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Abstract. Past studies on soil moisture spatial variability
have been mainly conducted at catchment scales where soil
moisture is often sampled over a short time period; as a re-
sult, the observed soil moisture often exhibited smaller dy-
namic ranges, which prevented the complete revelation of
soil moisture spatial variability as a function of mean soil
moisture. In this study, spatial statistics (mean, spatial vari-
ability and skewness) of in situ soil moisture, modeled and
satellite-retrieved soil moisture obtained in a warm season
(198 days) were examined over three large climate regions in
the US. The study found that spatial moments of in situ mea-
surements strongly depend on climates, with distinct mean,
spatial variability and skewness observed in each climate
zone. In addition, an upward convex shape, which was re-
vealed in several smaller scale studies, was observed for the
relationship between spatial variability of in situ soil mois-
ture and its spatial mean when statistics from dry, interme-
diate, and wet climates were combined. This upward convex
shape was vaguely or partially observable in modeled and
satellite-retrieved soil moisture estimates due to their smaller
dynamic ranges. Despite different environmental controls on
large-scale soil moisture spatial variability, the correlation
between spatial variability and mean soil moisture remained
similar to that observed at small scales, which is attributed
to the boundedness of soil moisture. From the smaller sup-
port (effective area or volume represented by a measurement
or estimate) to larger ones, soil moisture spatial variability
decreased in each climate region. The scale dependency of
spatial variability all followed the power law, but data with
large supports showed stronger scale dependency than those
with smaller supports. The scale dependency of soil moisture
variability also varied with climates, which may be linked to

the scale dependency of precipitation spatial variability. In-
fluences of environmental controls on soil moisture spatial
variability at large scales are discussed. The results of this
study should be useful for diagnosing large scale soil mois-
ture estimates and for improving the estimation of land sur-
face processes.

1 Introduction

Spatial variability of soil moisture plays an important role
in the estimation of land surface fluxes (evapo-transpiration
(ET) and runoff), due to the non-linear relationship between
soil moisture and the associated physical processes. Char-
acterizing soil moisture spatial variability is also important
for validating satellite-derived soil moisture, as the number
of soil samples needed to accurately represent the spatial
mean within the footprint of satellites depends on soil mois-
ture spatial variability (Brocca et al., 2012; Famiglietti et al.,
2008; Wang et al., 2008). In addition, since the footprint of
satellite-derived soil moisture is often larger than the res-
olution of many hydrological applications, downscaling re-
trieved soil moisture is often necessary, which can be helped
with knowledge of soil moisture spatial variability and its
scale dependency.

Many field experiments have been conducted at catchment
scales to measure soil moisture in high spatial density and to
examine the spatial variability of soil moisture. One impor-
tant aspect of soil moisture spatial variability that has been
repeatedly investigated is its dependency on spatial mean
soil moisture. Various conclusions have been reached about
this relationship (see reviews by Choi et al., 2007; Ryu and
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1178 B. Li and M. Rodell: Spatial variability and its scale dependency

Famiglietti, 2005; Famiglietti et al., 1999, 2008): some stud-
ies have indicated that spatial variability increased as mean
soil moisture became wetter while others have indicated just
the opposite. Several hypotheses have been explored as to
how the two opposite correlations could co-exist (Crow and
Wood, 1999; Rodriguez-Iturbe et al., 1995). Famiglietti et
al. (2008), Brocca et al. (2012) and Rosenbaum et al. (2012)
showed an upward convex (or concave) relationship that con-
sists of both negative and positive correlations. A noticeable
shortcoming of past studies is that they are based on data col-
lected in a short time period and/or in specific climate regions
(most with intermediate precipitation), which limited the dy-
namic range of soil moisture and prevented the full revelation
of this relationship.

The theoretical foundation for scaling spatial variability
is the power law, which states that the spatial variability at
one scale is related to that at another scale by the power of
a scaling factor (Crow and Wood, 2002; Hu et al., 1998).
Studies using spatial aggregations have shown that the rela-
tionship between soil moisture variability and its spatial res-
olution generally follows the power law (Crow and Wood,
2002; Hu et al., 1998; Parada and Liang, 2003). Famiglietti et
al. (2008) and Brocca et al. (2012) examined another aspect
of the power law using field measurements, that is, the rela-
tionship between spatial variability and the extent (the max-
imum spatial range of measurements) and showed that the
variability of soil moisture increased as the extent (< 50 km)
increased. There is no knowledge about the scale dependency
of spatial variability at even larger extents, which can be im-
portant for understanding the scale dependency of large-scale
land surface processes that interact with soil moisture.

In addition to in situ measurements, models provide spa-
tially and temporally continuous soil moisture estimates with
global coverage. Model estimates are derived based on large-
scale representations of static parameters and meteorological
forcing fields and inevitably impacted by imperfect model
physics and parameters. Satellite-derived soil moisture es-
timates also provide global coverage but are influenced by
errors in retrieval procedures and limitations of the sensor
(Jackson, 1993; Njoku et al., 2003), in addition to their larger
spatial representations. Studying the spatial variability of
these two data sources along with in situ data should pro-
vide additional insights into the nature of soil moisture spa-
tial variability and its scale dependency, as well as useful in-
formation for improving model estimated soil moisture.

