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Abstract. Anticipation and preparedness for large-scale
flood events have a key role in mitigating their impact and op-
timizing the strategic planning of water resources. Although
several developed countries have well-established systems
for river monitoring and flood early warning, figures of pop-
ulations affected every year by floods in developing coun-
tries are unsettling. This paper presents the Global Flood
Awareness System (GloFAS), which has been set up to pro-
vide an overview on upcoming floods in large world river
basins. GloFAS is based on distributed hydrological simula-
tion of numerical ensemble weather predictions with global
coverage. Streamflow forecasts are compared statistically to
climatological simulations to detect probabilistic exceedance
of warning thresholds. In this article, the system setup is de-
scribed, together with an evaluation of its performance over
a two-year test period and a qualitative analysis of a case
study for the Pakistan flood, in summer 2010. It is shown
that hazardous events in large river basins can be skilfully
detected with a forecast horizon of up to 1 month. In ad-
dition, results suggest that an accurate simulation of initial
model conditions and an improved parameterization of the
hydrological model are key components to reproduce accu-
rately the streamflow variability in the many different runoff
regimes of the earth.

1 Introduction

Weather-driven natural hazards, including storm surges,
floods, flash floods, and subsequent mass movements, are
the most prominent natural disasters in worldwide statistics

(CRED, 2011). A total of 57 % of the reported number of vic-
tims in 2011 are associated with so-called “hydrological dis-
asters”. These have caused a total economic damage of more
than 70 billion US dollars, meaning a 230 % average increase
compared to the previous decade (Guha-Sapir et al., 2012).
According to the United Nations International Strategy for
Disaster Reduction (UN/ISDR, 2002) and statistics from in-
surance companies, the socioeconomic impact of floods is in-
creasing. With steadily rising world population, the need for
optimizing the use of water resources for drinking water as
well as energy production demands more and more techno-
logically driven solutions for controlling water quantity and
quality in river systems. In addition, floods can no longer be
treated as isolated events, as they are heavily linked with is-
sues such as food insecurity, disease outbreaks and environ-
mental degradation (IFRC, 2011).

With increasing vulnerability and the likelihood of
changes in frequency and intensity of future weather ex-
tremes (Trenberth et al., 2003), anticipation of severe events
is becoming a key element to protect the society and fa-
vor timely reaction, thus effectively reducing socioeconomic
damage (Carsell et al., 2004). While anticipation is essential
at local level, it is equally important on national or trans-
national level. The management of the response and aid for
major upcoming disasters (e.g., through international orga-
nizations) requires substantial planning and information at
different levels. The earlier the planning phase starts, the
better preparatory actions, coordination and gathering of in-
formation are achieved, thus limiting the consequences of
potential humanitarian and economic disasters. While some
countries have mechanisms in place to mitigate the effects of
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natural disasters, the European Union Solidarity Fund (Euro-
pean Commission, 2002) being the main example for Europe,
developing countries often struggle through a much longer
recovery process. Increasing preparedness can be achieved
by flood hazard maps, which are available on national or re-
gional level (e.g., Hagen and Lu, 2011; Prinos et al., 2008) as
well as on global level (Pappenberger et al., 2012; Winsemius
et al., 2012). These static maps can be used to define flood
hazard zones, but they do not incorporate changes in daily
conditions, which require a real-time observing system.

The availability of remote sensing data, such as satellite
imagery, has fostered the development of flood detection
techniques at global scale (e.g., de Groeve, 2010; Proud et
al., 2011; Westerhoff et al., 2013; Wu et al., 2012a), which
promptly produce overviews of affected areas and improve
the management of rescue actions. To increase the prepared-
ness towards floods and in general to water-related haz-
ards, a number of research institutes and national hydro-
meteorological services run operational flood forecasting
systems, often focused on specific river basins or, most com-
monly, limited to national boundaries (Alfieri et al., 2012a).
Several flood forecasting systems are based on observed river
level, while future values are extrapolated through river rout-
ing models or by coupling observed rainfall fields into hy-
drological models. The extension of the forecast horizon be-
yond the response time of a river basin is enabled by the
use of numerical weather predictions (NWPs) as input to
hydrological–hydraulic models (e.g., He et al., 2010; Hopson
and Webster, 2010; Paiva et al., 2012; Thiemig et al., 2010).
Recent review articles by Cloke and Pappenberger (2009)
and by Alfieri et al. (2012a) showed the strong potential of
using ensemble NWPs to further extend the forecasting hori-
zon in early warning systems.

Weather forecasting models are set up at global scale in
different meteorological centers, producing deterministic and
ensemble products. Nevertheless, only few attempts have
been made so far to move towards operational systems with
coupled hydro-meteorological models producing streamflow
predictions at the global scale (see Sperna Weiland et al.,
2010; Voisin et al., 2011; Wang et al., 2011; Candogan
Yossef et al., 2012) and, to the authors’ knowledge, none of
these runs operationally with ensemble predictions. Indeed
real-time hydrological modeling requires a large amount of
information, including not only static maps describing the
surface and sub-surface basin features, but also data assimila-
tion techniques or a long-term balance of water fluxes to give
an estimate of the initial conditions, from which the forecast
is run. At the continental scale, the European Flood Aware-
ness System (EFAS) has demonstrated that ensemble flood
forecasting and early warning based on critical flood thresh-
olds can be produced also with limited amount of data, by
applying probabilistic methods and model consistent clima-
tologies (Bartholmes et al., 2009; Pappenberger et al., 2010b;
de Roo et al., 2003; Thielen et al., 2009a).

The aim of this study is to assess the feasibility of an en-
semble flood forecasting and early warning system at the
global scale, built up with a similar framework as that of
EFAS, and to evaluate the system performance in its ini-
tial stage, where no model parameter has been specifically
calibrated. The Global Flood Awareness System (GloFAS)
has been set up jointly between the Joint Research Centre
(JRC) of the European Commission and the European Centre
for Medium-Range Weather Forecasts (ECMWF), and has
been running operationally on a daily basis since July 2011.
GloFAS produces global flood forecasting products, which
are shown on a password-protected web interface. The sys-
tem performance is currently being monitored, and results
are already being accessed for research and testing purposes
by partner organizations such as the Mekong River Com-
mission (http://www.mrcmekong.org/) and the CEMADEN
(http://www.cemaden.gov.br/), the newly established Brazil-
ian center for monitoring of natural disasters.

