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Abstract. Reconciling limited water availability with an in-
creasing demand in a sustainable manner requires detailed
knowledge on the benefits people obtain from water re-
sources. A frequently advocated approach to deliver such
information is the ecosystem services concept. This study
quantifies water provision as an ecosystem service for the
43 000 km2 Pangani Basin in Tanzania and Kenya. The start-
ing assumption that an ecosystem service must be valued and
accessible by people necessitates the explicit consideration
of stakeholders, as well as fine spatial detail in order to de-
termine their access to water. Further requirements include
the use of a simulation model to obtain estimates for un-
measured locations and time periods, and uncertainty assess-
ment due to limited data availability and quality. By slightly
adapting the hydrological model Soil and Water Assessment
Tool (SWAT), developing and applying tools for input pre-
processing, and using Sequential Uncertainty Fitting ver. 2
(SUFI-2) in calibration and uncertainty assessment, a water-
shed model is set up according to these requirements for the
Pangani Basin. Indicators for water provision for different
uses are derived from model results by combining them with
stakeholder requirements and socio-economic datasets such
as census or water rights data.

Overall water provision is rather low in the basin, how-
ever with large spatial variability. On average, for domes-
tic use, livestock, and industry, 86–105 l per capita and day
(95 % prediction uncertainty, 95 PPU) are available at a reli-
ability level of 95 %. 1.19–1.50 ha (95 PPU) of farmland on
which a growing period with sufficient water of 3–6 months
is reached at the 75 % reliability level – suitable for the pro-
duction of staple crops – are available per farming household,
as well as 0.19–0.51 ha (95 PPU) of farmland with a grow-
ing period of≥6 months, suitable for the cultivation of cash
crops.

The indicators presented reflect stakeholder information
needs and can be extracted from the model for any physi-
cal or political spatial unit in the basin.

1 Introduction

Water is becoming increasingly scarce in many, especially
arid and semi-arid, regions of the world (IPCC, 2007b; Mil-
lennium Ecosystem Assessment, 2005; UNESCO-WWAP,
2003). Climate change and growing water demand due to
population increase and economic development threaten to
worsen the situation in coming decades (Hulme et al., 2001;
IPCC, 2007a; Liu et al., 2008). Water scarcity impedes de-
velopment, provokes food shortages and conflicts and has ad-
verse implications on human and ecosystem health. River
basin management thus faces the challenge to reconcile wa-
ter availability and demand in a sustainable manner.

The concept of “ecosystem services” has in recent years
been regarded as a promising way to mitigate problems aris-
ing from unsustainable management of natural resources, in-
cluding water (Belluzzo, 2010; Daily et al., 2009; Nelson
et al., 2009). Ecosystem services, according to the Millen-
nium Ecosystem Assessment (Millennium Ecosystem As-
sessment, 2005, p. 40), are “the benefits people obtain from
ecosystems”. The idea that has made the concept popular
is that if people are informed of these benefits and their
value, they will more likely be ready to pay for the con-
servation of ecosystems. However, apart from helping to
raise funds, knowledge about the benefits people obtain from
their environment forms the basis for any decision-making
process towards sustainable development (Hurni and Wies-
mann, 2010).
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While the ecosystem services concept has undoubtedly
succeeded in raising awareness of the importance of ecosys-
tems for human well-being (Costanza et al., 1997; Daily
et al., 2009; Millennium Ecosystem Assessment, 2003), its
application in river basin management has been characterised
by mixed success so far. Even though numerous projects tar-
geting watershed services have been initiated in many coun-
tries around the globe, the evidence of service delivery re-
mains elusive in many cases (Porras et al., 2008; Carpen-
ter et al., 2009). This calls for systematic quantification ap-
proaches.

Part of the problem may be that the term ecosystem ser-
vices has become a buzz-word used to convey a wide range of
interests. The original definition of ecosystem services from
the Millennium Ecosystem Assessment (2005, see above) is
rarely applied systematically. From that definition follows
that only components and processes of ecosystems that are
perceived and valued by humans as benefits can be regarded
as ecosystem services; and for people to obtain the benefit, it
must be accessible in time and space (Notter, 2010). On one
hand, this makes the explicit consideration of stakeholders
and their demands a critical input to any quantification ap-
proach. On the other hand, spatial and temporal resolution of
the assessment must be sufficient to (a) capture variability in
demand as well as water availability, (b) determine access of
stakeholders to water sources, and (c) to predict the temporal
reliability at which water for given uses is available.

Besides allowing the distinction between actual benefits
and non-valued or non-accessible resources, a quantification
approach should also provide for the possibility of predict-
ing service availability for future scenarios; this results in the
need to use simulation models. Furthermore, the information
needs of stakeholders need to be considered. On one hand,
results should be available at the scale of decision-making,
which mostly corresponds to the aggregation level of polit-
ical units (Ngana et al., 2010). On the other hand, the aim
of transparency towards the consumers of research outputs
about data and model uncertainty calls for systematic uncer-
tainty assessment (Abbaspour et al., 2009; Balin et al., 2010).

In this paper we present an approach to quantifying water
provision as an ecosystem service in the East African Pan-
gani Basin according to the above-mentioned requirements
using the SWAT hydrological model (Andersson et al., 2009;
Arnold et al., 1998; Betrie et al., 2011; Easton et al., 2010;
Gassman et al., 2005). Specifically, the following steps were
taken to reach this goal:

1. To make the best possible use of available data, efforts
were made to optimise input datasets. Specifically, for
meteorological point data, the most appropriate interpo-
lation technique was determined and applied. Spatial
data layers were optimised by combining information
from different sources.

2. The Soil and Water Assessment Tool (SWAT) was set up
as hydrological simulator and calibrated at the required
resolution, according to a spatial discretization scheme
that allows extracting modelling results for physical as
well as political spatial units. A slightly modified ver-
sion of SWAT2005, SWAT-P, was developed and ap-
plied in order to be able to simulate a large number
of spatial units, as well as processes specific to Pan-
gani Basin. Uncertainty was assessed using Sequential
Uncertainty Fitting ver. 2 (SUFI-2) (Abbaspour et al.,
2007; Schuol et al., 2008), including additional SWAT-
P parameters to assess input uncertainty.

3. Quantitative indicators for water provision for different
uses in the Pangani Basin around the year 2000 were
derived from model results and socio-economic data,
based on criteria of valuation and accessibility by stake-
holders.

2 The study area

The Pangani Basin stretches over 43 000 km2 between Kili-
manjaro and the Indian Ocean (Fig. 1). 95 % of its area is
located in Tanzania (Arusha, Kilimanjaro, Tanga and Man-
yara Regions), the remaining 5 % in Kenya. Most of the dis-
charge in perennial rivers originates from the humid moun-
tain ranges, while the surrounding lowlands have a semi-
arid climate (Ngana, 2001a). Crops (coffee, bananas, maize,
flowers, sugarcane, and rice) are grown mostly on the moun-
tain slopes and footzones, or in irrigated schemes in the
river plains; the Upper Basin includes some of the econom-
ically most productive areas of Tanzania, with growing in-
ternational investments in large-scale agriculture and indus-
tries. Hydropower generation along Pangani River satisfies
a significant share of Tanzania’s electricity demand (IUCN,
2003). Growing water demand increasingly leads to conflicts
between water users (Mujwahuzi, 2001).