The objective of this study is to examine the spatial vari-
ability of in situ, modeled and remotely sensed soil moisture
at large extents (> 100 km) over different climate regions and
their scale dependency. The three types of data are: in situ
soil moisture measurements from the Soil Climate Analy-
sis Network (SCAN, Schaefer et al., 2007), North Ameri-
can Land Data Assimilation System (NLDAS) Noah model
estimates, and Advanced Microwave Scanning Radiometer-
EOS (AMSR-E) soil moisture retrievals. The SCAN net-
work, which has stations across the US, provides diverse

climate conditions to study the impact of climate on the spa-
tial variability of soil moisture in a more complete soil mois-
ture range than examined in previous studies.

In the rest of the paper, the scale triplet, spacing (the dis-
tance between two sampling locations), support (the effec-
tive area or volume represented by each data type) and extent
(maximum spatial distance covering all sampling points), as
defined by Western and Blösch (1999), is used to discuss the
scale dependency of soil moisture spatial variability.

2 Data and study design

Figure 1 shows the location of the 109 SCAN sites used
for this study. To study the relationship between soil mois-
ture variability and climate, the continental US was split into
three regions along the−104◦ and −96◦ longitude lines:
West, Mid-continent (MidCon) and East, which roughly rep-
resent dry (noting that no SCAN sites exist on West Coast),
intermediate and wet conditions, respectively. In West and
East, two sub-regions were further chosen to create a smaller
extent for statistical analysis. The sub-region in West es-
sentially encompasses the state of Utah (thereafter referred
to as Utah) and the sub-region in East is located in the
Mississippi/Tennessee/Alabama area (referred to as Miss-
Tenn). No sub-region was selected for MidCon due to lack of
densely located SCAN stations in the region. The number of
SCAN locations in each region is given in Table 1. The extent
is about 500 to 700 km for the sub-regions and about 2000 to
3000 km for the three large climate regions. Figure 1 also
shows three series of concentric squares, with side lengths
ranging from 110 to 1500 km, which were used to study the
scale dependency of modeled and remotely sensed soil mois-
ture in Sect. 4.4.

Most SCAN stations began measuring soil moisture in
the early 1990s, while new stations such as those in Utah
were added in 2007. To include as many stations as possible,
2008 was chosen as the study year, which was further lim-
ited to 1 May–15 November (198 days) to eliminate the im-
pact of freezing/thawing conditions on the analysis. SCAN
soil moisture is recorded hourly at the 5, 10, 20, 50 and
100 cm depths using Hydro Probe, which converts soil di-
electric permittivity to water content through calibrated equa-
tions (Seyfried et al., 2005). As SCAN stations generally are
located in agricultural areas, typical soil types are silt loam
and fine sandy loam.

Modeled soil moisture fields were generated by the Noah
land surface model embedded in NLDAS (Mitchell et al.,
2004). Noah has been developed and maintained by NOAA’s
Environment Modeling Center for use in their coupled
weather forecasting system. The soil moisture simulation of
Noah is based on a vertical discretization of the Richards’
equation into four soil layers with thicknesses of 10, 30, 60,
and 100 cm. Noah was never calibrated against SCAN soil
moisture and thus its estimates are independent of the in
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Table 1. The number of SCAN stations, temporally averaged (over 198 days) spatial mean and spatial variability (StD) of soil moisture
(cm3 cm−3) in each region. Statistics were calculated using data values at SCAN sites, except the numbers in parentheses, which were
computed using all grid points in each region.

Number of
SCAN sites
(NLDAS SCAN NLDAS AMSR-E

Region grid points) mean StD mean StD mean StD

West 34 (25152) 0.11 0.082 0.17 (0.18) 0.051 (0.069) 0.06 0.024
Utah 16 (1681) 0.09 0.072 0.17 (0.17) 0.042 (0.045) 0.06 0.020
MidCon 19 (15168) 0.19 0.112 0.21 (0.22) 0.074 (0.060) 0.12 0.050
East 56 (35520) 0.23 0.109 0.25 (0.24) 0.046 (0.050) 0.19 0.045
Miss-Tenn 32 (3185) 0.25 0.106 0.26 (0.25) 0.038 (0.037) 0.19 0.039

Fig. 1. SCAN site locations (in brown circles), climate regions (di-
vided by red lines), sub-regions (in blue rectangles), and three series
of concentric squares (in dark and light green) used in the scale-
dependency study for Noah and AMSR-E soil moisture data.

situ measurements. NLDAS precipitation is based on daily
measurements from over 10 000 gauges located in the US,
which are then temporally disaggregated into hourly data us-
ing hourly Doppler radar images (Cosgrove et al., 2003). As
given in Table 2, NLDAS precipitation (for the study pe-
riod) generally agrees with gauged data recorded at SCAN
sites, especially in terms of capturing climate differences
in each region. For NLDAS, total precipitation averaged
over all grid points in each region is also provided in Ta-
ble 2, which shows some differences from those averaged
over SCAN locations only, due to the scattered nature of the
SCAN network. The 1-km STATSGO soil texture used by
NLDAS/Noah was also found (not shown) in good agree-
ment with field soil descriptions at SCAN sites. Hourly Noah
soil moisture estimates, which are integrated on a 0.125-
degree grid were extracted from archived NLDAS/Noah out-
puts (http://www.emc.ncep.noaa.gov/mmb/nldas/).

Advanced Microwave Scanning Radiometer for EOS
(AMSR-E) soil moisture retrievals produced by the NOAA’s
National Environmental Satellite, Data and Information Ser-
vice (Zhan et al., 2008) were used in this study. This AMSR-
E product, derived from the X-band frequency brightness
temperature using the Single Channel Retrieval algorithm
(Jackson, 1993), has larger dynamic ranges than the official

Table 2.Total SCAN and NLDAS precipitation (mm) for the study
period (1 May–15 November).

