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Abstract. This paper evaluates the impact of climate change
on sediment yield in the Nam Ou basin located in northern
Laos. Future climate (temperature and precipitation) from
four general circulation models (GCMs) that are found to
perform well in the Mekong region and a regional circula-
tion model (PRECIS) are downscaled using a delta change
approach. The Soil and Water Assessment Tool (SWAT) is
used to assess future changes in sediment flux attributable
to climate change. Results indicate up to 3.0◦C shift in sea-
sonal temperature and 27 % (decrease) to 41 % (increase) in
seasonal precipitation. The largest increase in temperature is
observed in the dry season while the largest change in pre-
cipitation is observed in the wet season. In general, temper-
ature shows increasing trends but changes in precipitation
are not unidirectional and vary depending on the greenhouse
gas emission scenarios (GHGES), climate models, predic-
tion period and season. The simulation results show that the
changes in annual stream discharges are likely to range from
a 17 % decrease to 66 % increase in the future, which will
lead to predicted changes in annual sediment yield ranging
from a 27 % decrease to about 160 % increase. Changes in
intra-annual (monthly) discharge as well as sediment yield
are even greater (−62 to 105 % in discharge and−88 to
243 % in sediment yield). A higher discharge and sediment
flux are expected during the wet seasons, although the high-
est relative changes are observed during the dry months. The

results indicate high uncertainties in the direction and magni-
tude of changes of discharge as well as sediment yields due
to climate change. As the projected climate change impact
on sediment varies remarkably between the different climate
models, the uncertainty should be taken into account in both
sediment management and climate change adaptation.

1 Introduction

Changes in climate have been observed in the past decades,
and more changes have been projected for the coming
decades (IPCC, 2007). Climate models estimate that the
global mean atmospheric temperature is likely to increase by
1.8 to 4.0◦C by the end of the 21st century, depending on var-
ious greenhouse gas emissions scenarios (GHGES) and gen-
eral circulation models (GCMs) (IPCC, 2007). An increase
in global temperature is expected to increase evapotranspi-
ration and to cause precipitation changes (Hu et al., 2012),
which will significantly affect the hydrological regimes of
many river systems (Lu, 2005). Many studies have shown
that climate change could significantly affect streamflow (Ni-
jssen et al., 2001; Menzel and Burger, 2002), soil erosion
rates (Pruski and Nearing, 2002; Michael et al., 2005; O’Neal
et al., 2005) and sediment flux (Xu, 2003; Syvitski et al.,
2005; Zhu et al., 2008). For instance, Zhu et al. (2008) have
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estimated a change in sediment flux from−0.7 to 13.7 % as a
result of changes in rainfall ranging from−0.7 to 17.8 % and
temperature fluctuation of 0.03–2.4◦C in the Longchuan-
jiang catchment of the Upper Yangtze River, China. Simi-
larly, Pan et al. (2011) have reported 1 to 3 %, 3.9 to 11.4 %
and−1.1 to−5.3 % changes in mean annual, wet season and
dry season streamflows respectively and 1.2 to 4.7 %, 3.6 to
15.3 % and−1.3 to−7.7 % changes in mean annual, wet sea-
son and dry season sediment yields respectively for the Song
Cau watershed in northern Vietnam due to the changes in
precipitation and temperature under B1, B2, and A2 climate
change scenarios.

The effects of climate change are studied in an area that
belongs to the Mekong River basin. The Mekong is the
largest river in Southeast Asia and drains a catchment of
795 000 km2 (Mekong River Commission, 2005) with China,
Thailand, Lao PDR, Cambodia, Vietnam and Myanmar as
its riparian countries. Several climate change studies of the
Mekong River basin have projected a likely increase in the
basin’s mean temperature and annual rainfall. For instance,
Eastham et al. (2008) conducted a study to investigate the
likely climate changes in the Mekong basin by the year
2030, and the results show a possible increase in the basin’s
mean temperature by 0.79◦C and a 13.5 % increase in an-
nual precipitation resulting mainly from an increase in the
wet season’s (May to October) precipitation in all the sub-
catchments. Apart from the climate change issue, the basin
is currently facing other challenges too: the population is
growing; urban sectors are expanding; and the economies of
riparian countries are developing rapidly (Keskinen, 2008).
Water development projects, most notably the construction
of large hydropower dams, are important for economic de-
velopment (Mekong River Commission, 2006), and hence
extensive programs and plans are underway to build reser-
voirs in the tributaries as well as the mainstream areas within
the riparian countries (Mekong River Commission, 2008).

The sediment load of a river is sensitive to both climate
and a wide range of human activities within its drainage
basin. These factors could influence sediment mobilization
and transfer through actions like clearing of land, agricultural
development, mineral extraction, urbanization and infras-
tructure development, dam and reservoir construction, and
soil conservation and sediment control programs (Walling,
2008). Although the sediment of the Lower Mekong River
has critical implications for aquatic ecology – fisheries, agri-
culture, water supply and river navigation – studies of the
generation, transportation and deposition of sediment in the
Lower Mekong are sparse (Wang et al., 2011). Previous stud-
ies (Ishidaira et al., 2008; Kiem et al., 2008; Hoanh et al.,
2010; Kingston et al., 2011) of the hydrological impacts of
potential climate changes in the Mekong have generally fo-
cused on flow in the river. The potential future changes in
sediment load should be seen as an important requirement
for sound river basin management (Walling, 2008). While re-
searchers have highlighted the significant potential of climate

change in increasing global soil erosion rates and possibly
leading to increasing amounts of suspended sediment flux in
rivers, the actual response of suspended sediment flux in a
particular place varies because it is also highly affected by
the physical characteristics of the catchment and human ac-
tivities in it (SWCS, 2003; Zhang and Nearing, 2005). In any
case, there is a clear need for improved understanding of the
potential impact of climate change on the sediment load in
the Mekong River basin. Further, the possible changes in the
sediment load need to be evaluated in order to understand
the implications on future reservoir development and to as-
sess the changes’ effects on future management strategies (as
outlined by Walling, 2008).

Reliable predictions of the quantity and rate of runoff, and
sediment transport from land surfaces into streams, rivers
and other water bodies are needed to help decision makers in
developing watershed management plans for better soil and
water conservation measures (Setegn et al., 2010) and to as-
sess potential future implications due to the factors driving
the changes. For this, several available mathematical models
can be used. Of these, the Soil and Water Assessment Tool
(SWAT) has been employed widely to evaluate the impact of
climate change on soil erosion and sediment flux (Zhu et al.,
2008). For example, Li et al. (2011) applied SWAT to evalu-
ate the effect of temperature change on water discharge, and
sediment and nutrient loading in the Lower Pearl River basin,
China. Hanratty and Stefan (1998) and Boorman (2003) have
also described the application of SWAT to evaluate the im-
pact of climate change on sediments in an agricultural water-
shed in Minnesota and in five European catchments.

The main objective of this paper is to evaluate the im-
pact of possible future climate on the sediment yield in the
Nam Ou River basin in Lao PDR – one of the important sub-
basins of the Mekong River basin. Studies by Roberts (2001)
and Mekong River Commission (2003) concluded that Up-
per Mekong contributes 50 % of the total annual sediment
load of the Lower Mekong River. In the Lower Mekong, the
major sediment-contributing source area is located in north-
ern Laos (Lu, 1998), which includes the Nam Ou basin.
Fuchs (2004) ranked different catchments in Lower Mekong
Basin regarding risk of soil erosion, where the Nam Ou basin
is at high risk of soil erosion. Besides, there are extensive
plans to build reservoirs in the tributaries within Lao PDR,
Vietnam and Cambodia. Under the 20-yr hydropower devel-
opment plan in tributaries by Mekong River Commission, a
total of 4661 MW are expected from Lao tributaries. Out of
the above-mentioned power, about 21 % is planned to be gen-
erated from Nam Ou with seven cascade dams with total live
storage capacity of 1659.4 MCM (Hoanh et al., 2010). In this
study, we have attempted to simulate the sediment yield from
the Nam Ou basin and to quantify the implications of climate
change on sediment load using the SWAT model.

The better quantitative understanding of potential changes
due to climate change is complicated by several sources of
uncertainty linked to climate change (Minville et al., 2008).
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The uncertainty depends on both climate data and simu-
lated hydrologic regimes (Prudhomme et al., 2003). Cli-
matic uncertainty is linked to greenhouse gas emission sce-
narios (GHGES) and especially to general circulation mod-
els (GCMs), whose representation of topography and cli-
mate processes is imperfect, in large part due to computa-
tional limitations (Minville et al., 2008). As a number of re-
searchers (e.g., Minville et al., 2008; Kingston et al., 2011)
have pointed out that there is a large uncertainty in the re-
sults of different GCM models, a multi-model approach is
advised. Several authors (e.g Maurer, 2007) have addressed
the future climate uncertainty into hydrology impact stud-
ies by using multiple GHGES and GCMs. In most studies,
GCMs tend to dominate the uncertainties compared to the
downscaling methods or the impact models (Di Baldassarre
et al., 2012; Elshamy et al., 2012). In this study we have used
three GHGES and four GCMs and a RCM (regional climate
model) to provide a range of possible future climatic condi-
tions and their impact on sediment yield of the basin. The
future temperature and precipitation time series are obtained
by applying the change factor or delta change method (Hay
et al., 2000) to climate model (GCMs/RCM) simulated tem-
perature and precipitation. Readers should refer to Sect. 3.2
for details on the reasons behind using the GCM/RCM for
this study.

