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Abstract. Snow and glacier melt (SGM) estimation plays
an important role in water resources management. Although
melting process can be modelled by energy balance methods,
such studies require detailed data, which is rarely available.
Hence, new and simpler approaches are needed for SGM es-
timations. The present study aims at developing an artificial
neural networks (ANN) based technique for estimating the
energy available for melt (EAM) and SGM rates using avail-
able and easy to obtain data such as temperature, short-wave
radiation and relative humidity. Several ANN and multiple
linear regression models (MLR) were developed to repre-
sent the energy fluxes and estimate the EAM. The models
were trained using measured data from the Zongo glacier
located in the outer tropics and validated against measured
data from the Antizana glacier located in the inner tropics.
It was found that ANN models provide a better generalisa-
tion when applied to other data sets. The performance of the
models was improved by including Antizana data into the
training set, as it was proved to provide better results than
other techniques like the use of a prior logarithmic transfor-
mation. The final model was validated against measured data
from the Alpine glaciers Argentière and Saint-Sorlin. Then,
the models were applied for the estimation of SGM at Con-
doriri glacier. The estimated SGM was compared with SGM
estimated by an enhanced temperature method and proved to
have the same behaviour considering temperature sensibility.
Moreover, the ANN models have the advantage of direct ap-
plication, while the temperature method requires calibration
of empirical coefficients.

1 Introduction

Glaciers could be considered as the most important water
reservoirs, since they represent about 68% of the total fresh
water available (Shiklomanov and Roda, 2003). Previous
studies state that snow and glacier melt (SGM) is of fun-
damental importance for the present and future water sce-
narios in snow-fed and glacier-fed basins (Kure et al., 2012a;
Jansson et al., 2003), but most of them are located in the poles
far from human activities; only mountainous glaciers are lo-
cated in human populated continental areas. Mountainous
glaciers could be considered the world’s virtual water tow-
ers assuring year round water flow for the main rivers, and
its melting may lead to water shortage for millions of peo-
ple. Unfortunately, most of the mountain glaciers are melting
quite rapidly, a fact that may lead to serious social tensions
related to water. Hence, it is important to understand glacier
dynamics in order to analyse possible future water scenarios.

There have been many studies about glaciers and snow-
fall, both at global and local scales. Radic and Hock (2010)
applied a statistical method to estimate global glacier vol-
ume and states that corresponds to a sea level equivalent of
0.7 m. Avian and Bauer (2006) monitored Pasterze glacier
with laser scanning technique and detected three zones of
collapsing ice body. Huss et al. (2010) analysed the spatial
distribution of Switzerland glaciers by relating glacier sur-
face elevation change as a response to mass balance change.
Koboltsching and Scḧoner (2011) investigated the contribu-
tion of glacier melt to total river run off in the Austrian
Alps. Also different measures to prevent melting like cov-
ers, water injection or snow compaction were tested at field
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locations (Olefs and Fischer, 2008). Nevertheless, the above
mentioned studies were applied to high latitude locations
where climatic conditions are different than tropical latitude
places like the Andes.

The dynamics of the tropical Andes is quite different than
the Alpine glaciers; while the Alps experience a long accu-
mulation period in winter, the Andes experience permanent
ablation throughout the year (Coudrain et al., 2005). In both
inner and outer tropics the daily variation is greater than the
seasonal one, which is typical behaviour of tropical latitudes
(Mote and Kaser, 2007). The tropical Andean glaciers used
to cover over 2940 km2, but suffered a strong retreat that de-
creased its area to 2493 km2 by 2002 and caused some small
glaciers such as Chacaltaya or Cotacahi to disappear (Vergara
et al., 2007), with serious consequences. For instance, the
area around Cotocachi not only experienced a decrease in
agriculture and tourism activities but also more and worse
water conflicts are expected over time. Important Bolivian
cities such as La Paz and Cochabamba already faced seri-
ous social tensions categorised as emblematic in global wa-
ter debates (Laurie and Crespo, 2007). Thus, a better water
resources management is an important goal. SGM estimation
is an important and necessary tool for achieving such goal.

Analytical methods for estimating SGM may be divided
into temperature index models and energy based models.
Although temperature index models are a simplification of
complex processes that would be better described by energy
balance, many studies found a high correlation between melt
and air temperatures (Hock, 2003). Temperature models re-
late the amount of melting to a degree day factor and to either
the sum of the positive temperature or the mean daily tem-
perature. Sometimes temperature index models use a base
temperature that might be below the freezing temperature
(Debele et al., 2009). Since they have the advantage that tem-
perature is an easy to measure data, they are popular and
used in many studies (Kure et al., 2012b; Hock, 1999; Jost et
al., 2012; Biggs and Whitaker, 2012). Nowadays, some hy-
drological models include the option of snow/ice melting by
using temperature based equations that were used in differ-
ent studies (Abbott et al., 1986; Scharffenberg and Fleming,
2010; Wang et al., 2010; Tahir et al., 2011; Bocchiola et
al., 2011). Hirabayashi et al. (2010) estimated global glacier
mass balance using the global glacier model HYOGA that
uses a day degree approach; nevertheless, such model was
not able to simulate the temporal variation in South American
glaciers. Pelliccioti et al. (2005) developed an enhanced tem-
perature index model that combines temperature with short-
wave radiation for estimating SGM in Switzerland (Carenzo
et al., 2009).

Earlier studies showed that just air temperature is not
enough for predicting snowmelt (Zuzel and Cox, 1975). It
is important to consider that temperature of matter is just a
property that represents the relation between the heat added
to a body and its change in entropy (King, 2005), thus the ex-
ternal heat added to a given body, in this case radiation, is the

external force that defines the matter property. Besides, most
temperature models have a minimum time scale of daily es-
timations and the conceptual limitation that energy available
for melt is not linearly related to positive air temperatures
(Hock and Holmgren, 1996). Therefore, they are not able to
reproduce daily pattern fluctuations which are important in
tropical regions. Moreover, Kuhn (1987) performed a theo-
retical analysis of energy budget and melting conditions, and
showed that melting may happen at air temperatures as low
as−10◦C or as high as 10◦C. Hence, radiation must be in-
cluded in melting models.