NLDAS NLDAS
Region SCAN (at SCAN sites) (at all grid points)

West 181 173 222
Utah 134 142 132
MidCon 486 554 483
East 580 702 670
Miss-Tenn 596 673 661

AMSR-E product (Njoku et al., 2003) with more realistic
mean values in wetter climates than the official product (not
shown). The sensing depth of the AMSR instrument is be-
lieved to be about 1–2 cm from the surface (Njoku et al.,
2003). AMSR-E retrievals, with a 25 by 25 km spatial reso-
lution and ca. 1–2 retrievals per day, have the largest support
among the three data types.

3 Statistical moments

To analyze the three data sets, the first three statistical mo-
ments were calculated for daily soil moisture values in each
climate region and sub-region. All statistics were calculated
using NCL (http://www.ncl.ucar.edu/overview.shtml) build-
in functions and their mathematical formulations are pro-
vided here. ForN soil moisture values on dayt in any given
region, their spatial mean,M, is given by

Mt =
1

N

N∑
i=1

θi,t , (1)

whereθi,t is the soil moisture at locationi on dayt .
Following the same notation, the spatial variability of soil

moisture is measured by the sample standard deviation,

σt =

(
1

N − 1

N∑
i=1

(
θi,t − Mt

)2)1/2

, (2)
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and the skewness, which measures the asymmetry of data
distribution, is defined as

St =

(
N∑

i=1

(
θi,t − Mt

)3)
/N([

N∑
i=1

(
θi,t − Mt

)2]
/N

)3/2
. (3)

For two soil moisture time series at any given location (i),
their temporal correlation is given by the Pearson correlation
coefficient:

r12
i =

1

Ntσ
1
i σ 2

i

Nt∑
t=1

(θ1
i,t − Y 1

i )(θ2
i,t − Y 2

i ), (4)

where superscripts 1 and 2 represent the two time series;Nt

is the number of data points in the time series, which is 198
days for this study;Yi andσi are the temporal mean and stan-
dard deviation at locationi, respectively.

4 Results

4.1 Mean, spatial variability and skewness

Daily soil moisture of SCAN, Noah and AMSR-E was first
calculated at each SCAN location and then used to compute
spatial statistics – mean, variability and skewness – in each
region (climate and sub-region) for each data set. Because
AMSR-E retrievals are surface observations only, the statisti-
cal analysis was limited to the SCAN measurements at the 5-
cm depth and the top layer of Noah estimates. All soil mois-
ture values used for statistical calculations and presented in
the graphs are in volumetric water content (cm3 cm−3).

Figure 2 is the box plot of the daily mean soil moisture for
the three data types in each region. The lower, center and up-
per limits of each box represent the 25th, 50th and 75th per-
centiles of spatial means while the two whiskers represent the
minimum and maximum value in each data set. All three data
types show sensitivity to climate conditions with median soil
moisture increasing from the West to the East. Observed soil
moisture (SCAN and AMSR-E) is more sensitive to changes
in climate conditions than Noah, whose median soil moisture
increases less than the others as the climate becomes wetter.

Noah and AMSR-E estimates have smaller dynamic
ranges in all regions, as the boxes are generally smaller than
those of SCAN. In West and Utah, Noah estimates show
positive bias relative to SCAN, with the median value near
0.2. AMSR-E retrievals, on the other hand, generally exhibit
a drier bias in each region. Temporally averaged (over the
198 days) daily mean values given in Table 1 further confirm
these biases. Many factors could contribute to these discrep-
ancies in spatial means. AMSR-E soil moisture data were
affected by the shallow sensing depth (1–2 cm) and lack of
retrievals during rainfall, which may have reduced their abil-
ity to capture the seasonal variability seen in the SCAN and

Fig. 2.Box plot of daily mean soil moisture (cm3 cm−3) in climate
regions and sub-regions for the three data types. Statistics of Noah
and AMSR-E were calculated using data at SCAN locations.

Noah soil moisture datasets. The reduced sensitivity of X-
band brightness temperature to soil moisture in the growing
season may also prevent accurate retrievals (Jackson, 1993).
Similarly, Noah soil moisture is affected by inaccurate model
parameters (including dynamic forcing fields) and deficien-
cies in model physics. Both Noah and AMSR-E soil moisture
are also averaged values over an area where the vegetation
cover, soil texture and the atmospheric forcing may differ
from those at the location of SCAN sites. Exploring the exact
cause for such deviations is beyond the scope of this study;
instead, the rest of this study focuses on how mean soil mois-
ture, in particular, its magnitude relative to the mid-range soil
moisture (defined as the arithmetic mean of the maximum
and minimum soil moisture), affects the higher moments of
soil moisture. The soil moisture range for AMSR-E is 0–0.5
and about 0–0.45 for SCAN data, based on the tested soil
types (Seyfried et al., 2005). Noah soil moisture is limited
by the wilting point and porosity, which are 0.07 and 0.44,
respectively, based on the averaged values of all soil types
appeared in the study area. Given the limited information on
SCAN soil properties, the mid-range soil moisture is approx-
imately at 0.2 for SCAN and 0.25 for Noah and AMSR-E.

