneity in data;

– MAM7 over 5 L s−1 because rating curves are not pre-
cise enough below this value; and

– no aquatic vegetation in summer, to avoid overestima-
tion of low flows.

Finally, 59 gauging stations were selected. The main rejec-
tion reason was a too short chronicle.

2.4 Frequency analysis

The data used for this analysis are the annual minimum 7-
day average flow series that we abbreviated to AM7 and cor-
respond to 7Q or Q7, which is generally used in the USA
for return periods of 2 and 10 yr (7Q2 and 7Q10 or Q7,2
andQ7,10) (Smakhtin, 2001; Hayes, 1991; Vogel and Kroll,
1989).

We performed a frequency analysis in order to predict
AM7 for return periods (T ) of 5, 10, 20 and 50 yr (AM7T ).
As the length of available data is quite short (maximum of
45 yr), AM7 T cannot be predicted with accuracy for a re-
turn period higher than 50 yr.

For each station, 2-parameter lognormal, 2-parameter
Weibull, gamma, Fŕechet, 3-parameter lognormal and 3-
parameter Pearson distributions were tested. These six dis-
tributions were chosen because they are the most often
used (Matalas, 1963; Joseph, 1970; Condie and Nix, 1975;
Xanthoulis, 1985; Yue and Pilon, 2005; Chen et al., 2006;
Modarres, 2008).

Parameters of all distribution laws were estimated using
the maximum likelihood procedure. Indeed, this method pro-
vides asymptotically minimum variance estimates, is adapted
to all distributions and to low flows, and has given good
results in other studies (Joseph, 1970; Condie and Nix,
1975; Landwehr et al., 1979; Leppärjärvi, 1989; Nathan and
McMahon, 1990).

These distributions, except Fréchet, were ordered by in-
creasing posterior probability, and decreasing Akaike’s in-
formation criterion (AIC) and Bayesian information crite-
rion (BIC). Posterior probabilities were calculated from prior
probabilities and Bayes factors. These factors were approxi-
mated via Schwarz’s method (Schwarz, 1978). As no a priori
information on the suitability of each law was available, prior
probabilities were considered equal for all distribution laws.
AIC and BIC both take into account the likelihood function
and the number of parameters, but BIC also considers the

size of the sample. Therefore, 2-parameter distributions were
favoured by this ranking.

The statisticalχ2 test was also carried out to check the
adjustment of each distribution to the sample.

Finally, the Fŕechet distribution and the three best dis-
tributions for which theχ2 test hypothesis was accepted
were compared graphically. The graph showed observed data
(AM7) in function of probabilities of non-exceedance as well
as frequency curves for the four distributions. If two dif-
ferent distributions gave the same fit, the simpler one with
less parameters was selected (Miquel, 1984). Once the best-
fitted distribution was chosen, AM7T was estimated for the
four return periods, along with their 95 % confidence interval
(CI).

The selection of the best distribution, except for the
Fréchet distribution, was performed using HYFRAN (HY-
drological FRequency ANalysis) software which was cre-
ated, for the purpose of fitting statistical laws, by B. Bobée
from the National Institute for Scientific Research –
Water, Soil, Environment Centre (University of Quebec)
(El Adlouni et al., 2008).

2.5 Development of a global regression model

It is acknowledged that catchments which have similar physi-
cal and climatic features have similar hydrological responses
(Smakhtin, 2001). Firstly, we developed a regression model
for the whole study area to estimate AM7 from catchment
characteristics. Secondly, we tested if homogeneous regions
can be identified in the area, using regionalisation techniques.
In these regions, we developed regional models and com-
pared their performance with the global model.

In this study, climatic and physical catchment characteris-
tics were described by the 25 variables presented in Table 1.
“Summer” refers to the July to September period and “win-
ter” refers to the October to April period. Position data (Alt,
X and Y) were measured with a GPS or by levelling. Catch-
ment boundaries were defined using a digital terrain model
(DTM). Catchment features (A, DD, Sls, Ls and Ss) were
derived from GIS maps. The hydrological type of soil de-
scribes the infiltration rate (high for A to very low for D)
and drainage (excellent for A to very bad for D) of soils
(Demarcin et al., 2011). Meteorological data (AP, SP, WP,
ST) were interpolated for each catchment by the hydrologi-
cal model EPICgrid (Sohier et al., 2009) from meteorologi-
cal data measured at some locations in Wallonia, by means
of the Thiessen polygon method. PET was also computed by
the model, using the Penman equation. This model is actu-
ally able to simulate the atmosphere–soil–plant continuum,
using soil, geology, land use, agricultural practices, topogra-
phy (DTM) and meteorological data. Percolation is defined
as the quantity of rainfall that reaches deeper soil layers. It
was estimated for each catchment using a “capacitive” ap-
proach: each soil layer is considered as a tank that empties
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Table 1. The 25 physical and climatic variables considered in this
study to describe catchments, along with their abbreviation and
unit. “Summer” refers to the July to September period and “win-
ter” refers to the October to April period.