Energy balance melt models are based upon the assump-
tion that at freezing temperature any surplus of energy at the
surface air interface will be used for melting, and the en-
ergy available for melting is then related to the latent heat
of fusion. The energy balance method has a strong phys-
ical background and was successfully applied in different
studies (Molg et al., 2008; Cullen et al., 2007; Molg and
Hardy, 2004; Wagnon et al., 1999). Some studies use re-
sults from energy balance models to calibrate temperature
models (Carenzo et al., 2009). Basic energy balance models
were applied to simulate snowmelt in Nordic glaciers (Hock
and Holmgren, 2005) in the Alps (Sicart et al., 2008), New
Zealand (Anderson et al., 2010) and in the Andes (Sicart et
al., 2011). There are also more advanced energy models that
divide the snowpack into layers and then apply a 1-D mass
and energy balance to each layer in order to predict tempera-
ture profiles. The 1-D energy balance model SNTHERM was
applied to analyse the variation of soil temperature with snow
cover and improving roads maintenance (Fu et al., 2009).
The land surface model ISBA-ES was coupled to models
SAFRAN (meteorological model) and MODCOU (hydro-
geological model) to simulate spring and summer flows in
the French Alps (Lafaysse et al., 2011). However, the above
mentioned models face the main limitation of detailed data
requirements which are difficult to obtain, and sometimes it
can be obtained only for limited periods of time. Long-wave
radiation (LWR) is the energy term most difficult to obtain.
Although it can be measured using a pyrgeometer, this is a
very expensive instrument rarely available at meteorologi-
cal stations (Dos Santos et al., 2011). LWR provides large
amounts of melt energy for high-albedo snow surfaces and
may even dominate in the energy balance for under cloudy
skies (Sicart et al., 2010). Such fact has a special importance
for the study area, as the local summer coincides with the wet
season characterised by cloudy skyes and LWR controls the
melting seasonal changes. Although simple equations were
developed for its estimation considering vapour pressure and
temperature (Kruk et al., 2010), those equations have empir-
ical constants calibrated for specific locations. Hence, new
alternatives are needed to estimate either energy fluxes or the
whole energy balance using more accessible data.

ANN are mathematical structures able to represent com-
plex non-linear relationships between input and output by
imitating functioning of neurons in a human brain. In the
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Fig. 1. Locations considered in the study. Zongo and Condoriri are located in the outer tropics of Bolivian Andes. Antizana is located in the
humid inner tropics of the Equator, Argentière and Saint-Sorlin are located in the septentrional French Alps.

last years, ANN have been successfully applied in hydro-
logical studies. They were used for sediment studies (Kisi et
al., 2012), weather forecast downscaling (Hoai et al., 2011),
rainfall forecasting (Hung et al., 2009), river flow estimations
(Akhtar et al., 2009; Shamseldin, 2010; Huo et al., 2012),
litoral drift predictions (Singh et al., 2008) and evapotran-
spiration (Cobaner, 2011; Dai et al., 2009). Although widely
applied to hydrology, almost no studies applied ANN to snow
and glaciated areas. Yilmaz et al. (2011) applied ANN to esti-
mate flow in a snow dominated mountainous basin in Turkey,
but its time step was limited to daily scale and the model was
not able to reproduce the yearly pattern, hence the model was
developed as a seasonal model.

The present study developed different ANN models able
to represent the nonlinear relations between common meteo-
rological parameters, e.g. temperature, short-wave radiation
or relative humidity, and other energy fluxes and the energy
balance for a given time. Such models allow estimating en-
ergy balance and the energy available for melt. Relating the
energy available for melt with the latent heat of fusion eas-
ily provides the potential SGM rate per unit of area. First,
ANN models were developed for the estimation of energy
fluxes difficult to obtain and usually unavailable, e.g. LWR
sensible heat flux and latent heat flux. Then, ANN models
were developed for estimating the whole EB within one sin-
gle step. The ANN models were trained using measured data
from the Bolivian glacier Zongo located in the outer trop-
ics. Then, they were validated with measured data from the
Equatorian glacier Antizana located in the inner tropics. The
present research also developed MLR models for the esti-
mation of energy fluxes. The performance of ANN models
for estimating energy fluxes was compared against the MLR
models. Both the ANN and MLR models were validated with
data measured from Alpine glaciers. Finally, the validated
models were applied to the Bolivian glacier Condoriri. The

SGM estimation was compared with estimations from the
MLR model and against enhanced temperature index mod-
els. This research is not only among the first ones to esti-
mate SGM at short time step without complex data, but also
among the first ones to implement ANN technologies in trop-
ical glaciers in a developing country. The results will allow
for easily predicting future SGM at any time. One main con-
tribution of the present study is that it will allow overcoming
the problem of data scarcity by proposing several models to
estimate energy balance under different input data scenarios.

2 Study area

The present study considered three tropical glaciers: An-
tizana, Zongo and Condoriri. The Condoriri and Zongo
glaciers are both in the outer tropics in the Bolivian Andes
at some 13 km from each other, while the Equatorian glacier
Antizana is located in the inner tropics at some 2100 km
from Zongo and Condoriri. In order to test the validity of
the model to glaciers out the tropical range, additional data
from the Alpine glaciers Argentière and Saint-Sorlin were
also used (Fig. 1).

It is important to stress that the inner tropics and the outer
tropics have different climatological behaviour. The humid
inner tropics are characterised by a thermically homoge-
nous atmosphere with slightly variable humidity throughout
the year; temperature and humidity variations are not large
enough to characterise a pronounced seasonal regime (Favier
et al., 2004). On the other hand, the outer tropics have two
marked seasons: one wet season characterised by precipi-
tation and cloud cover coincident with the austral summer
(November–March), and one dry season with clear skies dur-
ing winter (April–September) (Sicart et al., 2005). The short-
wave radiation (SWR) in Zongo and Condoriri has maximum
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values in winter due to the clear skies, while during summer
it has lower values due to the cloudiness that attenuate it. On
the other side, long-wave radiation has lower values in winter
and higher values in summer due to the radiation reflected by
clouds. The temperature reaches its highest values in summer
and lowest values in winter; but due to the high altitude it is
common to have frozen temperatures even in summer.

The Zongo glacier with altitudes ranging from 4900 to
6000 m a.s.l. (above sea level) is located in the Huayna mas-
sif (16◦16′ S, 68◦10′ W) and is part of a 3.7 km2 basin with
the main limnimetric station at 4830 m a.s.l. (Sicart et al.,
2007). It is located some 30 km north of La Paz. The An-
tizana glacier with altitudes between 4800 to 5700 m a.s.l. is
located 40 km east of Quito, on the NW slope of the An-
tizana volcano (Favier et al., 2004). Both glaciers are be-
ing monitored since 2003 within the project GLACIOCLIM
(http://www-lgge.ujf-grenoble.fr/ServiceObs/).

The Condoriri glacier with altitudes from 4400 to
5200 m a.s.l. (16◦11′ S, 68◦13′ W) has the shape of a con-
dor with open wings and provides water for the cities of
El Alto and La Paz. Condoriri glacier along with Huayna
and Tuni glaciers are currently being studied under the
GRANDE project that will allow researchers to comprehend
what is happening to the glaciers and to predict future scenar-
ios (http://grande.civil.tohoku.ac.jp/indexe.html). One major
problem of the above mentioned glaciers is the lack of data.
In July 2011 GRANDE project installed weather stations
around the mentioned glaciers. Although the stations will
provide current data at small time intervals, the measured
parameters are not enough to perform a complete energy
budget.

Saint-Sorlin (45◦10′ N, 6◦10′ E) and Argentìere (45◦95′ N,
6◦98′ E) glaciers are located in the Western Alps of France.
They are monitored also within the project GLACIOCLIM.
Meteorological stations have been set up close to both
glaciers in order to study the relationships between climate
change and mass balance fluctuations (Six et al., 2009).
While Antizana Zongo and Condoriri are located in tropi-
cal latitudes in the Southern Hemisphere, Saint-Sorlin and
Argentìere are located at septentrional latitudes, with lower
elevation, marked seasonality and well-defined periods of ab-
lation and accumulation.