Figure 3 shows the standard deviation of daily soil mois-
ture as a function of spatial means. For SCAN soil moisture,
statistics from all regions collectively suggested an upward
convex relationship. In West and Utah, soil moisture vari-
ability increases as soils become wetter, i.e., positive corre-
lation, while the opposite is observed in East and Miss-Tenn
(more noticeable in Miss-Tenn). The spatial variability peaks
in MidCon where no obvious trend is observed. This upward
convexity was observed in some previous studies in smaller
scales (e.g., Famiglietti et al., 2008; Brocca et al., 2007,
2012; Rosenbaum et al., 2012) but has not been observed at
the continental scale. Comparing SCAN statistics in Figs. 2
and 3 reveals that the upward convexity is directly linked to
the overall soil wetness: when mean soil moisture is below its
mid-range (as in West and Utah), soil moisture variability in-
creases with soil wetness; when mean soil moisture is above
0.2 (in East and Miss-Tenn), the variability decreases with
increased wetness. In MidCon where mean soil moisture val-
ues are centered at 0.2, no trend is observed, and overall
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B. Li and M. Rodell: Spatial variability and its scale dependency 1181

Fig. 3. Spatial variability (standard deviation) of soil moisture as a function of mean soil moisture (cm3 cm−3) for the three data types.
Statistics of Noah and AMSR-E were calculated using data at SCAN locations.

variability is the highest. This transitioning of correlation
from the positive to negative around the mid-range soil mois-
ture was also noted by Penn et al. (2009) and Rosenbaum et
al. (2012). Rosenbaum et al. (2012) also showed a more sub-
stantial decreasing trend in the wetter range of soil moisture,
which is missing in East because mean soil moisture in the
region did not reach the wetter end.

Spatial variability of Noah soil moisture shows positive
correlation with mean soil moisture in West and Utah and
no correlation in other regions. The lack of negative corre-
lation in East/Miss-Tenn is associated with the fact that the
spatial means of these two regions are very close to the mid-
range soil moisture. As SCAN, Noah soil moisture exhibits
the largest spatial variability in MidCon. The spatial vari-
ability of AMSR-E soil moisture, on the other hand, shows
positive correlation with mean soil moisture in all regions.
This behavior is also linked to the fact that the median mean
of AMSR-E retrievals is always near or below its mid-range
soil moisture (0.25) in each region (Fig. 2). More discussions
on the contributing factors to this upward convexity will be
given in Sect. 4.3.

To illustrate the temporal variation of spatial variability,
Fig. 4 shows the time series of spatial mean soil moisture, soil
moisture spatial variability (StD) and mean precipitation in
the three climate regions. SCAN soil moisture shows strong
seasonality with larger dynamic ranges. Noah soil moisture
exhibits similar seasonality but with smaller dynamic ranges
and noticeable wetter conditions in the summer. Both of them
also show strong correlation with daily precipitation. No sim-
ilar seasonality is observed in AMSR-E soil moisture, which
may be attributed to its shallow sensing depth and reduced
sensitivity of brightness temperatures to moisture content in
the growing season when vegetation water content is high
(Jackson, 1993).

Temporal correlations and root mean square errors
(RMSE) of the Noah and AMSR-E estimates with respect to
SCAN soil moisture at each SCAN site were also calculated
and their region-averaged values are given in Table 3. Noah
shows better correlation and lower RMSE than AMSR-E in
all regions, except in West where AMSR-E has lower RMSE.
As can be seen from Fig. 4, the low correlation of AMSR-E

Fig. 4. Time series of daily (averaged over values at SCAN loca-
tions) precipitation (mm), spatial mean soil moisture (cm3 cm−3)

and soil moisture standard deviation (StD) in climate regions. Statis-
tics of Noah and AMSR-E were calculated using data at SCAN lo-
cations.

with SCAN measurements mainly stems from its lack of sea-
sonality and no correlation with daily precipitation. As dis-
cussed earlier, many factors contributed to the difference be-
tween AMSR-E/Noah and SCAN soil moisture including the
scattered nature of SCAN sites in each region. Thus, these
statistics are provided for quantifying the difference between
the two data sets and for the purpose of discussing their im-
pacts on spatial variability and are not presented as evalua-
tions of Noah and AMSR-E soil moisture.

The temporal variation of spatial variability in Fig. 4 fol-
lows the correlation between spatial variability and mean
soil moisture as observed in Fig. 3. For instance, spatial
variability increases/decreases as mean soil moisture in-
creases/decreases in West for all three data sets. The spatial
variability of Noah and AMSR-E generally varies less than
that of SCAN, resulting from their smaller dynamic ranges.
While the dynamic range of mean soil moisture for SCAN
data remains more or less the same across all regions, the
dynamic range of its spatial variability decreases from West

www.hydrol-earth-syst-sci.net/17/1177/2013/ Hydrol. Earth Syst. Sci., 17, 1177–1188, 2013



1182 B. Li and M. Rodell: Spatial variability and its scale dependency

Fig. 5. Soil moisture skewness as a function of spatial mean soil moisture (cm3 cm−3) for the three data types. Statistics of Noah and
AMSR-E were calculated using data at SCAN locations.

Table 3. Temporal correlations (r) and root mean square errors
(RMSE) of Noah/AMSR-E soil moisture with respect to SCAN
measurements. Statistics were first calculated at each SCAN site
and then averaged over all SCAN locations in each region.

