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Abstract. In climate change impact research, the assessmergven the use of (biased) climate model data itself is some-
of future river runoff as well as the catchment-scale watertimes disputed among scientists. For these reasons, the effect
balance is impeded by different sources of modeling un-of bias correction on simulated runoff regimes and the rel-
certainty. Some research has already been done in order tative change in selected runoff indicators is explored. If it
quantify the uncertainty of climate projections originating affects the conclusion of climate change analysis in hydrol-
from the climate models and the downscaling techniquespgy, we should consider it as a source of uncertainty. If not,
as well as from the internal variability evaluated from cli- the application of bias correction methods is either unnec-
mate model member ensembles. Yet, the use of hydrologessary to obtain the change signal in hydro-climatic projec-
ical models adds another layer of uncertainty. Within thetions, or safe to use for the production of present and future
QBic3 project (Qébec—Bavarian International Collabora- river runoff scenarios as it does not alter the change signal.
tion on Climate Change), the relative contributions to the The results of the present paper highlight the analysis of
overall uncertainty from the whole model chain (from global daily runoff simulated with four different hydrological mod-
climate models to water management models) are investiels in two natural-flow catchments, driven by different re-
gated using an ensemble of multiple climate and hydrolog-gional climate models for a reference and a future period.
ical models. As expected, bias correction of climate model outputs is im-
Although there are many options to downscale global cli- portant for the reproduction of the runoff regime of the past,
mate projections to the regional scale, recent impact studiesegardless of the hydrological model used. Then again, its
tend to use regional climate models (RCMs). One reason foimpact on the relative change of flow indicators between ref-
that is that the physical coherence between atmospheric anerence and future periods is weak for most indicators, with
land-surface variables is preserved. The coherence betwedhe exception of the timing of the spring flood peak. Still, our
temperature and precipitation is of particular interest in hy-results indicate that the impact of bias correction on runoff
drology. However, the regional climate model outputs oftenindicators increases with bias in the climate simulations.
are biased compared to the observed climatology of a given
region. Therefore, biases in those outputs are often corrected
to facilitate the reproduction of historic runoff conditions
when used in hydrological models, even if those correctionsl ~ Introduction
alter the relationship between temperature and precipitation.
So, as bias correction may affect the consistency betweeH the recent past, the availability of regional climate model

RCM output variables, the use of correction techniques andRCM) simulations, especially over Europe and North Amer-
ica, has considerably increased, while also the understanding
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about the uncertainties related to regional climate simula-The assessment of the uncertainty components in water re-
tions has been improved based on model ensembles (e.g., bgted variables for climate change projections showed that
the PRUDENCE project (BgLe et al., 2007)). At the same the climate system internal variability is a major player for
time, the assessment of climate change impacts on the hyimpact studies at the watershed scale (Music and Caya, 2007,
drological cycle based on projections of global climate mod-2009; Braun et al., 2011).
els (GCMs) dynamically downscaled by RCM nesting has The projection of potential climate change impacts on in-
been a major research effort, especially in the past decadinsely used watersheds and the development of adaptation
(Bergstrom et al., 2001; Horton et al., 2006; Graham et al.,options are major challenges in water resource management.
2007; Andersson et al., 2011). Although most RCMs includeWithin the Quebec—Bavarian International Collaboration on
descriptions of surface and subsurface runoff processes, bclimate Change (QBI®) project, four regional-scale catch-
ases in precipitation and moisture fluxes generally resuliments strongly affected by different types of hydraulic infras-
in weak agreement between RCM runoff and observationgructure (dams, reservoirs, water transfer systems) are inves-
(Hagemann et al., 2004; van den Hurk et al., 2005). Theretigated. Because the uncertainty connected to any projection
fore, most studies have used a model chain consisting of af climate change impacts on runoff characteristics has to be
combination of GCM(s) and RCM(s), various methods to quantified, a modeling chain of both multiple climate scenar-
correct biases and a hydrological model (HyM) to project po-ios and hydrological models is employed. The general aim of
tential future changes in water resources and runoff, as sunthe projections for the Bavarian and €pcois catchments
marized in Teutschbein and Seibert (2010). is to investigate the long-term changes in the annual runoff
Climate science has increased our understanding of the cliregime and the average change in high- and low-flow char-
mate system considerably, yet the uncertainty of projectionsacteristics during different seasons. The projected changes
of regional climate changes is still large and thus should beare then fed into water management models to simulate the
recognized and accounted for especially in impact and adapeffects of these changes on the water infrastructure and to
tation studies (Foley, 2010). Besides the uncertainties due tinvestigate potential adaptation options.
imperfect climate models (process descriptions, parameters Since the ensemble of hydrological models includes both
and boundary conditions), there is considerable uncertaintgimple, lumped as well as more complex, distributed models,
about future greenhouse gas emissions and the natural vanphysically consistent and spatially distributed meteorological
ability of the climate system (Foley, 2010). An estimate of inputs are needed for runoff projection. Furthermore, addi-
the latter source is created by varying the initial conditionstional variables besides temperature and precipitation (e.g.,
of the GCM that forces a particular RCM, so the results of humidity and global radiation) at the sub-daily timescale are
each of these GCM-RCM members span the range of interneeded. Following the findings summarized in Maraun et
nal variability of a particular GCM-RCM combination, as al. (2010), dynamical downscaling of global climate projec-
reported for example in de faland @té (2010). Then again, tions is an adequate approach to fulfill these needs. Although
the uncertainty of the emissions scenarios seems to be nahere are other options in the wide field of statistical down-
that important for global warming until the late 21st century scaling methods, the use of RCM data furthermore offers the
and beyond (Hawkins and Sutton, 2009). advantage that it preserves the physical coherence between
A few studies have already compared the impact of theseatmospheric variables, especially between precipitation and
different sources of uncertainty on the hydrological responsdemperature (Fowler et al., 2007).
of regional-scale catchments or on the variables most impor- Yet, as the spatial resolution of distributed hydrological
tant for hydrological models, precipitation and temperature.models usually applied on managed watersheds is distinctly
DéqLe et al. (2007) compared the effects of different sourcediner than that of typical RCM applications, further down-
of uncertainty, including the emissions scenario, the choicescaling is required if regional- to local-scale patterns are to be
of GCM and RCM, and varied initial conditions on sea- resolved by the impact models (Maraun et al., 2010). Espe-
sonal precipitation and temperature over Europe. They foundially in terrain with steep gradients, the distribution of RCM
that the uncertainty arising from different GCMs is generally outputs to the impact model scale based on elevation can im-
the largest, while the choice of RCM strongly affected sum-prove hydrological modeling results compared to raw RCM
mer precipitation and the choice of emissions scenario hadutputs as shown by Wilby et al. (2000).
a significant effect only on summer temperatures. Horton et  Still, RCM data may contain biases that prevent an appro-
al. (2006) used a similar set of climate model simulations forpriate reproduction of the historic (observed) hydrological
a hydrological impact study over the Swiss Alps and foundconditions from simulations (which is the “minimum stan-
that the uncertainty introduced by the choice of RCM is notdard” as stated in Wood et al. (2004) for a “useful” down-
explicitly deductible from the climatic ensembles; hence it is scaling technique). Therefore, in most cases some form of
assumed to be on the order of the GCM uncertainty. Grahanbias correction is necessary, especially for precipitation (Ma-
et al. (2007) found that the choice of GCM is more importantraun et al., 2010) but also for temperature. The correction
than the emissions scenario or the RCM used in their multi-of other climate model variables (radiation, wind and hu-
catchment study on future (2071-2100) hydrological changemidity) seems to have less impact on hydrological climate
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change projections (Haddeland et al., 2012). A full integra-izing mean, high and low flows as well as the timing of the
tion of both downscaling and bias correction is reported inspring flood are computed. Based on those results, three main
Kleinn et al. (2005), who constructed a model chain for questions are raised:

the large Rhine basin upstream of Cologne (14500€)km
by forcing the distributed hydrological model WASIM with
bias-corrected RCM fields. To account for fine-scale hetero-
geneities in complex terrain, they used a model interface that
superimposes stationary, topography-induced patterns of the
hydrological model scale on the coarse-scale RCM tempera-
ture and precipitation fields.

Bias corrections of RCM outputs typically make use of
one of two general approaches: extracting deltas (differences
between a future and a reference period) to be applied on ob-
served meteorological data in order to construct future time
series, or deriving scaling parameters to adjust both past and
future RCM outputs to more closely fit observed climatic
conditions (Teutschbein and Seibert, 2010). Different vari-
ations of those are summarized ire@e (2007). Fowler et
al. (2007) state that the physical coherence between temper-

ature and precipitation is largely preserved in bias-corrected 3.

RCM data, although this certainly depends on the methods
used for those variables. Furthermore, bias correction can af-
fect the absolute and/or the relative temporal change of a me-
teorological variable. For example, Graham et al. (2007) have
shown that the delta method preserves the average change in
precipitation from the RCM data, while a scaling of precip-
itation intensity better preserves the changes in variability.
So in summary, bias correction of RCM simulations does not
guarantee physical consistency and may affect the climate
change signal to some extent. Hagemann et al. (2011) report
that bias correction of GCM data may affect the hydrologi-
cal climate change signal in specific locations and seasons.

1. Does bias correction provide a more consistent rep-

resentation of river runoff for the past? This first
analysis compares the deviation of the simulated runoff
regimes and hydrological indicators from observed val-
ues over the reference period. It assesses the capacity of
a hydro-climatic simulation ensembie provide a con-
sistent representation of the river runoff regime.

2. What are the expected impacts of climate change on

the river runoff regime? The second analysis explores
the trends and signals provided hydro-climatic sim-
ulation ensemblever Qebec and Bavaria. The results
of the model chain with and without bias correction are
analyzed regarding the relative change of hydrological
indicators for the future time period.

Does bias correction affect the estimation of future
change in hydrological indicators?Then, the effect of
bias correction on the projected change signal and thus
its contribution to the overall uncertainty, also in rela-
tion to the actual biases of the regional climate simu-
lations, is explored. This evaluates the relevance of ap-
plying time consuming bias correction methods in the
scope of hydrological climate change impact assess-
ment.

2 Data and methods

Hence the use of bias correction techniques in hydrology t2.1  The investigated catchments

adjust GCM or RCM data is disputed, as discussed by Ehret

et al. (2012). So the question we try to address in this papelhe two catchments investigated in this study,ahe&Saumon
is: Is it really necessary to correct biases to assess climateand the Loisach River, are both natural flow tributaries
change impacts, if uncorrected RCM data does not reproducef larger, heavily managed watersheds located in south-

observed conditions very well?

ern Qebec (Canada) and southern Bavaria (Germany), re-

For this purpose, we investigate the impact of bias cor-spectively. Theau SaumorRiver at gauge Saumoh has
rection of precipitation and near-surface air temperature ora catchment area of 738 Emwhile the Loisach River at
the simulations from four different hydrological models in gauge ‘Schlehdorf has an area of 640kfn Thus, both

two natural flow catchments in southern Germany and southare relatively small for climate change modeling studies,
ern Quebec when driven by multiple GCM—RCM data sets and their mountainous character with a strong relief and
for both a reference (1971-2000) and a future period (2041+aw soils mainly covered by forests leads to distinct runoff
2070). Precipitation is corrected by the local intensity scalingregimes. As stated before, both are important tributaries
(LOCI) method of Schmidli et al. (2006), while air temper- for two larger river systems, thélaut-Saint-Francoisin
ature is modified by monthly additive correction. The meth- Québec (2922 krf) and theUpper Isarin southern Bavaria
ods were selected for their simplicity and have some inheren{2814 kn?) (as depicted in Fig. 1). Yet, these larger systems
flaws: The monthly correction may create jumps in the cor-are highly regulated by dams, reservoirs and water transfer
rected data sets between months, and following Themefl3l efystems, so climate change impact on river runoff cannot be
al. (2011) LOCI performance is slightly inferior to the quan- easily quantified without taking water management into ac-
tile mapping approach, especially at high precipitation inten-count.