3 Data and methods

3.1 Data

Before applying the models to the Condoriri glacier, they
were validated against data measured at the Equatorian
glacier Antizana located in the inner tropics. Data for the
glaciers Zongo and Antizana was obtained from meteorolog-
ical stations installed and monitored by the French project
GLACIOCLIM. Those stations have a data logger Campbell-
ORE23x. They record every 30 min several meteorological

parameters, such as short-wave radiation, long-wave radia-
tion, temperature, relative humidity, wind speed and wind di-
rection. The complete database consists of nearly 78 000 data
points covering the years 2003–2009. The consideration of
the number of data used for training the ANN models is an
important factor. Too large ANN tend to overfit, while ANN
with too few data do not contain enough processing elements
to correctly model the input data set and tend to underfitting
the data; both of these situations result in poor generalisation
(Barnard and Wessels, 1992). Longer data sets should pro-
vide better ANN models, since it provides additional knowl-
edge, thus considering more possibilities when training the
model (Hertz et al., 1991). Hence, it is important to have at
least a minimum number of training data. The present study
considered that the number of training data should be at least
10 times the number of ANN weights (Baum and Hausler,
1989). It is important to consider that extracting more in-
formation from data does not always improve the models,
indicating the need for improved data and models for crit-
ical times. Neal et al. (2011) suggest developing different
models for day and night. The present study focused on day-
time hours, defined as the ones when incoming short-wave
radiation (ISWR) is higher than 20 W m−2 (Hu et al., 2012).
Another limitation of ANN models is that the limits of the
training data may impose a limitation to its application to-
wards data outside the training data limits (Hettiarachi et al.,
2005). In the present study the temperature (t) and relative
humidity (RH) of the training data have lower limits than the
validation data (Table 1). The validation data has an average
RH 20 % higher than the training data. Although both train-
ing and validation data have similar average temperature, the
instant maximum of the validation data is 5◦C higher. Nev-
ertheless, the training data contains high values of the main
source of energy, i.e. solar radiation, as high as the assumed
solar constant of 1366 W m−2 (Spokas and Forcella, 2006).

Data for the Condoriri glacier was obtained from the Con-
doriri weather station installed by the GRANDE project. This
station installed in July 2011 has a data logger HOBO-U30
that records every 10 min several meteorological parameters
like short-wave solar radiation, wind velocity, relative hu-
midity, temperature and rain. The present study used more
than 61 300 data points from July 2011 to August 2012, cov-
ering one hydrologic year.

Data for the additional validation glaciers of Argentière
and Saint-Sorlin was obtained from meteorological stations
installed and monitored by the French project GLACIO-
CLIM. These stations provide SWR, LWR, relative humidity,
temperature, wind speed and net radiation.

3.2 Energy model

The estimation of SGM by energy methods is based on the
assumption that once the glacier reached freezing tempera-
ture any surplus of energy is used for melting (Hock and
Holmgren, 2005). The method may be applied either at single
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Table 1.Statistical description of data set used for training the ANN considering data from Zongo and Antizana. SWR is short-wave radiation.
EB is energy balance.

Data Location Maximum Minimum Average Std dev

Solar radiation[W m−2
] Zongo 1452.98 0.00 218.92 328.14

Solar radiation[W m−2
] Antizana 1349.00 0.00 192.84 293.90

SWR[W m−2
] Zongo 1154.25 0.00 318.05 253.43

SWR[W m−2
] Antizana 1349.00 0.16 342.56 289.08

Temperature[◦C] Zongo 10.42 −7.47 1.80 2.48
Temperature[◦C] Antizana 16.55 −5.42 1.80 1.79
Relative humidity[%] Zongo 100.00 4.12 65.15 30.65
Relative humidity[%] Antizana 98.90 0.00 82.01 15.53
Wind speed[m s−1

] Zongo 16.89 0.00 2.93 1.40
Wind speed[m s−1

] Antizana 18.63 0.00 4.03 3.21
EB [W m−2

] Zongo 1093.72 −555.64 197.45 210.22
EB [W m−2

] Antizana 1327.65 −278.72 279.68 262.89

locations or over distributed models involving computations
over a grid covering the study area. The current energy avail-
able for melt is estimated as the residual of the energy bal-
ance for each time step (Hock and Holmgren 2005) (Eq. 1):

QM = SWin + SWout + LW in + LWout + QH + QL + QO, (1)

whereQM is the energy flux available for melting, SWin is
the incoming short-wave radiation flux, LWin is the incom-
ing long-wave radiation flux, SWout is the outgoing short-
wave radiation flux, LWout is the outgoing long-wave radia-
tion flux, QH is the sensible heat flux,QL is the latent heat
flux, andQO are other minor heat fluxes like rain.

Usually short-wave radiation is measured at the site.
Sometimes it may be estimated by a valid relation consider-
ing the location (latitude and longitude), the Julian day, pos-
sible cloudiness and time exposed to solar radiation which is
influenced by the local topography. In the present study, both
LWR and SWR were obtained from Zongo station.

Sensible heat is calculated as function of the wind speed
and temperature (Hock and Holmgren, 2005) (Eq. 2):

QH = Cpk2 ρP u (T − Tf)

Po ln (Z/Zow) ln (Z/Zot )
, (2)

whereCp is the specific heat air at constant pressure,k is the
Von Karman constant,P is the atmospheric pressure,u is the
wind speed,Po is the standard atmospheric pressure,Z is the
instrument height,Zow is the roughness for wind logarith-
mic profile,Zot is the roughness for temperature logarithmic
profile,Tf is the freezing temperature,P is the air density.

Latent heat is calculated as function of the wind speed and
humidity (Hock and Holmgren, 2005) (Eq. 3):

QL = 0.623Lk2 ρu (e2 − eo)

Po ln (Z/Zow) ln (Z/Zoe)
, (3)

whereL is the latent heat flux of evaporation,e2 is the vapour
pressure at 2 m,eo is the vapour pressure at melting surface,
Zoe is the roughness parameter for vapour pressure logarith-
mic profile. Vapour pressure was estimated as function of rel-
ative humidity (Allen et al., 1998) (Eq. 4).

e2 =
eSRH

100
, (4)

whereeS is the saturation vapour pressure and RH is the rel-
ative humidity [%] (Eq. 5).

eS = 0.6108e
17.27T

T +273.15 , (5)

whereT is temperature in Celsius degrees. Stability correc-
tion described by the Richardson number (Eq. 6) was applied
to the turbulent fluxes (Sicart et al., 2005; Favier et al., 2004).

Ri =
g (T − Ts) (Z − Zom)

T u2
, (6)

whereT and u are absolute air temperature [K] and wind
speed [m s−1] at the measurement levelZ, g is the accelera-
tion of gravity (9.79 m s−2), Ts is the surface temperature and
Zom is the roughness length [m]. The non-dimensional stabil-
ity functions for momentum (8m), heat (8h), and moisture
(8v) were expressed in terms ofRi.