Variable Abbreviation Unit

Altitude of the gauging station Alt m
Map coordinates of the station X m

Y m
Catchment area A km2

Drainage density DD km km−2

10th percentile of the slope Sl10 %
50th percentile of the slope Sl50 %
90th percentile of the slope Sl90 %
Area percentage of urban lands Lu %
Area percentage of forests Lf %
Area percentage of arable lands La %
Area percentage of permanent cropsLp %
Area percentage of grasslands Lg %
Area percentage of soils of SA %
hydrological group A
Area percentage of soils of SB %
hydrological group B
Area percentage of soils of SC %
hydrological group C
Area percentage of soils of SD %
hydrological group D
Area percentage of soils that SNM %
were not mapped
Annual precipitation AP mm
Summer precipitation SP mm
Winter precipitation WP mm
Summer temperature ST ◦C
Potential evapotranspiration PET mm
Percolation Pe mm
Recession coefficient RC day−1

when the layer water content is greater than field capacity
(Sohier et al., 2009).

Recession is the part of stream flow in which discharge de-
pletes gradually and there is no rainfall or human influence
(Dacharry, 1997; Tallaksen, 1995). The recession coefficient
is the parameter of the exponential model that describes the
recession process. It was calculated for each catchment, us-
ing the method developed by Lang and Gille (2006). Reces-
sion periods were first defined according to flow and precip-
itation thresholds, and by removing overland flow influence.
Thresholds were adapted to Wallonia. A mean or master re-
cession curve was then constructed using a technique based
on the correlation method. The recession coefficient is the
parameter of this exponential curve.

Since catchment area was highly correlated to AM7T

(correlation coefficient of 0.72 forT = 5 yr), we used spe-
cific flows (AM7 T divided by the area) as the dependent
variable. The explanatory variables were the 24 other cli-
matic and physical catchment characteristics.

Out of these 24 variables, it was necessary to select a few
of them that were not correlated to each other and that could

explain the most variability of specific AM7T . For this pur-
pose, we used three different methods: stepwise, maximum
R2 improvement and adjustedR2 selection. Regression coef-
ficients were estimated using the ordinary least squares tech-
nique. As the second method gives the best model for each
number of variables (p), the one with the Mallows coefficient
(Cp) close top + 1 was selected (Mallows, 1995). For the
two last methods, non-significant variables (p value> 0.05)
were removed one by one from the model. Also, variables
with a variance inflation factor (VIF) above 10 were deleted
because this indicates a multicollinearity problem (Confais
and Le Guen, 2006; Vezza et al., 2010).

The presence of outliers could be detected by a Cook’s
distance (Cook’sD) above 1 (Confais and Le Guen, 2006;
Laaha and Bl̈oschl, 2006).

The normality and the equality of variance of residu-
als were evaluated graphically:Q-Q plot for normality and
residuals-predicted AM7T plot for the equality of variance
(residuals must be around 0) (Confais and Le Guen, 2006;
Vezza et al., 2010).

The model was calibrated using the variables related to
the catchments of the 59 selected gauging stations. The val-
idation of the models was performed using another data set
associated with 19 stations which met all criteria, but their
record length was between 15 and 20 yr. The validation sam-
ple was representative of the study area as these stations are
spread over Wallonia.

In order to compare the performance of the models ob-
tained by the three methods,R2, adjustedR2 and RMSE
(root-mean-square error) were calculated for each calibration
and validation according to the following formulae (Laaha
and Bl̈oschl, 2006; Vezza et al., 2010):

R2
=

var(Y ) − MSE

var(Y )
, (1)

R2
adj = 1−

n − 1

n − p − 1
(1− R2), (2)