A number of studies with a hydrological focus have been
conducted in the basin. A joint river basin management
project by the Norwegian NTNU and the University of Dar
es Salaam around the year 2000 resulted in a number of
case studies (compiled in Ngana,2001b, 2002). Modelling
studies in the basin include e.g. Røhr’s (2003) investigations
on the hydrology of the Kilimanjaro slopes; Moges’ (2003)
development of a decision support system for the basin;
Ndomba’s (2008) successful use of SWAT2005 to predict
sediment yield in the Upper Pangani Basin; and a scenario
report by IUCN and Pangani Basin Water Office making use
of the WEAP model (IUCN and PBWO, 2008).
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Fig. 1. Overview of the Pangani Basin with calibration points and
parameter zones.

Fig. 2. Boxplots of interpolation errors (Root Mean Square Error,
RMSE) obtained with different univariate algorithms for daily rain-
fall (a), annual rainfall (b) and temperature (c), compared to the
elevation-dependent algorithm chosen for preprocessing modelling
inputs (ED-IDW) and the method internally used by SWAT.

Fig. 1. Overview of the Pangani Basin with calibration points and parameter zones.

3 Materials and methods

3.1 Data collection and quality control

Three types of data were required for the study:

1. Hydro-meteorological data: daily rainfall, mini-
mum/maximum temperatures and river discharge data
were obtained from the University of Dar es Salaam and
the Tanzania Ministry of Water, and quality-controlled
using methods described byFeng et al.(2004). In-
formation on point source inputs (large springs, bore-
holes) and granted diversion amounts were available
from catchment authorities and case studies (Jalon and
Mezer, 1971; Ngana, 2001b, 2002; United Republic of
Tanzania, 1977).

2. Spatial data: For the Digital Elevation Model (DEM),
the 90 m resolution dataset by the Shuttle Radar Topog-
raphy Mission (SRTM) of the NASA (Farr et al., 2007)
was used. A soil map was combined from the FAO
maps for Southern Africa (source scale 1:2 000 000) and
North-Eastern Africa (source scale 1:1 000 000) (Dijk-
shoorn, 2003; FAO, 1997). The FAO Africover map
from 1997 (FAO, 2002) served as land cover input,
complemented by the GeoCover 2000 satellite image
(14.25 m native resolution, Earth Satellite Corporation,
2004) for the location of irrigated areas. Boundaries of
administrative units at sub-District (Ward in Tanzania,

Division in Kenya) level were obtained from the Na-
tional Statistics Offices. River and infrastructure net-
works, settlements, and protected area boundaries digi-
tised from 1:250 000 topographic map sheets were ob-
tained from the University of Dar es Salaam. The Geo-
Cover 2000 satellite image was used as spatial refer-
ence with an absolute positional accuracy of 75 m (Earth
Satellite Corporation, 2004), to which all other spatial
input layers were aligned.

3. Data related to stakeholder water demand: Census data
from around the years 1990 and 2000, respectively,
were obtained from the National Statistics Offices. The
data for around 2000 are available at relatively fine spa-
tial detail (down to Ward level in Tanzania and to Sublo-
cation level in Kenya, i.e. sub-District level). They con-
tain, apart from the population figures, information on
household size or the type of water source for domes-
tic use. The 2000/2001 Household Budget Survey and
2002/2003 Agricultural Sample Census data allowed es-
timating livestock numbers.

3.2 Pre-processing of input data

3.2.1 Time-series data

Meteorological time series inputs, especially precipitation
data, have repeatedly been identified as one of the main
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limiting factors in hydrologic modelling, due to spatial pat-
terns not captured by wide-meshed monitoring networks
(e.g. Notter et al., 2007). Depending on the chosen inter-
polation technique, better or poorer spatial representations
of meteorological variables can be achieved (e.g.Goovaerts,
2000). The SWAT model itself uses no explicit internal in-
terpolation algorithm – the value from the closest station to
each subbasin center is used (Neitsch et al., 2005); however,
it is possible to carry out interpolation to subbasin areas out-
side SWAT and then use the calculated rainfall amount as
pseudo-gauge inputs (Zhang, 2006).

For the purpose of testing the performance of different in-
terpolation techniques and pre-processing the meteorologi-
cal inputs for SWAT, a time-series interpolation tool was de-
veloped using ArcGIS and ArcObjects (ESRI Inc.), which
interpolates time series data of meteorological variables to
raster or polygon geometries, using the interpolation tech-
niques available in ArcGIS (Inverse Distance Weighting,
IDW, Spline and Kriging). Additionally, a secondary vari-
able like elevation can be included in the interpolation, using
an absolute (Eq. 1) or relative lapse rate (Eq. 2):

Vint2,i = Vint1,i · LR ·
(
SVreal,i − SVint,i

)
(1)

Vint2,i = Vint1,i +
(
Vint1,i · LR ·

(
SVreal,i − SVint,i

))
(2)

whereVint2,i is the interpolated value of the variable of in-
terest, calculated by inclusion of secondary variable, at loca-
tion i; Vint1,i is the interpolated value, calculated using uni-
variate technique, at locationi; LR is the lapse rate (an ab-
solute or percent increase by unit of the secondary variable);
SVreal,i , is the observed value of the secondary variable at
locationi; and SVint,i is the value of the secondary variable
at locationi, interpolated from the those locations where ob-
served values of the variable of interest are available.

The performance of the different interpolation techniques
was assessed by cross-validation. First, the univariate algo-
rithms (IDW, Kriging and Spline) were tested against each
other with varying parameter settings using samples of daily,
monthly and annual time steps of precipitation and tempera-
ture data between 1981 and 2000. The technique obtaining
the lowest Root Mean Square Error (RMSE) between inter-
polated and measured values was then combined with ele-
vation as secondary variable and again tested using cross-
validation. The resulting best technique was used to pre-
process SWAT climate inputs.

3.2.2 Spatial data

Given the requirement of high spatial detail, efforts were
made to improve the spatial input data. The available digital
river network for the basin, at a source scale of 1:250 000,
showed deviations of>1 km; the DEM derived from SRTM
data, on the other hand, was spatially accurate but in flat
areas, river directions cannot be reliably determined from
it. Therefore, a combined approach based on the GeoCover

satellite image and the DEM was chosen: in flat areas, were
water courses are distinguishable, they were classified from
the satellite image using the maximum likelihood classifica-
tion method. The thus obtained stream lines were then used
to ”burn in” the DEM using the “Agree” algorithm (Hell-
weger, 1997). In more mountainous areas, the stream delin-
eation was done based on the DEM. This method left only
few streams, which were neither captured by the satellite
image classification nor accurately delineated based on the
DEM, to be corrected manually.

3.3 The hydrological model: from SWAT2005 to
SWAT-P

SWAT (Soil and Water Assessment Tool;Arnold et al., 1998;
Gassman et al., 2005) was chosen as hydrological simulator
due to its comprehensiveness in simulating watershed pro-
cesses (runoff generation and routing, crop growth, nutri-
ent cycling, and erosion are included), its flexibility in spa-
tial discretization, which provides for detailed assessments at
plot scale as well as more generalized continental-scale ap-
plications (Neitsch et al., 2005; Schuol et al., 2008), the avail-
ability of tools for uncertainty assessment (Abbaspour et al.,
2007; van Griensven and Meixner, 2006), open access to the
source code, and based on the fact that it has been success-
fully applied in other studies in data-limited environments,
specifically on the African continent (Betrie et al., 2011; Eas-
ton et al., 2010; Schuol et al., 2008; Ndomba et al., 2008).