2 Data and methods

The GloFAS system is composed of an integrated hydro-
meteorological forecasting chain and of a monitoring system
that analyzes daily results and shows forecast flood events on
a dedicated web platform. An overview of the system struc-
ture is shown in Fig. 1.

2.1 Meteorological data

To set up a forecasting and warning system that runs on
a daily basis with global coverage, initial conditions and
input forcing data must be provided seamlessly to every
point within the domain. To this end, two products are used.
The first consists of operational ensemble forecasts of near-
surface meteorological parameters. The second is a long-
term dataset consistent with daily forecasts, used to derive
a reference climatology. These products are described in the
next sub-sections. They are both computed by the Integrated
Forecast System (IFS) of the ECMWF, whose main compo-
nents (see Fig. 1) are a data assimilation system (DAS) and a
global circulation model (GCM).

2.1.1 Daily forecasts

The Variable Resolution Ensemble Prediction System
(VarEPS) is the operational ensemble forecasting product of
the ECMWF IFS (Miller et al., 2010). VarEPS consist of 51-
member ensemble global forecasts with 50 perturbed mem-
bers and one unperturbed control run. The weather forecast
component has a horizontal grid resolution of about 32 km
for 10 days, increasing to 65 km from day 11 to 15. The fore-
cast is produced twice per day, at 00:00 UTC and 12:00 UTC.
In the GloFAS system, VarEPS weather forecasts are not han-
dled explicitly. Forecast values of the predicted meteorolog-
ical parameters of the 00:00 UTC forecast are processed by
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Fig. 1.Overview of the GloFAS structure.

the land surface module (HTESSEL; see Sect.2.2.1) of the
IFS, which in turn creates the VarEPS runoff fields for the
ensemble streamflow prediction.

2.1.2 Reference climatology

The second meteorological product used is ERA-Interim
(Dee et al., 2011), the latest global atmospheric reanalysis
produced by the ECMWF. The ERA-Interim archive con-
tains 6-hourly gridded estimates of three-dimensional (3-D)
meteorological variables, 3-hourly estimates of a large num-
ber of surface parameters and other two-dimensional (2-D)
fields. It has horizontal resolution of about 80 km, it cov-
ers the period from 1 January 1979 onwards, and contin-
ues to be extended forward in near-real time. ERA-Interim
makes use of a forecast model, so that information can be ex-
trapolated from locally observed weather parameters to un-
observed parameters in a physically meaningful way. ERA-
Interim precipitation dataset has been bias-corrected using
the Global Precipitation Climatology Project (GPCP) version
2.1 (Huffman et al., 2009). The bias correction assumes a
scale-selective rescaling that corrects ERA-Interim 3-hourly
precipitation in order to match the monthly accumulation
provided by GPCP at grid-point scale. The rescaling factor
is obtained by the following: (i) interpolating conservatively
GPCP at 2.5◦ × 2.5◦ to the equivalent T95 Gaussian grid; (ii)

interpolating conservatively ERA-Interim from T255 Gaus-
sian grid to T95 Gaussian grid; (iii) computing the rescal-
ing factor at the T95 resolution (observations resolution); and
(iv) interpolating bi-linearly the rescaling factor from T95 to
T255. This procedure has the advantage of preserving small-
scale features of ERA-Interim (for instance related to oro-
graphic effects) and correcting for large-scale bias.

2.2 Hydrological modeling

River discharge is simulated by the Lisflood hydrological
model (van der Knijff et al., 2010) for the flow routing in
the river network and the groundwater mass balance. The
model is set up on global coverage with horizontal grid reso-
lution of 0.1◦ (about 10 km in mid-latitude regions) and daily
time step for input/output data. Details of Lisflood and the
HTESSEL are given in the following sections. Two types of
simulations are performed to estimate discharge in the river
network, which use the input runoff forcing described in the
previous section and appropriate initial model state.

– Forecasting simulations are run every day using the lat-
est VarEPS runoff prediction and result in 51 possible
evolutions of the streamflow for the selected forecast
horizon (i.e., 45 days in the current setting).

– A deterministic climatological simulation is run in of-
fline mode using ERA-Interim/Land input data for a
21 yr period starting in 1990. Seamless streamflow cli-
matology is derived, and maps of daily annual maxima
are extracted and fitted with a Gumbel extreme value
distribution to estimate corresponding discharge warn-
ing thresholds for selected return periods.

2.2.1 HTESSEL

HTESSEL (Balsamo et al., 2009, 2011a) is the land sur-
face component of the ECMWF IFS. It is a revised land
surface Hydrology, derived from the former Tiled ECMWF
Scheme for Surface Exchange over Land (TESSEL). HT-
ESSEL computes the land surface response to atmospheric
forcing, and estimates the surface water and energy fluxes
and the temporal evolution of soil temperature, moisture con-
tent and snowpack conditions. At the interface to the atmo-
sphere, each grid box is divided into fractions (tiles), with up
to six fractions over land (bare ground, low and high vege-
tation, intercepted water, shaded and exposed snow). Vege-
tation types and cover fractions are derived from an external
climate database, based on the global land cover characteris-
tic (Loveland et al., 2000).

The grid box surface fluxes are calculated separately for
each tile, leading to a separate solution of the surface en-
ergy balance equation and the skin temperature. The latter
represents the interface between the soil and the atmosphere.
Below the surface, the vertical transfer of water and energy
is performed using four vertical layers to represent soil tem-
perature and moisture. Soil heat transfer follows a Fourier
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law of diffusion, modified to take into account soil water
freezing/melting. Water movement in the soil is determined
by Darcy’s law, and surface runoff accounts for the subgrid
variability of orography. In the case of a partially (or fully)
frozen soil, water transport is limited, leading to a redirection
of most of the rainfall and snowmelt to surface runoff when
the uppermost soil layer is frozen. The snow scheme (Dutra
et al., 2010) represents an additional layer on top of the soil,
with an independent prognostic thermal and mass content.
The model has been successfully tested in river routing set-
tings (Balsamo et al., 2011b; Pappenberger et al., 2010a).
HTESSEL is part of the IFS at ECMWF with operational ap-
plications ranging from the short-range to monthly and sea-
sonal weather forecasts.