sities. River runoff is simulated both with direct and bias- The au Saumoncatchment topography is moderately
corrected meteorological drivers produced by RCMs. Fromsteep, with elevation ranging from 1100 m at Monédantic

the simulated daily runoff, hydrological indicators character-to 270 m at the catchment outlet. Land cover is dominated
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Fig. 1. Location and relief of thé&daut-Saint-Fran¢oigHSF, left) and theéJpper Isar(ISA, right) watersheds including the drainage divide
of the investigated head catchments of gauggsmor(SAU) andSchlehdorf(SLD) from Velazquez et al. (2013).

dominated by a large snow-melt peak in spring (54 in
April). Although precipitation in summer is slightly higher

GCM simulations

than in winter, only intense convective precipitation events
can create low magnitude summer floods. In general, flows
 Climate model | _ Im are low in summer due to high evaporation and occasional
f simulation ensemble dry spells (10mMs 1 in August) and also in winter due to
low temperatures and a long-lasting snow cover.
| Direct use | | Bias correction |<7| Most of theLoisachcatchment upstream of gaugehle-
! hdorf is located in the Bavarian Limestone Alps; therefore,
the relief is steep with elevations ranging from 2962 m at
_)*(_ ! the Zugspitze to 600 m at the catchment outlet. Land use is

| - S— dominated by coniferous forests with small parts of marsh-
Hydrological models I( ————————— . i
l land, pasture and rocky outcrops. Raw soils on limestone
| are common in the mountains, while in the low-lying parts
(sim’z:t’i‘:n‘)":",‘;:';ble Blsenved runolf loamy soils with parts of gravel are found. The glacial runoff
regime of the_oisachis controlled by snowmelt in late spring
J 1 and precipitation events in summer. Mean annual runoff is
Indicators based Indicators based Indicators based on 22I.TT?S ! with a minimum in winter and a m?XImum In
on direct RCM on corrected RCM observed runoff spring and early summer when the snowmelt in the moun-
| tains gives way to the precipitation maximum in summer.
——>{  Model Chain Evaluation |¢«———— 2.2 The hydro-climatic model chain
_,| Change Signal Analysis | The QBic3 project invgstigates the impact of climate change
on water resources with a focus on the model-related uncer-
[ scimpact Analysis | tainties regarding the future changes in runoff regime. To do

s0, a hydro-climatic model chain has been constructed (as
Fig. 2. Workflow of the hydro-climatic ensemble scheme used to in- illustrated in Fig. 2) linking regional climate models with
vestigate the impact of bias correction on simulated runoff regimeshydrological models. The quantification of uncertainties in
Dashed arrows illustrate the model calibration done in advance othe model chain requires the use of ensembles. Typically,
the impact analysis. the uncertainties and potential errors in RCM simulations
are related to emission scenarios, climate model structure
and parameterization, but also the natural variability of cli-
by deciduous forest that grows on silt loam soils overlying mate (Foley, 2010). So, similar to other investigations (as
the Appalachian bedrock. The annual overall mean flow atsummarized for example in Teutschbein and Seibert, 2010)
the outlet is 18 s 1, yet the nivo-pluvial runoff regime is  the climate model simulation ensembles are produced from
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different simulations of global and regional climate models both runoff regimes, the summer period is fixed from June
for both catchments (see Sect. 2.3). As RCM simulations aréo November for the Qebec site (winter from December to
usually biased when compared to observations, the two maiay) and from March to August for the Bavarian Alpine site
drivers for hydrological models (HyMs), precipitation and (winter from September to February).
temperature, are corrected to better fit the observed clima- In the end, the “hydro-climatic simulation ensemble” is
tology. Other atmospheric forcings are not corrected due tesynthesized by a number of indicators related to directly used
a sparse database in the investigated regions, although th¢BCO0) or bias corrected (BC1) outputs of the RCMs over
are used in some HyMs. Finally, all RCM fields are down- both the reference and future periods. To evaluate the per-
scaled for the distributed hydrological models using the staformance of the hydro-climatic model chain, simulated aver-
tistical scaling tool SCALMET (Marke, 2008), which con- age annual hydrographs are compared to the observed runoff
serves mass and energy at the RCM scale. This dualistic apegime. Furthermore, the relative erro8)(of hydrologi-
proach regarding bias correction and downscaling of RCMcal indicators simulated for the reference periodrdsl are
outputs is followed in order to separately estimate the impactompared to those computed from observed flovpggit
of bias correction on HyM results without having to account Hirer— HI
for changes in spatial distribution of these variables. E— M_
Besides the climate model uncertainties, an ensemble of Hlobs
hydrological models of different complexity is required as The expected impacts of climate change on hydrological in-
well to reflect the predictive uncertainties of hydrological dicators is based on the quantification of the change signal
modeling (see Veizquez et al., 2013). Hence, a so-called (CS), i.e., the relative differences between indicator values

“hydro-climatic simulation ensemble” of simulated runoff calculated over reference (Ref) and future (Fut) periods:
time series for both a reference (1971-2000) and a future

period (2041-2070) is produced by feeding different hydro--g_ (HlFut— "”Ref). @)
logical models with a suite of climate simulations. The cho- HiRef
sen ensemble of hydrological models (see Sect. 2.4) refleCtg; 35t the rank-sum (Wilcoxon, 1945) test is used in order
dlfferent levels of model compIeX|.ty and assesses the uncerg, compare pairs of (hydrological) change signal ensembles
tainty r_elated to model structure (ie., th? uncertainty relatedypqineq with either direct or bias corrected RCM drivers.
to the internal computation of hydrological processes). All i. aach hydrological indicator, we evaluate if the two sam-
HyMs are calibrated or optimized using observed climate Sta’ples (BCO and BC1) have been drawn from the same distri-
tion data to clearly reflect the impact of climate model biasesy, ;4o (the null hypothesis) within different rejection levels.
on simulated runoff. From those daily runoff time series, four Commonly, the 5% level is used, but in this study other ad-
hydrological indicators (H) are calculated: ditional significance levels were also chosen to get a gradual
1. Mean flow over the whole period (MF): mean of all estimate of sample similarity. If the test is not rejected, both
daily values in M s~1 over a given period; this indicator distributions should provide the same information, and thus

mainly reflects the annual water balance of a catchmentPias correction of precipitation and temperature should not
be necessary to evaluate a given change signal.