2 Study area

The Nam Ou River basin, a sub-basin of the Mekong River
basin, is located in the northern part of the Lao People’s
Democratic Republic (Fig. 1). It lies within 21◦17′17′′–
22◦30′40′′ N and 101◦45′47′′–103◦11′57′′ E and covers a to-
tal area of 26 180.50 km2. The topography of the basin is
mostly mountainous, dominated by sharp relief. The eleva-
tion of the basin ranges from 263 to 2035 m above the mean
sea level. The climate in the study area is characterized by
two distinct seasons: a wet season (May to October) and a dry
season (November to April). The mean annual temperature
ranges from 20 to 26◦C. The basin receives about 1700 mm
rainfall annually, of which about 80 % falls during the wet
season. Woods and shrubland are the dominant land cover in
the basin and cover nearly 62 % of the total area. Soil in this
river basin is predominantly sandy clay loam. The soil type
distribution is shown in Fig. 2, and the properties of the soils
are presented in Table 1.

3 Data and methods

3.1 Observed data

Observed daily rainfall data from eleven stations (Luang
Prabang, Xieng Ngeun, Muong Ngoy, Oudomxay, Muong
Namtha, Phongsaly, Dien Bien, Lai Chau, Muong Te, Quynh
Nhai, and Tuan Giao), and climatic data of daily temperature,
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Fig. 1. Location of the study area, stream gauge, rainfall gauges
used for interpolating spatial rainfall and location of planned dams.

wind speed, humidity and solar radiation from three sta-
tions (Luang Prabang, Oudomxay and Phongsaly) are used
for this study. The records for rainfall data are from 1980–
2003, and for other climatic data the period is of 12 yr (1992–
2003). The observed precipitation data at the stations are
interpolated and aggregated to the sub-basin by using the
MQUAD program in the Decision Support Framework of
the Mekong River Commission (MRC). MQUAD is based
on multiquadric analysis developed by Hardy (1971). The
multiquadric analysis is a mathematical surface fitting tech-
nique that has been used extensively for describing geologi-
cal surfaces (Shaw and Lynn, 1972). In MQUAD the surface
is represented as summation of many individual quadric sur-
faces. For observed rainfall data from an irregular network of
rain gauge stations, the multi-quadric analysis is a practica-
ble and efficient method for determining areal rainfall (Shaw
and Lynn, 1972). MQUAD generates estimations of areal
rainfall. It does this by calculating a multiquadratic surface
from available point rain gauge data, such that the surface
passes through all gauge points. The surface is defined for
a user-specified area, consisting of one or more catchments,
and is made up from a grid of estimated point rainfall val-
ues calculated by the program. The point values calculated
are also aggregated to produce a mean rainfall depth for each
catchment. The theory on MQUAD method and its advantage
over other methods are described in more detail by Shaw and
Lynn (1972).

For calibration of the SWAT model, observed rainfall and
temperature data for the period of 1992–2003 are used. The
observed data period used for the delta change approach is
from 1981–2000 for both temperature and precipitation (see
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Table 1.Major soil types and their properties in the Nam Ou basin (the values in the table are based on soil map used in the SWAT model of
the whole Mekong Basin developed by Mekong River Commission).

Available Saturated
Depth of Water Hydraulic

Soil Layer
Composition (%)

Bulk Density Capacity Conductivity
Soil Name (mm) Texture Clay Silt Sand (g cm−3) (mm mm−1) (mm h−1)

ACh 0–300 Sandy Clay Loam 21 24 55 1.46 0.23 6.50
300–600 Sandy Clay Loam 28 23 50 1.46 0.22 3.49

600–1000 Sandy Clay Loam 32 20 48 1.48 0.19 2.56
1000–2000 Sandy Clay Loam 30 18 52 1.44 0.16 2.90

ACh/CMd 0–300 Sandy Clay Loam 21 24 55 1.46 0.23 6.50
300–600 Sandy Clay Loam 28 23 50 1.46 0.22 3.49

600–1000 Sandy Clay Loam 32 20 48 1.48 0.19 2.56
1000–2000 Sandy Clay Loam 30 18 52 1.44 0.16 2.90

ACh-C 0–300 Sandy Clay Loam 21 24 55 1.46 0.23 6.50
300–600 Sandy Clay Loam 28 23 50 1.46 0.22 3.49

600–1000 Sandy Clay Loam 32 20 48 1.48 0.19 2.56
1000–2000 Sandy Clay Loam 30 18 52 1.44 0.16 2.90

ACh-C/ACu-C 0–300 Sandy Clay Loam 21 24 55 1.46 0.23 6.50
300–600 Sandy Clay Loam 28 23 50 1.46 0.22 3.49

600–1000 Sandy Clay Loam 32 20 48 1.48 0.19 2.56
1000–2000 Sandy Clay Loam 30 18 52 1.44 0.16 2.90

ACh-C/LPd 0–300 Sandy Clay Loam 21 24 55 1.46 0.23 6.50
300–600 Sandy Clay Loam 28 23 50 1.46 0.22 3.49

600–1000 Sandy Clay Loam 32 20 48 1.48 0.19 2.56
1000–2000 Sandy Clay Loam 30 18 52 1.44 0.16 2.90

CMd 0–300 Clay Loam 31 33 37 1.23 0.24 3.39
300–600 Clay Loam 30 27 44 1.23 0.22 3.36

600–1000 Sandy Clay Loam 27 26 48 1.24 0.22 4.12
1000–2000 Loam 26 28 46 1.28 0.1 4.47

CMd/ACh 0–300 Clay Loam 31 33 37 1.23 0.24 3.39
300–600 Clay Loam 30 27 44 1.23 0.22 3.36

600–1000 Sandy Clay Loam 27 26 48 1.24 0.22 4.12
1000–2000 Loam 26 28 46 1.28 0.1 4.47

CMe 0–300 Loam 27 34 39 1.49 0.22 4.42
300–600 Loam 26 32 42 1.53 0.2 4.65

600–1000 Loam 26 29 45 1.55 0.19 4.48
1000–2000 Loam 26 33 41 1.49 0.13 4.76

Sect. 3.2.2 for details). While the observed rainfall data were
available for 1980–2003 (covering the entire 20-yr period
used), the temperature data were available for 1992–2003 pe-
riod only. Therefore, daily maximum and minimum tempera-
tures for 1980–1991 are derived from the 0.5-degree gridded
global observed daily maximum and minimum temperature
data (from Adam and Lettenmaier, 2003, as modified in Cen-
tral America per Maurer et al., 2009), which are available for
1950 through 1999 from the Santa Clara University (SCU).
Details of the SCU data can be found in Maurer et al. (2009).
These data are downloaded through the following link:http:
//www.engr.scu.edu/∼emaurer/globaldata/. The statistics of

the observed maximum and minimum monthly temperatures
for three stations of the sub-basin are compared with the
SCU data for the years 1992–1999, as given in Table 2. The
comparison shows a good relationship between the observed
and SCU data, withR2 of 0.8 and above, and almost simi-
lar standard deviation. Table 2 also presents the linear rela-
tionships between the observed and SCU data at various sta-
tions. These relationships (i.e., the correlations obtained from
the monthly temperature data for the period 1992–1999) are
used to derive missing daily temperature data for the stations
from the SCU gridded data for the period 1980–1991. The
monthly values are used, because direct comparison of the
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Fig. 2. Soil type distribution map of the Nam Ou basin. For details
of soil type, refer to Table 1.

daily data did not show good correlation. This also motivated
the sensitivity analysis in order to check if errors in the tem-
perature records have an influence on the simulation results.
The difference between the mean observed temperature (sta-
tion) and the SCU temperature (grid) is particularly high for
the Luang Prabang station (Table 2), i.e., mean absolute dif-
ferences of 3.7◦C (12 % of the observed) in the maximum
temperature and 2.8◦C (14 % of the observed) in the max-
imum temperature. Overall the differences are well within
±15 %. For remaining stations the differences are within
±5 % (Oudomxay) and±10 % (Phongsaly). A sensitivity
analysis of the discharge and sediment yield simulations (for
the period 1980–1991) with respect to the change in tem-
perature is carried out at all three stations applying respec-
tive percent change in the daily temperature derived from the
SCU data. The results showed nominal impact of the applied
errors on the temperature to the discharge as well as the sed-
iment yield (Fig. 3). In general, the impact on the sediment
yield is relatively larger than on the discharge. This might be
due to the plant growth module of SWAT where plant devel-
opment is based on accumulated heat units. In accumulated
head units, temperature is the most important factor govern-
ing the plant growth. In general higher temperature (within
the maximum favorable limit) gives rise to the rapid growth
of plant resulting in less erosion. On the other hand, decrease
in temperature inhibits plant growth resulting in more ero-
sion.

