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Abstract. In this study we analyzed the spatiotemporal vari-
ability of streamflow droughts in the Iberian Peninsula from
1945 to 2005. Streamflow series belonging to 187 homo-
geneously distributed gauging stations across the study area
were used to develop a standardized streamflow index (SSI),
which facilitated comparison among regimes and basins,
regardless of streamflow magnitudes. A principal compo-
nent analysis was performed to identify homogeneous hy-
drological regions having common features based on the
temporal evolution of streamflows. Identification of drought
events was carried out using a threshold level approach. We
assessed the duration and magnitude of drought episodes
and the changes that occurred between two contrasting pe-
riods for each hydrological region. The results showed a
trend toward increased drought severity in the majority of
regions. Drought duration, magnitude and spatial coverage
were found to depend mainly on climatic conditions and the
water storage strategies in each basin. In some basins these
strategies have altered river regimes, and in others created a
high level of dependence on storage and water transfer rates.

1 Introduction

Among natural hazards, drought is one of the most damag-
ing and affects more people than any other (Obasi, 1994),
causing negative ecological, economic, agricultural, social
and political impacts. Many European countries have experi-
enced problems arising from droughts during recent decades,
including restrictions on water usage for urban consumption
and leisure, reductions in electricity supply (European En-
vironmental Agency; EEA, 2001), crop production losses

and increased forest fires. The global economic impact of
the 2003 drought in France, Italy, Germany, Spain, Portugal,
Austria, Hungary, Estonia and Slovakia was estimated to be
approximately 13.1 billionC (COPA-COGECA, 2003).

Drought has been defined as the naturally occurring phe-
nomenon that exists when precipitation has been signifi-
cantly below normal recorded levels, causing serious hydro-
logical imbalances that adversely affect production systems
(UN Secretariat General, 1994). Contrary to other climate-
related hazards such as floods, which are generally restricted
to small regions and have well-defined temporal intervals,
droughts are difficult to quantify and pinpoint in time and
space, as they develop slowly and last for long periods
(Vicente-Serrano, 2006a). Conceptually, droughts have been
classified into four categories (meteorological, agricultural,
hydrological and socioeconomic) based on the system af-
fected and the time scale in which the drought impacts be-
come evident (Wilhite and Glantz, 1985).

A hydrological drought is defined as a decrease in the
availability of water in all its forms within the land phase of
the hydrological cycle, which includes streamflow, ground-
water, reservoirs and lakes. Amongst these, streamflow is the
most significant variable in terms of quantity. Because of the
dependence of energy production, irrigation, riparian ecosys-
tems and public water supply on river discharges, most stud-
ies have focused on streamflow droughts, which occur when
relatively low flows are recorded (Tallaksen et al., 2009).

Streamflow is an integrated response to basin inputs (cli-
mate), water transfer, water losses by evapotranspiration,
storage processes, and human interventions (Fleig et al.,
2011; Ĺopez-Moreno et al., 2013). Previous studies have re-
ported that the response of basins to precipitation deficiency
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is highly variable, and mainly depends on the physiographic
characteristics of the catchments involved (permeability, to-
pography, land use and land cover), the climatic conditions
(precipitation and evapotranspiration), and the regulation of
water (Post and Jakeman, 1996; Lorenzo-Lacruz et al., 2010;
López-Moreno et al., 2013). The complexity of the inter-
actions amongst these factors may cause a discrepancy be-
tween the amount of precipitation and the status of surface
and groundwater supplies. The components of the hydrolog-
ical cycle interact in multiple ways in a catchment, which
introduces time lags between a decline in precipitation and
when this becomes evident in other components of the hy-
drological cycle (Vicente-Serrano and López-Moreno, 2005;
Wilhite and Glantz, 1985; Lorenzo-Lacruz et al., 2010). For
example, the most severe hydrological droughts do not al-
ways occur in areas with the lowest effective rainfall. On the
contrary, they usually depend on the demand for water, the
water management strategies, the land cover and the meteo-
rological conditions in the headwaters (EEA, 2001). As the
water remains for shorter time in the upper reaches of un-
regulated rivers than in the middle or lower reaches, drought
intensity often varies with topographic location and time in
the basin (Mudelsee, 2007; Pandey et al., 2008).

The assessment and characterization of historical droughts
has become essential in management of fresh water (Mishra
and Singh, 2010), and application of the information ob-
tained to the design of water management plans may com-
pensate for the losses resulting from drought episodes
(Quiroga et al., 2011). There is a general agreement about the
need for research into streamflow droughts and regime types
(Wilhite et al., 2007). Several studies have assessed stream-
flow droughts in Europe (Tallaksen et al., 1997; Hisdal et al.,
2001; Stahl, 2001; Gudmundsson et al., 2011), and devel-
oped a relatively homogeneous methodological framework
related to their definition and characterization. The threshold
level approach, based on annual, monthly and daily records,
has been widely used to define drought events (Yevjevich,
1967; Dracup et al., 1980; Tallaksen et al., 1997; Fleig et
al., 2006; Timilsena et al., 2007). Using a selected thresh-
old level, the three key characteristics that distinguish one
drought from another (magnitude, duration and spatial cov-
erage) can be inferred (Wilhite and Glantz, 1985; Tallaksen et
al., 2009). Based on the above characteristics, this approach
allows regions with homogeneous drought behavior to be de-
fined (Stahl and Demuth, 1999; Fleig et al., 2011).

In this study we analyzed the spatiotemporal patterns of
streamflow droughts in the Iberian Peninsula (IP) from 1945
to 2005 in both regulated and unregulated basins. This study
was driven by the crucial importance of drought analysis in
the IP as a consequence of the economic losses caused by
droughts in this area (Iglesias et al., 2007), the rising demand
for water in recent years (Albiac et al., 2003; Lorenzo-Lacruz
et al., 2010), the recurrence of dry episodes that increase the
vulnerability of society and the economy, and the complex-
ity of water management in the area (Quiroga et al., 2011).

An increased knowledge of the behavior of river discharges
under drought conditions, and the various drought typologies
and their characteristics, is necessary for implementation of
effective and sustainable water management strategies in the
IP.

The objectives of the study were to (i) establish a region-
alization of the IP based on the evolution of the stream-
flows; (ii) analyze the streamflow drought characteristics of
each hydrological region; and (iii) investigate if there have
been changes in streamflow drought characteristics (dura-
tion, magnitude and spatial coverage) during the second half
of the 20th century. This study represents a novel contribu-
tion to the analysis of streamflow droughts in the IP: we have
addressed this issue at the regional spatial scale (including
the entire IP and its main river basins, regulated and unregu-
lated), using a long-term dataset (1945–2005).