Ri positive (stable)

(8m8h)
−1

= (8m8v)
−1

= (1 − 5Ri)2. (7)

Ri negative (unstable)

(8m8h)
−1

= (8m8v)
−1

= (1 − 16Ri)0.75. (8)

The sensible heat of fusion was multiplied by (8m8h)
−1 and

the latent heat of fusion was multiplied by (8m8v)
−1.

The other energy fluxes were neglected, since they repre-
sent a very small percentage of the total. Then, the energy
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1270 V. Moya Quiroga et al.: Snow glacier melt estimation in tropical Andean glaciers

available for melt was converted into its water equivalent by
relating to the water latent heat of fusion (Eq. 9).

WE =
QM

Lf
, (9)

where WE is the water equivalent per square meter
[mm s−1 m−2], Lf is the water latent heat of fusion assumed
as 334 J g−1.

Hock and Holmgren (1996) suggested roughness val-
ues for glacier areas ofZow = 0.0027 m,Zot = 0.000027 m,
Zoe = 0.000027 m. Sicart et al. (2011) studied the Zongo
glacier and suggest a value ofZow ranging from 1 to 10 mm
andZot = Zoe =Zow/100, while other studies consider them
as calibrating variables. Sicart et al. (2005) found that both
latent and sensible heat fluxes in Zongo are small and they
play a minor role in the total energy balance since radia-
tion supplies most of the melting energy. Also Van As (2011)
found that solar radiation is the main source of melting en-
ergy, and the errors of assuming constant roughness are neg-
ligible. Thus, it can be assumed that the uncertainties of con-
sidering constant roughness values are small and without
much influence.

The energy balance for each time step was estimated us-
ing data from the glaciers Zongo and Antizana. Then, the
EAM was estimated by comparing with previous time step
energy in order to consider refreezing effects; in case the en-
ergy balance was negative, it was assumed as freezing (Hock
and Holmgren, 2005) and the next time step energy must
compensate such freezing before allowing for melting. Once
there was enough energy for melting, such energy was re-
lated to the latent heat of fusion for water which was as-
sumed 334 J g−1 in order to get the melting water equivalent
for that time step. Ideally, snowmelt and ice melt should be
differentiated, since they have slightly differentLf depending
on the amount of liquid water in the snow (Sing and Vijay,
2001; Guttman, 1907). However, since the differences are too
low, it was assumed that both snow and ice have the sameLf
(Hock, 2005).

3.3 Artificial neural networks

ANN are approximation methods that imitate the functioning
of the human’s brain. The brain may be idealised as a highly
complex non-linear and parallel computer with the capabil-
ity to perform computations by organizing its neurons and
building up its own rules through learning process. In anal-
ogy, ANN may reproduce multi-variable functions by arrang-
ing processing elements (neurons) interconnected according
to certain rules that may change in order to find the optimal
ones (learning). The most popular type of ANN is the multi-
layer perceptron (MLP), which is a feedforward network that
has interconnected nodes (neurons) arranged into three lay-
ers: input layer, a hidden layer and an output layer (Fig. 2)
(de Vos, 2013; Hung et al., 2009). The input layer sends the
input vectorX of signalsxi to the hidden layer. The hidden

Fig. 2.MLP architecture.

layer enables the network to learn by extracting meaningful
features from the input. Each neuron processes its outputyj

by summing its input signalxi multiplied by its respective
weightwij and a given thresholdao (Eq. 10).

yj = ao +

∑
xi wij (10)

The output of each neuron may go to the next hidden layer
or to the output node (if there is only one hidden layer). The
main characteristics of a MLP are (a) that each neuron in-
cludes a soft nonlinearity (sigmoidal logistic function which
is described in Eq. (11), (b) its layered architecture allows to
learn by progressively extracting information from the input,
and (c) its high degree of connectivity so that one element of
a given layer feeds all the nodes of the next layer.

zj =
1

1 + exp(−yj )
(11)

In this study the MLP was trained with the back-propagation
algorithm of the software Waikato Environment for Knowl-
edge Analysis (WEKA) version 3.6.6 (Hall et al., 2009).
The performance was evaluated by the non-overlapping test
set selection cross-validation method, also known as the
k fold method. This is one of the most popular validation
methods, and can be described in the following five steps
(Gascon-Moreno et al., 2012):

1. The total available datan is divided into k non-
overlapping data subsets C1, C2, ..., Ck, also known as
folds.

2. One fold is used for validation, while the remaining
folds are used as training data.

3. The created model is tested with the testing fold. This
test generates an

4. Steps two and three are repeatedk times, so that every
fold is used once as validation set.

5. The overall errorE is calculated (Eq. 12).

E =
1

k

k∑
i=1

Ei (12)
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While normal hold out testing methods may produce biased
results due to the data partitioning, this method gives a much
fair and unbiased estimation (Bengio and Grandvelet, 2004).
The popularity of the method grew so fast, that studies also
compared its performance by using different number of folds.
While early ideas suggested using 10 folds, it was found
that the differences between 5 and 10 folds are not signifi-
cant (Uguz and Kodaz, 2011; Iliadis et al., 2011). Markatou
et al. (2005) stated that 4 (folds) is a reasonable number
that provides fair estimations, hence the present study used
4 folds. The performance of each model was evaluated in
terms of correlation coefficient (correlation), mean absolute
error MAE (Eq. 13) and root mean squared error (RMSE)
(Eq. 14).

MAE =
1

n

n∑
i=1

|Pi − Ti | (13)

RMSE =

√√√√1

n

n∑
i=1

(Pi − Ti)
2 , (14)

wherePi is the predicted value,Ti is the target value,n is the
total number of samples.

Since SWR may easily be measured by using a pyrome-
ter, which is a simple instrument usually available in mete-
orological station, e.g. the main study basin of Condoriri is
equipped with pyrometers, SWR was considered as an input
data. The energy flux not available is long-wave radiation,
which is rarely available due to the high cost and complexity
of pyrgeometers (Choi et al., 2008). Hence, as a first step,
ANN models were developed to simulate incoming LWR
(ILWR) and global LWR (GLWR). Since all the ILWR mod-
els consider temperature and vapour pressure (Dos Santos
et al., 2011), such data was considered as input data. Tem-
perature is measured, and vapour pressure is estimated from
relative humidity, as previously explained. Different models
were developed considering temperature in Celsius degrees,
in Kelvin degrees and to the 4th power. Besides, it was im-
portant to consider that ILWR has to be corrected considering
the cloud effect. Since previous studies showed a correlation
between relative humidity and cloud cover (Walcek, 1994),
it may be assumed that including relative humidity may rep-
resent the cloudiness effect. In total 6 ILWR models and 6
LWR models were developed, as showed in Table 2 groups a
and b.

Since latent heat flux and sensible heat flux are estimated
using temperature (t), relative humidity (RH) and wind speed
(u) (Hock, 2005), in order to perform additional test of
the methodology it was decided to develop additional ANN
models for the estimation of LHF and SHF consideringt , RH
andu, as showed in Table 2 group c.