Noah AMSR-E

Region r RMSE r RMSE

West 0.61 0.104 0.31 0.08
MidCon 0.66 0.087 0.42 0.11
East 0.64 0.090 0.19 0.11

to East. This is due to the fact that soil moisture in MidCon
and East fluctuates around its mid-range soil moisture and
therefore any increasing or decreasing trend of spatial vari-
ability is frequently reversed. Similar behaviors are seen with
Noah estimates, but not with AMSR-E retrievals. These re-
sults demonstrate that soil moisture spatial variability is sen-
sitive to mean soil moisture, especially its relative magnitude
with respect to the mid-range soil moisture, and its temporal
variability.

Skewness measures the asymmetry of a probability dis-
tribution and is important for ensemble-related data assim-
ilation techniques, which often assume normality. Figure 5
shows the skewness of daily soil moisture for the three
data types. SCAN exhibits climate dependent skewness:
soil moisture is positively skewed in West and Utah, nega-
tively skewed in East and Miss-Tenn, and centered at zero-
skewness in MidCon. These behaviors can be explained us-
ing the boundedness of soil moisture. For example, in the dry
climate where median soil moisture value is smaller than the
mid-range soil moisture, the left tail (representing values be-
low the median) of soil moisture distributions is suppressed
by the zero bound, which leads to positive skewness.

Noah estimates exhibit a somewhat similar behavior in
skewness across different climate zones. Because their mean
values do not reach very dry and wet ends of the full soil
moisture range, soil moisture in West and East is only slightly
skewed. There are some strayed data points in Utah that have
negative skewness, even though the means are less than its

mid-range soil moisture. This is associated with the relative
uniform soil moisture conditions in June that made the statis-
tics less representative. AMSR-E soil moisture, on the other
hand, shows all positive skewness in each region, which is
caused by its drier than its mid-range spatial means in all re-
gions.

4.2 Impact of sampling density on spatial mean and
spatial variability

Due to the limitation of the SCAN network, the above statis-
tical analyses were based on scattered data points that may
not represent the true averaged behavior of soil moisture in
each region. To evaluate the impact of sampling sizes (num-
ber of sampling points within each region), daily mean and
spatial variability of Noah soil moisture were calculated us-
ing all grid points (between 25◦ N and 49◦ N for all three re-
gions and the east of 121◦ W for West to exclude the coastal
area) and compared with those using data at SCAN locations
only. The scatter plot of Fig. 6 (left panel) shows that daily
means calculated using the two sampling schemes are nearly
unbiased in each region. This is further confirmed by their
temporally averaged mean values in Table 1. This result sug-
gests that the true spatial mean of Noah soil moisture in each
region is sufficiently sampled by data (i.e., Noah soil mois-
ture) at SCAN locations alone.

Similarly, the standard deviation (right panel) calculated
from SCAN locations is in generally good agreement with
that based on all grid points, except in West and MidCon
where larger deviations are observed. Figure 7 shows that
spatial variability of Noah soil moisture calculated from all
grid points exhibits similar climate dependency as that in
Fig. 3. With increased sample sizes, the impact of extents
is more evident as the variability in West and East is no-
ticeably larger than those in Utah and Miss-Tenn. The un-
even spatial distribution of SCAN sites may be responsi-
ble for the lack of impact of scales on spatial variability as
shown in Fig. 3. Table 1 shows that, on average, the spatial
variability of soil moisture did not change significantly with
increased sampling density in most regions, except in Mid-
Con and West, suggesting that the spatial variability of Noah

Hydrol. Earth Syst. Sci., 17, 1177–1188, 2013 www.hydrol-earth-syst-sci.net/17/1177/2013/
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Fig. 6. Scatter plot of Noah daily mean soil moisture (cm3 cm−3,
left panel) and standard deviation (right panel) calculated at SCAN
locations versus those over all grid points in each region.

estimates as sampled at SCAN locations is representative of
Noah’s true soil moisture spatial variability. The significant
increase of spatial variability in West is likely associated with
the increase in total precipitation (see Table 2) when all grid
points were sampled. Increasing precipitation increased the
wetness of soil moisture, which led to increased spatial vari-
ability because of the positive correlation between spatial
variability and mean soil moisture in West. In MidCon, mean
soil moisture slightly increased even though precipitation de-
creased with increased sampling, indicating that SCAN lo-
cations missed some low precipitation spots. This preferen-
tial sampling of the SCAN network may be the reason why
spatial variability decreased with increased sampling in Mid-
Con.

Because the support of SCAN soil moisture is smaller than
that of Noah estimates, this test does not necessarily imply
that the mean and spatial variability at the point scale are
accurately captured by SCAN soil moisture. However, given
the good correlations between SCAN and Noah soil moisture
(Table 3) and the agreement between NLDAS and SCAN
precipitation (Table 2), this test provides some confidence
that statistics based on SCAN data are representative of the
climate condition in each region.