2 Study area

The IP covers 583 254 km2 and has a very contrasting re-
lief. The mountain ranges mainly run from west to east, and
in some cases reach altitudes of approximately 3000 m a.s.l.,
resulting in the region having the second highest mean alti-
tude (637 m a.s.l.) in Western Europe. These mountains have
influenced the river network and the spatial configuration
of the major basins of rivers flowing towards the Atlantic
Ocean (the Mĩno, Duero, Tajo, Guadiana and Guadalquivir
basins) and the Mediterranean Sea (the Segura, Júcar and
Ebro basins) (see Fig. 1). The location and topography of
the IP, together with the effects of large atmospheric circu-
lation patterns (Ĺopez-Bustins et al., 2008) generate a south-
east to northwest gradient in annual precipitation (De-Castro
et al., 2005; Gonźalez-Hidalgo et al., 2011) (see Fig. 1).
Precipitation is concentrated mainly in winter (40 % of an-
nual precipitation), and varies from less than 300 mm yr−1

(in the southeast corner, e.g. the Murcia region) to more
than 1500 mm yr−1 (in the northwest, e.g. the Galicia re-
gion). These patterns cause large variability in the duration
and frequency of droughts among the various regions of
the IP (Rico-Amoŕos, 2004; Vicente-Serrano, 2006b). Win-
ter floods dominate the flow regime typical of Mediterranean
rivers. Higher inter-annual variability of streamflow results
in long supra-seasonal droughts (Boix et al., 2010).

River basins in the northern sector of the Atlantic wa-
tershed produce abundant yields, with mean annual flows
(measured at the most downstream streamflow gauges) of
10 570 hm3 yr−1 (cubic hectometers) for the Miño River,
13 788 hm3 yr−1 for the Duero River, and 12 350 hm3 yr−1

for the Tajo River. In contrast, rivers in the south-
ern sector of the Atlantic watershed (the Guadiana and
Guadalquivir rivers) have modest mean annual streamflows
of 4039 hm3 yr−1 and 3780 hm3 yr−1, respectively. Stream-
flows in basins in the Mediterranean watershed (the Segura,
Júcar and Ebro basins) are generally low; except for the Ebro
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basin, which has abundant flow (mean 12 279 hm3 yr−1) that
is generated in the Cantabrian Range and the Pyrenees. The
uneven distribution of water resources within the IP and the
rising demand for water have resulted in conflicts among
users and regions (Quiroga et al., 2011). The increasing fre-
quency of drought events in the IP since the 1970s (Vicente-
Serrano et al., 2006a; Iglesias et al., 2007) have resulted in
the construction of a complex network of dams and chan-
nels to optimize the use of available water resources. This is
especially the case in the southern basins, where significant
regulation capacity has been developed during the last 60 yr
(Arroyo-Ilera, 2007). The intensive regulation of river sys-
tems in the IP is reflected in an increase in the number of ma-
jor reservoirs constructed during the 20th century (from 58
in 1900 to 1195 in 2000), which together account for a total
storage capacity of 56 500 hm3 (Berga-Casafont, 2003). This
capacity is approximately equal to the mean annual stream-
flow of the 8 major rivers of the IP (55 850 hm3 yr−1).

3 Dataset and methodology

3.1 Streamflow records

To create a representative streamflow database for the en-
tire IP, streamflow data from 1460 gauging stations located
across the study area were obtained from water agencies of
Spain (Centro de Estudios Hidrográficos, Ag̀encia Catalana
de l’Aigua, Agencia Andaluza del Agua and Augas de Gali-
cia) and Portugal (Sistema Nacional de Informaçâo de Recur-
sos H́ıdricos). Daily streamflow data for the IP were obtained
from measurements of the daily water level at each gauging
station. The monthly river discharge at each station was in-
tegrated from the average daily discharge. We conducted our
analysis using monthly data due to the characteristics of hy-
drological droughts. Drought episodes are recognized to be
difficult to pinpoint in time and space, the effects grow slowly
in magnitude and their impact can accumulate over long pe-
riods of time (Mishra and Singh, 2010). For these reasons we
considered monthly data more suitable for drought charac-
terization than daily data.

The quality and length of the series was highly variable.
Only the longest and most complete records were used to
represent the major basins throughout the IP. Each record
had to cover at least 50 yr. The monthly streamflow series
used covered the period from 1945 to 2005, with the aim of
including any changes resulting from the intensive river reg-
ulation that took place in the second half of the 20th century.
In total, 187 monthly streamflow series were selected, based
on their record length and the percentage of data gaps. Time
series with 10 % or more of the data missing for the total pe-
riod of the series were excluded. Infilling of missing data was
performed by linear regression analysis, and flow records at
neighboring stations were used as the independent variables.
The minimum Pearson’s correlation coefficient between the

series in the model was set atR = 0.8. More details about
the creation and validation of the database are provided in
Lorenzo-Lacruz et al. (2012).

3.2 Standarization of streamflow series

To obtain a hydrological index that enabled comparison of
streamflow series in time and space, regardless of the mag-
nitude of the series and the river regimes involved, we trans-
formed the monthly streamflow series into standardized z-
scores. It is very common that hydrological series are not nor-
mally distributed, and consequently must be adjusted to other
probability distributions (Ǵamiz-Fortis et al., 2010; Vicente-
Serrano et al., 2011) to facilitate standardization. Several
streamflow indices have recently appeared in the literature
(e.g. Shukla and Wood, 2008; Nalbantis and Tsakiris, 2009);
however, the accuracy of the indices is limited due to the ad-
justment to a unique probability distribution. In order to ob-
tain a reliable standardized streamflow index (SSI) that en-
compasses the large variability in the statistical properties
of the monthly data, the series were fitted to the most suit-
able probability distribution, according to the minimum or-
thogonal distance (MD) between the sample L-moments at
site i and the L-moment relationship for a specific distri-
bution selected from the general extreme value (GEV), the
Pearson type III (PIII), the log-logistic, the lognormal, the
generalized Pareto and the Weibull distributions. For each
streamflow series we calculated six SSI series, correspond-
ing to each of the six probability distributions used, and we
selected the one which showed the most robust adjustment
(minimum orthogonal distance in a L-moments diagram).
OnceF(x) (the cumulative distribution function) is identi-
fied, the SSI (inz-scores) can easily be calculated following,
for example, the classical approximation of Abramowitz and
Stegun (1965). More datails about the SSI calculation can be
found in Vicente-Serrano et al. (2011).