SWAT is a physically-based, distributed model. It includes
three levels of spatial aggregation. A watershed is divided
into a number of subbasins (typically on topographical ba-
sis), and these are again divided into Hydrological Response
Units (HRUs) on the basis of land use, soil type and option-
ally slope. In each HRU hydrological and biological pro-
cesses are simulated on a daily or hourly time-step. Incom-
ing rainfall is partitioned into surface runoff and infilitration
based on the Curve Number method. Flow is aggregated at
subbasin level and then routed through the stream network
(Neitsch et al., 2005).

For the application of quantifying water provision as an
ecosystem service in the Pangani Basin, a few modifications
to the source code of SWAT2005 became necessary. The
modified version developed and used in the study was called
SWAT-P (see also Supplement).

On the technical side, the limit of 6300 HRUs per water-
shed was removed; SWAT-P is able to simulate configura-
tions with more than 10 000 (up to 99 999) HRUs (hydrolog-
ical response units). The dormancy threshold for tropical lat-
itudes (20◦ N–20◦ S) was decreased from 0 to−1 in order to
avoid unintended dormancy of plants, which can occur due
to differences between the latitudes of the closest weather
station and the subbasin center. Some additional output vari-
ables such as actual consumptive water use were introduced,
and an error in the auto-irrigation routine in SWAT2005,
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which caused flow in a reach to be set to zero even if only
a part of it was removed for irrigation, was corrected.

Regarding process simulation, a simple floodplain rou-
tine was introduced that simulates the spilling of water from
reaches over adjacent HRUs. This was necessary to model
the flooding of Kirua Swamp along the middle reaches of
Pangani River, which is relevant for both water users and hy-
drology in the basin. The new routine works essentially the
same way as the existing SWAT wetland routine, but instead
of receiving water from a fraction of the subbasin like a “wet-
land”, the “floodplain” receives water when flow in the main
reach of the subbasin spills over the banks.

An irrigation efficiency parameter was introduced in order
to account for low irrigation efficiency (27 % on average in
the basin;IUCN and PBWO, 2008). The order of removal for
consumptive use and irrigation was changed so consumptive
use gets first priority.

Since some model input data with a high sensitivity (rain-
fall, temperature, point source discharges, and granted diver-
sion amounts) for the Pangani Basin are of low reliability,
correction factors for these inputs were introduced. These
correction factors could then be varied during the calibra-
tion and uncertainty assessment with SUFI-2 (see Table1
and text below) like other model parameters, and their uncer-
tainty could be included in the prediction uncertainty.

3.4 Model configuration

The model application in the current study posed challenges
related to subbasin delineation that could not be handled with
existing GIS interfaces: on one hand, since SWAT does not
allow climatic differentiation within subbasins, a large num-
ber of very small subbasins would have to be created due
to steep ecological gradients – this would increase compu-
tation time. On the other hand, the necessary inclusion of
stakeholder data required model outputs to be spatially com-
patible with available stakeholder data (usually linked to the
geometry of administrative units). To automate subbasin de-
lineation taking into account these factors and at the same
time minimizing the number of subbasins created, a script in
AML (Arc Modelling Language, ESRI Inc.) was created.

Inputs into the script include a weighted flow accumula-
tion raster, which allows creating smaller subbasins in more
heterogeneous areas and larger subbasins in more homoge-
neous areas (in this study, weights were based on slope and
mean annual rainfall in order to reach higher spatial detail
in the humid mountainous regions of the basin than in flat
and dry areas); two datasets of land units, one of which cre-
ates subbasin outlets at the intersection of streams with its
land unit borders (useful for including political land units),
and the other one creates subbasin boundaries along the in-
put unit borders (useful for subdividing subbasins into ele-
vation bands); and a raster of lake areas, which ensures that
subbasin boundaries do not divide lakes in the model.

The additional elevation-band subbasins created within the
topographical subbasins with this tool are linked through
zero-length “pseudo-streams” in order to ensure correct wa-
ter routing. When using this option, it should be noted that
after running the model, reach outputs should only be used
from the outlets of topographical subbasins; when setting up
the model, model parameters for surface runoff and erosion
(longest tributary channel length, slope length etc.) must be
determined based on topographical subbasins, and their val-
ues for the elevation-band subdivisions determined the same
way that SWAT internally assigns these parameter values to
HRUs based on model subbasin inputs. In the current study,
400 m elevation bands were used for this option.

The outputs of the tool were then processed together with
the mentioned spatial and time-series input data using the
ArcSWAT interface (Winchell et al., 2008) in order to create
the input files required by SWAT.

The following points regarding model configuration can
further be noted:

1. Large springs with known constant discharge in the
footzones of Kilimanjaro and Mt. Meru were modelled
as point sources. Water feeding these springs was as-
sumed to originate from deep aquifer recharge on the
upper mountain slopes (controlled by the deep aquifer
recharge parameter RCHRGDP). The SWAT-P point
source correction factor PSCOR was used to account for
the uncertainty in these inputs during calibration with
SUFI-2.

2. For crop areas, the land use inputs only allowed dif-
ferentiation between herbaceous crops like maize, rice
or sugarcane, and tree/shrub crops like coffee or ba-
nanas (FAO, 2002). Therefore, generic land use classes
were created in the SWAT crop database. They were
parametrised based on existing classes, hydrological
modelling work done in Kenya (McMillan and Liniger,
2005; Notter et al., 2007), and local experience (R. Da-
luti, personal communication, 2007). Plants were con-
stantly kept at maximum growth stage for two reasons:
first, planting dates vary spatially within the basin (in
most areas, the main rainy season starts in March/April,
while on the Eastern slopes of mountain ranges, the
main rainy season starts in November), as well as tem-
porally, depending on the onset of the rainy season in a
particular year. And second, appropriate observed data
were not available to calibrate plant growth. With irri-
gated agriculture being modelled using the SWAT auto-
irrigation routine, this approach resulted in the maxi-
mum possible irrigation water demand. However, diver-
sion amounts for irrigation were capped using the vari-
able DIVMAX, based on the water rights (maximum
allowed abstractions) kept in the Pangani Basin Wa-
ter Office water rights database. To account for uncer-
tainty due to the possibly incomplete database and lack-
ing enforcement of abstraction limitations, the variable
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Table 1. Parameters sensitive to discharge calibrated using SUFI-2 (prefix vindicates that the parameter value is replaced by a given value;
prefix r indicates the parameter value is multiplied by (1 + a given value) (Abbaspour et al., 2007).

Parameter name Description Final SUFI-2 range
Min Max

v PCOR.sub Correction factor for precipitation (introduced in SWAT-P) −0.05 0.07
v TCOR.sub Correction factor for temperature (introduced in SWAT-P) −0.15 0.26
v ALPHA BF.gw Base flow alpha factor [days] 0.22 1.00
v GW DELAY.gw Groundwater delay time [days] 25.33 75.59
v GWQMN.gw Threshold depth of water in the shallow aquifer for return flow to occur [mm] 127.41 431.09
v CH K2.rte Effective hydraulic conductivity in the main channel [mm/h] 46.67 142.14
v RCHRGDP.gw Deep aquifer percolation fraction 0.42 0.83
v PSCOR.sub Correction factor for point source inflow (introduced in SWAT-P) 0.75 1.42
v DIVCOR.hru Correction factor for maximum allowed diversion for irrigation (introduced in SWAT-P)−0.84 0.27
r CH N2.rte Manning’s n value for main channel 0.08 0.30
r CN2.hru SCD runoff curve number for moisture condition II −0.14 −0.04
r SOL K.sol Soil conductivity [mm/h] −0.06 0.02
r SOL AWC.sol Soil available water storage capacity [mm H2O/mm soil] −0.01 0.03
r SOL BD.sol Soil bulk density [g/cm3] 0.00 0.07
r ESCO.hru Soil evaporation compensation factor 0.23 0.55
r EPCO.hru Plant evaporation compensation factor 0.39 0.99

Table 2. Modelled average annual water balance of the Pangani
Basin. The range indicates the 95 % prediction uncertainty band.