Although the independent models allows to estimate the
energy balance in two steps, i.e. estimate each energy flux
and then estimate the energy balance, additional ANN mod-
els were developed in order to estimate the whole energy

Table 2. Input data combinations for the different models
developed.

Groud Model Data used

A ILWR1 ISWR, Tc, RH
A ILWR2 ISWR, Tk, RH
A ILWR3 ISWR, Tk4, RH
A ILWR4 Tc, RH
A ILWR5 Tk, RH
A ILWR6 Tk4, RH
B GLWR1 ISWR, RH, Tc
B GLWR2 ISWR, RH, Tk
B GLWR3 ISWR, RH, Tk4

b GLWR4 RH, Tc
b GLWR5 RH, Tk
b GLWR6 RH, Tk4

c SHF u, Tc
c LHF u, Tc, RH
d EB1 SWR, RH, Tc,u
d EB2 SWR, RH, Tc
d EB3 ISWR, RH, Tc,u
d EB4 ISWR, RH, Tc
d EB5 ISWR, Tc
d EB6 RH, Tc,u
e EAV7 SWR, RH, Tc,u
e EAV8 SWR, RH
e EAV9 SWR, Tc
e EAV10 RH, Tc,u
e EAV7a SWR1, RH1, Tc1, u1, SWR, RH, Tc,u
e EAV8a SWR1, RH1, SWR, RH
E EAV9a SWR1, Tc1,SWR, Tc
E EAV10a RH1, Tc1, u1, RH, Tc,u

Tc is the temperature in Celsius degrees. Tk is the absolute temperature in Kelvin
degrees. RH is the relative humidity.u is the wind speed. The data with the
subscript “1” denotes data from a previous time step. The superscript 4 means to
the 4th power. ILWR is incoming long-wave radiation. GLWR is global long-wave
radiation. SHF is sensible heat flux. LHF is the latent heat flux. EB is energy
balance. EAV is energy available for melt.

budget and the EAM within one single step. Table 2 shows
the developed models and data required for each one.

The predictive performance of the ANN models were
compared against predictive models based on the MLR tech-
nique, which is a recognised statistical technique widely used
in engineering and science problems dealing with exploring
the relationship between two or more variables (Agha and
Alnahhal, 2012; Riad et al., 2004). The MLR were developed
using the analysis tool pack of MS Excel 2010.

Finally, the models with the best performance were used
for estimating SGM. SGM at Condoriri not only was esti-
mated with both the ANN and MLR models, but also with an
enhanced temperature index model that considers tempera-
ture and short-wave radiation (Eq. 15) (Pellicioti et al., 2005).

If T >Tt :

M = TF · T + SRF· (1 − α) · SWR. (15)
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Table 3.Comparison of the performance of the ANN and the MLR
models when applied to Zongo.

Technique ANN ANN ANN MLR MLR MLR
criteria cor MAE RMSE cor MAE RMSE

[W m−2
] [W m−2

] [W m−2
] [W m−2

]

ILWR1 0.86 25.39 31.85 0.89 19.47 25.49
ILWR2 0.86 25.39 31.85 0.89 19.47 25.49
ILWR3 0.86 25.35 31.80 0.89 19.47 25.49
ILWR4 0.85 25.84 32.64 0.89 19.52 25.52
ILWR5 0.85 25.84 32.64 0.89 19.52 25.52
ILWR6 0.85 25.80 32.61 0.89 19.52 25.53
GLWR1 0.91 25.64 34.83 0.90 25.17 34.09
GLWR2 0.91 25.64 34.83 0.90 25.17 34.09
GLWR3 0.91 25.66 34.85 0.88 28.73 37.68
GLWR4 0.84 35.28 44.40 0.88 28.79 37.74
GLWR5 0.84 35.28 44.40 0.88 28.79 37.74
GLWR6 0.84 35.31 44.44 0.88 28.73 37.68
SHF 0.98 3.68 5.25 0.86 3.56 5.58
LHF 0.83 4.34 6.18 0.91 8.99 12.83
EB1 0.98 29.58 37.62 0.98 25.31 33.41
EB2 0.98 34.67 44.67 0.98 26.89 35.37
EB3 0.92 60.44 82.80 0.93 53.37 77.95
EB4 0.92 60.75 83.22 0.93 55.05 79.04
EB5 0.85 92.60 117.66 0.88 77.87 99.57
EB6 0.50 159.44 201.09 0.64 125.89 161.73
EAV7 0.87 73.40 136.58 0.88 64.13 131.65
EAV8 0.84 80.03 151.53 0.86 64.41 138.92
EAV9 0.77 120.76 182.23 0.78 101.61 170.45
EAV10 0.49 183.80 250.95 0.62 151.46 217.31
EAV7a 0.90 56.38 119.32 0.88 63.31 127.17
EAV8a 0.87 64.78 136.89 0.87 64.38 136.70
EAV9a 0.79 101.21 171.35 0.79 102.02 169.41
EAV10a 0.62 159.52 225.35 0.63 148.10 214.08

The models with the subscript “a” were developed also considering data from a
previous time step. The term techniques refers to whether the model used was ANN
or MLR. The term criteria refers to the criteria used for evaluation of the
performance.

OtherwiseM is 0. WhereM is the melting andα is albedo.
TF and SRF are empirical coefficients andTt is the thresh-
old temperature for melting. TF and SRF were assumed
0.05 mm h−1 ◦C−1 and 0.0094 mm W−1 h−1 as suggested by
Pelliccioti et al. (2005).

Since melting may happen at different temperatures within
a range of−10 to 10◦C (Kuhn, 1987), a sensitivity analysis
was performed considering different melting temperatures
within the mentioned range. When estimating SGM via the
energy models the conversion from EAM into water equiva-
lent was allowed if the temperature of the given time step was
higher than the threshold. It is important to note that the es-
timated SGM is the water equivalent. Thus, it was converted
into mm of ice by assuming a mean surface snow glacier den-
sity of 0.4 g cm−3 (Ginot, 2001)

4 Results and discussion

Tables 3 and 4 show the comparison of performance be-
tween ANN and MLR for glaciers Zongo and Antizana, re-
spectively. ANN and MLR have similar performance when
estimating LWR at Zongo. For the incoming LWR, the MLR

Table 4.Comparison of the performance of the ANN and the MLR
models when validated at Antizana.

