1 Supplementary Material

- **Fig. S1.** Measurement of suspended sediment concentration (C_w in kg m⁻³; primary y-axis) for
- Andit Tid on 7 August 1992. Figure shows instance where discharge measurements (q in m³s⁻¹;
- 4 secondary y-axis) were available and where sometimes suspended sediment concentration data
- 5 was not available.

----Sediment Concentration C_w ----Discharge Flow Rate q

- 6
- **Fig. S2.** Measurement of suspended sediment concentration (C_w in kg m⁻³; primary y-axis) for
- 8 Anjeni on 28 July 1993. Figure shows instances where discharge measurements (q in m³s⁻¹;
- 9 secondary y-axis) were available and where sometimes suspended sediment concentration data
- 10 was not available.

---Sediment Concentration C_w ---Discharge Flow Rate q

11

Fig. S3. Measured instantaneous suspended sediment concentration (C_w in kg m⁻³; primary yaxis) and discharge (q in m³s⁻¹; secondary y-axis) for storms in the Andit Tid watershed on 16 July 1992 showing total daily measured flow (left) and total storm measured flow only (right). Using this method, for a storm event of size 23 mm day⁻¹ in the beginning of the kremt rainy

16 season in Andit Tid would change from a daily storm average sediment concentration of 1.5 kg $\frac{1}{2}$

17 m^{-3} (a) to 3.9 kg m^{-3} (b), due to its use of only storm discharge.

---Sediment Concentration C_w ---Discharge Flow Rate q

18

Fig. S4. Measured instantaneous suspended sediment concentration (C_w in kg m⁻³; primary yaxis) and discharge (q in m³s⁻¹; secondary y-axis) for storms in the Andit Tid watershed on 2 September 1992 showing total daily measured flow (left) and total storm measured flow only (right). Similar to Fig. S1, for a precipitation storm event of a comparable size 23 mm day⁻¹ toward the late part of the kremt rainy season, the daily storm average concentration at a daily

time scale would change from 0.5 kg m⁻³ (a) to 2.1 kg m⁻³(b).

----Sediment Concentration C_w ----Discharge Flow Rate q

25

Fig. S1. Measurement of suspended sediment concentration (C_w in kg m⁻³; primary y-axis) for

Andit Tid on 7 August 1992. Figure shows instance where discharge measurements (q in $m^3 s^{-1}$;

secondary y-axis) were available and where sometimes suspended sediment concentration data

secondary y-axis) were available and where sometimes suspended sediment concentration data

was not available.

Fig. S3. Measured instantaneous suspended sediment concentration (C_w in kg m⁻³; primary y-2 axis) and discharge (q in $m^3 s^{-1}$; secondary y-axis) for storms in the Andit Tid watershed on 16 3 July 1992 showing total daily measured flow (left) and total storm measured flow only (right). 4 Using this method, for a storm event of size 23 mm day⁻¹ in the beginning of the kremt rainy 5 season in Andit Tid would change from a daily storm average sediment concentration of 1.5 kg 6 m^{-3} (a) to 3.9 kg m^{-3} (b), due to its use of only storm discharge. 7 3 3 12 12

8

Fig. S4. Measured instantaneous suspended sediment concentration (C_w in kg m⁻³; primary yaxis) and discharge (q in m³s⁻¹; secondary y-axis) for storms in the Andit Tid watershed on 2 September 1992 showing total daily measured flow (left) and total storm measured flow only (right). Similar to Fig. S1, for a precipitation storm event of a comparable size 23 mm day⁻¹ toward the late part of the kremt rainy season, the daily storm average concentration at a daily

14 time scale would change from 0.5 kg m⁻³ (a) to 2.1 kg m⁻³(b).