Water balance component Amount [mm yr-1] Percentage

Precipitation 1067–1184 100
Actual evaporation 885–945 80–83
Surface runoff 4–13 0–1
Lateral runoff 19–28 2
Shallow aquifer return flow 31–96 3–8
Deep aquifer recharge 77–136 7–11
Deep aquifer return flow 18–25 2

DIVCOR, also introduced with SWAT-P, was included
in calibration with SUFI-2 (see next section). As the
location of water sources was only known for the large-
scale irrigation schemes, for all other irrigated areas, the
path distance function in ArcGIS (ESRI© Inc.) was
used to determine the nearest irrigation water source,
using the option that there should be no upward paths
(since water in canals cannot move upward).

3. PET was modelled using the Hargreaves method (Harg-
reaves and Samani, 1985).

4. Water transfers for domestic, livestock, and industrial
use were conceptualised as “consumptive” use, i.e. con-
stant rates were removed from streams and aquifers
through the SWAT *.wus input files.

5. Natural lakes and small dams were simulated as unman-
aged reservoirs; Nyumba ya Mungu, located in the mid-
dle of the basin (see Fig.1) was simulated as a managed

reservoir with monthly target storages obtained from
Moges (2003), but measured outflow data were used
as inputs into the downstream reaches for periods for
which they were available.

3.5 Calibration, validation, and uncertainty assessment

Model calibration, validation, and uncertainty assessment
were carried out using the Sequential Uncertainty Fitting
ver. 2 (SUFI-2) algorithm (Abbaspour et al., 2007). SUFI-
2 aggregates uncertainties in model concept, inputs and pa-
rameters and aims to obtain the smallest possible uncertainty
(range) of predictions while bracketing most of the observed
data (Schuol et al., 2008). Starting with large, physically
meaningful parameter ranges, SUFI-2 decreases these ranges
iteratively. The “P -factor” describes the percentage of data
bracketed by the 95 % prediction uncertainty and should be
as large as possible up to a maximum value of 100. The “R-
factor” describes the width of the 95 % uncertainty interval
in standard deviations of measured data and should therefore
be minimised.

SWAT was calibrated and validated against measured
monthly discharge data from 16 stations in the basin, mostly
from the period 1980–2005; measured data to calibrate other
model output variables were not available in time-series
form. Due to numerous gaps in the measured series the cri-
terion was formulated that 3 yr of data had to be available for
both calibration and validation. At four stations, the available
data series was long enough for calibration only. At three
further stations, the data series ended in the beginning of
the 1980’s; therefore, earlier data (from 1960 onward) were
used for calibration and validation at these locations. A 10 %
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Table 3. Indicators and stakeholder requirements for water provision for different uses.

Water use Modelled indicator Stakeholder Requirements

Quantity Location Timing

Domestic use Water use at (a) Demand Point of Constant supply
95 % reliability according to water diversion through

rights database water supply
(b) Theoretical authority or
demand: 135 lcd water project,
in urban areas, or nearest source
65 lcd in rural
areas

Livestock Water use at 50 lcd for cattle, Nearest source Constant supply
95 % reliability 10 lcd for sheep

& goats

Industry Water use at Demand Point of diversion Constant supply
95 % reliability estimated from

water rights
database

Agriculture Growing period Crop water Point of Supply during
(GP) duration demand diversion, or crop growing
above monthly nearest upstream period; max.
water stress source one crop failure
threshold of 0.5, in 4 yr
at 75 % reliability;
available cropland
suitable for cash/
staple crops

Hydropower Discharge at Flow quantity Power plant As constant
production plant locations between min./max. locations supply as

(mean, 95 % turbine capacity possible
reliability)

measurement error was included in theP - andR-factor cal-
culations (compare e.g.,Abbaspour et al., 2009; Andersson
et al., 2009; Schuol et al., 2008).

16 parameters sensitive to discharge were identified in
an initial sensitivity analysis (as described in Abbaspour
et al., 2008; Table 1). These included the correction fac-
tors for measured inputs introduced with SWAT-P (compare
Sect.3.3). The parameters were grouped into 11 zones on
the basis of climate, topography, and geology (compare Fara-
marzi et al.2009; Fig. 1). For the groundwater parameters,
the zones in mountain areas were internally further differen-
tiated into a higher and a lower zone in order to capture areas
dominated by groundwater recharge and discharge, respec-
tively (Ngana, 2001b).

With the fine spatial detail and the consequently large
number of spatial units to be simulated, computing time was
considerable – almost 6 h for one simulation run of the en-
tire basin for the 1981–2005 period on a computer with two
2.53 GHz CPUs. To make best possible use of available

computing resources, SUFI-2 iterations were split (seeAb-
baspour et al., 2008) and also run on Linux, for which SUFI2
was adapted by making use of the open-source Mono and
Wine packages.

The Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970)
was used as the objective function to evaluate the perfor-
mance of each simulation at each discharge station. The pa-
rameter ranges obtained in the last iteration of SUFI-2 rep-
resented the posterior parameter space on which subsequent
analysis was carried out (see next section).

3.6 Derivation of indicators for water provision

Indicators for the ecosystem service of water provision were
defined according to stakeholder requirements. These were
established based on previous studies (IUCN, 2003; IUCN
and PBWO, 2008; Msuya, 2010; Ngana, 2001b, 2002; Turpie
et al., 2005) and validated during a workshop in Decem-
ber 2009 in collaboration with 25 representatives of the
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relevant stakeholder groups (small- and large-scale farmers,
urban residents, water and agricultural sector authorities, and
TANESCO, the Tanzania Electricity Supply Company). In-
formation was collected on the quantity, location, and tim-
ing in which water needs to be available in order to be val-
ued (i.e. perceived as a benefit) for a given use and accessi-
ble (i.e. obtained) by the different stakeholder groups. The
water uses considered included domestic supply, livestock,
industry, agriculture, and hydro-electric power production
(Table3). Stakeholder requirements regarding water quality
were not considered, since SWAT model parameters affect-
ing water quality had not been calibrated (see Sect.3.5).

The indicators were derived from a SUFI-2 iteration vary-
ing model parameters within the posterior parameter space
established in calibration. The simulations comprised 25 yr
using meteorological data from 1981 to 2005. Water man-
agement inputs were based on socio-economic data from the
years 2002 for Tanzania, and 1999 for Kenya, respectively.
The resulting simulation reflects the socio-economic situa-
tion around the year 2000, and includes the climatic variabil-
ity of 25 yr of weather data.