The meteorological data, daily discharge (for 1992–2003)
and suspended sediment concentration (SSC) data (for 1996–
2002) from the gauging station at Muong Ngoy in the study
area are obtained from the MRC Secretariat, Phnom Penh,
Cambodia. Unlike discharge, measurements of SSC were
sporadic, ranging from 6 to 56 measurements per year.
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Fig. 3. Sensitivity of the discharge (left) and sediment yield (right)
simulations on Tmax and Tmin for 1980–1991.

3.2 Future climate simulations

3.2.1 General circulation models

For this study four GCMs are selected on the basis of their
performance in the simulation of precipitation in the 20th
century in the Southeast Asia region as found in the liter-
ature (Easthma et al., 2008, and Cai et al., 2009). For the
selected GCMs all available scenarios are taken (Table 3),
which is in all cases the A2 (870 ppm of GHG at the end
of 21st century), A1b (GHG of 720 ppm stabilization) and
B1 scenario (GHG of 550 ppm stabilization) (IPCC, 2007).
The selected GCMs are downloaded from the WCRP CMIP3
multi-model database data portal, which is available athttps:
//esg.llnl.gov.8433/home/publicHomePage.do. Monthly av-
erage surface temperature and monthly total precipitation
output covering the 20th and 21st century are used for the
downscaling. The models have various spatial resolutions,
varying between 1.4◦ to about 3.75◦ grid cells.

3.2.2 Regional climate model outputs

The RCM used in this study is PRECIS, developed by the
Hadley Centre of the UK Meteorological Office. The PRE-
CIS RCM is based on the atmospheric components of the
ECHAM4 GCM from the Max Planck Institute for Mete-
orology, Germany. The PRECIS data are produced by the
Southeast Asian System for Analysis, Research and Train-
ing (START) Regional Center for 2225 grid cells cover-
ing the entire Mekong River basin with the resolution of
0.2× 0.2 degree (approximately 22× 22 km2). These data,
comprising two data sets for ECHAM4 SRES A2 and B2, in-
clude daily precipitation and maximum and minimum daily
temperatures. The PRECIS RCM data over the periods of
1971–2000 (present) and 2011–2070 (future), for both A2
and B2 scenarios, are obtained from the Southeast Asian
START Regional Center websitehttp://www.start.or.th/. The
specific boundary for the Nam Ou basin lies between lat-
itudes 19.46◦–22.77◦ N and longitudes 100.72◦–103.32◦ E.
The RCM with two scenarios (A2 and B2) is used for this
study, because it is being used by Mekong River Commis-
sion for climate change studies and this RCM covers the en-
tire Mekong River basin.

www.hydrol-earth-syst-sci.net/17/1/2013/ Hydrol. Earth Syst. Sci., 17, 1–20, 2013
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Table 2. Comparison of and relationship between observed and Santa Clara University (SCU) gridded observed monthly temperature data
for the 1992–1999 period.

Standard
Mean Standard Deviation

Relationship between monthly observed
Station R2 Error Observed Santa Clara Observed Santa Clara and Santa Clara gridded observed data

Tmax (◦C)

Luang Prabang 0.8 1.3 31.3 27.6 3.0 2.3 Obs.Tmax= 1.1596 SCUTmax− 0.6673
Oudomxay 0.9 0.9 28.8 27.3 2.6 2.5 Obs.Tmax= 0.9657 SCUTmax+ 2.4270
Phongsaly 0.8 1.3 23.7 26.1 3.0 2.9 Obs.Tmax= 0.9597 SCUTmax− 1.4027

Tmin (◦C)

Luang Prabang 0.8 1.7 20.0 17.2 3.9 3.7 Obs.Tmin = 0.9679 SCUTmin + 3.3511
Oudomxay 0.9 1.1 17.0 17.0 4.7 3.9 Obs.Tmin = 1.1793 SCUTmin − 3.0752
Phongsaly 0.8 1.3 16.2 16.2 2.9 4.1 Obs.Tmin = 0.6526 SCUTmin + 5.549

Table 3.GCMs downscaled for this study.

GCM Emission scenario Spatial resolution

CCCMA CGCM3.1 A2, A1b, B1 48× 96 cells, 3.75◦ × 3.75◦

CNRM-CM3 A2, A1b, B1 64× 128 cells, 2.8◦ × 2.8◦

MPI ECHAM5 A2, A1b, B1 96× 192 cells, 1.9◦ × 1.9◦

NCAR CCSM3 A2, A1b, B1 128× 256 cells, 1.4◦ × 1.4◦

Note: CCCMA CGCM 3.1 stands for Canadian Centre for Climate Modelling
and Analysis Coupled Global Climate Model, version 3.1; CNRM-CM3 stands
for Centre National de Recherches Meteorologiques Climate Model, version 3;
MPI ECHAM stands for Max Planck Institute for Meteorology fifth-generation
atmospheric general circulation model and NCAR CCSM3 stands for National
Center for Atmospheric Research Community Climate System Model, version
3.0 (source:http://www.ipcc-data.org/ar4/gcmdata.html, last accessed on
13 November 2012).

Several statistical downscaling techniques have been de-
veloped to translate large-scale GCM/RCM output into finer
resolution (Fowler et al., 2007). In this study, the simplest
method – change factor or delta change approach – has been
applied. The change factor or delta change method has been
used in many climate change impact studies earlier (Hay et
al., 2000; Diaz-Nieto and Wilby, 2005; Akhtar et al., 2008;
Minville et al., 2008; Chen et al., 2011). Basically, this ap-
proach modifies the observed daily temperature by adding
the difference between the monthly future and historic tem-
peratures as simulated by the GCM or RCM for each time pe-
riod. Similarly, the observed historical time series of precipi-
tation is modified by multiplying the ratio of the monthly fu-
ture and historic precipitations simulated by a GCM or RCM
for each time period. The observational database used for this
approach covers the period of 1981–2000 for both tempera-
ture and precipitation in this study.

3.3 SWAT model description

SWAT is a river basin- or watershed-scale, semi-distributed,
process-based, and continuous time hydrologic and water
quality model initially developed by Arnold et al. (1993)
and designed to evaluate the effect of land use management
on water, sedimentation, and agricultural chemical yields in

large complex watersheds that are heterogeneous in land use,
soil and management conditions over a long period of time
(Arnold et al., 1998; Neitsch et al., 2005). SWAT subdi-
vides a watershed into different sub-basins connected by a
stream network, and further into hydrological response units
(HRUs). HRUs are the lumped land areas within the sub-
basin that are comprised of unique land cover, soil, slope and
management combinations. SWAT simulates the hydrology
of the watershed in two phases. The land phase of the hy-
drologic cycle controls the amount of water, sediment, nutri-
ent and pesticide loadings to the main channel in each sub-
basin. The water or routing phase of the hydrologic cycle
controls the movement of water, sediment, nutrients and pes-
ticide loadings through the channel network of the watershed
into the outlet.

SWAT estimates the surface runoff volume from HRUs
using the SCS (Soil Conservation Service) curve number
method (USDA-SCS, 1972) or the Green and Ampt infil-
tration method (Green and Ampt, 1911). In this study, the
SCS curve number method has been used, which is a func-
tion of the soil’s permeability, land use and antecedent soil
water conditions as defined in SWAT. SCS defines three an-
tecedent moisture conditions: dryness (wilting point), aver-
age moisture, and wetness (field capacity). SWAT calculates
the peak runoff rate with a modified rational method. The
model offers three options for estimating potential evapotran-
spiration: the Hargreaves (Hargreaves et al., 1985), Priestley–
Taylor (Priestley and Taylor, 1972), and Penman–Monteith
(Monteith, 1965) methods. The Penman–Monteith method
has been used in this study. The model calculates the sur-
face erosion within each HRU with the modified universal
soil loss equation (MUSCLE) (Williams, 1975). The MUS-
CLE is

sed= 11.8×
(
Qsurf× qpeak× areahru

)0.56

×KUSLE× CUSLE× PUSLE× LSUSLE× CFRG (1)

where sed is the sediment yield (metric t day−1), Qsurf is the
surface runoff volume (mm ha−1 day−1), qpeak is the peak
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runoff rate (m3 s−1), areahru is the area of the HRU (ha),
KUSLE is the USLE (Universal Soil Loss Equation) soil
erodibility factor,CUSLE is the USLE cover and management
factor,PUSLE is the USLE support practice factor, LSUSLE is
the USLE topographic factor and CFRG is the coarse frag-
ment factor. These parameters are estimated in calibration.

