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Abstract. The increasing importance of catchment-scale and
basin-scale models of the hydrological cycle makes it de-
sirable to have a simple, yet physically realistic model for
lateral subsurface water flow. As a first building block to-
wards such a model, analytical solutions are presented for
horizontal groundwater flow to surface waters held at pre-
scribed water levels for aquifers with parallel and radial flow.
The solutions are valid for a wide array of initial and bound-
ary conditions and additions or withdrawals of water, and can
handle discharge into as well as lateral infiltration from the
surface water. Expressions for the average hydraulic head,
the flux to or from the surface water, and the aquifer-scale
hydraulic conductivity are developed to provide output at the
scale of the modelled system rather than just point-scale val-
ues. The upscaled conductivity is time-variant. It does not
depend on the magnitude of the flux but is determined by
medium properties as well as the external forcings that drive
the flow. For the systems studied, with lateral travel distances
not exceeding 10 m, the circular aquifers respond very dif-
ferently from the infinite-strip aquifers. The modelled fluxes
are sensitive to the magnitude of the storage coefficient. For
phreatic aquifers a value of 0.2 is argued to be representative,
but considerable variations are likely. The effect of vary-
ing distributions over the day of recharge damps out rapidly;
a soil water model that can provide accurate daily totals is
preferable over a less accurate model hat correctly estimates
the timing of recharge peaks.

1 Introduction

Many agriculturally productive regions in temperate climate
zones are located in areas with little topography and shallow
groundwater, such as delta areas. The precipitation surplus
is often discharged via dense, partially man-made drainage
systems (Lennartz et al., 2009). For individual fields,
drainage theory based on analytical solutions for the predom-
inantly horizontal flow in the phreatic aquifer has proven its
value for several decades (Hooghoudt, 1940; Dumm, 1954;
Kraijenhoff van de Leur, 1958; van Schilfgaarde, 1970).

Currently, the changing climate drives efforts to model the
terrestrial hydrological cycle at the scale of entire catchments
and basins. The horizontal saturated flow to and from the
drainage network is an important segment of the hydrologi-
cal cycle at these larger scales. Basin-scale and global mod-
els tend to focus on the vertical column covering the unsat-
urated zone and the atmosphere. In many models, lateral
flows between columns are represented in a conceptual man-
ner (see the overview by Nijssen et al., 2001; Samaniego et
al., 2010, for a recent example). Often the focus is more on
mountainous and hilly areas than on flatter terrain (see Gong
et al., 2011). The model columns can have horizontal dimen-
sions that render point-values of typical hydraulic parameters
and variables such as hydraulic conductivity, hydraulic head,
and flux density useless. Therefore, an approach is desirable
that is based on a simplified flow description that better re-
flects the essential features of lateral subsurface flow than the
conceptual approaches used so far and still expresses the re-
sults in terms of large-scale variables: the flux between the
groundwater and the surface water, and an average measure
of the phreatic level.
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An alternative path is offered by highly advanced inte-
grative modelling that couples processes at the soil surface,
the soil, the groundwater, and the surface water (e.g. Hy-
droGeoSphere) (Brunner and Simmons, 2011; Hydrogeo-
sphere, 2012). Such models hold great potential for com-
plicated local to continental studies (which will often involve
solute transport) in order to improve management strategies
or guide measures to protect groundwater and surface wa-
ter (e.g. Li et al., 2008). Their sophistication makes them
very data-intensive. The optimal use of these models re-
quires a prolonged and dedicated effort to set-up the model,
provide the input, and store and analyze its output. The cou-
pling with atmospheric models is less advanced than for the
large-scale models discussed above. In this manuscript we
opt instead for a more explorative, less data-intensive, and
computationally light approach.

While traditional drainage theory is of limited use for
catchment-scale models, its analytical approach may sup-
port the development of a less conceptual and more physi-
cal representation of the fluxes between the groundwater and
the surface water. De Rooij (2009) explored the upscaled
equivalents of conventional Darcian flow descriptors by their
energy-conserving volume averages. De Rooij (2011) re-
cently showed that aquifer-scale steady-state horizontal sat-
urated flows behave in a Darcian way in that the flux be-
tween the groundwater and the surface water is directly pro-
portional to the difference between the energy-conserving
averaged hydraulic heads of the two water bodies. Thus,
in principle, the average groundwater level and the sur-
face water level, together with an upscaled hydraulic con-
ductivity would suffice to model groundwater-generated
stream discharge. Such average groundwater levels and up-
scaled conductivities can readily be derived from the ana-
lytical solutions to the saturated flow problems treated in
drainage theory.

Obviously, steady-state solutions will not be adequate for
many practical problems. Based on de Rooij’s (2011) proof
of principle, this paper therefore explores linearized transient
groundwater flows in order to examine parallel and radial
flows toward or from surface waters. It does so through an-
alytical solutions of the differential equations describing the
flow. The advantages over numerical solutions are that the
resulting expressions provide a more profound insight into
the fundamental behaviour of the systems and that upscaled
parameters and variables can be calculated exactly. This
does not imply that future applications should necessarily be
analytical also, but the insight gained from the analytically
derived relationships can inform future implementations, be
they analytical or numerical.