For this work, operational ensemble forecasts of surface
and sub-surface runoff (soil to groundwater percolation) are
extracted from the daily output of the ECMWF forecasts and
then resampled to 0.1◦ resolution to be used as input by Lis-
flood. These are produced by the HTESSEL module of the
IFS using VarEPS weather forecasts as input. Further, an of-
fline simulation of HTESSEL forced by ERA-Interim near-
surface fields and bias-corrected ERA-Interim precipitation
was performed to derive a 21 yr climatology starting in 1990,
including surface and sub-surface runoff (hereafter referred
to as ERA-Interim/Land).

Balsamo et al. (2012) presented a detailed description of
the simulation setup of ERA-Interim/Land and a general
overview of the model performance. In particular, the sim-
ulated discharge (monthly means) improved in most conti-
nents from using the surface and sub-surface runoff of ERA-
Interim to the new fields produced by ERA-Interim/Land, as
done in this study.

2.2.2 Lisflood global

Lisflood is a GIS-based spatially distributed hydrological
model, which includes a one-dimensional channel routing
model (van der Knijff et al., 2010). The Lisflood model is
currently running within the European Flood Awareness Sys-
tem (EFAS) on an operational basis (Pappenberger et al.,
2010b; Thielen et al., 2009a) covering the whole of Europe
on a 5 km grid.

In the context of global flood modeling, the transformation
from precipitation to surface and sub-surface runoff is done
by the HTESSEL module of the IFS, which accounts for ver-
tical water fluxes and water/snow storage on a pixel basis.
However, HTESSEL is not capable of simulating horizontal
water fluxes along the river network. For this purpose, Lis-
flood global is set up to simulate the groundwater and routing
processes, using surface runoff and sub-surface runoff from
HTESSEL as input fluxes on a resolution of 0.1◦. Surface
runoff is routed via overland flow to the outlet of each cell
using a four-point implicit finite-difference solution of the
kinematic wave equations (Chow et al., 1988). The global
land cover characteristic is used to assign Manning’s surface

roughness based on the cover class. Subsurface storage and
transport are modeled using two linear reservoirs. The upper
zone represents a quick runoff component, which includes
fast groundwater and subsurface flow through macropores in
the soil. The lower zone is fed by percolation from the upper
zone and represents the slow groundwater component that
generates the baseflow. Amount and timing of the outflow
from the respective groundwater reservoirs to the outlet of
each grid cell are controlled by two parameters that reflect
the residence time of water in the upper and lower ground-
water zone. Runoff produced for every grid cell from sur-
face, upper and lower groundwater zones is routed through
the river network using the same kinematic wave approach
as for the overland flow. The river network is taken from the
HydroSHEDS project (Lehner et al., 2008) and upscaled to
0.1◦ by using the approach of Fekete et al. (2001). In the next
developments the upscaled 0.1◦ dataset of Wu et al. (2012b)
will be used. River parameters like channel gradient, Man-
ning’s coefficient, river length, width and depth were esti-
mated from the digital elevation model, the river network and
the upstream area. Further details of the Lisflood model can
be found in van der Knijff et al. (2010). Within EFAS the
parameters to control percolation to the lower groundwater
zone, the residence time of the upper and lower zone and the
routing parameter (a multiplier to Manning’s roughness) are
calibrated using observed discharge time series (see Feyen et
al., 2007). In the current setup of GloFAS, these parameters
are set following typical ranges observed in EFAS-calibrated
river basins, while their estimation through specific calibra-
tion will be part of future works. In arid and semiarid re-
gions, one can observe a loss of water among the channel
reaches. In order to include this effect into the model, we
use the simplified approach by Rao and Maurer (1996) to
simulate transmission losses in a stream. This method uses
a power function with two parameters to describe the rela-
tionship between inflow and outflow in cells. In a first at-
tempt the yearly average potential evapotranspiration rate is
used to fit the transmission loss function. The resulting loss
function gives emphasis to transmission losses in Africa, the
Arabian Peninsula, India, Australia and the southern part of
North America, whereas discharge in Europe and the north-
ern part of Asia remains unaffected. With this approach the
model is able to mimic the river–aquifer and river–floodplain
interaction (e.g., the Sudd, the vast swamps in South Sudan
along the Nile River) as well as the influence of evaporation
from big braided rivers.

2.3 Operational forecasting

Ensemble streamflow predictions (ESPs) are run opera-
tionally on global scale by feeding VarEPS surface and sub-
surface runoff into the Lisflood hydrological model. Al-
though the precipitation input spans 15 days, hydrological
simulations are computed for a 45-day time horizon, to ac-
count for the delayed routing of flood waves in large river
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basins, with time of concentration of the order of one month.
From day 16 to day 45, input maps of surface and subsur-
face runoff are set to zero; therefore, the hydrological model
(i.e., Lisflood) will simply convey towards the outlet water al-
ready within each river basin. Initial condition maps to start
up the model are first taken from the last available day of
ERA-Interim dataset. Initial conditions for subsequent sim-
ulations are then extracted from the results of the model run
with the VarEPS control run, after the first day of simula-
tion. As this procedure is based on forecast meteorological
variables as input, rather than observed, results may possi-
bly drift in time from reality. This could lead to biased ini-
tial conditions and consequently to under- or over-estimating
streamflow values, even where weather forecasts are accu-
rate. Therefore, periodical updating of initial condition maps
based on ERA-Interim dataset is foreseen for future system
developments.

Resulting ESP maps for each daily time step and ensemble
member are compared with reference threshold maps derived
from the streamflow climatology, corresponding to return pe-
riods of 2, 5 and 20 yr. Summary threshold exceedance maps
are calculated accordingly, which show the maximum prob-
ability of exceeding the 5 and 20 yr return period within the
forecast horizon. In addition, reporting points are chosen at
fixed and dynamic locations in the river network where up-
coming flood hazard is detected, according to the following
two-step procedure.

Fixed pointsare first selected from about 4000 gauged
river stations included in the Global Runoff Data Centre
(GRDC,http://grdc.bafg.de/) database, where the maximum
daily forecast value of the ESP mean, over the simulation
horizon, is above the 2 yr return period threshold.

Dynamic pointsare then generated to provide similar in-
formation in river reaches where no fixed point is available.
The following experience-based rules are adopted for obtain-
ing a good overview of the potentially affected areas, yet
avoiding the confusion of displaying too many points:

– The ESP mean is above the medium warning thresh-
old on at least 5 contiguous pixels of the river network
(∼ 50 km long river reach), in at least one of the two
most recent daily simulations.