Domestic supply, livestock and industryrequire modest
but constant water supply; therefore, actual water use at
the points of diversion at the 95 % reliability level (i.e. the
amount available at least 95 % of time) was chosen as the
indicator of water provision for these uses. For each river
reach, this was determined as the diversion amount modelled
at the time step at which the 95 % percentile of simulated
monthly discharges from the entire simulation period, sorted
in descending order, was reached (based onEstoppey et al.,
2000). The location of water diversions is known from the
Basin Water Office (PBWO) water rights database for the
about 72 % of the basin population served by water supply
authorities or water projects (which includes industrial use);
the amount that can be diverted for use is also known at
these points. For the remaining 28 % of the basin popula-
tion obtaining water from unimproved sources (percentages
by Ward are known from 2002 census data), it was assumed
that water for domestic use and livestock is fetched from the
nearest surface source, which was determined using the Path-
Distance function in ArcGIS (ESRI© Inc.). The maximum
amount removed was estimated at 20 liters per capita and per
day (lcd) for humans (based on Turpie et al.,2005 – cor-
responds to the amount that can be carried over large dis-
tances), 50 lcd for cattle and 10 lcd for sheep and goats (fig-
ures according to stakeholder workshop participants). It was
also assumed that this portion of the population is equally
distributed over each Ward area, excluding protected areas.

In summary, water provision from a given subbasini can
be expressed as:

wusi = Min (Q95, (MaxDiversioni + 20 · NoPeoplei +

+50 · NoCattlei + 10 · NoShoatsi)) (3)

where wusi is the amount of water provision for domestic,
livestock, and industrial use from subbasini (corresponding
to the variable WUSEFF introduced in SWAT-P in the .rch
and .sub output files),Q95 is the simulated water availability
in subbasini at 95 % reliability, MaxDiversioni is the sum
of water rights for domestic, livestock, and industrial use in
subbasini, NoPeoplei the number of people without water
rights fetching water in subbasini, NoCattlei the number of
cattle not included in water rights data obtaining water from
subbasini, and NoShoatsi the number of sheep and goats not
included in water rights data obtaining water from subbasini.

Deficits were calculated by comparing actual water avail-
ability to a theoretical per capita demand of 135 lcd (litres
per capita per day) in urban and 65 lcd in rural areas for
humans, 50 lcd for cattle, 10 lcd for sheep and goats, and
the granted water amounts from the PBWO database for in-
dustries (based onIUCN and PBWO, 2008; Msuya, 2010;
Turpie et al., 2005).

In order to quantifywater provision for agriculture, water
amounts available for irrigation could be derived from model
outputs. However, farmers and authorities in the basin are
much more interested to know how much land can be culti-
vated with certain crop types, regardless whether the required
water is supplied by rainfall or irrigation; therefore, the du-
ration of the growing period with sufficient water availability
(GP) at the 75 % reliability level – i.e. reached in at least 3 out
of 4 yr – was determined based on the SWAT output variable
water stress (WSTRS). In a first step the growing period du-
ration in months in a given yearj was determined for each
HRU as:

GPj,HRU = N (n1, n2, ..., nN |wstrsn ≥ 0.5) (4)

whereN is the count of consecutive monthsn1 to nN in
yearj , in which the ratio of water availability to plant wa-
ter demand, wstrsn, is equal or above 0.5 (threshold based
on Verdin and Klaver,2002, and Smith,1992). In a sec-
ond step, the growing period duration reached or exceeded
in 75 % of years, was determined. Crop areas were then cat-
egorised into areas with a GP duration of 3–6 months, which
is suitable for staple crops like maize, and areas with a GP
duration of≥6 months, suitable for the cultivation of cash
crops like coffee (K. Nkya, personal communication, 2009).
The final indicators for water for agriculture were calculated
for each aggregation level (subbasin, District, Region) as the
areas of farmland of the two categories, available per farming
household:

ha/FarmHHGP3−6 = 6 (haGP3−6)
/
N(FarmHH) (5)

ha/FarmHHGP≥6 = 6
(
haGP≥6

)/
N(FarmHH) (6)

where ha refers to hectares of cropland, FarmHH to house-
holds with farming as the main income according to the 2002
census,N (FarmHH) to the count of farming households at a
given aggregation level, and GP3–6 and GP≥ 6 to growing
period durations of 3 to 6, or at least 6 months, respectively.
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Fig. 1. Overview of the Pangani Basin with calibration points and
parameter zones.

Fig. 2. Boxplots of interpolation errors (Root Mean Square Error,
RMSE) obtained with different univariate algorithms for daily rain-
fall (a), annual rainfall (b) and temperature (c), compared to the
elevation-dependent algorithm chosen for preprocessing modelling
inputs (ED-IDW) and the method internally used by SWAT.

Fig. 2. Boxplots of interpolation errors (Root Mean Square Error, RMSE) obtained with different univariate algorithms for daily rainfall(a),
annual rainfall(b) and temperature(c), compared to the elevation-dependent algorithm chosen for preprocessing modelling inputs (ED-IDW)
and the method internally used by SWAT.
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Fig. 3. Comparison of subbasins delineated with a conventional de-
lineation tool (a) and with the script described in Sect. 3.4 (b), on
Mt. Kilimanjaro and its footzone. Model subbasins and topograph-
ical subbasins are identical in the conventional method.

Fig. 3. Comparison of subbasins delineated with a conventional delineation tool(a) and with the script described in Sect.3.4 (b), on
Mt. Kilimanjaro and its footzone. Model subbasins and topographical subbasins are identical in the conventional method.

For hydropower generation, discharge at the power plant
locations versus the minimum and maximum discharges re-
quired for power generation were used to calculate the per-
centage of time power can be generated as the main indi-
cator for ecosystem service provision; mean discharge and
discharge at 95 % reliability were also calculated for these
locations.

4 Results and discussion

4.1 Pre-processing of climate input data

Among the univariate interpolation techniques, IDW (with a
power of 1 and considering the 24 nearest neighbouring sta-
tions) emerged as the overall best-performing technique for
both rainfall and temperature; however, the best parameter
settings for Kriging performed almost as well and even out-
performed IDW in the more data-scarce decade of the 1990’s.

Including elevation as secondary variable, by using a rela-
tive lapse rate of 3.6 % per 100 elevation meters for rainfall
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and an absolute rate of−0.6◦C/100 m for temperature, im-
proved interpolation performance only marginally for daily
rainfall (by 0.2 %); however, for annual aggregated rainfall
and for temperature, the interpolation error was reduced by
8.3 % and 48.3 %, respectively (Fig.2). Rainfall and tem-
perature inputs for SWAT were therefore pre-processed (by
interpolation to model subbasin areas) using this method.
Compared to the method internally used by SWAT (using
the unmodified value from the nearest station, see Neitsch
et al.,2005), the interpolation error was reduced by 16.1 %
for daily rainfall, and by 58.4 % for temperature. By identify-
ing the most appropriate interpolation technique and includ-
ing the secondary high-resolution information on elevation,
a more realistic spatial representation of climatic variables,
and a reduction of input uncertainty for modelling, could
be achieved; however, interpolation errors continued to be a
significant source of uncertainty in modelling that needed to
be addressed in calibration and uncertainty assessment with
SUFI-2 (see Sect.3.5).

4.2 Model configuration

The model configuration resulted in 1853 physical (topo-
graphical) subbasins, 3820 model subbasins including ele-
vation band subdivisions, and 25 677 HRUs in the entire Pan-
gani Basin. This configuration allowed a maximum of spatial
detail and provided flexibility to use available inputs and pro-
duce the required outputs, while keeping model complexity
and computational demand as low as possible. Experiments
showed that using conventional subbasin delineation tools,
several ten thousands of subbasins in the entire basin would
have had to be created in order to reach a similar degree of
detail in the critical areas (Fig.3). The creation of sepa-
rate stream reaches per Ward allowed using water demand
inputs at the scale at which they are available, and extracting
model outputs for any administrative or physical spatial unit
required.