3.3 Regionalization

To characterize the regional patterns of streamflow drought
evolution across the IP, a regionalization procedure was per-
formed prior to assessment of the streamflow drought char-
acteristics. This was possible because of the extensive scale
of the analysis and the large number of SSI series utilized.
Previous studies focused on this issue have used cluster anal-
ysis to define coherent regions having homogenous drought
behavior (Stahl and Demuth, 1999; Fleig et al., 2011). In this
research we used principal component analysis (PCA) in S
mode to define regions where the temporal variation of the
hydrological variables (standardized stramflow index evolu-
tion at the 187 gauging stations) had the same pattern (the
observation stations were the variables, and the time obser-
vations the cases). The PCA technique is widely used by hy-
drologists to analyze the spatiotemporal variability of hydro-
logical variables (Preisendorfer, 1988; Kalayci and Kahya,
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Fig. 1. The Iberian Peninsula: topography and location of the gauging stations used in the study distributed by mayor basins. Upper left
corner: distribution of the mean annual precipitation for the study period (1945–2005). Upper right corner: Iberian Peninsula location map.

2006; Kahya et al., 2008; Morán-Tejeda et al., 2011; Peter-
son et al., 2011); it allows for retention of common features
of the samples and identification of local peculiarities. Using
this approach we obtained an additional non-correlated set of
variables that were the linear combinations of the originals.
The components were rotated to redistribute the explained
variance and to obtain more physically robust patterns. This
transformation was done by varimax rotation (White et al.,
1991), which is the most recommended approach for this
task (Jollife, 1990). The coefficients of such combinations
(“loading factors”) represent the correlations of the princi-
pal component with each original variable (the SSI series for
each gauging station). Identification of the maximum load-
ing factor enabled us to classify each gauging station into the
resulting groups. Drought analysis and characterization were
therefore based on the hydrological regions defined by the
PCA. The selection of the principal components was based
on the explained variance. In order to give consideration to a
new principal component it must explain more than 1.5 %
of the total variance. We also included information about
the properties of the catchments represented by each PC; the
physiographic characteristics of the basins included in each
hydrological region were derived using a 100 m digital ele-
vation model (mean altitude and mean slope of the basins),
whereas the mean annual discharge and the Impoundment
Ratio were calculated using water agencies data.

3.4 Drought characterization

In order to define drought events, a threshold level that does
not vary in time and space, since records are standardized,
was applied to the SSI series (Yevjevich, 1967; Tallaksen et

al., 1997; Hisdal et al., 2004; Tallaksen et al., 2009). The
threshold level was set up at the 20 % of cumulative proba-
bility (SSI =−0.84, given the standardized characteristic of
the variable), and a drought event was thus registered when
the monthly SSI fell below that level (van Loon et al., 2010).
Based on this threshold, streamflow droughts were character-
ized using the following parameters: (i) drought duration, (ii)
drought magnitude, and (iii) drought-affected area (Fig. 2).
(i) Drought duration: The durationdn of a given drought
eventen was defined as the consecutive and uninterrupted
time steps (one or more months) with an observed streamflow
(SSI) below P20 at a specific gauging station. (ii) Drought
magnitude: The accumulated deficit volumevn was defined
as the sum of the deficit volumes generated during an uninter-
rupted number of months (dn), delimiting a drought eventen

expressed as accumulated deficits of the SSI. (iii) Drought-
affected area: To estimate the drought-affected area we de-
limited the catchments draining to the respective gauging
station. The areas affected by droughts for those rivers with
more than one delimited sub-basin referred only to the sub-
basin area between the gauging stations, not from the gaug-
ing station to the headwaters. We subsequently used a con-
ditional function to indicate the drought occurrence and type
(SSI> −0.84 = no drought;−1.65< SSI< −0.84 = drought;
SSI< −1.65 (5th percentile) = severe drought). To compute
the areas draining to a specific gauging station that reg-
istered drought conditions (SSI< −0.84 for drought, and
SSI< −1.64 for severe drought), we evaluated the SSI val-
ues of each gauging station at each time step in relation to the
above function. In this way we estimated the drainage areas
that contributed to observed droughts at particular locations
(gauging stations).
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Fig. 2.Drought definition sketch.

3.5 Correlation analysis

In the last section of the study we performed several correla-
tion analyses between the principal components and various
factors, which we considered appropriate to explain the hy-
drological regionalization obtained in Sect. 4.1. Among these
factors we included the variability of the North Atlantic Os-
cillation (NAO), which has been proved to be the dominant
pattern influencing streamflows in western Europe and in
the Iberian Peninsula (Lorenzo-Lacruz et al., 2011), and the
Western Mediterranean Oscillation (WeMO) (Martı́n-Vide
and Ĺopez-Bustins, 2006). Since streamflow droughts are re-
lated to climate variability, we correlated a meteorological
drought index, the Standardized Precipitation Index (McKee
at al., 1993), with selected principal components to assess
the time lags between meteorological droughts and stream-
flow droughts. Finally we correlated the streamflow of the
Tajo–Segura water transfer (in SSI units) with the SSI evo-
lution of the Segura basin to estimate its dependence on the
water transferred.

4 Results

4.1 Streamflow-related homogeneous regions

Figure 3 shows the distribution of the sub-basins most cor-
related with each principal component (PC) obtained. The
boxplots indicate the range of values of the impoundment
ratio (storage capacity upstream of the gauging station di-
vided by the long-term mean annual runoff; Batalla et al.,
2004), elevation, slope and annual discharge for the sub-
basins belonging to each PC. We considered the first ten PCs,
which together explained 60 % of the total variance (evolu-
tion of the SSI at 187 gauging stations); this was considered
to represent a reasonable portion of the very high variability
of the streamflow behavior, since the variability of Iberian
monthly precipitation was summarized into 6 components
(70 % of the variance, Vicente-Serrano et al., 2006b). The
largest region (41.8 % of the study area and 49 cachtments)
included catchments most correlated with principal compo-
nent 1 (PC1). It showed a clear spatial pattern that included