RMSE=

√√√√1

n

n∑
i=1

(Yi − Ŷi)2, (3)

in which var (Y ) is the variance of observed AM7T , n is the
number of observations,p is the number of variables in the
model,Yi is the observed value of AM7T for the observa-
tion i, andŶi is the predicted value.R2 gives the part of the
variability of AM7 T explained by the model.R2 can be ad-
justed for the number of explanatory variables in the model,
which is useful to compare different models. When a variable
is added to the model, unlikeR2, the adjustedR2 increases
only if the new variable has additional predictive capability.
RMSE quantifies the difference between observed and pre-
dicted AM7 T .
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To evaluate the uncertainty of the model, the prediction
interval can be calculated. It represents the confidence inter-
val of predicted values of AM7, i.e. plausible values of AM7
for given values of explanatory variables. It takes into ac-
count the errors associated with the calibration of the model
and with the data used to calculate the predicted value. The
100(1-α) percent confidence interval for the predicted value
Ŷp is obtained as follows (Dagnélie, 2006):

Ŷp ± t1−α/2

√
s2(1+ X′

p(X′X)−1Xp), (4)

in which

– t1−α/2 is the tabulatedt quantile from the Student dis-
tribution with degrees of freedom equal ton-p-1,

– s is the estimate of the residual variance (the mean
squared error (MSE)),

– X is the matrix of the observations used to calibrate the
model, and

– Xp is the vector of observations used to calculate the
predicted value.

All statistical analyses were performed using SAS (statistical
analysis system) software.

The last step was to evaluate the relationships between re-
gression coefficients and the return period in order to insert
the return period as a variable in the equations.

2.6 Low-flow regionalisation

As mentioned above, we tested the possibility of delineating
homogeneous regions within the study area. Catchment and
climate variables were standardised and the ones describing
land use and soils were weighted (divided by the square root
of the number of variables per characteristic).

Homogeneous regions were obtained by performing a
cluster analysis with the 25 variables for the 59 catchments.
The clustering method used was the agglomerative hierarchi-
cal clustering which merges two small groups into a bigger
one. The starting clusters were 59 groups of one observation
each.

Since all variables are quantitative, we chose Ward’s al-
gorithm (Ward, 1963) as the merging strategy. Moreover,
this method has often been used in low-flow regionalisation
(Laaha and Bl̈oschl, 2006; Vezza et al., 2010). Each merger
was then carried out in order to have the smallest difference
in R2 between two groupings. The determination coefficient
R2 represents the proportion of information kept after the
fusion of clusters. The fusions were stopped before this dif-
ference inR2 became large.

To interpret the results of clustering and characterise
the regions, we carried out a principal component analysis
(PCA) which helps understand the main differences between
groups. The mean and standard deviation of all variables for

each group were also calculated and boxplots were drawn.
This allowed locating groups in the plane of variables and
comparing groups according to these 25 variables.

3 Results

3.1 Frequency analysis

For each of the 59 stations, the distribution that best fit-
ted the data was chosen amongst 2-parameter lognormal, 2-
parameter Weibull, gamma, Fréchet, 3-parameter lognormal
and 3-parameter Pearson distributions. Two-parameter log-
normal and gamma are the most common laws in Wallonia.
No relationship was found between the type of distribution
selected and the length of data, catchment area or the spatial
location of the catchment.

3.2 Development of a global regression model

Applicability conditions were checked and the logarithm of
AM7 T was chosen in order to improve the normality of
residuals. In addition, Laaha and Blöschl (2006) proposed to
use a logarithmic transformation when outliers increase with
observed flow, which occurred in our case. Finally, this trans-
formation allows avoiding negative estimates of AM7T .

The Cook distance allowed us to detect three outliers.
These observations corresponded to higher specific AM7.
Removing them from the data set would have improved the
fitting of the model in calibration, but this was not a suffi-
cient reason. They were therefore kept, but one should note
that the model is better calibrated within a range of specific
AM7.

For each regression method (stepwise, maximumR2 im-
provement and adjustedR2 selection), the same variables
were selected for all return periods, except the 50 yr return
period for the two last methods. MaximumR2 improvement
and adjustedR2 selection actually resulted in the same final
equations, except for the 50 yr return period. Table 2 gives
the regression coefficients for each method and return period.
The general equation is

AM7 T = AREA × 10constant+ax1+bx2+...+zxp. (5)

Equation (6) is an example of the equation for AM7T 5 ob-
tained by the stepwise method:

AM7 T 5 = AREA × 10−2.7851+ 0.0017Pe − 13.4274 RC. (6)

Table 3 presents, for each method, the values ofR2, adjusted
R2 and RMSE for the calibration and the validation of the
models.