Technique ANN ANN ANN MLR MLR MLR
criteria cor MAE RMSE cor MAE RMSE

[W m−2
] [W m−2

] [W m−2
] [W m−2

]

ILWR1 0.81 112.11 115.46 0.80 105.10 109.42
ILWR2 0.81 112.11 115.46 0.80 105.10 109.42
ILWR3 0.81 112.12 115.47 0.80 105.03 109.35
ILWR4 0.78 112.97 116.71 0.79 105.01 109.41
ILWR5 0.78 112.97 116.71 0.79 105.01 109.41
ILWR6 0.78 112.97 116.71 0.79 104.94 109.34
GLWR1 0.79 26.73 35.44 0.76 29.36 39.43
GLWR2 0.79 26.73 35.44 0.76 29.36 39.43
GLWR3 0.79 26.74 35.44 0.74 77.29 87.70
GLWR4 0.75 26.42 36.34 0.74 77.29 87.70
GLWR5 0.75 26.42 36.34 0.74 77.29 87.70
GLWR6 0.75 26.43 36.34 0.74 32.42 41.10
SHF 0.85 12.45 34.89 0.73 5.15 8.24
LHF 0.75 4.87 38.82 0.85 31.24 46.38
EB1 0.98 31.83 47.35 0.99 40.79 116.04
EB2 0.99 29.34 40.52 0.99 34.22 45.52
EB3 0.91 106.53 140.57 0.91 122.08 156.93
EB4 0.92 93.53 124.73 0.92 114.59 145.31
EB5 0.91 115.56 143.63 0.91 177.97 235.13
EB6 0.56 185.51 222.66 0.56 177.22 230.35
EAV7 0.96 55.10 79.58 0.95 70.27 100.40
EAV8 0.96 46.39 81.06 0.96 53.96 82.81
EAV9 0.94 55.59 99.87 0.94 109.70 129.03
EAV10 0.51 199.94 244.94 0.50 188.81 253.72
EAV7a 0.94 71.92 122.32 0.94 79.81 114.45
EAV8a 0.96 67.29 93.04 0.96 56.98 84.19
EAV9a 0.92 94.53 122.48 0.94 107.86 128.21
EAV10a 0.41 208.87 322.48 0.51 188.03 253.00

The models with the subscript “a” were developed also considering data from a
previous time step. The term technique refers to whether the model used was ANN
or MLR. The term criteria refers to the criteria used for evaluation of the
performance. The term cor refers to correlation.

models have slightly better performance. The ANN models
have better performance for the global LWR. When validat-
ing the incoming LWR models at Antizana, the MLR models
have slightly lower errors, but they have almost the same cor-
relation; in the first three models the MLR correlation is 0.01
higher, and in the other 3 models the ANN correlation is 0.01
higher. It was found that there is no difference between us-
ing relative or absolute temperature, i.e. temperature may be
used as Celsius or Kelvin degrees. The use of temperature
to the fourth power does not provide significant differences.
This is an advantage compared with empirical equations that
require the conversion of temperature to kelvin degrees and
its elevation to the fourth power. When applying the model
to the Condoriri location it can be seen that it clearly reflects
the seasonality (Fig. 3). The winter period between May and
August has the lowest LWR fluxes. During the spring period
between September and November the LWR fluxes increase,
and during the wet season between December and March the
LWR fluxes reach the maximum values.

Analysing the models developed for representing the sen-
sible heat flux, it can be noted that the ANN has a much bet-
ter performance than the MLR in both Zongo and Antizana.
The ANN reaches correlations of 0.98 and 0.85 for Zongo
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Fig. 3. Monthly incoming long-wave radiation flux estimated at
Condoriri. The white rectangle represents the inter quantile range
(IQR). The thick line inside the IQR represents the mean, and the
circles represent the outliers defined as extreme events with a prob-
ability lower than 1 %.

and Antizana, respectively, while the MLR has correlations
of 0.86 and 0.73 for Zongo and Antizana, respectively. Both
the ANN and the MLR have similar magnitude errors. The
case of the latent heat flux is different. Although the MLR has
a better correlation, it also has higher errors both in Zongo
and Antizana. It may be assumed that the MLR tends to over
fit its training data. Hence, it may be assumed that the ANN
provides a better generalisation of both turbulent fluxes.

Analysing the models for representing the whole EB,
SWR is the most important term and neglecting it gives cor-
relations lower than 0.56. Combining only short-wave radia-
tion and temperature leads to coefficients of 0.85 and 0.92
for the ISWR and GSWR, respectively. Including relative
humidity improves the correlation by about 10 %, reaching
correlations of 0.92 and 0.98 for ILWR and GLWR, respec-
tively. Including relative humidity also decreases the errors.
The inclusion of wind speed does not provide relevant im-
provement; moreover, in the validation data set of training
the inclusion of wind speed slightly reduces the correlation.
Both the ANN and the MLR have the same correlations and
similar errors. As in the previous models, the ANN models
have lower errors than the MLR models when applied to the
validation data set.

Analysing the energy available for melt, i.e. considering
the heat of previous freezing (Models EAV7 to EAV10a),
the training models considering only current data (EAV7 to
EAV10) have correlations lower than 0.88. Models that also
consider data from a previous time step (EAV7a to EAV10a)
have higher correlation and lower errors. The models that
neglect SWR have correlation lower than 0.51. Hence, en-
ergy available for melt may not be accurately estimated with-
out SWR. As in previous models, the ANN models per-
form better in the validation data set with lower errors, thus

Table 5.Comparison of the improved ILWR4 model for the predic-
tion of incoming long-wave radiation using temperature and rela-
tive humidity. The ANN and MLR were developed using data from
Zongo and Antizana. The ANN plt was developed with data from
Zongo considering a prior logarithmic transformation.

Model Cor MAE RMSE Validated at:
[W m−2

] [W m−2
]

ANN 0.82 22.49 33.68 Zongo+ Antizana
MLR 0.81 24.84 34.19 Zongo+ Antizana
ANN plt 0.89 20.64 27.67 Zongo
ANN plt 0.78 112.43 116.37 Antizana

providing a better generalisation of the phenomena. Con-
sidering models with previous time steps (models EAV7a
to EAV10a), ANN models also perform slightly better than
MLR, e.g. ANN model reaches a correlation 0.9 while MLR
reaches correlation of 0.88. In the models neglecting SWR,
MLR performs better than ANN both in training and valida-
tion data; nevertheless, it still has correlation lower than 0.63.

Applying the ANN models to a different location with data
outside the training set limits provides results with similar
correlation, which may be considered as a hint that the ANN
provides a good estimation of the energy fluxes and energy
balance; however, they provide higher errors and an under-
estimation of total energy. MLR also underestimated the to-
tal energy with higher errors. All these results indicate that
ANN provides a better generalisation and that they are less
sensitive to errors when applied to data outside its training
limits. It is important to note that the magnitude of the er-
rors and the underestimation is related to the relevance of the
data outside of the training range. For instance, the models
for LWR are driven mainly by temperature and relative hu-
midity, where Antizana input data is higher that the training
data; therefore, the application of those models to Antizana
provides results with the highest errors. On the other side,
models where SWR is the most important input data have re-
sults with lower errors. Instead of developing two different
models for each location or applying a correction coefficient,
it was decided to improve the existing models by includ-
ing the data from Antizana, hence incorporating its knowl-
edge into the ANN. Another approach suggested and tested
in the present study for dealing with extrapolation data is the
prior transformation of data to its logarithmic (Hettiarachi
et al., 2005). Table 5 shows a comparison of ANNs devel-
oped with the prior logarithmic transformation with ANN
and MLR models developed using data from Zongo and An-
tizana. These techniques were applied for developing a new
ILWR4 model. That model was selected as it had the lowest
performance when validated at a different location. The ANN
model that used data from both Zongo and Antizana reached
a correlation of 0.82. The MLR model with data from Zongo
and Antizana reached correlation of 0.81 and higher errors.
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Although the ANN using the logarithmic transformation has
higher correlation and lower errors in the training set, it does
not provide relevant improvements when applied to Anti-
zana. It is important to consider that the improved ANN
model that used data from Zongo and Antizana was devel-
oped with data from tropical latitudes and located at high el-
evation; thus, it considers a wide range of input data includ-
ing extreme solar radiation of 1349 W m−2 which is near the
solar constant (1360 W m−2) and temperatures up to 16◦C.
Those values are much higher than normal values from high
latitude glaciers like the Alps. In order to validate the new
developed models, an additional comparison was performed
against measured data from the French glaciers Argentière
and Saint-Sorlin (Table 6). This validation reached correla-
tion higher than the training data and similar magnitude er-
rors. The new ANN models have a better performance than
the new MLR models. Besides, the ANN models have the
same performance with similar magnitude errors for both lo-
cations, while the MLR models have a better performance
when applied to Argentière glacier. Therefore, it may be as-
sumed that ANN models provide a better generalisation than
MLR models.