sub-basins corresponding to the upper reaches of the Duero
and Tajo rivers, the Jalón-Jiloca river system in the south-
western sector of the Ebro basin, and most of the Guadiana,
Guadalquivir and J́ucar basins. This region is characterized
by moderate water yields and catchment slopes, and has a
high degree of regulation. The impoundment ratio for the re-
gion indicates that the regulation capacity exceeds the annual
water yield in many sub-basins. PC2 was mainly associated
with a large proportion of the middle and lower reaches of
the Miño, Duero and Tajo rivers, represented 26.8 % of the
study area and encompassed 46 cachtments. Basins in this re-
gion are located on the north Iberian plateau (> 900 m a.s.l.),
where exposure to the influence of Atlantic Ocean air masses
is closely related to abundant flows. The catchments corre-
lated with PC3 occupied 6.6 % of the study area and included
24 sub-basins that were interspersed with those belonging
to PC2. They corresponded to headwaters of the Miño and
Duero river basins and some of their tributaries, which are
fed by the Central System and the Mountains of Leon (the
westernmost foothills of the Cantabrian Range). This region
has a very low level of regulation and moderate streamflow
volumes. The sub-basins most correlated with PC4 covered
12.7 % of the study area (25 cachtments), and included the
majority of the Cantabrian basins, and the main course of the
Ebro River and its tributaries flowing from the Atlantic Pyre-
nees. PC4 was characterized by abundant water yields, and
the high altitude and steep slopes of the Cantabrian basins,
the headwaters of the Ebro River and the Pyrenean tribu-
taries. The sub-basins represented by PC5 (5.5 % of the study
area and 14 cachtments) corresponded to river systems flow-
ing from the central Pyrenees. This region has the steepest
slopes and the highest altitudes. PC6 represented the Andalu-
sian basins and the right bank tributaries of the Guadalquivir
basin. This region covers 1.5 % of the study area (13 cacht-
ments), and is characterized by low discharges and a con-
siderable degree of regulation. PC7 and PC8 were correlated
with contrasting parts of the Segura basin. PC7 (1.64 % of the
study area and 5 cachtments) was related to sub-basins that
directly receive water transferred from the headwaters of the
Tajo basin, while PC8 (1.7 % of the study area and 5 cacht-
ments) represents the Segura basin sub-systems not directly
influenced by water transfer. Both PC7 and PC8 were charac-
terized by changes resulting from extreme water regulation.
PC9 encompassed 1 % of the study area and included all of
the Catalonian basins (4). PC10 (0.5 % of the study area and
2 cachtments) was correlated with the most upstream stations
of the Tajo and J́ucar rivers.

4.2 Temporal evolution of drought

Figure 4 shows the temporal evolution of the scores of PCs
1–5, and the factorial loadings (correlations) between each
PC and the monthly SSI at each gauging station. PC1 ex-
plained 12.8 % of the total variance and showed a low tem-
poral frequency in the alternation between moist and dry

www.hydrol-earth-syst-sci.net/17/119/2013/ Hydrol. Earth Syst. Sci., 17, 119–134, 2013



124 J. Lorenzo-Lacruz et al.: Streamflow droughts in the Iberian Peninsula

Fig. 3. Spatial distribution of the highest loadings sub-basin from each principal component. Box-plots show the mean altitude, mean slope,
mean annual discharge and the impoundment ratio of every sub-basin included in each hydrological region.

periods. Two contrasting periods were evident in the tem-
poral evolution of PC1: a humid period from 1945 to 1980
with sporadic drought episodes during the 1950s, and a fol-
lowing dry period that lasted until 2005. Within the latter,
three main droughts occurred: one in the early 1980s, one in
the middle of the 1990s that lasted for 5 yr (the longest and
most severe hydrological drought in the IP since records be-
gan), and one at the beginning of the 21st century (with 2003
having the driest conditions). The correlations between this
temporal signature and the streamflow series were very high
for those rivers with headwaters and upper reaches located in
the southern Iberian range (the Tajo, Júcar, Guadiana rivers,
and the Jaĺon-Jiloca system).

PC2 explained 11.56 % of the variance and was associated
with a relatively high temporal frequency in the occurrence
of dry and moist periods, which occurred almost annually.
Two contrasting periods were also observed for this PC. The
first (from 1945 to 1965) was associated with repeated in-
tense and intra-annual droughts that occurred almost every
year, while the second (1970s to present) was associated with
a reduction in the number and intensity of drought periods.
This pattern was highly correlated with the lower reaches of
the Miño River, the right bank tributaries of the Duero basin
and the lower Tajo basin.

PC3 explained 9.5 % of the variance, and also showed
a high temporal frequency between dry and moist periods.
The temporal evolution of PC3 showed an increase in the
frequency, duration and intensity of drought episodes after
the 1970s, with the most notable occurring in 1992–1994
and 2003–2005. The low reaches of the Duero basin, almost

the entire Mondego basin, and the systems flowing from the
Mountains of Léon (the Eria and Tera rivers in the Duero
basin, and the Sil and Cabrera rivers in the Miño basin) were
highly correlated with this PC.

PC4 explained 8.81 % of the total variance. Although it
was associated with a moderate frequency in the succession
of dry and moist periods, its temporal evolution showed a
predominance of drought episodes (which were common)
over humid periods. The most intense droughts occurred in
1949, 1955 and 1990. The Cantabrian basins were moder-
ately correlated with this component, whereas correlations
increase for the main course of the Ebro River and its left
bank tributaries flowing from the eastern (Atlantic) Pyrenees
(the Ega, Arga and Irati rivers).

PC5 explained 4.73 % of the variance and was character-
ized by similar frequencies of dry and moist periods. Six ma-
jor drought episodes occurred during the study period: 1948–
1950, 1957–1959, 1980, 1983–1986, 1988–1992 and 1998–
1999. Rivers flowing from the central Pyrenees were moder-
ately (the Araǵon River system) or highly (the Segre–Cinca
system) correlated with this PC.

Figure 5 shows the temporal evolution of the scores of
PCs 6–10 and the factorial loadings (correlations) between
each PC and the monthly SSI at each gauging station. PC6
explained 4.33 % of the variance, and its temporal evolution
showed two periods related to drought: in the first, from 1945
to 1975, the droughts were of low intensity and moderate du-
ration; whereas during the second, from 1975 to 2005, the
intensity of drought episodes increased. Correlations with
PC6 were weak for the rivers of the southwestern sector of
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Fig. 4. Spatial distribution of the PCA loadings for the first principal components (1st to 5th), and temporal evolution of the principal
components (1st to 5th).
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the IP, moderately high for the right bank tributaries of the
Guadalquivir River, and strong in the case of the Andalusian
basins.