For calibration, the performance of the two models is sim-
ilar except for the 50 yr return period for which the mod-
els obtained by the maximumR2 improvement and adjusted
R2 selection perform better (higher adjustedR2 and lower
RMSE). However, the validation is clearly better with the
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Table 2. Regression coefficients of the global model by method of regression and return period. The general equation is
AM7 T = AREA× 10constant+ax1+bx2+...+zxp. Lg is the area percentage of grasslands [%],SA the area percentage of soils of hydrolog-
ical group A [%], WP winter precipitation [mm], RC recession coefficient [day−1], Pe percolation [mm], Sl90 the 90th percentile of slope
[%], SB the area percentage of soils of hydrological group B [%], andSC the area percentage of soils of hydrological group C [%].

Method Return period Constant Lg SA WP RC Pe Sl90 SB SC

Max. R2 improv. 5 −3.8935 0.0080 0.0098 0.0017−19.8274 – – – –
R2

adj selection 10 −3.9741 0.0089 0.0104 0.0017−21.2826 – – – –

20 −4.0639 0.0098 0.0110 0.0017−22.4033 – – – –

Max. R2 improv. 50 −4.4764 – 0.0154 0.0016 −20.4359 – 0.0348 – –

R2
adj selection 50 −3.1899 – – 0.0017 –19.1631 – 0.0409−0.0148 −0.0183

Stepwise 5 −2.7851 – – – −13.4274 0.0017 – – –
10 −2.8396 – – – −15.5904 0.0016 – – –
20 −2.8939 – – – −17.3211 0.0016 – – –
50 −2.9808 – – – −19.0192 0.0016 – – –

model obtained by the stepwise method for all return pe-
riods. Since the aim of this study is to be able to estimate
AM7 T in ungauged catchments, we continued the analyses
with the models obtained by stepwise. According to Laaha
and Bl̈oschl (2007), the stepwise method maximises the ro-
bustness and the predictive performance of the model, and
minimises collinearity between variables. Our results con-
firm the lower collinearity when using the stepwise method.
If we consider the logarithms of specific AM7, VIF is 1.09
for the stepwise method, while VIFs range from 1.4 to 3.21
for the maximumR2 improvement method and from 1.4 to
2.68 for the adjustedR2 selection method.

For the stepwise model, theR2 and RMSE of calibration
decrease when the return period increases, which means that
the part of the variance of AM7T explained by the model
and residuals both decrease. This seems contradictory but
can be explained by the diminution in the variance of ob-
served AM7T whenT increases, this diminution being rel-
atively bigger than the reduction in MSE. From a validation
point of view,R2 is quite high but diminishes also whenT
becomes larger. RMSE decreases as well but is in the same
range of values as the RMSE of calibration. Therefore, the
variance of observed AM7T of validation stations is higher.
In conclusion, the model performs generally well and even
better for predicting since the part of the variance of AM7T

explained by the model is higher in validation. This perfor-
mance is detailed in the following paragraphs.

Residuals increase linearly with observed specific
AM7 T , as can be observed in Fig. 1 for T5. Therefore,
the models overestimate low values of specific AM7T

(especially under 10−3 m3 s−1 km−2 for T5 and T10, and
under 5× 10−4 m3 s−1 km−2 for T20 and T50), and un-
derestimate higher values of specific AM7T (especially
over 3× 10−3 m3 s−1 km−2 for T5 and T10, and over
2× 10−3 m3 s−1 km−2 for T20 and T50). This problem of
lack of calibration for very high and low values of specific

AM7 T is due to the small number of observations for this
range of specific AM7T , especially for specific AM7T
over 4× 10−3 m3 s−1 km−2 for T5, T10 and T20, and over
3× 10−3 m3 s−1 km−2 for T50.

The limits of prediction intervals can be calculated using
Eq. (4) for the logarithm of specific AM7T . In our case, for a
risk α of 5 % and 56 degrees of freedom,t equals 2.003. The
inverse matrix(X′X)−1 associated with our observations is 0.15907243 − 0.00059585 − 3.70977259

−0.00059585 0.00000394 0.00682459
−3.70977259 0.00682459 149.582607

 .

The sensibility of the model can also be studied. For a con-
stant value of RC, the specific AM7T 5 increases by 3.9 %
when Pe increases by 10 mm. For a constant value of Pe, the
logarithm of specific AM7T 5 decreases by 6 % when RC
increases by 0.002 day−1.