– The upstream area of the selected point must be larger
than 4000 km2.

– Points are generated starting from the most downstream
pixel complying with the selection criteria, proceeding
upstream every 300 km to each other, unless a fixed
point is encountered within a shorter distance.

The two sets of points are merged and classified into medium,
high and severe alert level. Medium alert level (yellow color
coding) is assigned to points with ESP mean between 2 and
5 yr return period. High alert level (red color coding) is as-
signed to points with ESP mean between 5 and 20 yr return

period. Severe alert level (purple color coding) is assigned
to points with ESP mean above 20 yr return period. At each
point, ESP time series are plotted versus the forecast hori-
zon, together with persistence diagrams (Bartholmes et al.,
2009) showing the probability of exceeding the three warn-
ing thresholds for each day of simulation and the evolution
over the latest consecutive forecasts.

3 Performance evaluation

3.1 Evaluation of the hydrological modeling

The first part of the work is focused on evaluating the
skill of the Lisflood hydrological model forced by ERA-
Interim/Land runoff in reproducing the hydrological pro-
cesses for river basins in different regions and climates of the
earth. The 21 yr simulated discharge climatology has been
compared with daily observations at a number of stations in-
cluded in the GRDC database. Stations for the comparison
were chosen according to the three following criteria:

– Observed discharge time series at each station must in-
clude at least 5 yr of valid data within the simulation
period (1990–2010).

– At each river station, the upstream area of the mod-
eled river network must not differ by more than 10 %
from the actual one, to prevent matching incoherent data
pairs. This typically occurs in small river basins, where
the modeled river network is sometimes different from
the real one – because of scaling issues – and as a result
the station does not lie in the correct grid cell.

– A visual check has been performed on the observed
time series to remove those stations with evident dis-
charge regulation (e.g., through artificial reservoirs) or
with clear errors in the data.

Overall, 620 stations from all continents except Antarctica
were selected for the comparison, with upstream area rang-
ing between 450 and 4 680 000 km2 and period of record be-
tween 5 and 21 yr. The distribution of stations (see Fig. 2)
reflects the quantity and quality of daily discharge measure-
ments, with most data coming from North America, Brazil,
Europe, Japan and Australia. The aim of this analysis is to
assess how the adopted model is capable of reproducing ob-
served river discharge. The expected outcome is to assess the
model performance and identify areas with the most signif-
icant mismatch between observation and simulations, which
indicates where the modeling can be improved through dif-
ferent parameterization of the hydrological processes. For
each station, observed and simulated discharge time series
are plotted and compared through scatter plots, to give a first
visual check of the collected data. An example is shown in
Figs. 3 and 4 where simulated and observed discharges at

www.hydrol-earth-syst-sci.net/17/1161/2013/ Hydrol. Earth Syst. Sci., 17, 1161–1175, 2013
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Fig. 2. Coefficient of variation of the estimation residuals for the 620 stations considered. Circle size is proportional to the upstream area of
the river station.

Óbidos –linigrafo (Brazil), in the Amazon River, are com-
pared over 17 yr between 1990 and 2007. The performance
of simulation is assessed for each station through different
skill scores: the Nash–Sutcliffe efficiency (NS), Pearson cor-
relation coefficient (PCC), root mean square error (RMSE),
mean absolute error (MAE) and coefficient of variation (CV)
of the residuals towards the observed mean.

It is worth noting that the proposed system is designed for
early warning purposes, rather than for quantitative stream-
flow forecasting. In other words, the main goal of the system
is to assign each forecast value a correct probability of occur-
rence taken from its cumulative distribution function and thus
identify extreme values in the upper tail of the distribution,
which can possibly correspond to flooding conditions. Ide-
ally, the percentile rank of each simulated value, compared
to its climatology, should match that of observations (related
to the observed time series), independently of any bias be-
tween observed and simulated time series. As a result, more
emphasis is given to skill scores that are not affected by bias
of estimation. Also, dimensionless indicators are preferred,
as these enable straightforward comparison of results from
different river stations having a wide range of quantitative
runoff and hydrological regimes. Among such skill scores,
the coefficient of variation (CV) at each point is calculated
as the ratio of the standard deviation (σ(.)) of the estimation
residuals to the mean (Qobs) of observations,

CV =
σ (Qsim− Qobs)

Qobs
(1)

The CV enables the comparison of the estimation variabil-
ity at different locations through normalization by the aver-
age flow conditions. Furthermore, the Pearson correlation co-
efficient (PCC) of simulated versus observed discharges is
calculated according to the following equation:

Fig. 3. Comparison between observed and simulated daily average
discharge in the Amazon River atÓbidos,linigrafo, Brazil.

PCC=

∑
∀i

(
Qobsi − Qobs

)(
Qsimi

− Qsim
)√∑

∀i

(
Qobsi − Qobs

)2
√∑

∀i

(
Qsimi

− Qsim
)2

, (2)

which considers all thei-th available daily data pairs. PCC
is particularly fit to the desired verification strategy as it as-
sesses the linear correlation between simulated and observed
discharges, without being penalized by multiplicative or ad-
ditive bias. On the other hand the PCC is known for being
sensitive to even a few outlying data pairs, thus stressing sig-
nificant shifts between the timing of simulated and observed
flow peaks (Wilks, 2006).

The model performance in reproducing observed dis-
charge has also been tested through threshold exceedance
analysis, focused on discriminating events above a fixed
threshold. This approach is more suitable for evaluating the
performance of early warning systems, as it is independent of
the quality of estimation for value ranges far from the thresh-
old (e.g., the range of low flows when the threshold corre-
sponds to high flows). Most scores for dichotomous evalu-
ation are based on contingency tables, which include four
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Fig. 4. Scatter plot of observed and simulated daily average dis-
charge (1990–2007) in the Amazon River atÓbidos, linigrafo,
Brazil. 90th percentiles used for threshold exceedance analysis are
shown with dashed lines while skill scores are shown on the left
side.

variables calculated from the set of observations and of sim-
ulated values:

– hit: event observed and simulated;

– miss: event observed and not simulated;

– false alarm: event simulated and not observed;

– correct negative: event not observed and not simulated.