SWAT uses Manning’s equation to define flow rate and
velocity. Water is routed through the channel network
using the variable storage routing method developed by
Williams (1969) or the Muskingum routing methods, which
are variations of the kinematic wave model. For this study,
the variable storage routing method is used. The sediment-
routing model (Arnold et al., 1995) that simulates sediment
transport in the channel network consists of two components
operating simultaneously: deposition and degradation. The
amount of deposition and degradation is based on the maxi-
mum concentration of sediment in the reach and the concen-
tration of sediment in the reach at the beginning of the time
step. The final amount of sediment in the reach is determined
as

sedch = sedch,i − seddep+ seddeg (2)

where sedch is the amount of suspended sediment in the reach
(metric t day−1), sedch,i is the amount of suspended sedi-
ment in the reach at the beginning of the time period (metric
t day−1), seddep is the amount of sediment deposited in the
reach segment (metric t day−1), and seddeg is the amount of
sediment re-entrained in the reach segment (metric t day−1).

The amount of sediment transported out of the reach is
calculated as

sedout = sedch×
Vout

Vch
(3)

where sedout is the amount of sediment transported out of
the reach (metric t day−1), sedch is the amount of suspended
sediment in the reach (metric t day−1), Vout is the volume
of outflow during the time step (m3 day−1), andVch is the
volume of water in the reach segment (m3 day−1).

SWAT simulates plant growth based on daily accumulated
heat units where temperature is one of the most important
factors governing plant growth. Each plant has its own tem-
perature range, i.e., its minimum, optimum and maximum for
growth. For any plant, a minimum or base temperature must
be reached before any growth will take place. Above the base
temperature, the higher the temperature the more rapid is the
growth rate of the plant. Once the optimum temperature is
exceeded, the growth rate will begin to slow until a maxi-
mum temperature is reached, at which growth ceases. Ac-
tual growth varies from potential growth due to extreme tem-
peratures, water deficiencies and nutrient deficiencies. Plant
growth may be reduced due to extreme temperature, insuf-
ficient water, nitrogen or phosphorus. The amount of stress
for each of these four parameters is calculated by SWAT on a
daily basis. The detailed descriptions of the different model
components can be found in Neitsch et al. (2005).

The main input data for the SWAT model consist of
daily precipitation, maximum and minimum air tempera-
tures, wind speed, humidity, solar radiation, and spatial data
on digital elevation model (DEM), land use and soil. River
discharge and suspended sediment yield are used for calibra-
tion and validation purposes. The input datasets for the model
are obtained from the MRC Secretariat, Phnom Penh, Cam-
bodia. In this study, a 250-m resolution DEM is used to de-
lineate watershed and sub-basin boundaries, and to calculate
sub-basin average slopes and to outline the stream network.
The DEM used for this study is based on interpolated topo-
graphic maps. Land use specifications, soil and slope layers
are used to create HRUs within each sub-basin area.

3.3.1 Model calibration and validation

The Nam Ou SWAT model is calibrated and validated for
streamflow but only calibrated for sediment yield. The peri-
ods 1992–1999 and 2000–2003 are used for streamflow cali-
bration and validation respectively, including 2 yr as a warm-
up period. The warm-up period allows the model to cycle
multiple times so as to minimize the effect of the user’s esti-
mates of initial state variables such as soil and water content
and surface residue (Zhang et al., 2007). For this study, the
sediment load is only calibrated for 1996–2002 due to the
sporadic nature of data (only 176 measurements in 7 yr). For
streamflow, the calibration is carried out both manually and
automatically, while for sediment only manual calibration is
performed. The SWAT-CUP software (Abbaspour, 2008) is
used for the automatic calibration of the SWAT model. The
sequential uncertainty fitting (SUFI-2) algorithm (Abbaspour
et al., 2004, 2007) is used for the parameter optimization.
SUFI-2 enables sensitivity analysis, calibration, validation,
and uncertainty analysis of SWAT models. A number of suc-
cessful applications of the method have been reported in the
literature including Masih et al. (2011a, b). This procedure
is known to produce comparable results with widely used
auto-calibration methods (Yang et al., 2008). In SUFI-2, in
order to run an automatic calibration, the parameters that are
to be calibrated (most sensitive ones) and their initial values
and ranges need to be specified. In order to specify more re-
alistic initial values and ranges to the parameters, a manual
calibration is used. So, the calibration procedure applied in
this study is like a pre-calibration or rough calibration man-
ually followed by further refinement through the SUFI-2 au-
tomatic procedure. For the case of sediment, the automatic
calibration could not improve the overall performance ob-
tained by the manual calibration. In SUFI-2 there are two
ways to change parameter values during calibration: one by
directly changing the absolute value of the parameter, and
another by changing the parameter value relative to the ini-
tial value specified for the parameter. Readers are referred
to Abbaspour et al. (2007) for the details of SUFI-2 proce-
dure. However the short description on algorithm of SUFI-2
is presented in Sect. 3.3.2.
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The calibrations for the stream flow and sediment yield are
carried out separately, because in SWAT it is common prac-
tice to calibrate the stream flow before calibrating for sedi-
ment yield. Some of the parameters (e.g., the curve number)
of stream flow also influence the sediment yield. Therefore,
while calibrating sediment, the parameters that influence the
sediment yield but not the stream flow are calibrated. It is
worth mentioning here that for model calibration and valida-
tion interpolated observed rainfall is used.

3.3.2 Model evaluation and uncertainty analysis

The model performance is evaluated using the coefficient of
determinant (R2), the Nash–Sutcliffe (NS) measure (Nash
and Sutcliffe, 1970) and percent bias (PBIAS). Several re-
searchers (such as Santhi et al., 2001; Benaman et al., 2005)
have suggested that the prediction efficiency of a calibrated
model can be judged as satisfactory if NS andR2 values are
> 0.6 for mean behavior (Setegn et al., 2010). A PBIAS value
< 15 % is considered to be a satisfactory performance rating
of a calibrated model by a number of researchers (Santhi et
al., 2001; Van Liew et al., 2007).

SUFI-2 is used for the uncertainty analysis of the SWAT
model. In SUFI-2, parameter uncertainty accounts for all
sources of uncertainties such as uncertainty in driving vari-
ables (e.g., rainfall), conceptual model, parameters, and mea-
sured data. Uncertainty of input parameters is depicted as
uniform distributions, while model output uncertainty is
quantified by the 95 % prediction uncertainty (95PPU) cal-
culated at the 2.5 % and 97.5 % levels of the cumulative dis-
tribution of output variables obtained through Latin hyper-
cube sampling (Abbaspour et al., 2007). SUFI-2 starts by as-
suming a large parameter uncertainty, so that the measured
data initially fall within the 95PPU, then decrease this un-
certainty in steps until two rules are satisfied: (1) the 95PPU
band brackets “most of the observations”, and (2) the average
distance between the upper (at 97.5 % level) and the lower (at
2.5 % level) parts of the 95PPU is “small” (Abbaspour et al.,
2007). Similarly to GLUE, SUFI-2 represents uncertainties
of all sources through parameter uncertainty in the hydrolog-
ical model (Yang et al., 2008). A short step-by-step descrip-
tion of SUFI-2 optimizing algorithm as described in Yang et
al. (2008) is as follows:

Step 1. An objective functiong(b) is defined. A number
of alternative objective functions are available, e.g., the
sum of squares,R2, NS, etc. In this study we chose the
NS coefficient (maximize) for the objective function.

Step 2. Meaningful absolute minimum and maximum
ranges [babsmin, babsmax] for the parameters being opti-
mized are defined.

Step 3. Latin hypercube sampling is carried out in
the hypercube [bmin, bmax] (initially set to [babsmin,
babsmax]), the corresponding objective functions are

evaluated, and the sensitivity matrixJ and the param-
eter covariance matrixC are calculated according to

Jij =
1gi

1bj

, i = 1, ...,Cn
2,j = 1, ...,m, (4)

C = S2
g(JT J)−1 (5)

whereS2
g is the variance of the objective function values

resulting from them model runs.

Step 4. A 95 % predictive interval of a parameterbj is
computed as follows:

bj, lower = b∗

j − tv, 0.025

√
Cjj ,bj, upper

= b∗

j + tv, 0.025

√
Cjj (6)

whereb∗

j is the parameterbj for the best estimates (i.e.,
parameters that produce the optimal objective function),
andm is the degrees of freedom (m − n).