@

2. 7-day duration low flow with a 2-year return period
(7LF2): a (seasonal) indicator of long-term low flow 2.3 The climate data ensemble
sustained over a period of 7 days. Itis computed using a
7-day moving average of runoff from which the 2-year The choice of climate simulations for a research projectis of-
return period of its minimum yearly values assuming a t€n not only determined by the scientific questions raised, but

Pearson Il distribution is analyzed (DVWK, 1983). also by the availability of data and the capacity to process it
within the scope of the project. The final list that was agreed

3. High flow with a 2-year return period (HF2): the  ypon in QBic3 is presented in Table 1. The regional climate
flood peak, which statistically occurs every two years models are the Canadian Regional Climate Model CRCM4
is based on seasonal (summer, winter) maximum daily(de Efa and @té, 2010; Caya and Laprise, 1999), the KNMI
runoff Values; again a Pearson III-type distribution is as- regiona| atmospheric climate model (RACMOZ) (Van Meij_
sumed (DVWK, 1979). gaard, 2008) and the Rossby Centre’s regional atmosphere—

; ; : ) land climate model (RCA3) (Samuelsson et al., 2011; Kjell-

4. Julian day of the spring flood half-volume (JDSF): strom et al., 2011). Driving data for those models are outputs

Julian day at which half of the total volume of water for .
the spring flood period has been discharged at a gaugec?]c the global climate models CGCM3, ECHAMS, HadCM3

applied to the months February till June foréec and and BCM. When_muluple members are mentioned, they cor-
. ; respond to multiple runs of the driving models. A conse-
March till July for Bavaria. . . . : ) : .
guence of this particular choice of climate simulations is that
7LF2 and HF2 can be evaluated over the summer (SUM)natural variability will be better assessed overEQec (given
or winter (WIN) season. Because of the distinction betweenthat 5 members are available) while the uncertainty related
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Table 1. Number of RCM simulations available per investigated region based on IPCC emissions scenario, horizontal resolution and pilot
GCM.

RCM CRCM4.2.3 RACMO2 RCA3

SRES A2 AlB A2 AlB AlB
Resolution 45km 50km 50km 50km 50km
Pilot GCM CGCM3 ECHAM5 ECHAM5 HadCM3 BCM
Québec runs 5 - - - -
Bavaria runs 1 3 1 1 1

to the choice of regional climate models and their pilots will gion, all members of CRCM have a distinct cold bias of the
only be exposed over Bavaria. It has to be noted that the unerder of 2—£#C, most accentuated in late winter and early
certainty introduced by greenhouse gas emissions scenariapring. This cold bias is also present at a much larger scale in
is not accounted for over @bec and is not well represented the corresponding CGCM simulations (not shown). In terms
over Bavaria, however the spread between different IPCGof mean precipitation, there is a clear underestimation in
emissions scenarios is rather small at the chosen future timeiinter and overestimation in the summer months. These bi-
frame 2041-2070 (Hawkins and Sutton, 2009; Graham et al.ases are larger than the variation between the CRCM-CGCM
2007). members, which is a first order estimate of the natural vari-
The preparation of climate model data sets as an inpugbility for this region (less than’C and 5-10 mm monttt).
for catchment-scale hydrological models is accomplished byFor theUpper Isarregion, RCA driven by BCM shows a°Z
a two-step approach of correcting climate model biases ifwarm bias for summer, while all other RCA and RACMO
needed at the RCM grid scale before scaling the outputs t@imulations have biases of less thatClyear round. Once
the hydrological scale of & 1kn?. As the spatial resolu- again, the CRCM driven by CGCM reveals a large cold bias
tion of common RCM applications is about 50 km, a model of about—5°C. The precipitation amounts of the RCA and
output statistics (MOS) algorithm had to be chosen to dis-RACMO simulations, regardless of driving GCMs, overesti-
aggregate RCM outputs to the hydrological model scale ofmate precipitation in winter and underestimate it in summer,
1 x 1km?P. Since the aim of this further downscaling is to while the CRCM shows a severe underestimation.
reproduce the typical spatial patterns of various meteorolog- With these, to some extent large, biases in RCM outputs,
ical variables in regions with (potentially) sparse meteoro-the hydro-climatic model chain is obviously not able to plau-
logical station data, the chosen MOS approach SCALMETSsibly reproduce observed runoff without any correction of
(Marke, 2008) takes advantage of three relations: (a) elevaelimate model biases, as outlined in, for example, Wood et
tion dependencies already existent in RCM air temperaturel. (2004). There are however drawbacks to bias correction
and humidity fields, (b) physical relationships between in- (Ehret et al., 2012): (a) As it is statistical in nature, some
coming radiation components and wind speeds and topogphysical coherence is sacrificed during the process. (b) An
raphy, and (c) empirical monthly elevation gradients, in ourarguable assumption is made that the correction parameters
case for precipitation (Liston and Elder, 2006). Ultimately, derived from past data sets still hold for future time peri-
a major advantage of SCALMET is that it conserves energyods. (c) Part of the deviation between observed and simulated
and mass at the spatial scale of the RCM grid boxes duringlimatologies could actually be climate inherent uncertainty.
each time step. Furthermore, Zabel et al. (2012) successfullyn order to separate the impact of bias correction from the
used SCALMET to interactively couple a RCM with the hy- downscaling procedure, a monthly correction is performed
drological land surface model PROMET, which is also usedat the RCM grid point scale on air temperature by subtract-
in this study. ing the 30-year mean monthly biases. Since the biases in
To evaluate the main biases of the chosen RCM runs, simtemperature vary only weakly between months (Fig. 3), the
ulated and downscaled average monthly air temperature andiscontinuity introduced in the corrected data is very small.
precipitation for both main catchments are compared to in-For precipitation the local intensity scaling method (LOCI)
terpolated observations in Fig. 3. The observation data usedf Schmidli et al. (2006) is used, which adjusts 30-year aver-
to compute the reference climatology are the same that werage monthly wet-day frequency and intensity (with a wet-
used for calibration and validation of hydrological models day precipitation threshold of 1 mm) and was already ap-
over their respective basins. For the Bavarian region, this iplied to CRCM data sets by Minville et al. (2009) and Chen
the 1-km gridded data set from the GLOWA-Danube projectet al. (2011). Since the LOCI method was developed for
interpolated with PROMET (Mauser and Bach, 2009), while daily data, the resulting daily precipitation is redistributed to
for southern Qébec, CEHQ provided their gridded Ores-  the sub-daily timescale proportionally to the original RCM
olution observation data sets. In tHaut-Saint-Francoise-
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Fig. 3. Climatology of air temperature (upper panels) and precipitation (lower panels) over the main catddeerBaint-Frangoigleft
panels) andJpper Isar(right panels) derived from climate models and observations. (Acronyms refer to RCM—GCM combinations and runs
in a GCM member ensemble.)