Peirce’s skill score (PSS, Eq. 3) (Hanssen and Kuipers, 1965)
has been calculated for each station, taking the 90th per-
centile as threshold values (i.e., the 90th percentile from the
sorted observations and from the sorted simulated values to
discriminate each corresponding data series).

PSS=
hits

hits+ misses
−

false alarms

false alarms+ correct negatives
(3)

Such a percentile is a good tradeoff between being represen-
tative of high flow values and including a sufficient number
of events to draw robust statistics. Data series for comparison
include at least five years of data, which corresponds to more
than 182 days above the 90 % threshold. The PSS accounts
for all elements of the contingency table and is defined as
the difference between probability of detection (POD) and
probability of false detection (POFD), PSS = POD−POFD.
Perfect forecasts have PSS = 1, while forecasts have no skill
when PSS≤ 0.

3.2 Performance of the early warning system

The early warning system, as described in Sect.2.3, has been
set up and has been running operationally since July 2011.
To evaluate the forecast performance, the system was run in
hindcast mode for the period 1 January 2009 to 31 Decem-
ber 2010. A total of 730 sets (i.e., one per day) of 45-day en-
semble streamflow predictions (ESPs) were evaluated against
discharge proxy simulations for the same period, taken from
the simulated discharge climatology obtained using ERA-
Interim/Land runoff as forcing. Differently from the analy-
sis in the previous section, this approach enables the perfor-
mance evaluation at each grid point of the simulated river
network. Comparison of streamflow forecasts with point ob-
servations was not performed at this stage, due to insuffi-
cient data availability for the selected period. Furthermore,
as the datasets of streamflow predictions and proxy simu-
lations are generated by the same hydrological model, this
type of analysis focuses more on the skills of the ensemble
weather predictions. Indeed, it allows one to draw indica-
tions on the maximum forecast horizon (or potential skill) for
which the system yields valuable information. In general, we
expect results to be mainly influenced by (i) the skills of 15-
day weather predictions and by (ii) the upstream area of each
selected river point, which is correlated with the lag time be-
tween rainfall events and the subsequent flow hydrographs.
This can yield an extension of the forecast lead time beyond
the time window for which weather forecasts are available
and contribute to the assessment of the limits of predictabil-
ity (Thielen et al., 2009b).

Initial conditions of the hydrological model were taken
from the climatological run for the first day of simulation
(i.e., 1 January 2009) and were then calculated for the fol-
lowing days, up to the 31 December 2010, by using the fore-
cast fields of the first day of the VarEPS control run. Cur-
rent ERA-Interim data availability would allow the model
to update its initial conditions roughly on a monthly basis,
to avoid significant drifts of the simulated initial conditions
from the climatological run. To account for this improve-
ment in the verification of the 2 yr forecasts, a bias correction
technique was applied to adjust the initial conditions of the
starting day of each forecast with those of the climatological
run. The correction was performed through a quantile match-
ing over a 30-day window, which reproduces similar error
structure as of a monthly update of initial conditions with
ERA-Interim input data. The resulting discharge dataset is
hereinafter referred to as corrected discharge climatology. It
is used only for validation purposes, while model state vari-
ables are not affected by the correction. Initial condition un-
certainties have major influence on predictions and can be
amplified or dampened through the non-linearity of hydro-
logical models (Nester et al., 2012). Fundel and Zappa (2011)
pointed out that high-quality initial conditions can lead to
significant skill improvements and also demonstrated how
historic hindcast time series can be used for correction in
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a flood forecasting system. A similar approach has been ap-
plied in this work.

Ensemble streamflow predictions were evaluated by
means of a twofold approach. The continuous rank probabil-
ity skill score (CRPSS; e.g., Hersbach, 2000; Voisin et al.,
2010) is used to evaluate the quantitative skills of predic-
tion, while the area under the receiver operating character-
istic (AROC; see Marzban, 2004; Wilks, 2006) is calculated
to assess the performance in threshold exceedance analysis.

The CRPSS is defined as

CRPSS=
CRPSref − CRPSforecast

CRPSref
(4)

where

CRPS=

∞∫
−∞

[F(y) − F0(y)]2dy (5)

and

F0(y) =

{
0, y < observed value
1, y ≥ observed value

(6)

while F(y) is the stepwise cumulative distribution func-
tion (cdf) of the ESP for each forecast day and lead time.
The CRPS accounts for the integrated squared difference
between the ESP and the step function of the proxy truth
(Wilks, 2006), here represented by the corrected climato-
logical run for the 2 yr of forecast. The CRPSS is a dimen-
sionless indicator of the skills of ensemble predictions, mea-
sured byCRPSforecast, compared to that of a reference fore-
castCRPSref, which assumes all future values being equal
to the latest observation (persistence criterion), meaning the
value at timestepi = 0 that is used to initialize each forecast.
CRPSS ranges between 1 (for perfect predictions) and−∞,
though ESPs are only valuable when CRPSS> 0, i.e., when
ensemble forecasts perform better than the reference persis-
tent forecast.

Receiver operating characteristic (ROC) curves are widely
used to measure the skill of dichotomous forecasts based
on probabilistic information, as they plot the empirical re-
lation between the hit rate (HR) and false alarm rate (FAR)
for different probability thresholds (Alfieri et al., 2012b).
The overall performance of ensemble forecasts in predict-
ing threshold exceedances can be assessed though the area
under the ROC curve, which summarizes the system skill for
all the probability thresholds, which in the discrete case are
as many as the ensemble size. AROC values range between
0 (i.e., forecasts are exactly the opposite of observations) and
1 (perfect match between predicted and observed threshold
exceedances). AROC = 0.5 corresponds to random forecasts,
while meteorological ensemble predictions are commonly
considered as useful when AROC≥ 0.7 (e.g., Buizza et al.,
1999).

Fig. 5.Pearson correlation coefficient of simulated versus observed
discharge for the 620 stations considered plotted against the cor-
responding upstream area. Circle color depends on the latitude of
each river station.