Plotting the constant and regression coefficients of the
models against the return period, Fig. 2 shows that the con-
stant and regression coefficients are linked to the return pe-
riod. We adjusted a logarithmic relationship in order to cal-
culate AM7T for any return periodT between 5 and 50 yr
with this formula:

AM7 T =

Area× 10−2.6457−0.0847lnT +0.0017Pe−9.8077RC−4×10−5PelnT −2.4148RClnT . (7)

The choice of a logarithmic relationship was made in the
context of our results and should be verified in other situ-
ations. Compared to AM7T predicted with the models for
each return period, values estimated by this model are lower
by 0.5 to 3 % for 5 yr and 50 yr return periods. For 10 yr and
20 yr return periods, the difference is even lower (between
0.1 and 2 %), and estimated values are generally higher for
a 10 yr return period and generally lower for a 20 yr return
period. This means that, for 5 yr and 50 yr return periods,
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Table 3.Comparison of the performance of the models developed using three different regression methods (stepwise, maximumR2 improve-
ment and adjustedR2 selection). The performance indices considered for calibration and validation areR2 (determination coefficient),R2

adj

(adjusted determination coefficient) and RMSE (root-mean-square error). MaximumR2 improvement and adjustedR2 selection resulted in
the same final equations, except for the 50 yr return period. The numbers in bold are the highest values of indices for each return period. The
stepwise model seems the best option for the purpose of this study.

T5 T10 T20 T50

Max R2 improv. MaxR2 improv. MaxR2 improv.
R2

adj R2
adj R2

adj Max R2 R2
adj

Stepwise selection Stepwise selection Stepwise selection Stepwise improv. selection

CalibrationR2 0.670 0.700 0.623 0.645 0.578 0.592 0.508 0.794 0.832
CalibrationR2

adj 0.658 0.689 0.610 0.632 0.563 0.577 0.490 0.786 0.826

Calibration RMSE (m3 s−1) 0.201 0.192 0.187 0.181 0.177 0.174 0.170 0.110 0.099
ValidationR2 0.796 0.574 0.754 0.510 0.703 0.455 0.608−0.839 −0.935
ValidationR2

adj 0.771 0.453 0.724 0.370 0.666 0.299 0.559 −1.365 −1.679

Validation RMSE (m3 s−1) 0.205 0.296 0.188 0.265 0.179 0.243 0.177 0.383 0.393

this model slightly underestimates AM7T that are already
underestimated but improves the estimation of AM7T over-
estimated by the models for each return period. For a 10 yr
return period, it is generally the opposite: overestimation of
overestimated AM7T but improvement of the estimation of
underestimated AM7T .

3.3 Low-flow regionalisation

The cluster analysis resulted in four groups of catchments;
the study area could therefore be divided into four homo-
geneous regions. Catchments in a homogeneous region are
contiguous.

The PCA helped to elucidate the differences between
groups (Fig. 3a). The first component is highly positively
correlated to precipitation, the area percentage of forests, the
slopes, the altitude, the area percentage of soils of the hydro-
logical group B and the recession coefficient. It is negatively
correlated to the area percentage of arable lands and soils of
the hydrological group A, the summer temperature, Y map
coordinate, and the area percentage of urban lands. These
results have a real physical meaning. The southern region of
Wallonia, corresponding to lower Y map coordinates, is char-
acterised by higher altitudes and slopes, while soils of the hy-
drological group A and arable lands are more present in the
northern region of Wallonia where precipitation is smaller
and there are also many big city centres.

The second component is positively correlated to perco-
lation and the area percentage of soils of the hydrological
group D.

The area percentage of soils of the hydrological group C,
soils that were not mapped, permanent crops and grasslands,
the area, the drainage density, the X map coordinate and the
potential evapotranspiration are variables which are less cor-
related to the first two components. They contribute therefore
less to the grouping of catchments in the regions.

As shown in Fig. 3b, the regions can be distinguished by
the climatic and physical features used for the analysis.

Region 1 is located in the north of Wallonia. It is a region
of low altitude (average of 62.4 m) and gentle slopes (average
of 3.2 % for the median slope) that receives less precipitation
(average of 817 mm), has higher summer temperatures (av-
erage of 16.6◦C), is rather agricultural and urban (average
of 58.1 % and 10.3 % of the area of catchments covered by
arable and urban lands, respectively), and has soils of good
infiltration capacity and permeability predominating (aver-
age of 44.4 % and 40.7 % of soils of hydrological groups A
and B, respectively; 127.5 mm for percolation and 0.0012 for
the recession coefficient).