The subdivision of subbasins based on elevation bands
actually results in the introduction of an additional con-
ceptual level of aggregation in SWAT. In order to avoid
model outputs being unintentionally affected by this config-
uration, model parameters calculated at subbasin level (such
as longest flow paths and slope length) must be calculated
for topographic subbasins and then apportioned to modelled
subbasins according to their areal fraction in the topographic
subbasin, the same way SWAT internally calculates these pa-
rameter values, which are input at subbasin level, for each
HRU (Neitsch et al., 2005).

4.3 Calibration and validation results

Calibration and validation of monthly discharge yielded sat-
isfactory results given the scarcity of available data. In the
Upper Basin (upstream the Nyumba ya Mungu Reservoir),
where a higher density of climate stations is available, model

performance is generally better than in the Lower Basin
(downstream Nyumba ya Mungu). The fact that similar per-
formance measures were reached in the validation as in the
calibration period indicates that there was no “overfitting” of
parameters.

In the Upper Basin, Nash-Sutcliffe Efficiency (NSE)
scores of≥0.5 were achieved at 7 out of 8 gauges in the
calibration period and at 4 out of 6 gauges in the validation
period (Fig.4). On average, in the calibration period, the
P -factor (% of measured data bracketed by the 95 % predic-
tion uncertainty) at all stations was 70 %, and theR-factor
was 0.61. In the validation period, the averageP -factor was
66 % and the averageR-factor was 0.78.

In the Lower Basin, NSE values of≥0.5 were achieved at
4 of 8 gauges in calibration, and at 4 of 7 gauges in valida-
tion. At two gauges, 1DB2A (Saseni at Gulutu) and 1DA3
(Luengera at Magoma), located at the outlets of mountainous
catchments without any rain gauge in the vicinity, negative
NSE scores were obtained in calibration. The low NSE score
(0.11 in calibration, 0.08 in validation) achieved at the gauge
on Pangani at Buiko, at the outlet of Kirua Swamp, was
partly due to the low variability of discharge at this station,
which makes a higher NSE value harder to achieve. In the
Lower Basin, the averageP -factor in calibration was 73 %
and the averageR-factor was 1.58; in validation, the aver-
ageP -factor was 74 % and the averageR-factor 1.66. These
results confirm the quite large uncertainty of discharge that
was to be expected in the Lower Basin based on the density
and reliability of available measured data.

Calibration of a hydrological model solely based on dis-
charge can lead to over- or underestimation of non-calibrated
water balance elements such as evapotranspiration or deep
aquifer recharge (compare Table2). Therefore, modelling
results from this study were compared to results of previous
studies. The comparison shows that the estimation of non-
calibrated elements of the water balance is consistent with
previously published results: For example, the modelled av-
erage deep aquifer recharge in the Upper Basin is similar to
the rate given by Ndomba et al. (2008), who estimated an
average value of the RCHRGDP (deep aquifer recharge)
parameter of about 0.75 for the Kikuletwa subcatchment;
and the modelled 95% actual evapotranspiration for eleva-
tion bands on Kilimanjaro is in the range of the values re-
sulting from an assessment by Røhr (2003) using the CRAE
approach (Morton,1983, see Fig.6).

4.4 Water provision for different uses

4.4.1 Domestic, livestock and industrial use

Overall water provision for domestic, livestock, and indus-
trial use in the Pangani Basin is 2.84–3.48 m3 s−1 (95 % pre-
diction uncertainty, 95 PPU), which are available at least
95 % of time. Thus the theoretical demand of 4.01 m3 s−1

is not met (Table4). It is not known which share of the
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Table 4. Water provision for domestic, livestock and industrial (DLI) use by District in the Pangani Basin. Upper (U95PPU) and lower
(L95PPU) boundaries of the 95 % prediction uncertainty are given.

District 2002 Theoretical Actual use at 95 % Available LCD at 95 %
Population DLI demand reliability[m3 s−1

] reliability

[m3 s−1
] L95PPU U95PPU L95PPU U95PPU

Arusha Region

Monduli 4400 0.01 0.00 0.00 15 15
Arumeru 435 600 0.59 0.44 0.48 87 95
Arusha 282 700 0.53 0.50 0.63 153 193

Kilimanjaro Region

Rombo 121 800 0.11 0.08 0.12 56 85
Mwanga 115 600 0.13 0.09 0.11 71 79
Same 208 500 0.32 0.18 0.208 74 86
Moshi Rural 454 ,200 0.6 0.63 0.71 119 135
Hai 229 500 0.24 0.29 0.34 108 130
Moshi Urban 144,300 0.38 0.174 0.355 104 212

Tanga Region

Lushoto 294 500 0.38 0.13 0.17 37 51
Korogwe 247 200 0.38 0.20 0.22 71 78
Muheza 36 400 0.04 0.01 0.02 33 43
Pangani 15 900 0.03 0.01 0.01 63 67
Handeni 87 100 0.08 0.02 0.02 24 24
Kilindi 20 200 0.03 0.01 0.01 51 53

Manyara Region

Simanjiro 98,600 0.15 0.05 0.05 43 46
Kiteto 10 100 0.01 0.00 0.00 27 27

Kenya

Taita Taveta 48 300 0.05 0.03 0.03 45 51

Pangani Basin 2 854 900 4.06 2.84 3.48 86 105

available water goes to which use, but according to regula-
tions, domestic use should be given the first and industrial
use the last priority.

The distribution of water provision in space is unequal.
Demand is met or nearly met at the 95 % reliability level in
large areas of the Upper Basin (most Districts around Kili-
manjaro and Mt. Meru). Most Districts in the Lower Basin
experience deficits. This spatial disparity is only partly due
to natural water availability (which is low in the semi-arid
Southwestern Plateau, but not in the Pare and Usambara
Mountains) – it is also due to differences in water infrastruc-
ture development: in the Upper Basin, the percentage of peo-
ple supplied by authorities or water projects is higher, while
in the Lower Basin, more people have to fetch water from
streams and are therefore not able to meet the theoretical per
capita demand.

4.4.2 Water provision for agriculture

Water provision for agriculture comprises rainfed as well as
irrigated cultivation. With a reliability of 75 %, i.e. in at least
3 out of 4 yr, rainfall is sufficient for an average growing pe-
riod (GP) duration of 3.2–4.3 months on rainfed cropland
(95 PPU, Table5, Fig. 7); however, in more humid high-
land areas (e.g. Arumeru, Arusha, Hai or Moshi Districts),
5 months and more are experienced. In the highlands, cash
crops can therefore be grown with only limited irrigation to
complement rainfall, while in the lowlands, even the produc-
tion of staple crops is unreliable without irrigation. On ir-
rigated land, the duration of the period with sufficient wa-
ter is extended to 5.1 to 7.1 months on average (95 PPU,
Table 5, Fig. 7), but again, spatial disparities are high –
some irrigation schemes, mainly in the Upper Basin, can irri-
gate year-round, while others suffer from water scarcity and
competition from upstream users.
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Fig. 4. SWAT-P calibration and validation results. (a) and (c) vi-
sualise the percentage of measured data bracketed by the 95 % pre-
diction uncertainty (P -factor) for calibration (a) and validation pe-
riod (c); (b) and (d) show the R-factor, i.e. the average thickness
of the 95 % prediction uncertainty, expressed in standard deviations
of measured data for calibration (b) and validation (d). The NSE
scores and r2 values reached in calibration and validation, respec-
tively, are displayed as numbers.