4 Results

4.1 Evaluation of the hydrological modeling

In 58 % of stations the Nash–Sutcliffe efficiency was skillful
(i.e., above zero), with maximum value of 0.83. Such figures
improve to 71 % and a maximum of 0.92 if the effect of the
model bias is removed, as this does not affect the warning
system (see discussion in Sect.3.1). The coefficient of vari-
ation as defined in Eq. (1) is shown in the map in Fig. 2.
In 60 % of points, the CV is found smaller than 1, denot-
ing a variability of estimation lower than the observed mean
discharge. Poorest performance is mainly found in arid and
semi-arid regions, particularly in Australia, Mexico and in
the Sahel. This can be due to incorrect modeling of some hy-
drological processes such as evapotranspiration, infiltration
and lack of simulated water withdrawals for irrigation pur-
poses. However, one should note that, in arid regions, results
calculated with the CV as defined above are penalized by
rather low average discharges (which is in the denominator in
Eq. 1), compared to high flow conditions, which also induces
a low runoff-to-rainfall ratio. Indeed, the average specific dis-
charge of the 34 considered stations in Australia and Mexico
is 8.3× 10−3 m3 s−1 km−2, which is about half the average
value of the 620 stations, of 1.4× 10−2 m3 s−1 km−2. Simi-
lar consideration can be drawn for small river basins, such as
the yellow/orange circles in the USA and Europe shown in
Fig. 2. Indeed, it is known that the ratio between peak flow
and average flow rises with decreasing basin area, hence in-
creasing the weight of estimation residuals in Eq. (1). In ad-
dition, clusters of points with CV> 1 are located in north-
eastern Brazil and west Africa, where the model performance
is often substantially affected by dam regulation. Similar re-
sults are found in northeastern Russia (orange and yellow
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Fig. 6.Peirce’s skill score of simulated versus observed discharge for the 620 stations considered. Circle size is proportional to the upstream
area of the river station. The black-contoured rectangle indicates the area shown in Fig. 10.

points), where time series at these stations (not shown) sug-
gest discrepancies to be related to the modeling of freezing
cycles, snow accumulation and melting processes (modeled
by HTESSEL), and the subsequent lag between simulated
and observed peak discharge during spring.

In Fig. 5 the PCC is plotted against the upstream area of
each gauge. In addition the gauge latitude is shown with a
color shading ranging from red at the Equator, to blue at high
latitudes. Figure 5 shows a tendency of higher correlations in
large river basins (i.e., upstream area larger than 10 000 km2)

in inter-tropical latitudes. Overall, 71 % of points have PCC
larger than 0.5. The envelope curve of highest PCC values
shows an increasing trend with the upstream area. In fact,
the typical scales of weather events inducing floods in small
river basins are below the spatial and temporal resolution of
the hydrological model and of the meteorological input data
used in simulation, as well as of the observations used for
validation.

Peirce’s skill score (PSS) for the set of selected stations is
shown in Fig. 6. A total of 98.5 % of stations provide skill-
ful simulated values (i.e., PSS> 0), while PSS> 0.25 and
PSS> 0.5 are found in 79 % and 22 % of cases respectively.
It is worth noting in Fig. 6 that positive skills are achieved
at several stations in dry regions where the estimation error
showed considerable variability in Fig. 2 (e.g., NE Brazil,
Africa, Australia). In those regions medium to low flows are
difficult to estimate accurately because of dam regulation and
water abstraction for irrigation. On the other hand, floods and
high flows, and particularly their percentile rank, are less in-
fluenced by small reservoirs, which often have limited stor-
age for flood mitigation. Regarding negative PSS values, 8
out of 9 points in total are located in Canada and have rela-
tively small upstream areas, in all cases below 50 000 km2.
Graphs comparing the observed and simulated time series
(not shown) suggest that the mismatch in those points is due

Fig. 7.CRPSS maps of ESPs for 2009–2010 against simulated cor-
rected discharge climatology. Panels refer to lead time of 5, 15, and
25 days (top to bottom).

to incorrect modeling of the snow-related processes or to bi-
ased input temperatures in the model, which induces a sub-
stantial delay between observed and simulated flow peaks.

www.hydrol-earth-syst-sci.net/17/1161/2013/ Hydrol. Earth Syst. Sci., 17, 1161–1175, 2013



1170 L. Alfieri et al.: GloFAS – global ensemble streamflow forecasting and flood early warning

Fig. 8.Forecast lead time, in days, for which ESPs are skillful (AROC> 0.7).

Another source of error in the hydrological model is the
lack of simulation of river floodplains. This is particularly
visible in the largest rivers, where simulated discharge peaks
occur too early and vary faster than the corresponding obser-
vations (see example in Fig. 3), which follow a more gradual
evolution. Recent research by Paiva et al. (2012, 2013) and
Yamazaki et al. (2011) showed considerable improvement of
the streamflow simulation by including backwater effects and
floodplain store of water volumes interacting with the river.

4.2 Performance of the early warning system

CRPSS maps for the 2 yr of ensemble streamflow prediction
(i.e., 2009–2010) were calculated for each selected forecast
lead time from 1 to 45 days. CRPSS maps with lead time of
5, 15 and 25 days are shown in Fig. 7. To improve the figure
readability, only river pixels with upstream area larger than
50 000 km2 are plotted. Skillful quantitative ESPs are indi-
cated with blue shadings in Fig. 7 (i.e., where CRPSS> 0),
while in red are indicated those rivers where a reference per-
sistent forecast performs quantitatively better. As expected,
the CRPSS deteriorates for increasing forecast horizons, par-
ticularly in smaller rivers. Poorest performance is shown in
northern cold regions, mostly in Asian and North American
rivers. In large river basins in inter-tropical and mid-latitude
regions (e.g., Amazon, Mississippi, Congo, Nile, Paraná), the
ESPs perform better than the reference forecast, especially
for longer lead times. In fact, in such rivers the runoff has
very slow and delayed response. Hence for short lead times
(e.g., 5 days) the difference between the ESP and a persistent
forecast is not substantial. On the other hand, smaller river
basins often have their highest CRPSS for shorter lead times,
while it decreases fast after 15-day lead time, when no mete-
orological forcing is used as input.