Region 2 has a central spatial location. It is a region char-
acterised mainly by intermediate values of features: medium
altitude, steep slopes, average amount of precipitation, av-
erage summer temperatures for Belgium, fairly urbanised
and agricultural (average of 4.6 % and 22.8 % of the area of
catchments covered by urban and arable lands, respectively),
rather forested and grassy (average of 30.7 % and 35 % of the
area of catchments covered by forests and grasslands, respec-
tively), and soils of moderate infiltration capacity and rel-
atively low permeability predominating (average of 63.4 %
and 19.2 % of soils of hydrological groups B and C, respec-
tively; 78.4 mm for percolation and 0.0018 for the recession
coefficient).

Region 3 is situated in the south of Wallonia. It is a re-
gion of higher altitude (average of 260.8 m) and steep slopes
that receives a lot of precipitation (average of 1138 mm), has
lower summer temperatures (average of 14.9◦C), is not very
urbanised (average of 3.1 % of the area of catchments cov-
ered by urban lands), and has soils of relatively good infiltra-
tion capacity and moderate permeability predominating (av-
erage of 72.6 % and 19.8 % of soils of hydrological groups
B and C, respectively; 99.3 mm for percolation and 0.0030
for the recession coefficient), where forests and grasslands
prevail (average of 47.4 % and 34.8 % of the area of catch-
ments covered by forests and grasslands, respectively).
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Fig. 1. Plot of global model residuals against observed specific
AM7 T (example for the return period of 5 yr). Residuals increase
linearly with observed specific AM7T .
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Fig. 2. Constant and regression coefficients of the global model
plotted against the return period. A logarithmic relationship can be
fitted to link the constant and regression coefficients to the return
period.

Region 4 is to the south of region 3. It is a region of
higher altitude and steep slopes (average of 7.6 % for the
median slope) that receives a lot of precipitation (average
of 1079 mm), has average summer temperatures, is rather
forested and grassy (average of 29.7 % and 36.4 % of the
area of catchments covered by forests and grasslands, re-
spectively), and has soils of low infiltration capacity but good
permeability predominating (average of 34.3 % and 43 % of
soils of hydrological groups B and C, respectively; 218.8 mm
for percolation and 0.0012 for the recession coefficient).

3.4 Development of regional models

It has been shown by several studies that developing one re-
gression equation per region results in better estimates than a
global equation (Smakhtin, 2001; Laaha and Blöschl, 2006;
Vezza et al., 2010). However, in our case, groups do not con-
tain more than 20 catchments each. Group 4 has only 5 ob-
servations, and this can be a problem when checking appli-
cability conditions.

Fig. 3. Groups of catchments(a) and correlation circle(b) in the
plane of the two first principal components. The two first compo-
nents of the PCA allow distinguishing the four groups of catch-
ments.

Nevertheless, we developed regional models using the
stepwise method for the regions containing enough catch-
ments to calculate statistics and compared their performance
with the global model. In region 1, there are 18 catchments
for calibration and 6 for validation. Region 3 contains 20
catchments for calibration and 10 for validation.

Applicability conditions were checked and the logarithm
of AM7 T was also chosen. Outliers were not removed for
the same reasons as the global regression model. Tables 4 and
5 give the regression coefficients for each return period for
regions 1 and 3, respectively. The general equation is Eq. (5).
The same conclusion as for the global model can be drawn
regarding residuals.

Regional models give good results (see Table 6 for the
performance indices) but do not improve all estimates of
AM7 T ; residuals increase for some catchments. The gain
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Table 4. Regression coefficients of the model for re-
gion 1 by return period. The general equation is
AM7 T = AREA× 10constant+ax1+bx2+...+zxp. Pe is percola-
tion [mm] and SP summer precipitation [mm].

Return period Constant Pe SP

5 1.6924 0.0048 −0.0245
10 1.9390 0.0053 −0.0264
20 2.0912 0.0059 −0.0278
50 2.2464 0.0071 −0.0298

Table 5. Regression coefficients of the model for re-
gion 3 by return period. The general equation is
AM7 T = AREA× 10constant+ax1+bx2+...+zxp . ST is summer
precipitation [mm], and RC the recession coefficient [day−1].

Return period Constant ST RC

5 −7.7700 0.3482 −12.3893
10 −9.3820 0.4525 −14.9347
20 −11.0117 0.5583 −17.1869
50 −13.6585 0.7312 −20.0026

in precision is not considered sufficient when balanced with
the loss of robustness due to the smaller number of catch-
ments used to calibrate and validate the models. The global
model is thus preferred at the moment for its greater robust-
ness. However, looking at their current performance, regional
models seem promising for the future, when more data from
gauging stations will be available. Indeed, it would be inter-
esting to carry out a new cluster analysis and develop one
model per homogeneous region in 10 yr. It should actually
improve estimates of low flows.