Fig. 4. SWAT-P calibration and validation results.(a) and(c) visualise the percentage of measured data bracketed by the 95 % prediction
uncertainty (P -factor) for calibration(a) and validation period(c); (b) and (d) show theR-factor, i.e. the average thickness of the 95 %
prediction uncertainty, expressed in standard deviations of measured data for calibration(b) and validation(d). The NSE scores andr2

values reached in calibration and validation, respectively, are displayed as numbers.

On basin average, 1.2–1.5 ha of cropland with a grow-
ing period duration of 3–6 months at the 75 % reliability
level, suitable for the production of staple crops, are avail-
able per farming household (95 PPU, Table5). Land suitable
for cash crop production, reaching a growing period duration
of 6 months or above, is available at 0.2–0.5 ha per farming
household. Again, the Upper Basin and the highland areas
are privileged in this regard compared to the Lower Basin
and lowland areas.

Average areas planted with crops that require given grow-
ing period durations can also be extracted from the 2002–
2003 Agricultural Sample Census (ASC), conducted by the
Tanzania National Bureau of Statistics. A comparison of
modelling results from this study to the ASC dataset by ad-
ministrative Region indicates that the figures for cropland per
household presented here are in the correct range: in Arusha
and Kilimanjaro Regions, the ASC figures are within the
95 PPU range of modelling results (Fig.8). In Tanga Region,
the results obtained in this study are lower than the averages
from the ASC. The probable reason is that the land cover in-
puts used for modelling (the FAO Africover map from 1997,

FAO, 2002) classifies large areas in the Usambara Moun-
tains as natural vegetation, but they are clearly agriculturally
used today (as confirmed e.g. by recent Google Maps satel-
lite images, Google©). For Manyara Region (comprising the
semi-arid Southwestern part of the Basin), too few house-
holds were interviewed during the ASC in those Districts ly-
ing within the Pangani Basin to obtain a representative aver-
age.

It can be noted in Fig.8 that the uncertainty in the duration
of the growing period is highest in Arusha Region, located in
the Upper Basin. This is contrary to the width of the 95 %
uncertainty range in discharge, which is higher in the Lower
Basin (compare Sect.4.3). The reason is the large share of
irrigated agriculture in Arusha Region, which, in combina-
tion with a high uncertainty on the enforcement of abstrac-
tion limitations (variable DIVCOR, see Table1), leads to a
large range in growing period durations throughout the pos-
terior parameter space.
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Table 5. Average growing period (GP) duration on irrigated and rainfed land, and available cropland per farming household (HH) on which
GP durations of 3–6 months, or≥6 months, respectively, are reached. Cropland per household values are printed in red for Monduli and
Kiteto Districts due to unreliable data on the number of farming households.

District GP on irri- GP on rain- Cropland/HH Cropland/HH
gated land fed land GP 3–6 GP≥ 6
[months] [months] months[ha] months[ha]

U95PPU L95PPU U95PPU L95PPU U95PPU L95PPU U95PPU L95PPU

Arusha Region

Monduli 2.6 3.9 2.8 4.3 17.67 38.82 0.00 7.55
Arumeru 6.4 9.2 3.2 6.6 0.67 1.63 0.19 1.13
Arusha 6.3 9.2 3.1 8.7 0.09 0.62 0.04 0.59

Kilimanjaro Region

Rombo 4.9 7.2 3.6 4.9 0.58 0.82 0.26 0.46
Mwanga 3.1 3.7 3.3 4.1 2.27 2.42 0.02 0.28
Same 4.5 6.3 2.5 4.0 0.96 1.77 0.16 0.48
Moshi Rural 6.1 8.4 4.0 5.5 0.35 0.67 0.26 0.60
Hai 6.7 8.9 3.8 5.2 0.73 1.17 0.24 0.62
Moshi Urban 6.7 8.7 3.9 5.4 0.29 0.57 0.06 0.36

Tanga Region

Lushoto 3.5 5.5 3.1 4.7 0.47 0.59 0.03 0.27
Korogwe 3.6 5.2 2.7 3.1 1.11 1.59 0.09 0.20
Muheza 3.1 5.2 2.4 3.9 0.86 1.86 0.02 0.09
Pangani 6.7 8.0 1.9 3.4 0.38 2.39 0.02 0.05
Handeni 2.9 4.2 2.6 3.3 2.40 4.59 0.00 0.11
Kilindi 2.3 2.9 2.6 3.4 2.38 4.15 0.00 0.00

Manyara Region

Simanjiro 3.9 6.1 2.9 3.6 4.11 4.66 0.02 0.41
Kiteto 3.1 4.1 3.1 3.8 17.26 27.27 0.00 0.57

Kenya

Taita Taveta 7.1 10.1 3.5 5.1 1.04 2.49 0.13 1.22

Pangani Bsn. 5.1 7.1 3.2 4.3 1.19 1.50 0.19 0.51

Table 6. Average discharge, discharge at 95 % reliability (Q95 %), and % of time discharge is above the minimum required flow at hy-
dropower plant locations in the Pangani Basin. Upper (U95PPU) and lower (L95PPU) boundaries of the 95 % prediction uncertainty are
given. From Nyumba ya Mungu, marked with an asterisk (∗), measured data were used since it is located at a managed reservoir outlet; the
L95PPU and U95PPU values are therefore identical.

HEP plant Average discharge Discharge at 95 % % of time above
[m3s−1

] reliability minimum flow

L95PPU U95PPU L95PPU U95PPU L95PPU U95PPU

Nyumba ya mungu∗ 27.1 27.1 13.5 13.5 95 95
Hale 34.9 58.6 11.5 19.4 97 100
New Pangani Falls 34.9 58.5 11.5 19.3 96 100
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Fig. 5. Hydrographs from three gauging stations in the Pangani
Basin comparing modelling results (95 PPU, best simulation) to ob-
served discharge (left panels: calibration; right panels: validation).

Fig. 5. Hydrographs from three gauging stations in the Pangani Basin comparing modelling results (95 PPU, best simulation) to observed
discharge (left panels: calibration; right panels: validation).
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Fig. 6. Comparison of actual evapotranspiration by elevation on the
Southern Kilimanjaro slopes calculated with the CRAE method by
Røhr (2003) and modelled with SWAT in this study.

Fig. 7. Duration of the growing period (GP) reached on cropland at
75 % reliability, differentiated by herbaceous (temporary) and tree
or shrub (permanent) crops. Left panel: lower 95 % prediction un-
certainty boundary (L95PPU); right panel: upper 95 % prediction
uncertainty boundary (U95PPU).

Fig. 6. Comparison of actual evapotranspiration by elevation on the
Southern Kilimanjaro slopes calculated with the CRAE method by
Røhr (2003) and modelled with SWAT in this study.