Generic solutions are developed that cover nine different
scenarios that reflect combinations of different forcing mech-
anisms and changes in these forcings, caused, for instance,
by the commencement and cessation of rainfall, or human
manipulation of surface water levels. The term forcing in this
paper refers to initial and boundary conditions, recharge rate,

and head-dependent recharge. The solutions do not appear to
have been published before. These solutions are used to anal-
yse the behaviour of the aquifers under different conditions,
and to compare the effects of parallel and radial geometry on
the hydraulic head and the flow. Also, since precise rainfall
predictions at the field scale are impossible, the effect of the
temporal distribution on recharge (generated by infiltrating
rainfall) is considered.

In view of potential applications in large-scale models that
cannot accommodate local (point-scale) values of heads and
fluxes, expressions are developed for the average hydraulic
head and the flux at the groundwater-surface water interface.
The relationship between the two is investigated in some de-
tail. The solutions show that the linear relationship between
average hydraulic head and steady-state discharge proved by
de Rooij (2011) does not exist for transient flows. Instead,
a more complicated, time-dependent, but still explicit rela-
tionship connects the two. This relationship allows the cal-
culation of the hydraulic conductivity at the field scale (the
scale of the system between the zero-flux boundary at the
axis of symmetry and the surface water) expressed solely in
terms of the initial and boundary conditions and the geohy-
drological properties of the subsurface. Furthermore, fluxes
towards the surface water and average hydraulic heads can
be calculated directly from the forcings and the geohydro-
logical parameters. The theory developed here thus provides
the building blocks for an approach that can connect pre-
dominantly horizontal, field-scale groundwater flows to the
essentially vertical hydrology of soil-vegetation-atmosphere
exchange processes.

2 Theory

2.1 Parallel flow: governing partial differential
equation (PDE) and initial (IC) and boundary
conditions (BC)

Invoking the Dupuit assumptions for groundwater flow elim-
inates vertical gradients in the hydraulic head, and only the
horizontal coordinates remain. Phreatic aquifers may receive
recharge from the unsaturated zone above that is independent
of the local hydraulic head and may exchange water with a
deeper aquifer if the separating aquitard is somewhat perme-
able. Such exchange fluxes are assumed here to be propor-
tional to the local hydraulic head. For a uniform, isotropic,
phreatic aquifer overlying a level aquitard, the governing
PDE then becomes:

µ
∂H

∂t∗
= K

[
∂

∂x1

(
H

∂H

∂x1

)
+

∂

∂x2

(
H

∂H

∂x2

)]
+aH +b+R (1)

wherex1 andx2 [L] are the horizontal coordinates,t∗ is time
[T], H is the hydraulic head [L], defined with respect to the
top of the underlying aquitard,K [LT−1] is the hydraulic
conductivity,R [LT−1] is the recharge or loss to evapotran-
spiration (R may be time dependent),µ is the storage coef-
ficient (occasionally termed drainable porosity for a phreatic

Hydrol. Earth Syst. Sci., 16, 649–669, 2012 www.hydrol-earth-syst-sci.net/16/649/2012/



G. H. de Rooij: Transient flow between aquifers and surface water 651

aquifer, e.g. van Schilfgaarde, 1974), anda [T−1] (≤0) and
b [LT−1] are constants determining the exchange with the
deeper aquifer (see also Appendix D for a list of symbols). If
the deeper aquifer has a constant and uniform hydraulic head
H2, −a−1 is the resistance of the aquitard, andb =−aH2.
Equation (1) is the Boussinesq equation with additional pro-
duction terms and does not have a general analytical solution.
To make the equation analytically tractable it needs to be lin-
earized by assuming that the variation inH is small with
respect toH , and thatµ is a constant:

∂H

∂t∗
=

KD

µ

(
∂2H

∂x2
1

+
∂2H

∂x2
2

)
+

a

µ
H +

b+R

µ
(2)

whereD [L] is the constant water level above the aquitard.
Figure 1 gives a definition sketch of the original and the lin-
earized problem. The combination of the Dupuit assump-
tions and the linearization has a sound footing in classical
drainage theory (e.g. Dumm, 1954; Kraijenhoff van de Leur,
1958; van Schilfgaarde, 1970; Wesseling, 1979). Van Schil-
fgaarde (1974) gives a thoughtful discussion of the assump-
tions underlying the above linearization. See Appendix A for
a quantitative treatment of the storage coefficient.

To analyze flow towards parallel drains, ditches, or streams
with spacing 2L [L], we drop the second horizontal coor-
dinate since the flow lines are all perpendicular to it. We
also make the independent variables dimensionless by the
following transformations:

x =
x1

L
(3)

t =
KD

L2
t∗ (4)

to obtain:

∂H

∂t
=

1

µ

∂2H

∂x2
+

L2

KD

a

µ
H +

L2

KD

b+R

µ
(5)

This equation needs to be solved for various cases, all in
the domain 0≤ x < 1 and t > 0. For all cases,x = 0 lies
at the midpoint between two surface water bodies or drains.
It therefore constitutes an axis of symmetry where there is
no flow:

∂H(0,t)

∂x
= 0 (6)

The BC atx = 1, the IC, and the values ofa, b, andR, vary
from case to case:

Case 1. Initial hydrostatic equilibrium with a step change
of H (1,0) att = 0. This case reflects the sudden increase or
decrease of the ditch water level, for instance to increase the
groundwater level during dry periods.