4 Discussion

4.1 Frequency analysis

Two-parameter lognormal and gamma are the most com-
mon distributions that fit low-flow data in Wallonia. The 2-
parameter lognormal law has already been used by Galéa
et al. (1999) to fit low-flow data of the Loire catchment in
France. Gamma was the best distribution for the Missouri
catchment in the USA (Joseph, 1970). As our results demon-
strated that the type of distribution is not linked to the spatial
location or the area of the catchment, a frequency analysis
per catchment was essential to determine the best distribution
and therefore accurately estimate AM7T for return periods
of 5, 10, 20 and 50 yr.

4.2 Global regression model

The explanatory variables selected by stepwise for the global
model were the recession coefficient and percolation. Indeed,

Fig. 4.Map of homogeneous regions and agro-geographical regions
in Wallonia. The four homogeneous regions nearly correspond to
Walloon agro-geographical regions.

they are the two variables that most correlated to specific
AM7 T (correlation coefficient of−0.47 and 0.39 for a re-
turn period of 5 yr) without being correlated to each other
(coefficient of−0.28). These two features are linked to geol-
ogy: the more permeable the substratum, the higher the per-
colation and the lower the recession coefficient. Geology is
considered by Smakhtin (2001) as one of the natural factors
that most influence low flows. Indeed, the main component
of low flow is baseflow, which depends on geology and in
particular on substratum permeability. Percolation allows es-
timating groundwater recharge, and the recession coefficient
helps characterise water input from groundwater to the river
during low-flow periods. Moreover, Vogel and Kroll (1992)
found that low-flow characteristics were highly correlated to
catchment area, average basin slope and baseflow recession
constant. Therefore, this equation quantifies the role played
by geology in determining low flows in Wallonia.

The physical role of the variables selected by the other
methods can also be explained. In our region, the precipi-
tation from October to April quantifies water input during
the period of groundwater recharge. The hydrological type of
soil describes the infiltration rate (high for A to very low for
D) and drainage (excellent for A to very bad for D) of soils.
Yet, higher infiltration favours higher groundwater recharge,
and groundwater is the main source of water in rivers during
low-flow periods. Therefore, soils of the hydrological group
A permit a higher groundwater input into the rivers during
low-flow periods than soils of the hydrological groups B and
C. Grasslands favour infiltration thanks to their dense root
system. The renewal of the roots creates preferential infiltra-
tion paths.

The global model resulted in good prediction for
the middle range of specific AM7T (4× 10−4 to 4×

10−3 m3 s−1 km−2 for return periods of 5 and 10 yr, 3×10−4

to 4× 10−3 m3 s−1 km−2 for a return period of 20 yr, and
2× 10−4 to 3× 10−3 m3 s−1 km−2 for a return period of
50 yr). Around 10 % of the observations are outside this
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Table 6.Comparison of regional and global models using performance indices:R2 (determination coefficient),R2
adj (adjusted determination

coefficient) and RMSE (root-mean-square error). The numbers in bold are the highest values of indices for each return period.

Region 1

T5 T10 T20 T50

Regional Global Regional Global Regional Global Regional Global
model model model model model model model model

CalibrationR2 0.868 0.670 0.858 0.623 0.849 0.578 0.842 0.508
CalibrationR2

adj 0.850 0.658 0.839 0.610 0.829 0.563 0.821 0.490

Calibration RMSE (m3 s−1) 0.103 0.201 0.098 0.187 0.094 0.177 0.089 0.170
ValidationR2 0.909 0.796 0.884 0.754 0.852 0.703 0.793 0.608
ValidationR2

adj 0.849 0.771 0.806 0.724 0.754 0.666 0.656 0.559

Validation RMSE (m3 s−1) 0.103 0.205 0.105 0.188 0.108 0.179 0.116 0.177

Region 3

T5 T10 T20 T50

Regional Global Regional Global Regional Global Regional Global
model model model model model model Rmodel model