The threshold exceedance analysis is evaluated through
the use of ROC curves and specifically the area under these

curves, which was calculated for each of the 45 daily forecast
lead times. As discussed in Sect.3.1, the threshold between
events and non-events is set to the 90th percentile of the cor-
rected discharge climatology. Despite being in the upper tail
of the statistical distribution of annual discharge regimes, the
90th percentile is below the three flood warning thresholds
of GloFAS and usually does not correspond to flooding con-
ditions. However, it is important to select a discharge value
that was reached at every river pixel during the 2 yr of simu-
lation, so that the skill score can be calculated for the whole
domain. Results of this analysis are drawn in Fig. 8, which
shows the maximum lead time over which forecasts are skill-
ful (i.e., AROC> 0.7, as stated in Sect.3.2). Spatial pat-
tern of results in Fig. 8 is widely in agreement with those
of Fig. 7. Longest lead times are found in large river basins
in South America, Africa, and South Asia, with values ex-
ceeding 25 days in some areas. Smaller river basins mostly
achieve maximum forecast lead times around 20 days, while
in some cases they are limited within 10 days. Results from
the ESP as calculated by the proposed model and shown in
Figs. 7 and 8 should be filtered by excluding regions where
no significant river network and runoff exists. These include
desert areas such as the Sahara, Arctic, Gobi, Arabian and
Australian deserts, among the largest. Unexpectedly, in the
lowest part of the Mississippi River, in North America, max-
imum values of lead time from Fig. 8 are within 10 days, de-
spite having skillful CRPSS for lead times as long as 25 days
(see Fig. 7). In other words, while quantitative streamflow
predictions in the Mississippi are on average rather accurate
even for long lead times, high flow events above the 90th per-
centiles are skillfully detected only for a shorter time horizon.
The reasons for such behavior are mostly related to a delay in
the discharge peak for the main event within the considered
period, which occurred in autumn 2009 (see Fig. 9).

In Fig. 9, ESPs and corrected discharge climatology are
compared for the 2 yr of available forecast (i.e., 2009–2010).
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Fig. 9. ESPs (blue shades) and corrected discharge climatology
(ERA-I sim) at the outlet of six major river basins (see red mark-
ers in Fig. 8), for lead time of 15 (left column) and 25 days (right
column).

These are shown at the outlet of six major river basins in
different climatic regions, for forecast lead times of 15 and
25 days. Outlets location and name initials of each river are
shown with red markers in Fig. 8. In all cases shown, the
ensemble spread is relatively narrow, as in such large river
basins the runoff is mostly driven by the initial conditions
and, specifically, by water already in the river network at the
start of the forecast, and that is conveyed downstream by the
hydrological model. At all locations the ensemble spread is
larger for the longest lead time shown, reflecting the increas-
ing uncertainty range as the lead time increases. However,
graphs with longer forecast lead time (not shown in the arti-
cle) suggest that, after reaching its maximum, the ensemble
spread tends to reduce after the predicted rainfall has drained
through the basin outlet. This is the consequence of using
15 days of rainfall but simulating a longer lead time, which
means that the ESP spread is increasingly underestimated af-
ter day 15 of simulation. In five out of six stations in Fig. 9,

Fig. 10.20-day ESP on 28 July 2010 for a dynamic reporting point
in the Indus River near Sukkur, in Pakistan. The probability of
severe threshold exceedance is shown with purple shadings. The
black-contoured rectangle indicates the area shown in Fig. 12.

the runoff regime follows a clear seasonal trend, with peak
flows always in the same range of months, depending on the
rainfall regime and on the timing of snow and ice accumu-
lation and melting. Differently, in the Mississippi River, the
runoff regime is more variable and high flows occurred in
different seasons. This partly explains the results shown in
Fig. 7, where the ESP performs quantitatively better than a
persistent forecast also for long lead times (i.e., 25 days).
Graphs in Fig. 9 show that the ESP spread is higher when
the hydrographs have increasing trend because of the uncer-
tainty of forecast rainfall. On the other hand, as the reference
simulation and the ESPs are outputs of the same hydrolog-
ical model, results match very well in the recession part of
the hydrographs, that is when little rainfall is forecast or dur-
ing the period of snow accumulation. It is worth noting that
the highest spread of the ESP occurs in the Yenisei River,
where the snow and ice melting in the spring season play a
prominent role in generating high flows. As a result the en-
semble spread is amplified as the uncertainty of both rainfall
and temperature affects the streamflow forecast.

4.3 Case study – 2010 Pakistan floods

The system demonstrated its potential by detecting a num-
ber of flooding events of the past 3 yr in major world rivers,
with forecast lead time often larger than 10 days. A striking
example is that of the severe floods that hit Pakistan in sum-
mer of 2010, triggered by exceptional monsoon rain begin-
ning at the end of July. The flooding covered approximately
one-fifth of the total land area of Pakistan, directly affecting
about 20 million and causing a death toll close to 2000 people
(http://en.wikipedia.org/wiki/2010Pakistanfloods). On that
occasion, forecasts on 28 July 2010 showed probabilities up
to 100 % of exceeding the severe alert level (i.e., 20 yr re-
turn period) in most of the Indus River basin, with peak flow
traveling downstream in the first half of August 2010. Fig-
ure 10 shows a 20-day ensemble streamflow prediction for a
dynamic reporting point generated by GloFAS in the Indus

www.hydrol-earth-syst-sci.net/17/1161/2013/ Hydrol. Earth Syst. Sci., 17, 1161–1175, 2013

http://en.wikipedia.org/wiki/2010_Pakistan_floods


1172 L. Alfieri et al.: GloFAS – global ensemble streamflow forecasting and flood early warning

Fig. 11. Persistence diagrams of the forecasts shown in Fig. 10,
showing the probability (%) of exceeding the high and severe alert
level over five consecutive forecasts issued from 24 to 28 July 2010.

River, few kilometers downstream the city of Sukkur, in the
Sindh province of Pakistan. Geographic location of the area
is shown by a black-contoured rectangle in Fig. 6. Forecasts
show a sharp rise of discharge in the river, with expected peak
of the ensemble mean on the 10 August, hence 13 days after
the prediction was issued. The uncertainty range increases
with the lead time, though it almost completely exceeds the
severe alert level from the 8 to the 12 August. The persis-
tence diagram for the same point is shown in Fig. 11, which
indicates a probability larger than 50 % of exceeding the high
alert level (i.e., 5 yr return period) on the 10, 11 and 12 Au-
gust as early as the 24 July, thus 17 to 19 days in advance. On
the other hand, the probability of exceeding the severe alert
level increased considerably over five consecutive forecasts,
from 16 % (24 July) to a maximum of 96 % (28 July). The
following forecasts confirmed these results indicating, for the
same station, a maximum probability to exceed the severe
alert level of 100 % from the 7 August onwards. On 9 August,
the BBC reported that the measured discharge through the
Sukkur Barrage was up to 1.4 million cubic feet per second
(cusecs), i.e., about 39 600 m3 s−1, way higher than its de-
sign capacity of 900 000 cusecs (http://www.bbc.co.uk/news/
world-south-asia-10910778). Also, Fig. 12 shows a compar-
ison between satellite images taken on 10 July 2010 (top)
and on 11 August 2010 (bottom) from MODIS Rapid Re-
sponse (Descloitres et al., 2002) in the area delimited by
the black-contoured rectangle shown in Fig. 10. In the lat-
ter the extent of flooded areas (with dark shades) is clearly
visible for a wide portion of the Indus River basin. In the
top panel of Fig. 12, the maximum probability of exceed-
ing the severe warning threshold over the forecast range (i.e.,
20 yr return period) is indicated with purple shades (ESP of
28 July 2010).