SGM was then estimated at the tropical glaciers Zongo and
Antizana using different ANN models, the energy balance
and the enhanced temperature method. This comparison also
considered different melting temperatures between−10 and
10◦C. Considering that energy balance was successfully ap-
plied in previous studies (Molg et al., 2004, 2008; Cullen et
al., 2007; Wagnon et al., 1999) and its results are used to cal-
ibrate temperature based equations (Carenzo et al., 2009), it
was decided to use results from the energy balance as refer-
ence SGM. It was found that in both locations the temper-
ature model overestimated the total SGM (Tables 7 and 8).
On the other hand, the ANN models provide results closer to
the ones based on the energy balance. All the models have
the same trend with nearly constant SGM for melting tem-
peratures lower than 0◦C and an abrupt decrease for higher
temperatures. The ANN models have same performance and
same magnitude errors in both locations; on the other hand,
the enhanced temperature method has better performance at
the Zongo glacier. Thus, it may be assumed that the ANN
models provide a better generalisation and may be used at
different locations, while the enhanced temperature method
has to be checked and calibrated for each location.

Comparing the SGM estimated at Condoriri with the dif-
ferent ANN models that can be used with the Condoriri
data and considering different melting temperatures (Ta-
ble 9), it may be noticed that all the models have the same
trend according to the melting temperatures. The models
that neglect solar radiation provide the highest predictions,
while the models that neglect temperature provide the lowest
predictions. The other nine models provide predictions that
have values within a confidence interval limited by the upper
confidence limit (UCL) and the lower confidence limit (LCL)
as described by Eqs. (16) and (17).

Table 6. Performance of the model when applied to the French
Alps.

Model cor MAE RMSE Location Technique
[W m−2

] [W m−2
]

EB1 0.81 74.41 89.31 Argentière MLR
EB2 0.82 74.78 88.54 Argentière MLR
EB3 0.90 66.00 89.98 Argentière MLR
EB4 0.90 63.73 86.46 Argentière MLR
EB5 0.83 62.45 78.78 Argentière MLR
EB1 0.71 84.38 103.50 Saint Sorlin MLR
EB2 0.72 82.76 100.59 Saint Sorlin MLR
EB3 0.87 68.22 86.63 Saint Sorlin MLR
EB4 0.87 65.90 83.42 Saint Sorlin MLR
EB5 0.82 94.37 115.18 Saint Sorlin MLR
EB1 0.92 67.76 80.27 Argentière ANN
EB2 0.91 61.69 72.27 Argentière ANN
EB3 0.91 64.73 80.84 Argentière ANN
EB4 0.90 55.80 70.09 Argentière ANN
EB5 0.84 71.69 89.25 Argentière ANN
EB1 0.91 68.68 84.05 Saint Sorlin ANN
EB2 0.86 65.69 78.62 Saint Sorlin ANN
EB3 0.92 60.58 77.71 Saint Sorlin ANN
EB4 0.89 64.25 80.75 Saint Sorlin ANN
EB5 0.82 105.75 126.99 Saint Sorlin ANN

UCL = SGMav + SD (16)

LCL = SGMav − SD, (17)

where SGMav is the average SGM, and SD is the standard
deviation.

Hence, it may be assumed that solar radiation plays an im-
portant factor and its neglecting may lead to higher errors.
The model EAV3 is the closest model to the average SGM.

Total melting was estimated at Condoriri with 3 SGM
models: the ANN with highest correlation, the MLR with
highest correlation and the enhanced temperature method of
Pelliccioti. It may be noticed that the temperature method
overestimates the melting about 33 %. Hence, this model was
adjusted by including a correction coefficient of 0.75 (Fig. 4).
The ANN and the MLR provide similar values with total dif-
ferences of about 0.3 m. Such results were obtained consid-
ering a fixed melting threshold temperature of 0◦C. Consid-
ering different melting temperatures between−10 and 10◦C
it may be noticed that all models have the same trend for
different melting temperatures. Considering melting thresh-
old temperatures between−10 and 5◦C, the total SGM is
about 6.45 m with differences of about 0.4 m. Melting thresh-
old temperatures higher than 5◦C highly decrease the total
melting. Assuming a melting threshold temperature of 10◦C
would produce a total melting of 1.80 m. Comparison of the
SGM considering freezing effect and without considering it
results in a total yearly difference of 0.27 mm WE.

Figure 5 shows the hourly SGM rates for the months of
March, June, September and December in statistical box-
plots (Frigge et al., 1989). Those months were selected as
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Table 7.Total SGM estimated at Zongo for the year 2005 by different methods. EB is the SGM estimated via complete energy balance. ET
is the SGM estimated using the enhanced temperature method. ANN EB1 to ANN EB5 are the SGM estimated using the respective ANN
models developed to emulate the energy balance.

Melting SGM SGM SGM SGM SGM SGM SGM SGM
temperature EB ET ANN ANN ANN ANN ANN ANN
[
◦C] [m] [m] EB1 [m] EB2 [m] EB3 [m] EB3 [m] EB4 [m] EB5 [m]

−10 2.65 3.87 2.84 2.88 3.40 3.10 3.10 3.78
−8 2.65 3.87 2.84 2.88 3.40 3.10 3.10 3.78
−6 2.65 3.87 2.84 2.88 3.40 3.10 3.10 3.78
−4 2.65 3.87 2.84 2.88 3.40 3.10 3.10 3.78
−2 2.63 3.83 2.82 2.86 3.36 3.07 3.07 3.73
0 2.52 3.61 2.68 2.72 3.15 2.89 2.89 3.50
2 1.98 2.80 2.08 2.12 2.45 2.27 2.27 2.77
4 1.07 1.47 1.11 1.12 1.28 1.24 1.24 1.49
6 0.31 0.41 0.32 0.32 0.36 0.38 0.38 0.43
8 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 4.Comparison of total SGM rate estimated at Condoriri. SGM
was estimated by ANN model, MLR model, the enhanced temper-
ature index model (Pelliccioti et al., 2005) and a corrected temper-
ature model called 0.75 Pelliccioti. 0.75 Pelliccioti is the original
temperature model corrected using a factor of 0.75. The SGM is the
total SGM between July 2011 and August 2012.

representative for each season, since they are the ones when
solstice and equinox occur. These plots show the seasonality.
The most important change is not the highest melting rate,
but the number of hours that the location is exposed to melt-
ing. During the winter month of June, the melting times are
limited from 08:00 to 14:00 LT (Bolivian local time). During
the summer month of December the melting hours are from
06:00 to 17:00 LT which represents five additional melting
hours. The months of March (fall) and September (spring)
have the same hours of exposure to melting (from 07:00 to
16:00 LT) and similar melting rates.