4.3 Factors contributing to soil moisture spatial
variability

Previous studies have linked factors such as atmospheric
forcing, ET, soil texture, topographical features and vege-
tation types (see review by Rosenbaum et al., 2012) to soil
moisture spatial variability and its relationship with mean
soil moisture. For the scale of this study, physical processes
such as precipitation and ET (which includes the effect of
vegetation and radiation) are the major contributors to soil
moisture spatial variability. Topography, which mainly af-
fects soil moisture distribution at hillslope scales, does not
play a significant role because SCAN sites are separated
by much longer distances. Soil texture, which affects soil
moisture through root zone uptake and drainage, also plays
a lesser role than atmospheric forcing at large scales. For

Fig. 7. Standard deviation of Noah soil moisture as a function of
daily mean soil moisture (cm3 cm−3). Statistics were calculated us-
ing all gridded data in each region.

instance, drainage occurring at a northwestern US location
may differ from that at a southwestern US location due to
soil texture, but the spatial variability of precipitation and ET
at these two locations plays an even stronger role in their dif-
ferences. Note that even though soil types observed at SCAN
sites are limited (mainly silt loam and fine sandy loam), it
does not mean that the spatial variability of soil moisture is
significantly under-represented by SCAN data because their
spatial distribution can capture a significant degree of vari-
ability in precipitation.

Figure 8 shows that precipitation spatial variability always
positively correlates with mean precipitation, regardless of
climate conditions. But the effect of precipitation on soil
moisture spatial variability depends on soil water capacity
in each climate. In dry climates where soils have large water
capacity, soil moisture is responsive to changes in precipita-
tion (see Fig. 4), i.e., a larger increase in precipitation leads
to a larger increase in soil moisture. This strong correlation
means that increased precipitation results in increased soil
wetness which then leads to increased soil moisture spatial
variability due to the positive correlation between precipita-
tion variability and mean precipitation. Thus, precipitation
alone can be responsible for the positive correlation between
soil moisture spatial variability and mean soil moisture in the
West and Utah. In addition, ET is constrained by moisture
availability in a dry climate and is positively correlated with
precipitation (Xia et al., 2012), meaning it also contributes to
the positive correlation in the same way as precipitation.

The relationship between precipitation and soil moisture
becomes more complex in wet climates due to reduced
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Fig. 8.Spatial variability (standard deviation) of daily precipitation (mm) as a function of mean precipitation. Daily precipitation of NLDAS
and SCAN were first calculated at each SCAN location and then used to calculate spatial mean and standard deviation in each region.

available soil water capacity. With increased precipitation,
more runoff is generated and so not all precipitation spatial
variability is transferred to soil moisture. Impacts of ET on
soil moisture also decrease because ET is now limited by en-
ergy availability. Rosenbaum et al. (2012) used the reduced
impact from ET to explain the negative correlation between
spatial variability and mean soil moisture. As soil becomes
even wetter, soil moisture approaches its upper limit, satura-
tion, where a minimum spatial variability should be reached
because a bounded distribution normally exhibits minimum
variances at the boundaries (Western et al., 2003). In the case
of soil moisture, spatial variability at its two bounds should
equal the spatial variability of wilting point and porosity
(Western et al., 2003; Famiglietti et al., 2008). Indeed, spa-
tial variability of Noah soil moisture is larger than the spatial
variability of wilting points (not shown) used in the model
in the drier range of soil moisture and larger than the spatial
variability of porosity in the wetter range.

From a physical point of view, boundedness causes related
physical processes to lose their interactions with soil mois-
ture at the wilting point and saturation; as a result, the maxi-
mum spatial variability should occur around the mid-range
soil moisture where boundedness has the weakest impact.
Consequently, the positive and negative correlation should
co-exist if spatial means extend to both the drier and wetter
side of the soil moisture range as seen in SCAN soil mois-
ture. However, the degree of correlation and the peak value in
the upward convexity, which reflect the strength of the inter-
action between physical processes and soil moisture, should
depend on the processes involved and their relative strength.

4.4 Scale dependency of spatial variability

To explore the scale dependency of soil moisture spatial vari-
ability and its relationship with climate, a range of extents
shown in Fig. 1 (dark and light green concentric squares)
were used to calculate the spatial variability of Noah and
AMSR-E soil moisture. Since SCAN soil moisture only
has one extent in MidCon, spatial variability of soil mois-
ture by Famiglietti et al. (2008) at the 2.5 m, 16 m, 100 m,
800 m, 1600 m and 50 000 m extents (values taken from their

Fig. 11) were combined with SCAN spatial variability in
MidCon. Most their measurements were obtained from the
Great Plains, which has the similar climate condition as Mid-
Con. To obtain a unique spatial variability value for each ex-
tent, the daily spatial variability of SCAN, Noah and AMSR-
E were averaged over the 198 days and plotted against ex-
tents in Fig. 9.

Log-transformation was used in Fig. 9 because, based on
the self-similarity theory, the spatial variability is related to
scales in an exponential function (the so-called power law),
which can be linearized through log-transformation (Hu et
al., 1998) as

log(σλ) = H log(λ) + C, (5)

whereλ represents the scale (in this case the extent);σλ is
the spatial variability (standard deviation) at scaleλ; C is a
constant;H is a scaling factor indicating the degree of de-
pendency of spatial variability on scales. Following this rela-
tionship, linear relations were fitted for each data type (black
lines in Fig. 9) and the slopes (H ) are given in Table 4.

The spatial variability of soil moisture increases as extents
increase, with the increasing rate depending on data types
and climate regions as shown in Table 4. From the small-
est support (SCAN) to the largest (AMSR-E), the slope in-
creases, meaning spatial variability increases faster as extents
increase. This phenomenon can be explained by the dimin-
ished influence of supports on spatial variability with increas-
ing extent. Specifically, the difference in supports will be-
come negligible at large extents where spatial variability has
reached such a high level that finer scale spatial variability
becomes negligible. Because data sets with larger supports
begin with lower spatial variability at smaller extents, their
spatial variability has to increase at a faster rate to reach the
same level of large scale spatial variability.