IC, BC, and parameter values:

H(x,0) = H0 (7)

H(1,t)= HA (8)

 55

 1 

Figure 1. Sketch of the subsurface structures and its model schematization. The variables are 2 

defined in the main text. 3 

Fig. 1. Sketch of the subsurface structures and its model
schematization. The variables are defined in the main text.

a = b = R = 0 (9)

Case 2. Initial hydrostatic equilibrium with step change of
the water level in the soil att = 0, reflecting a pulsed water
input (e.g. by short, heavy rainfall). The surface water level
remains constant. Mathematically, this problem is identical
to Case 1, and the same solution applies.

Case 3. Like Case 1, but with constant recharge or loss.
This case reflects the sudden increase or decrease of the ditch
water level, while a steady flux to or from the unsaturated
zone to the phreatic aquifer is maintained.

IC, BC, and parameter values:

H(x,0) = H0 (10)

H(1,t)= HA (11)

a = b = 0, R = R (12)

Case 4. Like Case 2, but with constant recharge or loss. This
reflects a pulsed water input followed by gentler recharge or
loss. Mathematically, Case 4 is identical to Case 3.

Case 5. Like Case 1, but with recharge or loss proportional
(but not necessarily directly proportional) to the hydraulic
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head. This case reflects the sudden increase or decrease of
the ditch water level, with a flux to or from the phreatic
aquifer that consists of a constant and aH -dependent com-
ponent. This flux can be composed of recharge from or flow
to the unsaturated zone and to a deeper aquifer across an
aquitard.

IC, BC, and parameter values:

H(x,0) = H0 (13)

H(1,t)= HA (14)

a = a, b = b, R = R (15)

Case 6. Like Case 2, but with recharge or loss a linear func-
tion of H , like Case 5. Mathematically, this problem is
identical to that of Case 5.

Case 7. Initial hydrostatic equilibrium. Constant recharge
(or loss) R1 [LT−1] for 0 < t < t1, zero loss or recharge
for t ≥ t1. This case can represent a single prolonged
rainfall event.

IC, BC, and parameter values:

H(x,0) = H0 (16)

H(1,t)= H0 (17)

a = b = 0 (18)

R =

{
R1,0≤t<t1
0,t≥t1

(19)

Case 8. Like Case 7, but with constant recharge or lossR2
[LT−1] for t ≥ t1. This can represent rainfall followed by
constant (possibly potential) evapotranspiration.

IC, BC, and parameter values:

H(x,0) = H0 (20)

H(1,t)= H0 (21)

a = b = 0 (22)

R =

{
R1, 0≤t<t1
R2, t≥t1

(23)

Case 9. Like Case 8, but with recharge/loss linearly varying
with H , and with a sudden ditch water level change att = 0.
This case arises when the replenished phreatic aquifer loses
water to the aquifer below, or when the delivery of water
to the unsaturated zone is limited by the dropping hydraulic
head in the phreatic aquifer. The BC atx = 1 adds additional
flexibility, compared to Cases 7 and 8.

IC, BC, and parameter values:

H(x,0) = H 0 (24)

H(1,t)= HA (25)

a = a, b = b (26)

R =

{
R1, 0≤t<t1
R2, t≥t1

(27)

Cases 1 through 6 are all covered by Eqs. (13)–(15) of
Case 5, which is itself a special case of Case 9. Cases 7 and
8 are special cases of Case 9 as well, governed by Eqs. (24)
through (27). Thus, all problems listed above are special
cases of the solution to this most general case. The derivation
of the solution for this case is presented in Appendix B. The
resulting expression for the hydraulic head reads:

H(x,t) = HA

+
2

π

∞∑
n=0

(−1)n(
n+

1
2

) cos

[(
n+

1

2

)
πx

]


(H0−HA)e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ

+
aHA+b+R1

KD

L2

[(
n+

1
2

)
π
]2

−a

1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ


+u(t − t1)

(R2−R1)

KD

L2

[(
n+

1
2

)
π
]2

−a1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}(

t−t1
µ

)



(28)

wheren is a counter, andu(t) is the Heaviside step function.

2.2 Radial flow: governing partial differential equation
(PDE) and initial (IC) and boundary conditions
(BC)

In axisymmetrical flows in a circular aquifer, the Dupuit as-
sumptions are invoked again and both head-dependent and -
independent exchanges of water with a deeper aquifer and/or
the overlying unsaturated zone are permitted. For a uniform
porous medium and IC and BCs that are independent of the
location on the boundary, all flows will be radial, and the an-
gular coordinate can be eliminated. The governing PDE then
becomes:

µ
∂H

∂t∗
= K

[
∂

∂r∗

(
H

∂H

∂r∗

)
+

1

r∗

(
H

∂H

∂r∗

)]
+aH +b+R (29)

wherer∗ [L] is the horizontal, radial coordinate. Lineariz-
ing as before by assuming the vertical extent of the saturated
zone as well asµ constant gives:

∂H

∂t∗
=

KD

µ

∂2H

∂r∗2 +
KD

µ

1

r∗

∂H

∂r∗
+

a

µ
H +

b+R

µ
(30)

We seek solutions of this equation for finite radial domains
(e.g., circular fields or reclaimed areas (polders) surrounded
by a ditch): 0≤ r∗ < L. (The notationL is retained to facili-
tate comparison with the parallel flow solution.) Introducing
dimensionless variables

r =
r∗

L
(31)
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and

t =
KD

L2
t∗ (4)

results in:

∂H
∂t

=
1
µ

∂2H

∂r2 +
1
µ

1
r

∂H
∂r

+
aL2

µKD
H +

L2

µKD
(b+R(t))

=
1
µ

(
∂2H

∂r2 +
1
r

∂H
∂r

)
+AH +B(t)

(32)

(Non-consecutively numbered equations have been intro-
duced before and are labelled by their original number). We
can develop the same nine cases as for parallel flow, this
time for the domain 0≤ r < 1 andt > 0. For all cases,r = 0
constitutes an axis of symmetry where there is no flow:

∂H(0,t)

∂r
= 0 (33)

The BC atr = 1, the IC, and the values ofa, b, and R,
vary from case to case. A very general problem analogous
to Case 9 for parallel flow is defined by:

H(r,0) = H 0 (34)

H(1,t)= HA (25)

a = a, b = b (26)

R =

{
R1, 0≤t<t1
R2, t≥t1

(27)

Appendix C gives the derivation of the solution, which is:

H(r,t) = HA

+2
∞∑

n=0

J0(αnr)

αnJ1(αn)
(H0−HA)e

(
aL2
KD

−α2
n

)
t
µ +

aHA+b+R1(
α2
nKD

L2 −a

) [1−e

(
aL2
KD

−α2
n

)
t
µ

]
+u(t − t1)

R2−R1(
α2
nKD

L2 −a

) [1−e

(
aL2
KD

−α2
n

)(
t−t1
µ

)]


(35)

whereJi(y) is the Bessel function of the first kind and order
i, andαn are the roots of

J0(αn) = 0, n = 0,1,2,... (36)

2.3 Relationship between the flux to/from the surface
water and the average hydraulic head

2.3.1 Parallel flow

In Eq. (28), only the cosine term depends onx. By express-
ing the gradient of the hydraulic head in dimensional form, it
can be used to find the horizontal fluxQ(x,t) [L2T−1] in the
case of parallel flow:

Q

1x2
(x,t)= −KD

∂H

∂x1
= −KD

dx

dx1

∂H

∂x
= −

KD

L

∂H

∂x

=
2KD

L

∞∑
n=0

(−1)nsin

[(
n+

1

2

)
πx

]


(H0−HA)e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ

+
aHA+b+R1

KD

L2

[(
n+

1
2

)
π
]2

−a

1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ


+u(t − t1)

(R2−R1)

KD

L2

[(
n+

1
2

)
π
]2

−a1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}(

t−t1
µ

)



(37)

wherex2 [L] represents the horizontal coordinate running
parallel to the aquifer boundary with the surface water. At
the interface with the surface water (x = 1), this simplifies to

Q

1x2
(1,t)=

2KD

L

∞∑
n=0

(H0−HA)e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ

+
aHA+b+R1

KD

L2

[(
n+

1
2

)
π
]2

−a

1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ


+u(t − t1)

(R2−R1)

KD

L2

[(
n+

1
2

)
π
]2

−a1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}(

t−t1
µ

)


(38)

The average hydraulic headH(t)in the aquifer is

H(t) =

1∫
0

H(x,t)dx

= HA +
2

π2

∞∑
n=0

(
n+

1

2

)−2



(H0−HA)e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ

+
aHA+b+R1

KD

L2

[(
n+

1
2

)
π
]2

−a

1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ


+u(t − t1)

(R2−R1)

KD

L2

[(
n+

1
2

)
π
]2

−a1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}(

t−t1
µ

)



(39)

Note that fort = 0, the term in braces equalsH0 – HA and
can be brought outside of the sum. Since we have for the
series

∞∑
n=0

(
n+

1

2

)−2

= 4
∞∑

n=0

(2n+1)−2
=

π2

2
(40)
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(Euler, in Berggren et al., 2004, p. 116), the average head
at t = 0 equals the initial headH0, which is correct. From
Eqs. (38) and (39), the flux across a stretch1x2 [L] of the
aquifer boundary is related to the average hydraulic head in
the aquifer as:

Q

1x2
(1,t)=

π2KD

L

∞∑
n=0

Mn(t)

∞∑
n=0

(
n+

1
2

)−2
Mn(t)

(
H(t)−HA

)
(41)

where

Mn(t) = (H0−HA)e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ

+
aHA +b+R1

KD

L2

[(
n+

1
2

)
π
]2

−a

1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ


+u(t − t1)

(R2−R1)

KD

L2

[(
n+

1
2

)
π
]2

−a

1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}(

t−t1
µ

)
(42)

For t = 0, all Mn(0) are equal toH0 – HA, andQ(1,0) is
infinitely large whenH0 6= HA and zero whenH0 = HA.