precipitation for each day in order to accommodate for a finerscales precipitation intensities, the bias corrected precipita-
temporal resolution of the model data. tion change signal is scaled accordingly with the exception
It should be noted that total precipitation is not forced to of days with rainfall below the wet-day threshold. Also, it
match the observation after bias correction using LOCI. Onlycan already be seen that even with its large bias with respect
the targeted statistics of the chosen method will fit the sameo observations in thelpper Isar, the CRCM—-CGCM model
statistics computed from the observations, this is an arbitranyprojected climate change is in line with the other models.
choice. In cases where multiple members are available, a sin-
gle set of bias correction parameters is computed from the2-4 The hydrological model ensemble

statistics of the ensemble and then applied to each individ- ,
ual member in order to retain the modeled natural variability, "€ hydrological model (HyM) ensemble constructed for the

In all other cases, there is one set of parameters per climat@BiC3 Project is composed of four models: HSAMI (Fortin,
simulation. 2000), HYDROTEL (Fortin et al., 2001), WASIM (Schulla
In terms of climate change signal from the chosen RCMs2nd Jasper, 2007) and PROMET (Mauser and Bach, 2009).
for the 2050 horizon, thelaut-Saint-Francoisegion is pro- These models were calibrated with observed meteorological
jected to see its temperature increase by abéG@hBith up to data and reflect different levels of structural complexity de-
4°C in winter. Precipitation is projected to increase by up to Véloped by the scientific community as discussed in more
30% in winter, about 20 % in spring and fall and to decreasedePth by Vezquez et al. (2013). These range from empiri-
slightly during summer months. For thépper Isar, a 1 to cal, lumped runoff models to distributed, process-based land
3°C increase in temperature is projected, with the larger un_surfacg models. Thg structu_ral complexity of the chosgn _hy-
certainty coming from the choice of multiple RCMs and driv- drological models differs with regard to the characteristics
ing GCMs. The precipitation change signal is mixed, show-(S€€ Table 2):
ing a general increase in spring and a decrease in summer for - Thespatial resolutionwithin the ensemble ranges from
all but the RCA—BCM S|mulat|on. Again, the various chqlces the lumped model HSAMI via the semi-distributed
of atmospheric models introduce a rather large uncertainty of  model HYDROTEL to the fully distributed (% 1 km?)

about 20 % in the projected precipitation changes. It has to  \ater budget and runoff models WASIM and PROMET.
be noted that the depicted precipitation changes in Fig. 4 are

based on uncorrected monthly values. As the LOCI method 2. The computation of evapotranspiration (ET) ranges
from empirical estimates of the potential ET (that are
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Fig. 4. Climate change signal of air temperature (upper panels) and precipitation (lower panels) over the two main cattzum&mt-

Francois(left panels) andJpper Isar(right panels) between the reference (1971-2000) and the future (2041-2070) period. (Acronyms refer

to RCM-GCM combinations and runs in a GCM member ensemble.)

Table 2. Characteristics of the hydrological model ensemble.

HSAMI HYDROTEL WASIM-ETH PROMET
Model type Conceptual Mixed Mixed Process-based
Resolution (temporal, spatial) 24 h, lumped 24h, HRUs (hye4h, fully dis- 1h, fully dis-
drological response tributed (1x 1 km?)  tributed (1x 1 km?)

units)
Meteorological inputs

Evapotranspiration (ET)
pirical
2000)

(Fortin,

Soil water model

Voirs
Snow pack model Temperature-index Temperature-
approach index incl.
balance

Temperature, precipitation

Potential ET, em-Potential ET, Fortin
or Thornthwaite

Saturated & unsat-3 soil layers, infil-
urated zone reser- tration approach

Temperature, precipitation, humidity,
wind speed, radiation
Potential ET, Actual ET,
Penman—Monteith Penman—Monteith

Multiple  layers,
Richards’ equation

4 soil layers, Philip
equation

Temperature-index
approach

Snow pack energy

energy balance

reduced afterwards to fit runoff) to process-based al-
gorithms of the actual ET. (a) PROMET has the most
complex ET algorithm of this ensemble consisting of

a soil-vegetation—atmosphere transfer (SVAT) scheme
that describes the processes of and the resistances to
water, energy and radiation transfer with physical and
empirical parameters. These resistances are used in the
Penman—Monteith formula for the calculation of the ac-
tual ET. (b) In WASIM, merely the potential ET is sim-

Hydrol. Earth Syst. Sci., 17, 11894204 2013

ulated with the Penman—Monteith equation, which is,
in a second step, reduced to actual ET as a function of
the current soil matrix potential. (c) In HYDROTEL,
potential ET is computed by an empirical formulation
(Fortin, 2000) for Qébec or by the Thornthwaite ap-
proach for the Bavarian region. Potential ET is then re-
duced to an actual value based on soil water availability.
(d) HSAMI also estimates evapotranspiration with the
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M. J. Muerth et al.: Bias correction in regional climate scenarios

empirical formulation of Fortin (2000) using minimum
and maximum air temperature only.