PC7 explained 2.67 % of the variance, and was only repre-
sentative of the evolution of the SSI in the Mundo River sys-
tem (Segura basin). The temporal evolution of PC7 showed
a low frequency between dry and humid periods, and two
contrasting periods were evident. From 1945 to 1978 the
droughts were frequent, long lasting and of intermediate in-
tensity, while from 1978 to 2005 the droughts were much less
frequent, and moist periods predominated.

PC8 explained 2.15 % of the variance and was represented
by the right bank tributaries and the low reaches of the Segura
River. Its evolution reflected a low frequency in the succes-
sion of dry and humid periods, which were interspersed. The
moist period lasting from 1945 to 1955 was followed by a
drought period from 1955 to 1973, then by a short moist pe-
riod (1973–1975), and finally a dry period that lasted until
1990. The period from 1990 to 1995 was moist (substantial
discharges occurred), and was followed by another dry pe-
riod that lasted until 2005.

PC9 also showed a low temporal frequency between dry
and moist periods. Drought episodes were common during
the study period, but two major drought episodes occurred,
from 1965 to 1968 and from 1999 to 2004, and were directly
correlated with the Catalonian basins, especially those in the
north. PC10 was moderately correlated with the headwaters
of the Tajo and J́ucar basins, and was associated with a low
frequency between dry and moist periods; major multi-year
droughts were recorded from 1959 to 1964, and from 1996
to 2005.

4.3 Drought characteristics

Following the methodology shown in Sect. 3.4, we derived
the duration and magnitude of each delimited streamflow
drought event. In this way, we obtained series of drought
duration and magnitude for each PC. Figure 6 shows the
cumulative absolute frequencies of drought duration and
magnitude for the drought events recorded in each region;
these are arranged from shortest to longest in the case of
drought duration, and from smallest accumulated deficit to
largest accumulated deficit in the case of drought magni-
tudes. Marked differences were found among regions. With
respect to drought characteristics, three main groups were ev-
ident. The first, integrated solely by PC1, had few drought
episodes, although these were characterized by long dura-
tion and high magnitude. The occurrence of 7 hyper-annual
drought episodes exceeding one year in duration, and two
exceptional droughts exceeding 5 yr in duration, showing
that the PC1 hydrological region had the most pronounced
droughts over time and consequently registered the greatest
accumulated streamflow deficits. The second group in rela-
tion to drought duration was integrated by PCs 2, 5 and 7–
10. All these had a large number of dry episodes (70–100),

with maximum durations of 25–35 months. Drought magni-
tudes are closely related to the duration of drought episodes,
and thus the internal composition of the group regarding the
accumulated deficits is almost the same as for duration. The
third group of regions in relation to drought events was in-
tegrated by PCs 3, 4 and 6. All of these had more than 100
short drought episodes that never exceeded 20 months in du-
ration, which generated minor SSI deficits and low drought
magnitudes.

4.4 Changes in duration and magnitude

Table 1 summarizes the drought characteristics (duration and
magnitude) of each PC for the periods 1945–1974 and 1975–
2005. For PC1 there was a clear increase in the number
of drought events in the second period (n = 27) relative to
the first (n = 21). The drought duration and magnitude also
increased considerably in the second period, to an average
drought duration of 10 months and an accumulated deficit
of 15 SSI units. The maximum duration increased from 15
to 66 months, and the maximum accumulated SSI deficit in-
creased from 16 to 113 SSI units. For PC2 there was a slight
increase in the number of drought events from 1975 to 2005,
but a decrease occurred in the average and maximum dura-
tion and magnitude of the drought episodes. For PCs 3–6 the
patterns were very similar, all showing a moderate increase
in the average duration and magnitude of drought events in
the second half of the study period. However, with the excep-
tion of PC5, the maximum drought duration and magnitude
increased from 1975 to 2005. For PC7 there was an increase
in the number of drought episodes, although substantial de-
creases were observed in the average drought duration and
magnitude during the second period. For PC8 the pattern was
similar in the two periods, although the maximum duration
and magnitude increased considerably during the second pe-
riod. For PC9 there was a slight decrease in the average du-
ration and magnitude of drought episodes, whereas both the
maximum duration and magnitude increased. For PC10 the
pattern was similar in the two periods, although the maxi-
mum duration and magnitude decreased somewhat.

4.5 Drought spatial coverage

Figure 7 shows the temporal evolution of the percentage of
area affected by drought (SSI< −0.84) and severe drought
(SSI<−1.65) during the study period. Three main stages
are evident in this evolution. The first, during the decades
of 1940 and 1950, was a period when the area affected by
drought often exceeded 40 % of the IP. In this period approx-
imately 25 % of the analyzed sub-basins were subject to se-
vere drought conditions during the drought episodes in 1945,
1949, 1950 and 1954. The second stage, encompassing the
decades of 1960 and 1970, was a period when the area af-
fected by drought was low (approximately 20 % or less). An
exception was the occurrence of dry episodes in 1965 and
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Fig. 5. Spatial distribution of the PCA loadings for the first principal components (6th to 10th), and temporal evolution of the principal
components (6th to 10th).
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Table 1. Streamflow drought duration and accumulated deficits for two contrasted periods (1945–1974 and 1975–2005) for each principal
component.

1945–1974 1975–2005 Periods comparison

Mean Max. Mean Max. Mean Max. Mean Max. 1975–2000 respect to 1945–1974

duration duration Magnitude Magnitude duration duration Magnitude Magnitude Mean Max. Mean Max.

(months) (accumulated SSI deficit) (months) (accumulated SSI deficit) duration duration Magnitude Magnitude

PC1 3.7 15.0 2.0 16.4 9.8 66.0 9.5 113.2 Increase Increase Increase Increase
PC2 4.8 26.0 5.1 34.1 3.6 9.0 2.0 9.1 Decrease Decrease Decrease Decrease
PC3 2.7 8.0 1.8 8.3 4.1 17.0 3.5 18.4 Increase Increase Increase Increase
PC4 2.9 11.0 2.2 12.3 3.3 18.0 2.6 15.5 Increase Increase Increase Increase
PC5 3.0 19.0 2.3 27.4 4.6 21.0 3.8 23.0 Increase Increase Increase Decrease
PC6 2.9 10.0 1.8 8.2 4.2 18.0 3.7 17.4 Increase Increase Increase Increase
PC7 8.4 33.0 6.2 39.1 3.4 25.0 2.7 26.9 Decrease Decrease Decrease Decrease
PC8 4.1 16.0 3.0 14.5 4.7 33.0 3.4 43.1 Increase Increase Increase Increase
PC9 4.7 12.0 3.7 21.0 4.1 15.0 3.1 22.9 Decrease Increase Decrease Increase
PC10 4.3 26.0 3.8 49.0 4.6 21.0 3.3 22.1 Increase Decrease Decrease Decrease

Fig. 6.Left: duration (in months) of the drought episodes (from shortest to longest event). Right: magnitude (in accumulated SSI deficits) of
the drought episodes (from minor to major).