Step 5. The 95PPU is calculated. And then the two
indices, i.e., thep-factor (the percent of observations
bracketed by the 95PPU) and ther-factor, are calcu-
lated:

d̄x =
1

k

k∑
t=1

(XU − XL)l (7)

r-factor=
d̄x

σx

(8)

wheredx is the average distance between the upper and
lower 95PPU,XU andXL represent the upper and lower
boundaries of the 95PPU, andσx is the standard devia-
tion of the measured data.

The goodness of fit and the degree to which the cali-
brated model accounts for the uncertainties are assessed by
the closeness of thep-factor to 100 % (i.e., all observations
falling inside the prediction uncertainty band) while having
the narrowest band (r-factor→ 0). As all uncertainties in the
conceptual model and inputs are reflected in the measure-
ments, bracketing most of the measured data in the prediction
95PPU ensures that all uncertainties are depicted by the pa-
rameter uncertainties. If the two factors have satisfactory val-
ues, then a uniform distribution in the parameter hypercube
[bmin,bmax] is interpreted as the posterior parameter distribu-
tion. Otherwise, [bmin,bmax] is updated according to

b′

j,min = bj,lower− max

(
(bj,lower−bj,min)

2
,
(bj,max− bj,upper)

2

)
,

b′

j,max = bj,upper+ max

(
(bj,lower− bj,min)

2
,
(bj,max− bj,upper)

2

)
, (9)

and another iteration needs to be performed.
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Fig. 4a. Projected changes in seasonal temperature and precipita-
tion for all climate models (GCM/RCM) and GHGES for the period
2011–2040.

4 Results and discussion

4.1 Changes in climate

4.1.1 Seasonal

Projected changes in the seasonal temperature and precip-
itation are presented in Fig. 4a and b for all climate projec-
tions and two time periods (2011–2040 and 2041–2070). The
scatter plots indicate that all projections show an increase in
temperature for all chosen periods. The projected seasonal
temperature shift varies from 0–2.07◦C in 2011–2040 to be-
tween 1.26–3.00◦C in 2041–2070, depending on the season,
GHGES and climate models. In both prediction periods, it
can be noted that the temperature increase is larger in the
dry season (November–April) than in the wet season (May–
October). The scatter plot also indicates that the inter-model
variability is larger in the dry season.

In case of precipitation, for the wet season (May–October),
the GHGES and climate model projections indicate an in-
crease of 41 % for 2011–2040 and 34 % for 2041–2070 pe-
riod. However, a few projections suggest a decreasing trend
by as much as 4 % for 2011–2040 and 8 % for 2041–2070
period. Similar trends are also projected for the dry seasonal
changes. For each time period, the maximum increase in pre-
cipitation is projected for the wet season (34–41 %) while
the maximum decrease in precipitation is projected for the
dry season (13–27 %). The scatter plots also indicate that
for wet season inter-model variability decreases with each
time period while for dry season it increases, as shown by
the changes in scatter in Fig. 4a and b. The results also
clearly indicate that, in general, the variability between cli-
mate models for a given scenario is larger than the variability
between GHGES for that climate model, which is also noted
by Minville et al. (2008).

In general, all projections show an increase in seasonal
temperature over the basin. In contrast, projected changes in
precipitation are not unidirectional and vary depending on
the GHGES, climate models, and time period and on the sea-
son.
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Fig. 4b. Projected changes in seasonal temperature and precipita-
tion for all climate models (GCM/RCM) and GHGES for the period
2041–2070.

4.1.2 Intra-annual variability

Figure 5 presents the annual average temperature and precip-
itation cycle for all climate projections for the 2011–2040,
2041–2070 periods, and for the 1971–2000 base period. It
can be seen from the figure that all GHGES and climate
model projections indicate an increase in the monthly tem-
perature for all chosen periods except for MPI ECHAM-
5 GCM where, for 2011–2040 , the temperatures of a few
months (January, February and November) are projected
to decrease ranging from 0.4 to 0.6◦C depending upon
GHGES. For monthly temperature the change ranges be-
tween−0.6–2.5◦C in 2011–2040 and 0.4–3.4◦C in 2041–
2070 depending on the GHGES and climate models. This
indicates that the variability of change in monthly temper-
ature is greater than the seasonal changes. A variation be-
tween GHGES and climate models in the monthly patterns
of temperature changes is also observed. For example, in
2011–2040 period under CNRM-CM3 B1 scenario, the max-
imum change in temperature is projected in May and mini-
mum change in temperature is projected in July. In contrast,
under A1B scenario of CNRM-CM3 GCM, the maximum
and minimum changes in the temperature are projected for
June and September respectively. Also under MPI ECHAM-
5 A1b scenario, the minimum change is projected for Jan-
uary. In contrast, the maximum change is projected for Jan-
uary in NCAR CCSM3 A1b scenario.

Unlike temperature, the changes in monthly precipitation
are not unidirectional for all GHGES, climate models and
time period. However, similar to temperature the variation
between GHGES and climate models in the monthly patterns
of precipitation changes is also observed. The intra-annual
patterns of changes range from unimodal (e.g., in 2011–
2040 period precipitation decrease in December–February
and increases in March–November: CGCM 3.1 A1b sce-
nario) to multi-modal (e.g., in 2041–2070 period precipita-
tion decrease in January, February and March and increases
in February–April, June–October and December: CGCM
3.1 A1b scenario). For monthly precipitation the changes
ranges between−71–102 % in 2011–2040 and−80–112 %
in 2041–2070 depending on the GHGES and climate models.
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10 B. Shrestha et al.: A case study of the Nam Ou basin, Lao PDR

  
 

 

  
 

0

5

10

15

20

25

30

J F M A M J J A S O N D

M
ea

n
 t

em
p

er
at

u
re

  
(o

C
) 

2011-2040 

0

5

10

15

20

25

30

J F M A M J J A S O N D
M

ea
n
 t

em
p

er
at

u
re

 (
o
C

) 

2041-2070 Base Period

 CGCM3.1 A2

CGCM3.1 A1b

CGCM3.1 B1

CNRM CM3 A2

CNRM CM3 A1b

CNRM CM3 B1

MPI ECHAM5 A2

MPI ECHAM5 A1b

MPI ECHAM5 B1

NCAR CCSM3 A2

NCAR CCSM3 A1b

NCAR CCSM3 B1

PRECIS RCM A2

PRECIS RCM B2

0

100

200

300

400

500

600

J F M A M J J A S O N D

P
re

ci
p

it
at

io
n
 (

m
m

) 

2011-2040 

0

100

200

300

400

500

600

J F M A M J J A S O N D

P
re

ci
p

it
at

io
n
 (

m
m

/m
o

n
th

) 

2041-2070 

Fig. 5. Monthly temperature and precipitation averaged for all cli-
mate projections for the 2011–2040, 2041–2070 periods and for the
base period 1971–2000 for the Nam Ou basin.

The change in peak rainfall is also noted for CGCM 3.1, and
NCAR CCSM3 GCMs and PRECIS RCM depending upon
GHGES and time period. For the above-mentioned scenar-
ios, the peak shifted from July to August (Fig. 5).

4.1.3 Uncertainty of future average temperature and
annual precipitation data

Figure 6 shows probability density functions (PDFs) of the
annual temperature and precipitation, which are built to show
the uncertainties related to GHGES and climate models. Nor-
mal distribution is fitted to construct the probability density
functions (PDFs). It is assumed that each climate projection
had an equal probability of occurrence. The PDFs display
the range of possible values for each variable and for each
time period. The total area under each PDF is equal to 1. For
example, for annual precipitation data representative of the
control period (bold black line), expected values are between
600 and 2900 mm yr−1. The median is 1699 mm yr−1.

The PDFs indicate that, for both variables, uncertainty in-
creases with time. PDFs also show that all climate mod-
els propose an increase in temperature. The magnitude of
this change varies in between climate models. The climate
change projections from MPI ECHAM 5 show the smallest
temperature increases, of about 0.36–1.94◦C for the 2011–
2040 and 2041–2070 periods, while the CGCM 3.1 and
NCAR CCSM3 models project an increase of 1.04–2.46◦C
for the same periods. The PRECIS RCM, on the other hand,
projected an increase of 0.76–1.97◦C for 2011–2040 and
2041–2070. The climate models behave differently for an-
nual precipitation compared to temperature. The PDFs show
that some GCMs (CNRM-CM3, MPI ECHAM 5 and NCAR
CCSM3) predicted a decrease in precipitation depending on
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Fig. 6. Probability density functions of annual mean temperature
and annual precipitation data for all climate projections, and for the
1971–2000 as base period. PDFs are presented for the 2011–2040
and 2041–2070 time periods.

the time period. The magnitude of increase varies from one
model to another ranging from 61.7–623.4 mm yr−1 in 2011–
2040 and 24.1–570.7 mm yr−1 in 2041–2070. CGCM 3.1
GCM predicts the largest increase (32.9–35.9 %) in annual
precipitation for both periods. On the other hand, the magni-
tude in decrease varies between 77.5–190.4 mm yr−1 for the
period of 2011–2070. CNRM-CM3 predicts the largest de-
crease (6.1–11 %) in annual precipitation. The PDFs show
that future average temperatures and precipitation projected
by the different climate models will not be completely dis-
tinct of the current natural variability by 2070, as the spread
of PDFs of the control period and in future is similar ex-
cept for CGCM3.1. The spread of the PDFs based on the
CGCM3.1 is relatively wider indicating larger variability.