The non-linearity in theQ−H relationship of Eq. (41)
arises from the term with the series. If only the first terms
of both series are retained, the relationship becomes linear:

Q

1x2
(1,t)≈

π2KD

L

M0(t)

4M0(t)

(
H(t)−HA

)
=

π2KD

4L

(
H(t)−HA

)
(43)

The series does not converge fast for allt , however, so this
simplification should be used with care. Fort approaching
infinity, the effect of the initial condition and ofR1 damps
out, and only the BCs andR2 affect the head. For a non-leaky
aquifer withoutH -dependent evapotranspiration (a = b = 0),
Eq. (41) for infinitely large time becomes

Q

1x2
(1,∞) =

π2KD

L

∞∑
n=0

(
n+

1
2

)−2
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n=0

(
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1
2

)−4

(
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=
KD

L

6π4

2π4

(
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)
(44)

=
3KD

L

(
H(∞)−HA

)
where the values of the series were taken from Euler (in
Berggren et al., 2004, p. 116). This result is consistent with
de Rooij’s (2011) steady-state analysis. Note that Eqs. (43)
and (44) differ by 17 %.

2.3.2 Radial flow

In Eq. (35), only term with the Bessel functions de-
scribes the dependency ofH on r. The horizontal flux
Q(r,t) =−2π rKDL ∂H

∂r∗ [L3T−1] for radial flow follows from
the gradient of the hydraulic head in dimensional form.
To find this gradient, the following relationship is used
(Abramowitz and Stegun, 1965, 9.1.30):

dJ0(αnr)

dr
= −αnJ1(αnr) (45)

From Eq. (35) then follows

Q(r,t) = 4πrKD

∞∑
n=0

J1(αnr)
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)]
 (46)

At the interface with the open water atr = 1 (r∗
= L) this

gives

Q(1,t)= 4πKD

∞∑
n=0
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 (47)

If t = 0, Eq. (47) reduces to

Q(1,0) = 4πKD(H0−HA)

∞∑
n=0

1 (48)

which equals infinity forH0 6= HA. For t approaching in-
finity, Q should approachπL2R2 (or πL2R1, if t1 = ∞) if
a = b = 0:

Q(1,∞) = 4πL2[R1+u(∞− t1)(R2−R1)]
∞∑

n=0

1

α2
n

= πL2R2 (49)

because
∞∑

n=0

1
α2

n
=

1
4 (Elizalde et al., 1993, Eq. 2.7).

The average hydraulic head is

H(t) =
2π
π

1∫
0

rH(r,t)dr = 2HA

1∫
0

rdr

+4
∞∑

n=0

1

αnJ1(αn)
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(50)

For t = 0, anda = b = R1 = R2 = 0, Eq. (50) reduces to

H(t) = HA +4(H0−HA)

∞∑
n=0

1

α2
n

= H0 (51)

With α0 = 2.4048255577 (Abramowitz and Stegun, 1965,
p. 409), the contribution of the first term is 0.1729 (69 % of
the sum).

With Eqs. (47) and (50), theQ−H relationship is

Q(1,t)= πKD
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where
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As in the case of parallel flow, theQ−H relationship can be
linearized by retaining only the first term of both series in
Eq. (52), but again, this approximation can be poor owing to
slow convergence of the series.

Note, incidentally, that the linearization of Eqs. (43) and
(53) makesQ proportional toH −HA, which is the defini-
tion of a linear reservoir (e.g. Fenicia et al., 2006). The reser-
voir coefficients are fully defined in terms of porous media
properties, aquifer dimensions, and aquifer geometry.

For infinitely large time, Eq. (53) reduces to

On(∞) =

L2

KD
(aHA +b+R2)(
α2

n −
aL2

KD

) (54)

whereR2 needs to be replaced byR1 if t1 is infinite. For a
non-leaky aquifer withoutH -dependent evapotranspiration,
a = b = 0, and, Eq. (52) for t = ∞ becomes

Q(1,∞) = πKD

∞∑
n=0

α−2
n
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n=0

α−4
n

(
H(∞)−HA

)
= 8πKD

(
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)
(55)

because
∞∑

n=0

1
α4

n
=

1
32 (Elizalde et al., 1993, Eq. 2.9).

This result is corroborated by de Rooij’s (2011)
steady-state analysis.