1976, when the drought-affected area exceeded 40 % of the
study area. The third and longest stage lasted from 1980 to
2005. During this stage the drought-affected area often ex-
ceeded 50 % of the study area, and in 1981, 1992, 1993,
1995 and 2000 the peak area affected exceeded 70 %. The
area affected by severe drought during this stage followed a
similar pattern to that of the first stage, although occurrences
of the affected area exceeding 30 % were restricted to 1992,
1993, 1995 and 2000. The shapes of the graphs of drought
and severe drought follow a similar pattern because their oc-
currences were closely related. However, the slopes of the
curves showed a stationary behavior in terms of the percent-
age area affected by severe droughts (SSI< −1.65), whereas
the percentage area affected by droughts (SSI< −0.84) in-
creased from 1945 to 2005, particularly in the later years.

The analysis above shows the great spatial complexity
of droughts in the IP. Thus, individual drought episodes
can have very different spatial patterns in terms of onset,
intensity, spatial propagation and area affected. Figures 8
and 9 illustrate this complexity through examples show-
ing very different spatiotemporal evolutions of two drought
episodes in the IP. Figure 8 shows the spatial coverage of
the sub-basins affected by drought and severe drought during

Fig. 7. Temporal evolution of the percentage of affected area by
streamflow droughts. The grey line depicts discharges under−0.84
of the standardized streamflow series. The red line depicts dis-
charges under−1.65.

the dry episode of 1948–1949. The genesis of this stream-
flow drought was in April 1948, in the northern sector of
the IP and the headwaters of the Guadalquivir basin. Two
months later, severe drought conditions were established in
the headwaters of the Ebro and Guadalquivir basins. In Au-
gust 1948, dry conditions had spread to most parts of the
Ebro and J́ucar basins, and to specific catchments of the
Duero, Tajo and Guadiana basins. In the following months
(from October 1948 to April 1949) the development of this
drought event was characterized by the establishment of
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Fig. 8.Spatial coverage of the affected areas during the 1948–1949
drought. Dark grey depicted moderate drought conditions and red
depicted severe drought conditions.

severe drought conditions throughout most of the Ebro basin.
This transboundary drought extended throughout the west-
ern sector of the IP, seriously affecting the Duero, Tajo and
Guadiana basins between February 1949 and June 1949. Af-
ter reaching a second peak of maximum extent during Au-
gust 1949, the drought weakened in the autumn of 1949
and had almost disappeared by December 1949. Figure 9
shows the spatial propagation of the drought episode that af-
fected the IP in 1992 and 1993. The core area of this drought
episode was the middle and lower reaches of the southern-
most basins (Guadiana, Guadalquivir and Júcar) of the IP. Its
genesis was in the autumn of 1991, and the area affected by
water shortages rapidly expanded northwards, encompassing
the middle reaches of the Duero, Tajo and Ebro basins by
December 1991. Severe drought conditions had established
over much of the major northern basins (Miño, Duero and
Ebro) by February 1992. A decline in the area affected by
drought occurred in the following months, although drought
conditions were present in several sub-basins during summer
1992, especially those in the Júcar basin. The spatial extent
of the drought expanded in December 1992, and was con-
centrated mainly in the southern basins. A second peak of
maximum drought coverage occurred in late winter and early
spring 1993, when more than 80 % of sub-basins were under
drought conditions. After April 1993 the drought weakened
in the northern sector of the IP, and progressively disappeared

Fig. 9. Spatial coverage of the affected areas during the 1992–1993
drought. Dark grey depicted moderate drought conditions and red
depicted severe drought conditions.

during summer and autumn 1993. Both of these examples
highlight the complexity of hydrological droughts and the
very different spatiotemporal patterns of the phenomenon in
the IP.

5 Discussion

A recent trend towards the development of different ap-
proaches to assess streamflow droughts is emerging, encom-
passing the study of perturbed and regulated river basins,
which correspond to most of the large basins both in de-
veloping and developed countries. For example, Timilsena
et al. (2007) evaluated drought scenarios of the Colorado
River basin (USA), including perturbed hydrological sub-
basins. Wu et al. (2008) followed a similar approach, using
a threshold level approach and the theory of runs to ana-
lyze streamflow droughts in the Missouri River basin in Ne-
brasaka (USA), despite the numerous dams and reservoirs
built for irrigation and other uses within the basin. Wen et
al. (2011) also assessed the impacts of regulation and water
diversion on the nature of hydrological droughts in the Mur-
rumbidgee River (Australia). Thus, including regulated rivers
in the evaluation of hydrological droughts should be a com-
pulsory task since regulation and water management may be
reinforcing streamflow droughts downstream the dams. This
has been shown in different basins of the Iberian Peninsula.

www.hydrol-earth-syst-sci.net/17/119/2013/ Hydrol. Earth Syst. Sci., 17, 119–134, 2013



130 J. Lorenzo-Lacruz et al.: Streamflow droughts in the Iberian Peninsula

For example, Ĺopez-Moreno et al. (2009) assessed the ef-
fects of a large transboundary dam between Spain and Por-
tugal on hydrological droughts in the Tagus basin (Iberian
Peninsula; IP), showing how the nature of droughts had ex-
perienced severe changes downstream of the Alcántara Dam.
These changes are associated with an increase in both the
duration and the magnitude of drought episodes as a conse-
quence of the dam management, with implications for the
availability of water resources downstream affecting the Por-
tuguese part of the basin. In the headwaters of the Tagus
basin, Lorenzo-Lacruz et al. (2010) also showed how dam
operation for irrigation purposes and water transfer has al-
tered the natural regime of the river and increased the du-
ration and magnitude of low flows downstream, with impli-
cations on the water availability and quality in the medium
course of the river. This has been a great source of conflicts
between ecologists, agrarian organizations of the basin and
the water managers. Thus, independently of the origin of the
streamflow droughts (climatic or driven by the water man-
agement), they cause negative impacts and stress the need of
analyzing in depth the impacts of water management on hy-
drological droughts. The results of the studies cited above are
even more interesting than those focused on “natural” basins
since operational water management recommendations may
be derived for the results. All the mentioned studies indicated
that water management associated with the exploitation of
reservoirs is responsible for the temporal aggregation and ag-
gravation of hydrological droughts downstream the dams.