4.2 Model calibration and validation

Table 4 presents the parameters that are used for the model
calibration with their calibrated values. The most sensi-
tive parameters for flow predictions are found to be the
base flow alpha factor (ALPHABF), recharge to deep
aquifer (RCHRGDP), curve number (CN2), channel effec-
tive hydraulic conductivity (CHK2), available water capac-
ity (SOL AWC), Manning’s n-value for the main channel
(CH N2), surface runoff lag time (SURLAG), soil evapora-
tion compensation factor (ESCO), saturated hydraulic con-
ductivity (SOL K), groundwater delay time (GWDELAY)
and canopy storage (CANMX). The most sensitive param-
eters for sediment simulation are USLE land cover factor
for wood and shrubland (WSEV), the linear re-entrainment
parameter for channel sediment routing (SPCON), channel
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Fig. 7. Daily rainfall and comparison of measured and simulated
daily flows for(a) calibration and(b) validation periods.

erodibility factor (ChCOV1) and channel cover factor
(Ch COV2).

Figure 7a and b compare simulated daily streamflow with
observed data for the calibration and validation periods re-
spectively. The simulated daily flow matches the observed
values for the calibration period withR2

= 0.64, NS = 0.64
and PBIAS = 5.12 %. For the validation period, the simulated
and observed daily flows showed acceptable agreement as
indicated by the values ofR2, NS and PBIAS being 0.74,
0.72 and−14.25 % respectively. The results indicate that the
Nam Ou SWAT model simulates the streamflow with reason-
able accuracy. The observed total runoff volumes are cap-
tured well. The model is able to replicate the base flow well
for both the calibration and validation periods. The cumula-
tive plots of streamflow show that the model under predicted
stream flow during calibration period while it overpredicted
flow during the validation period (Fig. 8a and b), which is
also reflected by the PBIAS value for both calibration and
validation periods. Also, the model is not able to capture
peak flows except for 1998 and 1999 during the calibration
period and for 2000 and 2003 during the validation period.
This mismatch in peak flows might be attributed to precipi-
tation data and also errors in the observed streamflow data,
especially during high flows. The SWAT modeling study in
the Mekong River basin carried out by Rossi et al. (2009)
had also reported that errors in gauging stations can attribute
to less reliable matching of hydrographs, especially at sites
along the Mekong’s tributaries. The errors in gauging sta-
tions vary across the flow range but are more pronounced at
extreme low flows due to recording errors and at high flows
due to rating errors (Rossi et al., 2009). These behaviors
could also demonstrate some floodplain features/processes
that are not well characterized, i.e., consecutive flood-prone

 

 

      

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1994 1995 1996 1997 1998 1999

C
u
m

u
la

ti
v
e 

d
is

ch
ar

g
e 

 (
1

0
6
 m

3
) 

Observed Simulateda 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

2000 2001 2002 2003

C
u
m

u
la

ti
v
e 

d
is

ch
ar

g
e 

 (
1

0
6
 m

3
) 

Observed Simulatedb 

Fig. 8. Comparison of measured and simulated cumulative daily
flows for (a) calibration and(b) validation periods.

areas activated, oxbows or even local occupations, which ac-
celerate flows.

Figure 9 compares observed and simulated sediment
yields. TheR2 and NS values are less than 0.6. However,
the PBIAS value of 4.18 % indicates a good volume balance
between simulated and observed sediment loads. The lower
values of NS andR2 may be attributed to limitations in terms
of the continuity and length of the records. Potter and Hi-
att (2009) also reported lowerR2 and NS values for the daily
sediment calibration of the Laguna de Santa Rosa watershed
in Northern California for a similar reason – a limited num-
ber of sediment samples for calibration. This lack also high-
lights the need for further investigation in the quality of the
observed sediment data reflected from the sampling process
and the method of sediment analysis. Any attempt to assess
changes in the sediment load of a river system is largely de-
pendent upon the number and the location of the measur-
ing stations, the amount of available data, reliability, accu-
racy, the temporal resolution of the data and the length of the
record (Walling, 2008).

Figure 9 also shows that the model is not able to capture
peak sediment events (sediments during the wet season). This
underprediction of peak events can be due to an uncertainty
in the soil erosion model used in SWAT. SWAT simulates
erosion based on the MUSLE, which is originally developed
to estimate annual soil loss from agricultural fields. Also,
the topographic factor (LS) derived from DEM may not be
accurate due to inaccuracies in DEM (Babel et al., 2011).
Jackson et al. (1986) and Johnson et al. (1986) reported that
the MUSLE tends to overpredict sediment yields for small
events and underpredict the same for large events. The stud-
ied watershed is located in a tropical climate zone with in-
tense rainfall and heavy storms, which have more potential to
erode surface soil, but the MUSLE does not account for such
factors (as is also mentioned by Phomcha et al., 2011). The
high sediment yields during the wet season may be caused by
effects that cannot be captured by the model, e.g., heavy (lo-
cal) rainfall-induced landslides, river bank collapses or hu-
man activities. In general, the model is not able to capture the
extremes as good as the mean values during the wet season.
However, the model is able to capture the average system
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Table 4.Calibrated values of adjusted parameters.

Fitted
parameter

Variable Parameter name Description and units value

Flow v ALPHA BF.gwa Baseflow alpha factor (–) 0.81
v RCHRGDP.gw Deep aquifer percolation fraction (–) 0.085
r CN2.mgtb Curve number (–) 0.0189
v CH K2.rte Channel effective hydraulic conductivity (mm h−1) 3.15
r SOL AWC.sol Available water capacity (mm mm−1 soil) 0.261
v CH N2.rtec Manning’s n-value for main channel (–) 0.19
v SURLAG.hru Surface runoff lag (days) 11.69
v ESCO.hru Soil evaporation compensation factor (–) 0.83
r SOL K.sol Saturated hydraulic conductivity (mm h−1) 0.607
v GW DELAY.gw Groundwater delay time (days) 51.79
v CANMX.hru Canopy storage (mm) 2.04

Sediment vUsle C (WSEV) USLE land cover factor (–) 0.05
v SPCON.bsn Linear re-entrainment parameter for channel sediment routing (–) 0.0025
v Ch COV1.rte Channel erodibility factor (–) 0.50
v Ch COV2.rte Channel cover factor (–) 0.18

Note:a The extension (e.g., .gw) refers to the SWAT input file where the parameter occurs;b the qualifier (r) refers to relative change in the parameter
where the value from the SWAT database is multiplied by 1 plus a factor in the given range;c the qualifier (v) refers to the substitution of a parameter
by a value from the given range; and WSEV means wood shrub evergreen vegetation.

behavior reasonably well and this is most relevant for this
study. This is expressed in the parameter PBIAS.

The p-factor, which is the percentage of observations
bracketed by 95PPU, brackets 72 % of the observations and
r-factor equal to 0.49 for daily discharge, while for sediment
yields thep-factor andr-factor are 83 % and 0.68 respec-
tively. Figures 10 and 11 show the uncertainty analysis re-
sults for monthly discharge and sediment yield of the study
basin respectively. The number of days used for calculat-
ing the observed average sediment yield varied from 2 to 21
because of the sporadic nature of sediment measurements.
As illustrated, a majority of the observed data are inside or
very close to the predicted bands, thereby indicating good
results. However, some peak events, mostly during the wet
season (May–October), are outside the predicted bands for
both discharge and sediment yields, and this implies the un-
derestimation of these events by the model. For most cases,
the uncertainty interval at the peaks is large. In general, the
model performance, as represented by thep-factor and the
r-factor, is reasonable. Large uncertainties in some events
may also come from measurement errors associated with the
system input (forcing) and output or due to inadequate cli-
mate or land use representations, as outlined by Schuol et
al. (2008). This might also be due to the conceptual model
uncertainties, because each hydrological model suffers from
conceptual model uncertainties and this is particularly true
for large watershed models where many processes (natural or
man-made) may not be adequately represented in the model
(Schuol et al., 2008; Vrugt et al., 2005; Uhlenbrook et al.,
1999). In SUFI-2, the 95PPUs are the combined outcome of
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Fig. 9. Comparison of measured and simulated daily sediment
yields for the calibration period.

the uncertainties in the conceptual model, parameters and in-
put data. Nevertheless, these uncertainty sources are not sep-
arately evaluated but attributed as total model uncertainty,
which is expressed through two parameters:p-factor and
r-factor. Overall, the results above indicate that the SWAT
model can be applied for a reasonable assessment of the cli-
mate change impact on river discharge and sediment yield in
the basin.