From the smallest (SCAN) to the largest support (AMSR-
E), soil moisture spatial variability decreases in each re-
gion. Note that the spatial variability of SCAN soil mois-
ture in Fig. 9 was derived from climate regions and sub-
regions, while the spatial variability of Noah and AMSR-E
were obtained from the concentric squares (shown in Fig. 1).
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Fig. 9. Log-(standard deviation of soil moisture) as a function of log-(extent) in climate regions. Standard deviations of SCAN, Noah and
AMSR-E soil moisture were obtained by temporally averaging daily values in each region over the 198 days.

Table 4.Slopes of linear relationship between log-(spatial variabil-
ity of soil moisture and precipitation) and log-(extent) in each cli-
mate region. NLDAS precipitation (mm) was calculated using val-
ues at SCAN locations only.

West MidCon East

In situ soil moisture 0.15 0.085 0.02
Noah soil moisture 0.28 0.16 0.52
AMSR-E soil moisture 0.38 0.35 0.60
NLDAS precipitation 0.55 0.29 0.63

However, the increased spatial variability with decreasing
supports is true even when all statistics were calculated in the
same region as shown in Table 1. In either case, the reduced
spatial variability in AMSR-E and Noah (compared to that in
SCAN) is mainly caused by reduced occurrences of extreme
soil moisture values due to the use of spatially and tempo-
rally averaged forcing and parameter fields for Noah, and the
large footprint of the sensor and maximum of two retrievals
per day for AMSR-E. The spatial variability of AMSR-E be-
comes closer to that of Noah as the climate condition changes
from dry to wet. This may indicate increased spatial correla-
tion in wetter soil conditions which smoothes out the differ-
ence in spatial variability at the support of Noah and AMSR-
E. In theory, a linear relationship could also be fit for the
log-(spatial variability) versus log-support which was not at-
tempted due to an insufficient number of SCAN sites within
each concentric square.

From the dry to wet climate, AMSR-E retrievals and Noah
estimates exhibit the weakest scale dependency in MidCon
and the strongest scale dependency in the East. To identify
the source of such climate dependency for Noah soil mois-
ture, the slope of NLDAS precipitation scale dependency is
also provided in Table 4. The spatial variability of NLDAS
precipitation exhibits climate dependency that is similar to
that of Noah soil moisture, confirming the strong influence of
precipitation on soil moisture and its spatial variability as dis-
cussed in Sect. 4.3. One explanation for the weaker scale de-
pendency of precipitation in MidCon is that the climate does
not change as much as in West and East when the extent scale

increases. For instance, with increasing extents in the West,
precipitation differences between the wetter North and drier
South become even larger, which leads to a larger (compared
to that in MidCon) increase in precipitation spatial variabil-
ity.

Figure 9 shows that data obtained from Famiglietti et
al. (2008) and the SCAN data in MidCon can be fit by a
linear function, suggesting that a single scaling relationship
can potentially be used to scale spatial variability from very
small scales to much larger scales. Brocca et al. (2012) re-
ported a slope of 0.16, using data collected in a similar cli-
mate condition as MidCon. Note that soil moisture data from
Famiglietti et al. (2008) represent the top 6 cm of soil and
were gathered from field campaigns conducted in different
years (1997, 1999, 2002 and 2003), while SCAN soil mois-
ture was measured hourly at 5 cm in 2008. Using temporally
averaged spatial variability values mitigated some of the im-
pacts associated with sampling frequency and sampling pe-
riods since the dynamic range of spatial variability in June
and July (sampling periods of Famiglietti et al., 2008) is very
close to that of the entire period (Fig. 4). There was also no
report of shallow groundwater, which can impact the vertical
distribution of soil moisture (Rosenbaum et al., 2012), at the
Famiglietti et al. (2008) and SCAN sites and so the behavior
of soil moisture spatial variability at 5 cm is expected to be
similar to that of the top 6 cm of soil. This apparent linear
relationship should be further tested when more in situ soil
moisture data become available.

5 Summary and discussions

We showed that in situ soil moisture exhibited distinct mean,
spatial variability and skewness in each climate region. Fur-
ther, the upward convex shape was observed for the relation-
ship between spatial variability and mean soil moisture with
positive and negative correlation for dry and wet climates, re-
spectively, and no apparent correlation in the transition zone.
Although this upward convex shape has been observed in
much smaller scales, it has never been shown at continental
scales and was achieved by merging statistics derived from
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contrasting climate zones where both the drier and wetter
(compared to the mid-range soil moisture) ranges of mean
soil moisture were reached. When mean soil moisture ex-
tends to both the drier and wetter ends of soil moisture, the
upward convex shape results because minimum variability
always occurs at the bounds for a bounded variable like soil
moisture. Physical processes also influence soil moisture spa-
tial variability and its relationship with mean soil moisture,
with the maximum impacts occurring around the mid-range
soil moisture where the effect of boundedness is the weakest.

Due to the limited number of SCAN sites in each region,
the true mean and spatial variability may differ from that ob-
tained from SCAN data. However, spatial means of SCAN
soil moisture are consistent with the climate condition for
each region, i.e., driest in West and wettest in East. In con-
junction with the effect of boundedness, the upward convex-
ity can still be expected when high spatial density data sets
become available; but the degree of correlation in West/East
and the maximum correlation in MidCon may change. Note
that the correlation between spatial variability and mean soil
moisture needs to be discussed with respect to the extent of
measurements because the dynamic range of mean soil mois-
ture may change with extents. For instance, the upward con-
vexity can be observed from data collected in a sub-humid or
humid region alone (e.g., Famiglietti et al., 2008; Rosenbaum
et al., 2012) if spatial means reach to both the drier and wetter
range of soil moisture.