4.4.3 Water provision for hydropower generation

For hydropower generation, currently at around
603 000 MWh (IUCN and PBWO, 2008), discharges of
about 27 m3 s−1 are available on average at Nyumba ya
Mungu dam (measured value, since flow at the outlet was
not simulated, compare Sect. 3.5), and averages of 34.9–
58.5 m3 s−1 (95 PPU) at the Hale and New Pangani Falls. At
the 95 % reliability level, discharge is about 13.5 m3 s−1 at
Nyumba ya Mungu and 11.5–19.4 m3 s−1 at Hale and New
Pangani Falls; considering the plants’ minimum discharge
for power generation (between 8.5 and 9.8 m3 s−1, IUCN
and PBWO,2008), all plants should be able to produce
power at least 95 % of time (Table6); however, power
rationing due to reduced power production in dry periods
does occur and has become more frequent in recent years
(which is also a result of increasing demand).
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Fig. 6. Comparison of actual evapotranspiration by elevation on the
Southern Kilimanjaro slopes calculated with the CRAE method by
Røhr (2003) and modelled with SWAT in this study.

Fig. 7. Duration of the growing period (GP) reached on cropland at
75 % reliability, differentiated by herbaceous (temporary) and tree
or shrub (permanent) crops. Left panel: lower 95 % prediction un-
certainty boundary (L95PPU); right panel: upper 95 % prediction
uncertainty boundary (U95PPU).

Fig. 7. Duration of the growing period (GP) reached on cropland at 75 % reliability, differentiated by herbaceous (temporary) and tree or
shrub (permanent) crops. Left panel: lower 95 % prediction uncertainty boundary (L95PPU); right panel: upper 95 % prediction uncertainty
boundary (U95PPU).

5 Conclusions and outlook

This study has attempted to quantify water provision in an
East African watershed as an ecosystem service, based on
the definition of ecosystem services as benefits obtained by
people. Consequently, instead of carrying out a purely bio-
physical assessment of water as a resource, the conditional-
ity of the resource being a benefit, i.e. valued and accessi-
ble by stakeholders, has additionally been included. This ne-
cessitated the explicit consideration of valuation of resources
by stakeholders, and a sufficiently high spatial and temporal
resolution in order to determine whether access to water is
given. In addition, the requirement to be able to make pre-
dictions for unmeasured locations and for the future resulted
in the need to use a hydrological model, and the uncertainty
about measured data and model structure, as well as the aim
of transparency towards the consumers of the research re-
sults, called for systematic uncertainty assessment.

The study has shown that these requirements could be ful-
filled in a relatively large, data-scarce watershed, by apply-
ing and slightly adapting the well-established SWAT model,
as well as developing and adapting tools for pre-processing
or uncertainty assessment. This way, some limitations to the
application of SWAT in data-scarce contexts could be over-
come. Further, the study has demonstrated how model results
can be combined with socio-economic data in order to better
fulfill stakeholder information needs.

The SWAT model has proved itself a flexible and com-
prehensive simulation tool for the purpose of quantifying
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Fig. 8. Average cropland area available per farming household with
a certain modelled growing period (GP) duration (95 % prediction
uncertainty, 95 PPU) and average areas planted with crops requiring
the respective GP duration, based on the 2002–2003 Agricultural
Sample Census (ASC), per administrative Region.

Fig. 8. Average cropland area available per farming household with
a certain modelled growing period (GP) duration (95 % prediction
uncertainty, 95 PPU) and average areas planted with crops requiring
the respective GP duration, based on the 2002–2003 Agricultural
Sample Census (ASC), per administrative Region.

water provision explicitly in time and space and at varying
scales. An additional advantage is the fact that it has been
successfully tested and applied in many parts of the world
(Abbaspour et al., 2009; Faramarzi et al., 2009; Gassman
et al., 2005; Schuol et al., 2008; Yang et al., 2006). Minor
modifications of the model code were necessary for the ap-
plication in the study context, especially regarding the ability
to simulate a large number of spatial units, as well as some
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processes particular to the study area, such as the large Kirua
floodplain. This led to the development of the SWAT-P ver-
sion. A technical drawback of the program when simulat-
ing large watersheds and/or fine spatial detail – the fact that
separate input files are required for each subbasin and HRU,
which can lead to hundreds of thousands of input files – re-
mains unresolved for the moment, as this would require a
concerted effort of the SWAT user community due to the nu-
merous other programs built around the model (like the GIS
interfaces or SUFI-2) that require the current input file struc-
ture.

The SUFI-2 method, in combination with the correction
factors introduced in SWAT-P, allows assessment of uncer-
tainty in inputs that are very relevant but at the same time
available in low quality in the Pangani Basin, which could
very well be the case in other tropical watersheds as well.
Newer versions of the software (SWAT-CUP≥ 2.1.4) al-
low varying precipitation inputs directly through the inter-
face, without the correction factor available only in SWAT-
P. SUFI-2 further has the advantages that fewer simulation
runs are required for calibration and uncertainty assessment
than with other available algorithms (Yang et al., 2008), and
that uncertainty analysis outputs are easily communicable to
a wider, also non-scientific audience.

Efforts to optimise input data, such as pre-processing of
climatic inputs based on secondary information, or combin-
ing different types of spatial information, have been shown
to reduce input uncertainty and add spatial detail. Consid-
erable uncertainty still remains in the final outputs, which
could be made transparent using the SUFI-2 method. The
added spatial detail was a prerequisite to come up with real-
istic estimates of water resources that are actually accessible
to stakeholders: if water sources (e.g. streams) were spatially
aggregated at a too high level in the model, the available
water quantity would tend to be overestimated, since small
streams with unreliable flow, that may represent the only ac-
cessible water source for parts of the population, could not
be distinguished.

Data limitations also prevented calibration of the model
based on additional output variables besides discharge, such
as water quality parameters or crop yield. This would have
added confidence in modelling results. However, where in-
formation from earlier studies was available, even if only for
parts of the basin – such as evapotranspiration in the Kili-
manjaro area (Røhr, 2003) aquifer recharge in the Kikuletwa
subcatchment (Ndomba et al., 2008), or cropland areas per
household based on the Agricultural Sample Census – it was
compared to the results of this study. The comparisons show
that the results presented here are consistent with earlier pub-
lications, which increases their plausibility.

Estimates of water provision as an ecosystem service,
i.e. as a valued and accessible benefit, at relatively fine spa-
tiotemporal resolution and over the entire basin as output by
this study, represent an added value over the generalised esti-
mates of demand or physical water availability, or local case

studies, available so far (e.g.IUCN and PBWO, 2008; Mo-
ges, 2003; Ngana, 2001b; Turpie et al., 2005). Results are
directly available for any physical or political unit required
and can therefore be used for planning and policy-making
from local to basin level. Since the indicators have been de-
fined based on stakeholder preferences, they are appropriate
for use in decision-making processes involving stakeholders,
e.g. on future priorities of water management and allocation.
Additionally, indicators expressed in physical (not dimen-
sionless) units can be verified based on observations, and al-
low determining whether critical levels are reached. Finally,
the indicators presented rely on data from a sufficiently long
period to include interannual variability, so that the tempo-
ral reliability of water availability can be estimated (compare
e.g.Andersson et al., 2009).

In other parts of the world, observed data may be avail-
able to quantify water provision at a similar level of detail as
in the present study for a “historical” timeline like the year
2000 without having to use a hydrological model. However,
models have the advantage of being able to make projections
for future scenarios. This study provides a strong basis on
which such future projections can be made for the Pangani
Basin. Similar approaches could also be applied in other wa-
tersheds in data-scarce areas. The approach can also provide
input data for the assessment of other ecosystem services in
a given study area.

Supplementary material related to this
article is available online at:
http://www.hydrol-earth-syst-sci.net/16/69/2012/
hess-16-69-2012-supplement.pdf.
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