The objectives of our study were focused on the character-
ization of hydrological droughts in the IP, independently of
the regulation level of the rivers, with the scope limited to the
assessment of the changes observed in the duration and mag-
nitude of the streamflow droughts. However, since the reality
is that Iberian rivers are mostly regulated and affected by di-
verse human activities, the inclusion of regulated systems is
necessary to encompass the variability and the impacts in-
duced by dams on the changes in the streamflow droughts.
Thus, the analysis allows the definition of independent hy-
drological regions with distinctive drought characteristics (it
is noteworthy that the most severe and lasting droughts were
observed in those basins with a high degree of regulation).

Our analysis was based on a hydrological regionalization,
using principal component analysis applied to 187 series of
the SSI (Vicente-Serrano et al., 2011) distributed homoge-
nously across the entire IP. We used an alternative approach
to define homogeneous hydrological regions for the specific
analysis of their responses to droughts, since the most ex-
tended methodology used with this purpose is based on clus-
ter analysis (Stahl and Demuth, 1999; Fleig et al., 2011).
The use of a streamflow drought index (the SSI) enabled
us to perform a PCA using standardized variables, compa-
rable in time and space, and thus identify regions with ho-
mogeneous streamflow (high and low) characteristics. The
efficacy of this method has been proved in several regions
worldwide (Johnston and Shmagin, 2008; Kahya et al., 2008;

Peterson et al., 2011). The PCA performed quite well in our
case, as the regionalization obtained showed highly coher-
ent geographical patterns with well-defined natural bound-
aries (mainly mountain ranges). The Iberian Plateau is di-
vided in two by the Central System, which also originates
a separation between PC 1 and 2. The Cantabrian and the
Iberian Ranges separate the Plateau unit (PC1 and PC2) from
the Ebro Valley (PC4). A different coastal influence in the
Pyrenees creates a distinction between the western Pyre-
nean basins (Atlantic Sea influence; PC4), the central basins
(with the highest altitudes; PC5) and the Catalonian basins
(opened to the Mediterranean Sea influence; PC9). Neverthe-
less, the spatial variability of streamflow droughts in the IP
is greater than the observed variability of climatic droughts;
the latter was summarized in just 6 PCs (Vicente-Serrano,
2006a, b). However, the first 10 PCs only explained 60 % of
the total variance. This highlights the great complexity and
number of factors that generate the water yield in a basin
(Krasovskaia et al., 1994; Fleig et al., 2011). Besides climate
variability and the physiographic complexity of the differ-
ent basins, the water management model established in the
IP, which is based on the concept of “basin unity”, generates
greater differences between the behavior of basins belonging
to one basin water agency vs. to another (e.g. Confederación
Hidrogŕafica del Ebro versus Confederación Hidrogŕafica del
Duero). The different water management strategies imple-
mented among agencies increase the complexity of the re-
gionalization. Moreover, at the local scale the perturbations
caused by pumping and extraction introduce even more com-
plexity.

The general patterns reported here for the evolution and
occurrence of streamflow droughts in the IP (with the dri-
est decades being the 1950s, 1980s, 1990s and 2000s) are
consistent with findings related to climatic droughts re-
ported by Briffa et al. (1994), Maheras (1988) and Vicente-
Serrano (2006a) for Europe, the Mediterranean region, and
the IP, respectively. Our findings are also consistent with an
analysis by Hannaford et al. (2011) of streamflow droughts
that partially included the IP. These results also showed
a high degree of consistency with the results presented
in Lorenzo-Lacruz et al. (2012), where Iberian streamflow
trends analysis was addressed using this same dataset.

In addition to the general patterns, the 10 hydrological re-
gions delimited with respect to streamflow behaviour have
very different climatic, water regulatory and physiographic
characteristics that have caused or conditioned the various
streamflow drought typologies. The hydrological behavior
of the region correlated with PC1, which was characterized
by severe and persistent droughts, can be explained by vari-
ous factors. The precipitation in this region is strongly asso-
ciated with the North Atlantic Oscillation, which has been
demonstrated to have a marked influence on the variabil-
ity of streamflows during winter and spring (López-Moreno
et al., 2007; Lorenzo-Lacruz et al., 2011). The permeable
lithology of the region, which results in slow groundwater
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recharge, and the multi-year regulation of dams within the
basins concerned can cause temporal delays in the occur-
rence of streamflow deficits with respect to the lack of pre-
cipitation (Lorenzo-Lacruz et al., 2010). The relationship be-
tween PC1 and precipitation in the southern parts of the
Iberian Range (located near the headwaters of the Tajo, Júcar
and Guadiana rivers) exemplifies the delays noted above. We
found a maximum correlation (R = 0.76) between the stan-
dardized precipitation index (SPI) for this area and PC1 at
a 25-month time scale, demonstrating the multi-year depen-
dence of streamflows on climatic conditions that cause long-
lasting droughts in this hydrological region, which was also
observed in Lorenzo-Lacruz et al. (2010). Moreover, the oro-
graphic node that represents the southern Iberian Range is
a critical zone for water management within the IP. This is
because the southern Iberian Range acts to divert water be-
tween the Ebro, Tajo and Júcar basin headwaters, conditions
the streamflow response to droughts in the middle and lower
reaches of the basins correlated with PC1 (12.8 % of the ex-
plained variance and 40.8 % of the study area), and deter-
mines the quantity of water that can be transferred to the Se-
gura basin. Of additional significance is the water demand of
the coastal zone of the Júcar basin, where the marked sea-
sonal pattern in occupancy because of tourism exacerbates
drought events during summer (Collins et al., 2009). The
drought characteristics of the hydrological region defined by
PC2 may be related to the Atlantic Ocean influence, which
is the main source of humid air masses responsible for pre-
cipitation in this region, and the high altitudes, which de-
termine the snow and rainfall regimes characteristic of the
headwaters of this region (Morán-Tejeda et al., 2011). The
trend towards fewer intra-annual drought events in this re-
gion (mainly the Duero basin) is closely related to the wa-
ter regulation strategy, which increases river discharges dur-
ing summer (avoiding the worse seasonal droughts during
the dry season) at the expense of reducing streamflows dur-
ing winter and spring. The PC3 basins interspersed with the
PC2 hydrological region have a very low level of regulation;
consequently, the climatic signal might be of great impor-
tance in defining streamflow behavior. It is noteworthy that
a significant negative correlation (R = −0.35,α < 0.01) was
evident between PC3 in winter and the winter NAO index.
The hydrological region defined by PC4 is bounded by the
orography of the Cantabrian, Pyrenean and Iberian ranges,
which channel the northern humid air masses towards the
Ebro Valley. Thus, northern flows from the Cantabrian Sea
feed the Cantabrian basins, the Atlantic Pyrenean basins and
the Ebro headwaters. The latter two are the major contrib-
utors to streamflow in the main course of the Ebro River
(Batalla et al., 2004), and consequently determine the con-
ditions in the upper reaches of the Ebro basin (which are reg-
ulated by the Ebro reservoir in the headwaters) and control
drought occurrence downstream in the lower reaches. Ac-
cording to Mart́ın-Vide and Ĺopez-Bustins (2006), the posi-
tive phase of the Western Mediterranean Oscillation (WeMO)