Noah modeled soil moisture exhibited much smaller spa-
tial variability than in situ soil moisture due to its larger sup-
port where temporally and spatially averaged forcing and
parameter fields were used to derive the estimates. In ad-
dition, the upward convex relationship is barely discernible
and skewness is nearly non-existent because their spatial
means are close to the mid-range soil moisture in all re-
gions. AMSR-E soil moisture retrievals, having the largest
support, exhibited the smallest spatial variability among all
three data types. The spatial variability of the retrievals
showed only positive correlation with mean soil moisture,
and skewness was also only positive. Despite differences in
spatial means due to various reasons, the higher moments
of AMSR-E and Noah showed dependencies on mean soil
moisture that were similar to those of SCAN: positive corre-
lation/skewness when most of their mean values (represented
by the 25–75 percentiles in Fig. 2) were less than the mid-
range soil moisture of each data set, negative when most spa-
tial means were greater than the mid-range soil moisture and
no correlation when means are around or near the mid-range
soil moisture. This dependency on mean soil moisture sug-
gests that obtaining appropriate mean soil moisture at any
given time (the box plot in Fig. 2 is a collection of all spatial
means in 198 days) is critical for accurately modeling soil
moisture spatial variability. Penn et al. (2009) showed that
soil moisture spatial variability could be modeled correctly
even without explicitly representing the topography, a ma-
jor contributor to the spatial variability in their study site,

if spatial mean soil moisture was appropriately simulated.
One explanation for that result is that the boundedness of soil
moisture largely dictates the dependency of spatial variabil-
ity on mean soil moisture. Even though AMSR-E retrievals
are generally less well validated by SCAN data, they exhib-
ited smaller RMSE (assuming SCAN statistics are represen-
tative) than Noah soil moisture in West (Table 3) and may be
used to improve the spatial mean of model estimates through
data assimilation (Li et al., 2012). Data assimilation also pro-
vides a way to downscale retrievals in which high spatial and
temporal resolution model estimates are dynamically merged
with the retrievals.

Although observed and simulated soil moisture exhibited
scalability as governed by the power law, their scale depen-
dency differs: data with large supports showed stronger scale
dependency than those with finer supports. The scale depen-
dency also varies by climate regions: scale dependency of
Noah and AMSR-E soil moisture was strongest in a wet cli-
mate and weakest in the transitional zone, which may be
a consequence of the scale dependency of precipitation for
Noah soil moisture. This relationship between the scale de-
pendency of soil moisture and that of other physical pro-
cesses has been suggested by Western et al. (2003) but has
not been demonstrated in previous studies. One of the major
differences of this study is that soil moisture spatial variabil-
ity was dominated by precipitation variability, which is dif-
ficult to examine in small catchments where precipitation is
relatively uniform and other controls (e.g., topography and
soil texture) may have a stronger influence on soil mois-
ture spatial variability. Future studies should be conducted
on how the dependency of soil moisture spatial variability
influences that of other processes such as ET and precipita-
tion which would be useful for better understanding the in-
teraction between the land and atmosphere and for improving
the prediction of land surface processes. Based on the results
presented here, such studies should be conducted in regions
with intermediate precipitation such as MidCon where mean
soil moisture is around the mid-range and processes can have
the largest impact on soil moisture. This region of strong
connections was also noted by Dirmeyer et al. (2009), who
showed sustained interactions between soil moisture and pre-
cipitation in the Great Plains of the US through coupled land-
atmosphere modeling. Scalability of spatial variability from
continental to catchment scales can be useful for obtaining
spatial variability at intermediate scales for which appropri-
ate measurement networks do not exist. Due to the limita-
tions of Famiglietti et al. (2008) and SCAN data such as their
differences in sampling depth and sampling period, further
studies are needed to examine the scalability of soil mois-
ture spatial variability across a wide range of extents; in par-
ticular, the impact of interannual variability of precipitation
which is significant in MidCon on soil moisture spatial vari-
ability should be investigated.

The analyses described here were based on the full mag-
nitude of soil moisture which contains the time-variant
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(anomalies) and time-invariant (mean) components. It is un-
known if the spatial variability of soil moisture anomalies,
which is a greater concern in some applications, exhibits sim-
ilar climate dependency. Although Mittelbach and Senevi-
ratne (2012) found that soil moisture anomalies only con-
stituted a small percentage of soil moisture spatial variabil-
ity, they also showed that the spatial variability in anomalies
could differ from that in the full magnitude of soil moisture
when precipitation changed. Information on the spatial vari-
ability of soil moisture anomalies is also critical for validat-
ing terrestrial water storage (TWS) products as provided by
Gravity Recovery and Climate Experiment (GRACE, Tapley
et al., 2004) satellites. GRACE TWS anomalies (deviations
from the temporal mean) integrate anomalies in soil mois-
ture, groundwater, snow and surface water, with soil mois-
ture as one of the major components (e.g., Rodell et al.,
2007). Thus, a similar study on the spatial variability of soil
moisture anomalies and its scale dependency is also needed
and will be conducted in the future when longer in situ data
records become available to obtain more reliable mean soil
moisture states in each region.
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