1197

robustness of parametric information is required. Yet, since
physically based models are more demanding in computing

capacity and in input data requirements, climate change re-

3. The computation of the soil water balancediffers

search needs to optimize the tradeoff between complexity

strongly between models. Whereas in HYDROTEL a gng robustness. Within QBic3, \&@lquez et al. (2013) have

homogeneous distribution of properties over the soil gjready explored the added value of using complex models
column is assumed, the soil modules in WASIM and \yjthin the HyM ensemble used in this study.

PROMET describe the soil column by different ho-
mogenous layers, which reflect the natural layer struc-
ture of soil horizons. HSAMI plainly uses two cali-

unsaturated zones.

3 Results and discussion
brated linear reservoirs to represent the saturated and

To compare the effect of bias correction with the uncertainty

range introduced by climate and hydrological models and the

4. Thecomputation of snow melt Whereas HSAMI, HY-

natural variability of climate, two ensembles per catchment

DROTEL and WASIM use a simple temperature indeX gre constructed from the models presented before:

approach for snow melt, PROMET calculates the radi-

ation and temperature driven snow surface energy bal- 1. At Saumorfour HyMs are combined with either the di-

ance to compute the built-up and ablation of the snow
water storage.

5. Moreover, because different algorithms of surface pro-
cesses like snow melt and evapotranspiration are em-
ployed,the number of required meteorological input
variables varies between models. While the more sim-
ple models run with daily values of air temperature and
precipitation fields only, WASIM and PROMET addi-
tionally require wind speed, relative humidity and solar
radiation fields.

rect (BCO) or bias corrected (BC1) meteorological data
sets of five members of CRCM driven by CGCM for 20
members per ensemble. (This ensemble allows the esti-
mation of the natural variability of climate over southern
Québec.)

. At Schlehdorffour HyMs are combined with seven cli-

mate simulations (either BCO or BC1) produced with
five different combinations of regional and global cli-
mate models for 28 members per ensemble. (This en-
semble allows estimation of the climate model uncer-

. . tainty over southern Germany.
Yet, when interpreting the effects of model structure on y y)

runoff results, multiple model characteristics have to be takenn the following, the simulated runoff characteristics of these
into account. For example, although the ET algorithm is anensembles are investigated during the reference period 1971
important characteristic for the simulation of the catchmentiy 2000 as well as the change signal of the flow indicators
water balance, its effect can only be assessed in combinatiopetween the reference and the future (2041 to 2070) period.
with other model characteristics. Moreover, the actual simu-
lated ET also depends on the spatial resolution of land sur3.1 Does bias correction of atmospheric forcing provide
face properties and the available soil water content. Lumped a more consistent representation of river runoff?
models, which calculate the mean of the effect from all dif-
ferent land cover classes and soils within one subcatchmentf he performance of the hydro-climatic simulation ensembles
introduce catchment specific correction factors to adjust thas evaluated by their capacity to represent observed hydrol-
simulated runoff. In distributed models, parameters for landogy in a consistent way. This is done by comparing observed
cover and soils describe the spatially distributed propertiesand simulated hydrographs (Fig. 5) or by evaluating hydro-
of the land surface. Furthermore, in complex models sucHogical indicators (Fig. 6). This section assesses how biases
as PROMET, projected future changes in ET or snow coverin our RCM simulations (Fig. 3) affect runoff results and if
depend on multiple meteorological variables. For example bias correction is able to provide a better representation of
changes in relative humidity or solar radiation may counterthe observed hydrograph.
or enhance hydrological change caused by changes in tem- Figure 5 presents observed and simulated average monthly
perature or precipitation characteristics. discharge values over the reference period. Observed dis-
In climate change research, it is important to note that in-charges are represented by the red curve, while the simula-
creasing realism does not guarantee an increase in HyM petion results of the hydro-climatic model chain are represented
formance (the ability to reproduce hydrographs). Throughby the shaded envelope (minimum—maximum values). The
the reduced need for calibration, increasing model compleximpact of bias correction on simulated discharges can be seen
ity is expected to enhance the robustness of a model's rephy comparing Fig. 5a and b f&@aumorand Fig. 5d and e for
resentation of the runoff regime in a changed environmentSchlehdorfin both cases, the hydro-climatic ensemble pro-
Since climate change research assumes a significant drift afuced with BC1 RCM data is closer to observed discharge
the climatic regime from the reference period to the future,than the BCO ensemble. As presented in Fig. 5¢c and f, the
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£ x ] parently, the cold bias of CRCM results in too low winter
3 12 % - L runoff for all members of the BCO ensemble, while plausi-
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& %l ask  _J and spring (Fig. 3). Especially the strong positive precipita-
| I tion bias in May in most RCM simulations leads to a dis-
osf 1 11 tinct, plausible decrease of the peak flow through bias cor-
rection. Yet, unlike in theSaumorcase, the BCO peak time
o4rf] 11 is not shifted compared to BC1, because temperature biases
are generally small. Runoff in fall and winter is also over-
estimated by the BCO ensemble, especially at the end of the
year, which is again related to precipitation biases (Fig. 3).
Of course BCL1 does clearly improve the results $mhle-
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10 | 10~ 02t hdorf (Fig. 5), but a general overestimation of runoff re-
|- mains. Thus, bias correction improves the situation signifi-
G FMAMJJASOND S FMAMJJASOND 4 a&eer cantly, but some artifacts seem to resist.