5 Discussions and conclusions

In this article we present a probabilistic flood early warn-
ing system running at global scale, aimed at forecasting the
threshold exceedance of ensemble streamflow predictions on

Fig. 12. Satellite images of the Indus River on 10 July 2010 (top)
and on 11 August 2010 (bottom). Top panel also shows, with purple
shadings, the maximum probability of exceeding the severe thresh-
old in a 20-day forecast range (forecast on 28 July 2010).

the basis of a model-consistent discharge climatology. The
system has been set up following similar structure as in
EFAS, though no specific comparison has been carried out
(in Europe) between the two systems. GloFAS now has been
running on a daily basis since July 2011. Results are shown
on a password-protected website and are being monitored to
assess qualitatively the system skills for flood events in large
river basins. Quantitative performance has been assessed for
2 yr of daily hindcasts starting on 1 January 2009, using a
simulated climatology as reference run. The validation pe-
riod was bound to 2 yr mostly (I) to limit the effect of ma-
jor changes in the IFS model providing the input data and
(II) because of computational constraints in running such a
large system, archiving and handling the results. Although it
is a relatively short time window to assess the system per-
formance in the detection of extreme events, it represents a
useful experiment to test the overall behavior of the uncali-
brated system after its initial setup, and to help identify the
main components where to address the main future develop-
ment efforts.
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Findings of this analysis show that current ensemble
weather predictions can enable skillful detection of haz-
ardous events with forecast horizon as long as 1 month in
large river basins, providing that the initial conditions are es-
timated correctly. This anticipation depends on the skill of
input weather forecasts and on the delay between the me-
teorological forcing and the hydrological response in the
river basin. Interestingly, the uncertainty range of ensem-
ble weather predictions has a reduced effect when propa-
gated to discharge predictions in large river basins. Indeed,
flood events in major rivers are mostly caused by large-scale
weather systems that are skillfully predicted by state-of-the-
art global forecasting models. In addition, when weather sys-
tems have smaller or similar size as that of the river basin,
spatial shifts of predicted rainfall fields have limited effect
on the resulting streamflow at the outlet.

With regard to the system performance in quantitative
forecasting and early warning, the maximum added value is
shown (i) in medium-size river basins, (ii) in those with rel-
atively fast response and (iii) in basins with no definite trend
in the seasonal runoff. At the lower boundary of the range
of basin size, forecast performance deteriorates quickly with
increasing lead time and with decreasing upstream area. In-
deed, in these river basins, flood events are caused by small-
size weather systems that cannot be properly modeled by
the current system, as the model space–time resolution is
comparatively coarse for their typical hydro-meteorological
dynamics. Consequently, on the basis of the analysis per-
formed in this work, the authors suggest a lower boundary
of 10 000 km2 as the minimum upstream area to consider for
streamflow predictions provided by the model.

In contrast, in the largest world river basins (i.e., basin area
larger than 1 million km2) variations of river discharge occur
at slow rates. Hence the 1- to 10-day streamflow prediction
does not differ substantially from a persistent forecast (i.e.,
the last observed discharge value). On the other hand, results
for these basins show skillful predictions for lead times up
to one month, whereas the highest added value compared to
persistent forecast is provided for lead times of 10–30 days
(see Fig. 7). Besides the slow response, large river basins
have long memory, so even small errors in model compo-
nents such as snow accumulation and soil moisture can sum
up over long time and induce a considerable bias in the water
balance. An accurate estimation of the initial model state is
therefore of crucial importance for the overall system perfor-
mance. This can be achieved by regularly updating the water
balance using the latest input data from ERA-Interim reanal-
ysis, to improve the consistency between ensemble forecasts
and the climatological warning thresholds. In addition, recent
works in data assimilation and correction techniques demon-
strated large potential for improving quantitative streamflow
forecasts at those stations where discharge measurements are
provided in real time (e.g., Bogner and Pappenberger, 2011).

This work shows the system setup and skills in its ini-
tial stage; that is, no calibration has been performed on the

hydrological model behind. This is an important step for
future improvements, particularly for a global system that
therefore includes the full range of climates and hydrolog-
ical regimes of the earth. Results in Figs. 7–8 show the cur-
rent system potential assuming that the simulated climatol-
ogy corresponds to the actual river conditions, that is, for a
perfect model process representation, calibration, and perfect
input forcing. The presented research work shows that there
is substantial room for improving the current model param-
eterization, with particular focus on hydrological regimes in
arid and cold regions. However, errors coming from the hy-
drological modeling and from the weather predictions do not
sum up linearly in the assessment of the overall system per-
formance. As stated in Sect.3.1, the main goal of an early
warning system is to match the percentile rank of each sim-
ulated and observed discharge, rather than optimizing quan-
titative values. In addition, the model capability would also
benefit from improved weather forecasts and possibly from
the use of input data with longer forecast horizon. In this
regard, the use of monthly ECMWF VarEPS forecasts – cur-
rently issued twice per week – is envisaged for future system
applications while, for the remaining five days of the week,
climatological average values could represent a better alter-
native to use to the current assumption of no input flow.

As a final remark, the current system is based on warning
thresholds with fixed probability levels, corresponding to se-
lected return periods. Actual flood risk also depends on the
vulnerability of each area. For instance, in sparsely populated
areas or in regions with prominent flood defense works, the
100 yr discharge may cause limited economic damage. Con-
versely in densely populated areas with poor flood protection
measures, peak discharges with relatively low return periods
can cause severe damage. The coupling of hazard and vulner-
ability maps would be extremely beneficial for this system, in
order to rank warnings according to the potential economic
damage that floods can cause as well as to the corresponding
affected population.
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