2.4 The upscaled hydraulic conductivity

The equation pairs (41)–(42) and (52)–(53) relate the flux
across the groundwater-surface water interface to the dif-
ference between the average hydraulic heads on either
side of this interface (in the surface water body, the av-
erage hydraulic head can be assumed identical to any lo-
cal value). The proportionality constantsKup [LT−1] and
2πLKur [L2T−1] for parallel and radial flow are defined from
Eqs. (41) and (52), respectively, as:

Kup(t) =
π2KD

L

∞∑
n=0

Mn(t)
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n=0

(
n+

1
2

)−2
Mn(t)

(56)

2πLKur(t) = πKD

∞∑
n=0

On(t)

∞∑
n=0

On(t)

α2
n

(57)

The quantitiesKup andKur represent field-scale equivalents
of the Darcian-scale hydraulic conductivity, in that they have
the same dimensions [LT−1] and relate a flux at a particu-
lar time to a difference in average hydraulic heads at that
time between connected but separate bodies of water. They
depend on the geohydrological parameters that characterize
the subsurface, on the IC and BC (H0 andHA), on the forc-
ing parametersR1 andR2, and on time. The Darcian prop-
erty that the magnitude of the flux does not affect the hy-
draulic conductivity is maintained in the upscaled conductiv-
ity, but the upscaled conductivity no longer is purely defined
by properties of the porous medium and the fluid: external
forcings also affect it. In this sense, saturated flow at the field
scale is fundamentally non-Darcian, even for uniform media
and uncomplicated flow patterns. The dependence onR1 and
R2 implies that the upscaled conductivities change abruptly
at t1, when the recharge rate changes instantaneously. The
time dependence makes them also change gradually. This de-
pendency upon the forcings at this scale arises directly from
the expressions for the flux and the average hydraulic head,
and exists despite the absence of heterogeneity. The reper-
cussions of this fundamental non-Darcianity at this scale
for large-scale groundwater flow modelling with model cells
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much larger than the Darcian scale are not entirely clear,
although it seems reasonable to expect that the assumption
of Darcianity at super-Darcian scales becomes increasingly
compromised as the curvature ofH(x∗,t∗) with x∗ within
the volume of interest increases.

All this results in a non-uniqueQ−H relationship that
is more a by-product of the full solution than a tool for
flow calculations. The three-variable relationship between
the flux across the system boundary, average hydraulic head,
and time is unique, but of little practical interest: it is de-
fined for a particular configuration of system parameters and
thus changes when the initial and boundary conditions and/or
the recharge forcing are changed, even if the geohydrology
remains the same. Furthermore, if the problem is fully de-
fined, not only the upscaled hydraulic conductivities can be
computed directly, but also the flux as a function of time,
through Eqs. (38) and (47), which do not requireH(x,t).
Still, Eqs. (42)–(43) and (52)–(53) provide a rigorously de-
rived, insightful, and surprisingly direct relationship between
two field-scale subsurface flow characteristics.

3 Materials and methods

The solutions were coded in Excel worksheets (available
upon request from the author), allowing maximum portabil-
ity and giving considerable flexibility in selecting the values
of x, r, andt for output. After some testing, all infinite sums
were calculated with 2001 terms. For most values ofx, r,
and t , this was much more than needed, with the last 100
or even 1000 terms adding less than 10−3 to the total sum.
Only immediately after a change in boundary conditions and
x or r equal to 0.99 or 1 did errors up to a few percent re-
main. In those cases, the error with 1001 terms in the sum
was not much larger than that with 2001 terms. Calculation
times on a standard laptop ran from too small to determine
to about 10 s.

The solutions were used to run a variety of scenarios in-
volving the nine cases discussed above to study the effect of
flow geometry (parallel vs. radial), recharge/loss independent
of the hydraulic head, and exchange with a lower aquifer.
The scale of the modelled problems roughly represents that
of an agricultural field with artificial drainage by ditches or
tube drains. The labels of the scenarios and the correspond-
ing parameter values are given in Table 1. For the reference
cases (Table 1) and the case of 1-day recharge, the accuracy
of using truncated series (only the leading term or the first
five terms) of the various series appearing in the equations
for H(t), Q(0,t), Kup, andKur was evaluated.

Given the somewhat ambiguous character of the storage
coefficient (see Appendix A), the sensitivity of flux across
the groundwater-surface water interface to variations inµ

was examined in some detail. For leaky aquifers,H0 < HA,
while H2 was set to exceedHA, causing the flux across the
groundwater-surface water interface to switch from lateral
infiltration to discharge. The effect of the temporal distri-
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 1 

Figure 2. The evolution in space and time of the hydraulic head for the reference problem 2 

(Table 1) in an infinite strip-aquifer with parallel flow. 3 

Fig. 2. The evolution in space and time of the hydraulic head for the
reference problem (Table 1) in an infinite strip-aquifer with parallel
flow.

bution of recharge was studied by providing similar amounts
of recharge either uniformly distributed over the first day of
the simulation period, or as a pulse at the beginning or the
end of that first day.

4 Results and discussion

4.1 General

The hydraulic head as a function of space and time for the
parallel reference problem (Table 1) is given in Fig. 2. The
initial wetting from the ditch during the initial period without
rainfall clearly shows, until the system is essentially at equi-
librium at t = 0.60 (after 40 days). Despite the logarithmic
time scale, it is still clear that the subsequent small recharge
flux leads to steady-state flow att = 2.12, within 41 days af-
ter the start of recharge. The plot for the analogous radial
problem (Fig. 3) illustrates how the gradients in radial flow
can be much smaller. The effect of flow entering/leaving the
system in all radial directions leads to much quicker equi-
librium than does flow in a singular direction: att = 0.38
(25 days) is the aquifer at equilibrium with the surface water
level, and att = 1.89 (26 days after the start of the recharge),
the flow is steady (compare Figs. 2 and 3).