Month Month As expected, the envelope of the BC1 ensembl&tde-

F|g 5. Mean month|y observed discharge (red |ine) and the enve_hdorf is d|St|nCt|y smaller than the BCO ensemble; hence it
lope of the ensemble simulations (1971-2000) wah BCO for seems to be a more consistent ensemble with regard to sim-
Saumon (b) BC1 for Saumon (d) BCO for Schlehdorf (e) BC1 ulated runoff. Especially the extremely large variability of
for Schlehdorf The box plots to the rightc(andf) present Nash—  BCO simulated runoff peaks in spring, which is caused by
Sutcliffe model efficiency based on daily runoff. some apparent outliers, is strongly reduced in the BC1 case.
But also in fall and winter, bias correction results in a much
smaller envelope and hence less variability between ensem-
evaluation of the Nash—Sutcliffe model efficiency confirms ble simulations, because both temperature and precipitation
the overall better performance of BC1 values. are corrected toward observed values. On average, fewer sim-
When looking at the details, one can observe that runoff aulations overestimate runoff f@chlehdorfbecause precipi-
gaugeSaumoris underestimated in winter if simulated with tation of the BC1 ensemble is 100 mm per year lower than in
BCO data. This could be related to the strong negative bias ithe BCO ensemble.
simulated precipitation for these months (Fig. 3). The BCO Figure 6 presents the relative error of simulated indicators
spring flood is shifted from April to May due to the cold bias compared to observed MF, HF2 and 7LF2. One can notice
in air temperature, which leads to a late melt of the snow-that BC1 error values are in general smaller than BCO errors.
pack. Moreover, the negative bias in precipitation leads toAt Saumonthe combined MF uncertainty, related to natural
less snow storage and therefore to smaller spring floods fovariability of climate and the HyM ensemble (expressed by
BCO than observed. Similarly, the missing flood peak dur-the width of a box, which indicates the quartiles of the en-
ing autumn is due to the underestimation of rainfall in BCO. semble), seems to be similar (around 10 %) for both cases.
Bias correction generally increases simulated runoff duringYet, observing Nash—Sutcliffe model efficiency (Fig. 5) and
summer and autumn. the median of the relative MF error, one can note a significant
The investigation of the envelope of simulated runoff restoration of simulation accuracy through bias correction.
regimes produced with our five members of CRCM—-CGCM For 7LF2, bias correction does enhance the ensemble perfor-
reveals an interesting effect of bias correction on the spreadnance by clearly reducing both the spread of results and the
of simulated mean monthly runoff values. As expected, theaverage error. Yet, the same conclusion cannot be transposed
envelope of the BC1 ensemble is shifted towards higher valto the relative HF2 error values. Although BC1 errors do not
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Fig. 6. Box plots of the relative errors of hydrological indicators simulated with either direct (BCO) or bias corrected (BC1) RCM drivers
compared to indicators calculated from observed runoff (1971-2000).

suffer from an underestimation of high flows, the median and Even if it ensures physical consistency between climate
the spread of errors do not significantly improve when tem-variables, the direct use of RCM output provides a disrupted
perature and precipitation are corrected. representation of the hydrological regime for bothéQec

At gaugeSchlehdorfboth the MF and 7LF2 indicators are and Bavaria. The use of bias correction provides a more con-
greatly improved by bias correction. For both, BC1 results insistent representation of the hydrological regime, yet the con-
a median closer to zero, less variability as expressed by thsistency between climate variables is disrupted.
box plot and significantly less outliers as depicted by single _ .
data points. Of course this improvement is also reflected by3.2 What are the expected impacts of climate change
the Nash—Sutcliffe model efficiency plots in Fig. 5f, although and does bias correction affect indicator changes?
two relatively low model efficiencies remain in the BC1 case. . S
Yet, regarding the relative deviation of simulated HF2 biasFigure 7 presents the change in selected hydrological indica-
correction again does not improve model performance thafors between reference and future period foraheSaumon
well. Both BCO and BC1 box plots are quite similar, which catchment, with a distinction based on whether bias correc-
implies that both HyM structure and the intensity of singular fion was used or not. Significant change signals can be seen
events in RCM precipitation time series are of greater impor-I" the date of spring flood (earlier) and low-flow indicators
tance than average precipitation frequency and intensity. ~ (More severe in summer, less in winter). Overall mean flow

In summary, bias correction improves the representatioﬁ-ends towards a slight increase while the high-flow indicators
of simulated hydrological regimes. It reduces both the aver-offer a low signal to noise ratio. o
age and the maximum error of the simulated mean monthly TNhe impact of bias correction appears to be minimal for
or daily discharge. Bias correction also has a positive ef-Most indicators. The most obvious difference occurs with
fect on the overall synchronism and seasonality of the hy_the date of spring flood for which the distribution of results
drograph. Yet, its effect on the uncertainties within an en-iS Shifted by 3 days. All hydrological simulations project
semble is not clear, as those effects seem to be season, mod¥] earlier spring flood, as shown in Fig. 7. The lags range
and site specific. Furthermore, bias correction may affect dif-P€tween 8 and 20 days. This could be the consequence of
ferent hydrological processes in different ways, and as thos@ increase in temperature and precipitation projected by
processes are intertwined in HyMs, runoff is sometimes af-the climate model simulations for wmter. (F_lg. 4), leading
fected in unpredictable ways. Our results also show that it had0 faster snow melt and hence to a shift in peak runoff.
little impact on high-flow indicators, while the simulation of However, the bias corrected simulations seem to project a

low flows seems to be especially sensitive to the use of biashorter lag compared to the BCO simulations. Figure 8 shows
correction. the results forSchlehdorf The ensemble tends towards a

small decrease in overall mean flow and an earlier date of
spring flood. The low-flow indicators present two interesting
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Fig. 7. Relative change of the investigated indicators between ref-Fig. 8. Relative change of the indicators between reference and fu-

erence and future period 8aumorbased on five members of the  ture period aSchlehdorfThe black dots indicate the RACMO sim-