determines rainfall in the zones adjacent to the Gulf of Bis-
cay, which is reflected in the streamflow behavior of the hy-
drological region defined by PC4, and accounts for the sig-
nificant positive correlation between PC4 in winter and the
winter WeMO index (R = 0.52). The drought-related region
associated with PC5 is characterized by mountainous rivers,
which are related to the high altitude and steep slopes. In
this area snowmelt plays an important hydrological role and
causes a significant delay in the SSI response to climatic con-
ditions (between 2 and 10 months, depending on the level
of regulation) (Vicente-Serrano and López-Moreno, 2005).
The streamflow drought characteristics of the PC6 hydrolog-
ical region may be related to the small area involved and the
low altitude of the catchments. These factors result in fre-
quent but short drought episodes because of the ephemeral
regime of the streams, which usually have moderate or high
streamflows during the wet season but are dry during the
remainder of the year (Liquete et al., 2005). The reduction
in drought episodes in the hydrological region represented
by PC7 reflects the dependence of this area on water trans-
ferred from the headwaters of the Tagus River. Since 1979
the Tajo–Segura water transfer has transferred an average of
331 hm3 of water per year for irrigation purposes, and for
urban supply to a population of 2.5 million (Rico-Amorós,
2004). This dependence is evident in the highly significant
correlation (R = 0.65, α < 0.01) between PC7 and the stan-
dardized streamflow series for the water transfer. However,
a clear relationship between PC7 and PC8 was found. Since
the water transfer began, aquifer overexploitation for irriga-
tion and leisure purposes has occurred in the Segura basin,
including many sub-basins belonging to the PC8 hydrolog-
ical region, leading to depletion of the aquifers (Custodio,
2002) and an increase in the number of drought episodes. No
clear causalities were found to explain the different drought
typologies observed for the PC9 and PC10 hydrological re-
gions.

In general, drought duration is negatively correlated with
the number of drought events. Nevertheless, a worsening sit-
uation with respect to drought duration in the IP has been de-
veloping since the 1970s, with many sub-basins having been
subject to longer and more severe droughts in recent years.
The results suggest that rainfall following droughts has typi-
cally been unable to generate the surpluses needed to restore
the hydrological conditions that were present prior to the
drought. This could be related to increasing consumption of
water as a consequence of the rapid development of irrigated
agriculture and the demands of tourism (Lorenzo-Lacruz et
al., 2010). In unregulated basins, increasing drought dura-
tion and magnitude are affecting the maintenance of ecolog-
ical flows and threatening the maintenance of riparian and
river associated ecosystems. The absence of reservoirs to
smooth the impacts of drought on naturalized streamflows
increases the vulnerability of these basins to the occurrence
of droughts.
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Two contrasting patterns in the temporal evolution of the
spatial extent of drought-affected areas were observed. For
moderate droughts there was a trend toward increase in the
spatial extent, which may be related to the observed trend
toward decreasing precipitation during specific months (Xo-
plaki et al., 2004; Mourato et al., 2010; González-Hidalgo
et al., 2011), water management processes, and increasing
use of water for activities including irrigation and urban sup-
ply (Rico-Amoŕos, 2004). In contrast, the size and number
of areas affected by severe droughts (under 5th percentile)
has remained relatively stable during the last 60 yr. Expan-
sion of these areas has been moderated by water regulation
strategies to provide ecological flows that maintain riparian
ecosystems, at the expense of suffering alterations to their
composition and structure (Boix et al., 2010).

The heterogeneity observed in the genesis and spatial
propagation of droughts over time confirms the view that no
two droughts are identical, and that droughts are not static
(Wilhite, 2005). We observed that the core area of a drought
can shift, and its spatial extent can expand and contract until
its disappearance. Consequently, the monitoring and assess-
ment of drought episodes is of great relevance to the devel-
opment of early warning systems and management strategies
to mitigate the impacts of droughts.

6 Conclusions

This study provides a comprehensive analysis of the spa-
tiotemporal characteristics of streamflow droughts in the
Iberian Peninsula during the second half of the 20th century.
It represents a novel contribution since we used an extensive
spatiotemporal dataset that had not previously been used for
this purpose or spatial context. The dataset may be a useful
aid for water managers and politicians, and the methods used
were based on standard procedures applied in recent years to
the characterization of streamflow droughts.

The PCA performed well, and revealed quite consistent
spatial patterns related to the regionalization. The method-
ology was capable of pinpointing and delimiting drought
episodes and the characteristics associated with them. This
approach enabled us to define various drought typologies
having contrasting durations and magnitudes. The results
show that in terms of drought duration and magnitude the sit-
uation is becoming worse in the majority of the hydrological
regions delimited by the PCA. The area affected by droughts
is also increasing, which may threaten the maintenance of
current water supplies and consumptive water uses in the IP.
We also found substantial spatial heterogeneity in the gen-
esis, evolution and disappearance of streamflow droughts,
highlighting the great complexity of this phenomenon. This
complexity is exacerbated in the IP by the highly variable cli-
mate, the complex orography, the extensive water regulation
systems, and the contrasting water demands among regions.
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