CalibrationR2 0.888 0.670 0.844 0.623 0.797 0.578 0.731 0.508
CalibrationR2

adj 0.875 0.658 0.825 0.610 0.773 0.563 0.699 0.490

Calibration RMSE (m3 s−1) 0.119 0.201 0.114 0.187 0.110 0.177 0.105 0.170
ValidationR2 0.771 0.796 0.759 0.754 0.742 0.703 0.698 0.608
ValidationR2

adj 0.706 0.771 0.691 0.724 0.668 0.666 0.611 0.559

Validation RMSE (m3 s−1) 0.251 0.205 0.208 0.188 0.181 0.179 0.162 0.177

range and have high residuals when predicted by the mod-
els. This lack of calibration of the models for very high and
low values of specific AM7T can explain the lowR2 of the
model, and can be solved by adding data, but they are not
available yet in Wallonia. It could be useful to recalibrate the
models in 10 yr, when more stations will have at least 20 yr
of data. However, it is not uncommon to underestimate large
flow values by regression models (Laaha and Blöschl, 2006).

The higher performance of the model in validation can be
explained by the fact that all validation stations but one have
specific AM7 in the middle range of values where the model
is best calibrated.

When we plotted the constant and regression coefficients
of the models against the return period, we found logarith-
mic trends. This enabled us to develop a single model for the
whole study area, in function of the return period. The use of
this equation rather than the equations for each return period
does not imply a high loss in precision for AM7T estimates
(between 0.1 and 3 % for the global model).

This equation can be used by anyone who needs an esti-
mate of low flows at an ungauged site for a desired return pe-
riod. It will help river managers to improve the management
of low flows in rivers, especially regarding water resource
planning, reservoir storage design, recreation and environ-
mental flow requirements for wildlife conservation (Vezza et
al., 2010).

However, one should note that climate change has not been
taken into account in this study. Yet, it is forecasted by some
studies that low flows will worsen in the future (de Wit et
al., 2007; Bauwens et al., 2011). For example, Bauwens et
al. (2011) showed that low-flow discharges (AM7) in two
Belgian sub-catchments of the Meuse River may decrease by
19–28 % for a return period of 5 yr, and 20–35 % for a 50 yr
return period, by the end of the century. The forecasted future
worsening of low flows will probably lead to a modification
of the equation. Nevertheless, techniques exist to assess the
hydrological sensitivity of catchments to climate change (van
der Wateren-de-Hoog, 1998, for instance).

4.3 Low-flow regionalisation

We found that Wallonia is composed of four homogeneous
regions. Catchments of a same region are contiguous, even
though it was not a condition to form the homogeneous re-
gions. It can be thought that X and Y map coordinates have
influenced this grouping. However, when these two variables
are removed from the cluster analysis, the groups are the
same, except for 3 catchments that change group. Neverthe-
less, the position of the regions follows a north-west–south-
east gradient: altitude, slope, precipitation, and percentage
of grasslands and forests increase from region 1 to 3, and
temperature and percentage of arable lands and soils of good
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infiltration rate and drainage decrease. Compared to region 3,
region 4 is characterised by lower altitude, precipitation, and
percentage of grasslands and forests, and higher slope, tem-
perature, and percentage of arable lands and soils of good
infiltration rate and drainage. All these factors are in fact
related. Crops grow better on soils of good infiltration rate
and drainage, and need suitable temperature and precipita-
tion. Forests rather cover steeper lands situated at higher
altitude, where soil properties are less good. Actually, the
four regions nearly correspond to natural regions called agro-
geographical regions (Fig. 4) (Christians, 1971).

To date, only two regions contain enough gauging stations
to permit the development of a specific model. Compared to
the global one, they presented little interest because of the
loss of robustness. But considering that a lot of new gauging
stations have been put in place during the last decade, we
propose to reconsider them in the future.

5 Conclusions

We developed a full analysis chain allowing us to estimate
low flows anywhere in gauged and ungauged catchments in
Wallonia, and this for any desired return period between 5
and 50 yr.

This method puts together the selection of gauging sta-
tions for low-flow calculation, frequency analysis to fit a
frequency distribution to low-flow data, an optional cluster
analysis to delineate homogeneous regions if enough data
are available, regression analysis to develop models predict-
ing low flows from catchment characteristics, and a new ap-
proach that evaluates the relationships between regression
coefficients and the return period.

This method answers the need of water managers since
it allows them to freely choose the return period of the low
flows that they will consider in their regulation for each water
use.

This method has been applied to a quite small region.
The lack of data available at the moment affected the de-
velopment of regional models and the precision of the global
model for very high and low values of AM7T . It is there-
fore advised to carry out this study again in 10 yr when more
stations have at least 20 yr of data. It would also be interest-
ing to take climate change into consideration, and repeat it
for other areas to see if the same variables are selected for all
return periods.
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