CRCM-CGCM ensemble over @hec. ulations driven by ECHAM. Green dots specify RCA simulations

driven by different pilots (BCM, ECHAM and HadCM); pink dots
indicate the CRCM—-CGCM simulations.

cases highlighting different ways in which bias correction

can impact the results. First, in summer, simulations using

the CRCM project an increase in L7F2 ranging from 20 % to cantly, as is the case with winter high flows), suggesting that

90 %. Bias correction modifies those projections to a range obias correction has a damping effect on the climate change

—20% to 0. Since the CRCM simulation had the largest bi- uncertainty. Assuming that bias correction is valid, this is ob-

ases over this region, the role of bias correction on the ensemvious as it is designed to bring the biased simulations back to

ble appears to be one of outlier correction in this case. Sec“reality”.

ond, in winter, the simulations using the CRCM once again The rank-sum Wilcoxon test is used in order to compare

shift from a projected increase to a projected decrease othe samples of climate change signals. The null hypothesis

L7F2 with bias correction. However, this highlights the im- (HO) is that two investigated data samples (BCO and BC1)

portance of an ensemble projection, as the other two RCM#$iave been drawn from the same distribution. In this study,

show a wide range of positive and negative signals both withthe null hypothesis is tested at four significant levels, from

and without bias correction. At last, the large amount of un-5 % to 35 %.

certainty in the ensemble results demonstrates that it is hard Figure 9 shows the results of this statistical tes&aumon

to reach a conclusion for the high-flow indicator. and Schlehdorf In this figure, the blue square indicates
Another observation is that, in general, the range of theno rejection of the null hypothesis, while a number in the

ensemble is either maintained or reduced (sometimes signifisquare shows the threshold at which the null hypothesis was
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Au Saumon | CRCM-CGCM 1 | CRCM-CGCM 2 | CRCM-CGCM 3 | CRCM-CGCM 4 | CRCM-CGCM 5 | All RCM runs
MF 35%
IDSF 15% 35% 15% 15% 35% —
7LF2 summer
7LF2 winter 25% 25% 35%

HF2 summer 15% 15%

HF2 winter 25% 25%

Loisach :CA::”MO 1 :?ﬁ::fz :;;:;? 3 RCA-BCM RCA-ECHAM RCA-HadCM | CRCM-CGCM | All RCM runs

MF 25% 15% 25%
JDSF 15% 35% 25%
7LF2 summer 25% 25%
7LF2 winter 25% 35%
HF2 summer 35% 15% 15%
HF2 winter 35% 25%

Fig. 9. Results of the Wilcoxon tests comparing BCO with BC1 resultSfmimor{auSaumorRiver) andSchlehdorf(LoisachRiver). Boxes
show either the level of rejection (5 %, 15 %, 25 %, 35 %) or no value if HO was never rejected.

rejected. The lower the significance level at which the test4 Conclusion

is rejected, the stronger is the evidence that BCO and BC1

do not come from the same distribution. In other words, it A modeling chain has been constructed in order to simu-
means that the bias correction has a significant impact on thiate present-day and future runoff for the Saumorfgauge
climate change signal in hydrological indicators. Saumoi and Loisach (gaugeSchlehdorj catchments. Cli-

For Saumonrejection of the null hypothesis is generally mate simulations chosen for this purpose often have biases
weak. The JDSF is the only indicator that is affected by biasmaking it difficult to reproduce observed hydrological condi-
correction for all members. When looking at all members to-tions. For this reason, bias correction of climate model data is
gether, the rejection is even stronger (this is an indication thatsed in many projects, but this added procedure contributes
the impact of bias correction on the change in JDSF of eactio the overall uncertainty. In fact, each component of such a
member was in the same direction). Similar results are obhydro-climatic modeling chain contributes to the overall un-
served for MF and Summer HF2. The winter 7LF2 shows thecertainty. There are choices to be made about which general
opposite behavior, where some individual members reject the€irculation models, regional climate models and hydrologi-
null hypothesis more strongly than the ensemble (the impac€al models are used, and whether natural variability is con-
of bias correction on individual members is not consistent). sidered and/or bias correction is applied. Other sources of

For Schlehdorf the two most biased climate models uncertainty that were not explicitly considered in this study
(CRCM-CGCM and RCA-BCM) show the most rejection. include emission scenarios, statistical downscaling methods
The effect of using an ensemble of multiple climate modelsand variations in hydrological model calibration approaches.
is clearly shown by the few rejections of the null hypothe-  The focus of this work is on the impact of the bias correc-
sis when indicators are analyzed based on all available RCMion methods used in our study on simulated runoff charac-
runs. Actually, while the null hypothesis for JDSF is usually teristics and their climate change signals. At gaBgemon
rejected for individual models, there is no rejection at all for bias correction impacts are evaluated compared to the un-
the ensemble. certainties introduced by natural variability and hydrological

Hence, while the climate change signals of outliers can bemodels, while at gaug&chlehdorfthe evaluation is based
significantly modified by bias correction, it is recommended on an ensemble of both climate and hydrological models.
to present both results with and without bias correction in sit-Although the uncertainties in (regional) climate simulations
uations where only a few climate simulations are used. Wherare well known (Foley, 2010) and are considered in up-to-
multiple climate simulations are available, the described re-date investigations (Teutschbein et al., 2011), the uncertainty
sults suggest that the general climate change signal is ledsom hydrological models needs to be considered as well.
impacted and also supports the importance of ensemble pro¥et, it would be important to know which level of model
jections for robust change signal projections. complexity is necessary so that a given hydrological model

reacts plausibly to future changes in climate, both in a qual-
itative and quantitative analysis. As this question is difficult
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