4.3 Impact of climate change on discharge

For annual flows, the only simulation that projects a decrease
comes from the CNRM-CM3 model, i.e., from the one that
predicts a decrease in precipitation (Figs. 4 and 5) (Table 5).
This decrease is projected for both time periods and varies
from 6.6 % to 17.1 %, depending on the particular scenario
and time period. For the other models, increases varying from
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Fig. 10.Uncertainty analysis results of streamflow for the calibra-
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7.4 % to 66.2 % are projected. The intra-annual discharge
changes range from−44.2–87 % in 2011–2040 and in be-
tween−62.4–104.9 % for 2041–2071 (Fig. 12). For 2011–
2040, the increase in discharge is more pronounced in Octo-
ber and the decrease is more pronounced at the end of the dry
season (March–April) and the beginning of the wet season
(May). In contrast, for 2041–2070, while the increase in dis-
charge is more pronounced at the end of dry season (March–
April), the decrease follows the same trend. Although the
change is higher for March–April due to a larger percentage
discharge change, more drastic changes in the magnitude of
streamflow are estimated for months during the wet season
(mostly July–October). This suggests that the change will be
more significant for the wet season than the dry season.

The intra-annual (monthly) changes in the river discharge
are greater as compared to the annual discharge changes.
The climate change impact study (using the seven GCMs)
conducted by Kingston et al. (2011) in the Mekong River
basin similarly observed greater changes in mean monthly
river discharge. Such changes may be attributed to the com-
plex and contrasting sub-basin changes in precipitation and
evaporation, as outlined by Kingston et al. (2011). These re-
sults suggest that it is important for planners to keep in mind
the monthly changes when devising any water management
strategies for the future. The projections of discharge changes
in the basin are highly dependent on the direction of pro-
jected changes in precipitation. The variability observed in
the intra-annual (monthly) change of streamflow can be at-
tributed to the variable changes in intra-annual rainfall. The
changes in monthly temperature and precipitation show that
an increase in temperature occurs for the basin in all months
of the year, but changes in precipitation vary from month to
month within the basin and, consequently, from sub-basin to
sub-basin.

The variation in simulated discharge between the climate
models used in this study is significant, as it indicates a
high degree of uncertainty in the direction of hydrological
change due to climate change. The study by Kingston et
al. (2011) in the Mekong River basin also concluded that
there are significant uncertainties in the direction and magni-
tude of the change, and the variation in simulated discharge
between several climate models is significant. Hence, it is
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Fig. 11.Uncertainty analysis results of sediment yields for calibra-
tion period. The 95PPU band is shown by thin black bars. (Note
that the number of days used for calculating average sediment yield
varies from 2 to 21 because of sporadic nature of sediment measure-
ments).

imperative that planners and decision-makers take this un-
certainty into account in the design of the reservoir dams that
have been planned for hydropower purposes, development of
water management strategies and climate change adaptation
activities (also mentioned by Lauri et al., 2012). Policy re-
sponses and priorities will differ depending on the degree of
certainty with which a particular situation or issue is known,
and where uncertainty is high there is need to factor uncer-
tainty into planning (Johnston and Kummu, 2012).

4.4 Impact of climate change on sediment yield

The annual sediment yield change ranges from a 158.5 % in-
crease to a 26.9 % decrease depending upon GHGES, cli-
mate models and time period (Table 5). The intra-annual
(monthly) changes in sediment yield range from−81.8 to
242.5 % for 2011–2040 and−87.8 to 207.3 % for 2041–2070
(Fig. 13). Overall, the mean annual sediment cycle follows
the trend of the mean annual discharge cycle. It can be also
noted that, in general, the changes in the mean monthly sed-
iment yield follow the same trend as the discharge; i.e., the
change will be more significant for the wet season than for
the dry season. Interestingly, the intra-annual changes in sed-
iment yields are higher than the corresponding changes in
discharge. This implies that the impact of climate changes
on sediment yield is greater than on streamflow, because sed-
iment yield increases more than linearly with an increase in
flow (Naik and Jay, 2011).

An increase in flow discharge will, in general, increase the
mean monthly, seasonal and annual sediment loads, while
a decrease in the flow discharge will decrease the sediment
loads for all scenarios, which is similar to the findings of the
climate change impact study conducted by Phan et al. (2011)
in the Song Cau watershed in northern Vietnam. Neverthe-
less, the study results indicate that the changes of sediment
yield and discharge in response to climate change do not
always happen in the same direction. For example, for the
2041–2070 PRECIS RCM A2 scenario, in the months of
November and December, sediment yield seems to increase
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Table 5.Changes in average annual mean temperature, precipitation, discharges and sediment yield for all climate projections compared to
the base period (1971–2000). Results are for 2011–2040 and 2041–2070 periods.

Climate models GHGES Tmean(◦C) Precipitation (%) Discharge (%) Sediment (%)

2011–2040

CGCM3.1 A2 1.54 28.84 49.00 114.83
A1b 1.56 35.94 62.28 158.49
B1 1.47 31.16 54.32 143.05

CNRM-CM3 A2 0.91 −6.10 −9.27 −17.05
A1b 1.11 −5.35 −8.29 −15.05
B1 1.10 −4.47 −6.64 −11.25

MPI ECHAM5 A2 0.36 5.56 11.58 25.99
A1b 0.41 11.35 21.23 47.95
B1 0.57 4.63 10.04 21.29

NCAR CCSM3 A2 1.12 4.57 8.06 18.49
A1b 1.12 7.42 12.85 28.58
B1 1.04 5.39 8.83 19.29

PRECIS RCM A2 0.76 8.34 13.22 24.57
B2 0.84 3.55 7.35 14.69

2041–2070

CGCM3.1 A2 2.46 32.90 55.17 147.15
A1b 2.36 29.99 51.58 142.03
B1 1.95 25.09 44.41 123.65

CNRM-CM3 A2 1.90 −5.68 −8.87 −12.21
A1b 2.06 −10.97 −17.13 −26.92
B1 1.52 −9.13 −14.12 −21.68

MPI ECHAM5 A2 1.41 1.62 4.04 13.92
A1b 1.94 1.39 4.91 20.83
B1 1.56 −1.62 −0.42 5.81

NCAR CCSM3 A2 2.23 −1.07 −1.74 −0.08
A1b 2.10 11.46 19.84 58.32
B1 1.50 −4.65 −7.91 −9.01

PRECIS RCM A2 1.97 7.62 13.55 36.56
B2 1.62 5.67 10.04 21.76

even though water discharge decreases. For this period, the
rainfall also decreases but temperature increases (+1.6 and
+1.9◦C respectively). This result indicates that although
there is decrease in rainfall the sediment still increases, which
might be due to increase in temperature. Decrease in rainfall
and increase in temperature may result in water stress, which
reduces the growth of plants and hence aggravates the ero-
sion rate. Study by Zhu et al. (2008) and Li et al. (2011) indi-
cated that increased temperature may aggravate the soil ero-
sion rate and, consequently, increase sediment flux through
its influence on vegetation and weathering. The study con-
ducted by Li et al. (2011) in the Lower Pearl River basin in
China reported that an increase in temperature by 3◦C in-
creases the sediment load by almost 14 %. For the CGCM3.1
A1b scenario, during May, although discharge increases, the

sediment decreases. For this month, both rainfall and tem-
perature increase. This indicates that increased rainfall does
not necessarily increase soil loss. For May, it can be noted
that about 13 % increase in rainfall and nearly+2.5◦C shift
in mean temperature results in predicted nearly 8 % increase
in streamflow. This clearly proves the significant influence of
increased evaporation in the hydrological process of a basin.
The decrease in sediment flux may be due to the significant
influence of increased evapotranspiration and crop growth
processes under warmer climate, as mentioned by Bogaart
et al. (2003) in their study. Increased rainfall and increased
temperature may accelerate the plant growth, which results
less erosion. Changes in temperature and rainfall will affect
the sediment transport capacity and erosion rate. This change
in the sediment transport capacity and the erosion rate causes
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Fig. 12. (a) Change in future monthly streamflow for all climate
projections relative to 1971–2000 and(b) annual discharge cycle
for present (1971–2000) and for all climate projections. Results are
for the 2011–2040 and 2041–2070 time periods.

changes in the sediment flux in a river, which is also outlined
by Zhu et al. (2008).