Under favourable circumstances, the series converge
rapidly enough for their first terms to provide accurate ap-
proximations (but it is recommended to verify this). In
that case, the aquifer behaves like a linear reservoir, with
the reservoir coefficient determined byK, D, L (for strip
aquifers only), and the aquifer geometry (strip or circular).
The full solutions are more flexible than linear-reservoir ap-
proximations in that they can handle leaky aquifers, a more
flexible set of forcings, and lateral flow towards the sur-
face water as well as lateral inflow from the surface water.
This may help explore the deviations from linear-reservoir
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Table 1. Parameter values for various illustrative problems.

Problem label

Parameter parallel/ parallel/ parallel/ parallel/ parallel/
radial radial radial radial radial

reference µ 0.001 µ 0.01 µ 0.1 µ 0.4

K (m d−1) 0.5 0.5 0.5 0.5 0.5
D (m) 3.0 3.0 3.0 3.0 3.0
L (m) 10.0 10.0 10.0 10.0 10.0
µ 0.2 0.001 0.01 0.1 0.4
H0 (m) 1.0 1.0 1.0 1.0 1.0
HA (m) 1.5 1.5 1.5 1.5 1.5
R1 (m d−1) 0 0 0 0 0
R2 (m d−1) 0.005 0.005 0.005 0.005 0.005
t∗1 (d) 100 100 100 100 100
a (d−1) 0 0 0 0 0
b(m d−1) 0 0 0 0 0

Table 1. Continued.

Problem label

Parameter parallel/ parallel/ parallel/
radial radial radial

pulse 0 pulse 11 even rain

K (m d−1) 0.5 0.5 0.5
D (m) 3.0 3.0 3.0
L (m) 10.0 10.0 10.0
µ 0.2 0.2 0.2
H0 (m) 1.5 1.5 1.5
HA (m) 1.6 1.6 1.5
R1 (m d−1) 0 0 0.02
R2 (m d−1) 0 0 0
t∗1 (d) arbitrary arbitrary 1
a (d−1) 0 0 0
b(m d−1) 0 0 0

1 This case follows from “parallel/radial pulse 0” by adding 1 day to the times
pertaining to its solution, e.g.Hpulse1(x,t∗) = Hpulse0(x,t∗ − 1). For 0 < t∗ < 1 d,
H(x,t∗) = H0.

behaviour of groundwater reservoirs discussed by Fenicia
et al. (2006). Another advantage is that they provide a full
map of the hydraulic head in the space-time domain, allow-
ing the results to be compared to, and possibly calibrated on,
monitoring well data.

4.2 Accuracy of truncated series

If sufficiently accurate results can be obtained with only a
few terms of the series, efficiency can be increased and im-
plementing the solutions becomes easier. SinceH is ex-
pected to be dominated by low-frequency terms, accurate ap-
proximations based on the first few terms of the series may

Table 1. Continued.

Problem label

Parameter parallel/radial leaky

K (m d−1) 0.5
D (m) 3.0
L (m) 10
µ 0.2
H0 (m) 1.0
HA (m) 1.5
R1 (m d−1) 0
R2 (m d−1) 0.005
t∗1 (d) 100
a (d−1) −0.01
b(m d−1) 0.04

well be possible. The flux at the groundwater-surface water
interface, on the other hand, is determined by the local gra-
dient inH , which is affected by terms of any frequency, and
a (much) higher number of terms may be necessary. This
should then also result in loss of accuracy in the estimates of
Kup andKur based on truncated series.

Indeed, Fig. 4 (A for the reference case and B for the case
with one-day recharge) show that even a single term approx-
imation ofH works well except very shortly after an abrupt
change of the surface water level. The flows covered by these
figures involve flows into and out of the surface water, and
are driven by water level changes in the surface water as
well as by groundwater recharge by rainfall. Shortly after
a change inHA, the fluxes require at least five terms of the
series to avoid massive errors (Fig. 5a, early times). The ac-
curacy eventually becomes excellent even for a single term
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 1 

Figure 3. The evolution in space and time of the hydraulic head for the reference problem 2 

(Table 1) in a circular aquifer with radial flow. 3 

Fig. 3. The evolution in space and time of the hydraulic head for the
reference problem (Table 1) in a circular aquifer with radial flow.
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Figure 4. The quality of approximation of the average hydraulic head H by using 1 or 5 terms 2 

of the series solutions compared to the solutions with 2001 terms (ref.) for the reference 3 

problem (A; Table 1) and the problem with one-day rainfall (B; Table 1: even rain) in an 4 

infinite strip-aquifer (par.) and a circular aquifer (rad.) 5 

 6 

Fig. 4. The quality of approximation of the average hydraulic head
H by using 1 or 5 terms of the series solutions compared to the solu-
tions with 2001 terms (ref.) for the reference problem (A; Table 1)
and the problem with one-day rainfall (B; Table 1: even rain) in an
infinite strip-aquifer (par.) and a circular aquifer (rad.).