5 Conclusions

The present research developed artificial neural networks
(ANN) models to estimate energy fluxes, the energy balance
and the energy available for melting by the use of simple and
easy to obtain data (short-wave radiation, temperature and
relative humidity). Different models were developed consid-
ering different input data.

Although ANN models and multiple linear regression
(MLR) models have similar performance, the ANN pro-
vide slightly better performance when applied to different
geographical locations with data outside the training set
range. An additional benefit of ANN and MLR models com-
pared with physical equations for estimating other energy
fluxes, e.g. long-wave radiation, is that they do not require
previous conversion of measured temperature into absolute
temperature. Moreover, ANN and MLR do not require em-
pirical coefficients to be calibrated for different locations.

Although the model with the highest number of variables
is the most accurate, the other models also have a good per-
formance with slightly lower performance. This presents a
special advantage, since the proposed models allow estimat-
ing SGM under different data availability scenarios.

Short-wave radiation is the main source of energy and the
data with the most influence on the predictive performance
of the ANN and MLR models.

The limits used in the training set have a strong influence
on the performance of the models. Application of ANN mod-
els to data outside the limits of the training set reduces the
accuracy of the predictions. It is important to note that the
magnitude of the errors and the underestimation is related to
the relevance of the data outside of the limits range. MLR
are more sensitive to the limitations of the training set and
present higher errors when applied to different locations with
data higher than the training set.
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Table 8. Total SGM estimated at Antizana for the year 2005 by different methods. EB is the SGM estimated via complete energy balance.
ET is the SGM estimated using the enhanced temperature method. ANN EB1 to ANN EB5 are the SGM estimated using the respective ANN
models developed to emulate the energy balance.

Melting SGM SGM SGM SGM SGM SGM SGM SGM
temperature EB ET ANN ANN ANN ANN ANN ANN
[
◦C] [m] [m] EB1 [m] EB2 [m] EB3 [m] EB3 [m] EB4 [m] EB5 [m]

−10 4.36 4.71 4.38 4.42 4.23 3.75 3.71 3.53
−8 4.36 4.71 4.38 4.42 4.23 3.75 3.71 3.53
−6 4.36 4.71 4.38 4.42 4.23 3.75 3.71 3.53
−4 4.36 4.71 4.38 4.42 4.23 3.75 3.71 3.53
−2 4.36 4.70 4.38 4.41 4.22 3.75 3.71 3.53
0 4.11 4.43 4.13 4.18 3.97 3.51 3.48 3.30
2 2.48 2.71 2.49 2.53 2.43 2.11 2.14 2.04
4 0.55 0.62 0.55 0.56 0.56 0.48 0.50 0.48
6 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 5.Statistical boxplot of hourly SGM rates for different seasons at Condoriri. Fall (March), winter (June), spring (September) and summer
(December). The white rectangle represents the inter quantile range (IQR). The thick line inside the IQR represents the mean, and the circles
represent the outliers defined as extreme events with a probability lower than 1 %.
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Table 9. Total SGM estimated at Condoriri between July 2011 and August 2012 considering different melting temperatures (MT) and
different ANN models. EB and EAV means ANN model to emulate the energy balance and the energy available for melt, as described in
Table 2. Std dev is the standard deviation. All the MT values are in [◦C]. All the SGM values are in [m].

MT −10 −8 −6 −4 −2 0 2 4 6 8 10

EB1 6.54 6.54 6.54 6.55 6.55 6.55 6.49 6.28 5.55 3.92 1.87
EB2 6.43 6.43 6.43 6.43 6.44 6.44 6.38 6.17 5.45 3.85 1.84
EAV1 6.54 6.54 6.54 6.54 6.54 6.53 6.47 6.27 5.56 3.92 1.87
EAV2 6.38 6.38 6.38 6.38 6.38 6.37 6.32 6.12 5.43 3.85 1.84
EAV3 7.28 7.28 7.28 7.28 7.27 7.25 7.17 6.92 6.11 4.33 2.09
EAV7 6.85 6.85 6.85 6.86 6.88 6.88 6.80 6.56 5.78 4.04 1.90
EAV8 5.23 5.23 5.23 5.23 5.25 5.26 5.24 5.13 4.62 3.36 1.64
EAV9 8.26 8.26 8.26 8.26 8.25 8.24 8.16 7.91 7.04 5.06 2.47
EAV10 14.31 14.31 14.31 14.32 14.31 14.29 14.11 13.53 11.76 8.05 3.95
EAV7a 5.54 5.54 5.55 5.55 5.56 5.53 5.39 5.09 4.32 2.88 1.29
EAV8a 4.80 4.80 4.80 4.80 4.79 4.76 4.65 4.41 3.80 2.58 1.17
EAV9a 7.82 7.82 7.82 7.82 7.80 7.77 7.66 7.37 6.48 4.51 2.12
EAV10a 9.66 9.66 9.67 9.67 9.65 9.54 9.17 8.50 6.96 4.43 2.00
Average 7.36 7.36 7.36 7.36 7.36 7.34 7.23 6.94 6.07 4.21 2.00
Std dev 2.46 2.46 2.46 2.46 2.45 2.44 2.40 2.28 1.96 1.33 0.68

It has been shown here that increasing the range of the
training set, i.e. the addition of a wider domain of knowl-
edge, provides more improvement in the predictive capacity
of the ANN than other techniques like prior transformation
of training data.

The training set used for developing the ANN includes ex-
treme values of SWR and temperature. The SWR includes
values as high as the solar constant. Besides, it used data
from the humid inner tropics and the arid Andean plateau.
It considers different relative humidity values and tempera-
tures up to 16◦C. The ANN models were successfully tested
at a different geographical location (the French Alps).

Temperature methods for estimating SGM require the cal-
ibration of coefficients. The use of uncalibrated coefficients
may induce errors higher than 30 %. On the other hand, es-
timation of SGM via energy balance (either ANN or MLR)
does not require further calibration.

The present paper presents a novel methodology for es-
timating the complex process of SGM at different hours in
tropical glaciers using easy to obtain data. The developed
models reflect the daily pattern of SGM which is very impor-
tant for the study of tropical glaciers, since the daily variation
is greater than the yearly one.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
17/1265/2013/hess-17-1265-2013-supplement.zip.
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