Similar to discharge, the variation in simulated sediment
between the climate models used in this study is significant,
which indicates high uncertainty in the direction of sediment
yield change due to climate change. This is also clearly indi-
cated in a box and whisker plot (Fig. 14), where only max-
imum values of annual sediment loads are estimated to in-
crease in the future, while the changes in medians, 25th per-
centiles, 75th percentiles and minimum values are not unidi-
rectional.

Figure 15 is the longitudinal profile of the main stream,
showing the locations of future reservoirs and their elevation
relative to the basin outlet’s datum. It also shows the aver-
ages of simulated annual sediment load (1971–2000) at fu-
ture reservoir stations and changes in future sediment yield
as compared to the 1971–2000 period under various GHGES,
climate models and time scales. A significant change in mean
annual sediment yield in each reservoir location has been
observed. Increase in sediment yield is predicted to occur
from less than 2 % to more than 200 %, while the decrease
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Fig. 13. (a)Change in future monthly sediment yield for all climate
projections relative to 1971–2000 and(b) annual sediment yield cy-
cle for present (1971–2000) and for all climate projections. Results
are for the 2011–2040 and 2041–2070 time periods.

is predicted to occur from 10.6–29.7 % depending on sce-
narios, time period and locations. The estimations, however,
do not consider the sediment trapping in the planned reser-
voirs; i.e., the reduction in suspended sediment by reservoirs
is not considered in this study, or other changes related to, for
instance, land use (e.g., change of the forest cover). In gen-
eral, the range of change is higher in upstream dams and is
reduced as it moves downstream, which may be due to vari-
ations in the rate of change of rainfall and soil loss from sub-
basin to sub-basin. Changes in sediment yields due to climate
change in the future can have great implications for planned
reservoirs and related sediment management. Increased sed-
iment loads can intensify many problems linked to acceler-
ated loss of reservoir storage through sedimentation and sil-
tation or river channels and water distribution systems, an
associated loss of conveyance capacity and increased turbid-
ity of river water (Walling, 2008). Although decreasing sedi-
ment loads will frequently bring obvious benefits in terms of
reduced sedimentation and siltation, it is important to recog-
nize that there can also be negative impacts associated with
reduced nutrient inputs to lakes, wetlands, floodplains, delta
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Fig. 14. Box and whisker plots of annual sediment load at gaug-
ing stations of Nam Ou for present climate (1971–2000) and for all
climate projections. Results are for the 2011–2040 and 2041–2070
time periods.

and coastal areas, resulting in major ecosystem disturbances
(e.g., Kummu and Varis, 2007; Kummu et al., 2008). Further-
more, decrease sediment load can cause sinking of deltas,
change in river morphology due to erosion downstream of
dams, and coastal erosion (e.g., Walling, 2008).

4.5 Uncertainty in annual mean discharge and
sediment yield

Figure 16 shows the probability density functions (PDFs)
for the mean annual discharge and the mean sediment yield.
CGCM3 scenarios suggest both relatively large increases
(more than 40 % for the mean discharge and more than 100 %
for the sediment yield), while CNRM-CM3 scenarios and
NCAR CCSM3 A2 and B1 suggest a decrease. The other
climate model scenarios show relatively moderate increase
in both mean discharge and sediments. Furthermore, the re-
sults show that the overall uncertainty of the hydrological
variables increases with time (i.e., longer the prediction hori-
zon, the larger the uncertainty), as most of the PDFs become
flatter and inter-model variability also changes.

4.6 Limitations of this study

There are several limitations to the approach presented in this
paper, whereby a major one is the use of the downscaling
method. The change factor method only scales the mean,
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Fig. 15. (a) Longitudinal profile of the main stream showing the
locations of planned reservoirs, and their elevation relative to the
basin outlet datum.(b) Averages of simulated annual sediment load
(1971–2000) at planned reservoir stations and(c) relative changes
in future sediment yield as compared to 1971–2000 for all climate
projections. Results are for the 2011–2040 and 2041–2070 time pe-
riods.

maxima and minima of climatic variables, ignoring changes
in variability and assuming that the spatial pattern of climate
will remain constant (Diaz-Nieto and Wilby, 2005). For ex-
ample, the time series of precipitation occurrence will re-
main unchanged. This method will also not modify the vari-
ance of temperature data. In some applications, it may be
just as important to evaluate changes in the variance of fu-
ture climate variables and not only changes in the means
(Semenov et al., 1998). Furthermore, for precipitation the
temporal sequence of wet days is unchanged (Fowler et al.,
2007). Besides the limitations, the change factor method also
presents several advantages. It is a simple method to imple-
ment and only requires information from GCMs/RCMs at
the monthly time scale. Most other statistical downscaling
methods need data from GCMs at the daily time scale. Daily-
scale data from GCMs are considered less accurate by many
(Huth et al., 2001; Palutikof et al., 1997). Also, bias correc-
tion and variance adjustment is often needed to obtain merely
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Fig. 16.Probability density functions of annual mean discharge and
annual sediment yield data for all climate projections, and for the
1971–2000 as base period. PDFs are presented for the 2011–2040
and 2041–2070 time periods.

adequate results, whereas, with the change factor method,
bias correction is implicitly built into the approach (Minville
et al., 2008). For this study, the precipitation and tempera-
ture means are the key variables that need to be estimated,
and hence the change factor method is appropriate. Further-
more, the daily-scale GCM data are not available for some
GCMs and GHGES used for the study. However, variance
of future sediment outputs and estimated flows derived from
climate change runs are not discussed; hence we recommend
applying empirical downscaling methods such as daily scal-
ing or quantile mapping to global models so that variance can
be better explained, in order to perform robust hydrological
modeling related to river basin resilience.

Another limitation of this study is that the effect of un-
certainty in model parameterization on the uncertainty of
the projections of changes in discharge and sediment yield
caused by climate change has not been analyzed. However
it is expected that the uncertainty in model parameterization
will impart little additional uncertainty to the climate change
projections relative to that generated by GCMs, which is also
agreed by previous studies (e.g., Prudhomme and Davies,
2009; Kingston et al., 2011).

Further, in this study only one hydrological and soil ero-
sion (for sediment yield) model, SWAT, is used. A multi-
model approach (Georgakakos et al., 2004) may be the best
approach to better understand the uncertainty linked to the
choice of models. This also provides an opportunity to se-
lect the most appropriate modeling tool for sediment simula-
tion. Johnston and Kummu (2012) also stated that compari-
son of the basin-wide models in the Mekong is required to as-
sess their strengths and weaknesses in different applications,
identify the optimum suite of tools for different applica-
tions and help to quantify the error associated with different
models. Finally this study does not take into account the

effect of land use change on the sediment yield of the basin.
The land use in the basin is assumed to remain the same in
the future.

5 Conclusions

This study assesses the impact of climate change on sedi-
ment yield in the Nam Ou basin located in the northern part
of Laos. In this study a multi-climate model, multi-emission
scenario approach for the estimation of climate change im-
pacts is used. The delta change method is used as a down-
scaling technique to generate future temperature and precip-
itation. The SWAT hydrological model is used to simulate
the present and future changes in sediment yield in the study
basin. Calibration, validation and uncertainty analyses for
both discharge and sediment suggest that the SWAT model
can be applied to simulate future changes in discharge and
sediment yields due to eventual climate change.

Results indicate that large uncertainties exist in all the pro-
jected future hydrological variables (i.e., temperature, rain-
fall, discharge and sediment) due to differences between the
climate model projections. Hence, it is impossible to predict
future flows and sediment yields accurately. Despite this un-
certainty, it has to be noted that projections of hydrological
changes in the basin are highly dependent on the direction of
the projected changes in precipitation; this is also concluded
by Kingston et al. (2011). In general, higher discharge and
sediment fluxes are expected during the wet season, although
the percentage changes (not the absolute values) are found to
be higher during the dry months. The climate impact on sed-
iment yield is larger than on streamflow, and the changes do
not always happen in the same direction. It is likely that such
changes in sediment yield will have significant implications
for both the ecology as well as anthropogenic development
in the Nam Ou basin and further downstream in the Mekong
basin. As the projected climate change impact on sediment
varies remarkably between the different climate models, the
uncertainty should be taken into account in both sediment
management and climate change adaptation. Further, as the
study results indicate that variation between climate models
is significant, this study also emphasizes the need for a multi-
climate model evaluation instead of just one climate model as
has so far been mainly the case when estimating the possible
climate change impacts to the Mekong hydrological variables
(also mentioned by Lauri et al., 2012).

The results of this study may be helpful to develop-
ment planners, decision makers and other stakeholders when
planning and implementing appropriate basin-wide sediment
management strategies as well as water management strate-
gies to adapt to climate change. Moreover, some of the
results show very high increases of erosion yields (up to
200 %), which should raise concern among the hydropower
developers, as these particular results should cause planners
to reassess the design, operation and sedimentation of future
dams.
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