(indicating linear-reservoir-type behaviour), but as soon as
the flux becomes driven by recharge (after 100 d), the single-
term approximation fails. In Fig. 5b, the flux during the first
day is driven by rainfall-generated recharge, and clearly both
truncated series underestimate the true discharge flux. Dur-
ing the drying period after the cessation of rainfall, the accu-
racy rapidly improves. Still, this can give rise to serious mass
balance errors over a given period: more water was added by
the rainfall than would be eventually discharged if an insuf-
ficient number of terms is computed. In cases where five
terms are insufficient, often between 1000 and 2000 terms
are needed. Still, computational demand (10 s or less on a
standard laptop) was not an issue (see Sect. 3).
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Figure 5. The quality of approximation of the flux across the groundwater – surface water 2 

interface by using 1 or 5 terms of the series solutions compared to the solutions with 2001 3 

terms (ref.) for the reference problem (A; Table 1) and the problem with one-day rainfall (B; 4 

Table 1: even rain) in an infinite strip-aquifer (par.) and a circular aquifer (rad.). The flux in 5 

the infinite strip-aquifer is indicated on the left vertical axis, that in the circular aquifer on the 6 

right vertical axis. 7 

Fig. 5. The quality of approximation of the flux across the ground-
water – surface water interface by using 1 or 5 terms of the series
solutions compared to the solutions with 2001 terms (ref.) for the
reference problem (A; Table 1) and the problem with one-day rain-
fall (B; Table 1: even rain) in an infinite strip-aquifer (par.) and a
circular aquifer (rad.). The flux in the infinite strip-aquifer is indi-
cated on the left vertical axis, that in the circular aquifer on the right
vertical axis.

The upscaled hydraulic conductivities in Fig. 6 reflect the
deviations of the flux for truncated series. Using only the
first term results in constant values, consistent with the ob-
servation in the Theory section that using only the first terms
of the series occurring in the expressions for the relationship
betweenH andQ(0, t) linearizes the relationship. Figure 6
demonstrates the penalty for this simplification: particularly
after sudden changes and during periods of recharge-driven
fluxes, the single-term approximation fails. For recharge-
driven fluxes, even five terms are not enough, as seen by the
deviations in Fig. 6a after 100 d and in Fig. 6b during the
first day. The results for the leaky aquifers and for the sce-
nario with the smallest storage coefficient (0.001) showed no
major deviations from these findings.

4.3 Sensitivity to the storage coefficient

The solutions for parallel (Eq.28) and radial flow (Eq.35)
show that the storage coefficient appears in exponents that
contain the form−t /µ and thus acts as a scaling factor for
time: small values ofµ make the system respond faster. The
smallest values ofµ (0.001 and 0.01) reflect conditions for
confined aquifers, while the values from 0.1 to 0.4 are more
representative for phreatic aquifers.

The anticipated slowing down of the aquifer response is il-
lustrated by the fluxes from the surface water into the aquifer
in Fig. 7. The aquifers with largeµ not only respond more
slowly, but also require more water to fill the larger volume
of available storage when water infiltrates laterally from the
surface water (until day 100). The fact that the amount of
storage in the circular aquifer diminishes farther away from
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 1 

Figure 6. The quality of approximation of the upscaled hydraulic conductivity by using 1 or 5 2 

terms of the series solutions compared to the solutions with 2001 terms (ref.) for the reference 3 

problem (A; Table 1) and the problem with one-day rainfall (B; Table 1: even rain) in an 4 

infinite strip-aquifer (par.; Kup) and a circular aquifer (rad.; Kur). 5 

Fig. 6. The quality of approximation of the upscaled hydraulic con-
ductivity by using 1 or 5 terms of the series solutions compared
to the solutions with 2001 terms (ref.) for the reference problem
(A; Table 1) and the problem with one-day rainfall (B; Table 1: even
rain) in an infinite strip-aquifer (par.;Kup) and a circular aquifer
(rad.;Kur).
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 1 

Figure 7. Sensitivity of the flux across the groundwater – surface water interface to the value 2 

of the storage coefficient μ in the infinite strip aquifer (A) and the circular aquifer (B). The 3 

parameter values for all cases are given in Table 1 (parallel/radial mu ..). 4 

Fig. 7. Sensitivity of the flux across the groundwater – surface water
interface to the value of the storage coefficientµ in the infinite strip
aquifer (A) and the circular aquifer(B). The parameter values for
all cases are given in Table 1 (parallel/radialµ ..).

the surface water is reflected in its faster response compared
to the infinite-strip aquifer.

After recharge starts at day 100, the hydraulic head rises
more swiftly in aquifers with smallµ, and consequently, the
flux to the surface water increases more rapidly (Fig. 7). Here
too, the circular aquifers reach near steady-state flow more
rapidly than the strip aquifers.
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Figure 8. The evolution in space and time of the hydraulic head in an infinite strip-aquifer 2 

with parallel flow that receives water from a deeper aquifer (Table 1: leaky). 3 

Fig. 8. The evolution in space and time of the hydraulic head in
an infinite strip-aquifer with parallel flow that receives water from a
deeper aquifer (Table 1: leaky).

The response to variations inµ is marked. While the cor-
rect value ofµ may be difficult to establish a priori, the sen-
sitivity of key model output to its value makes it a suitable
calibration parameter.

4.4 Leaky aquifers

The values of parametersa and b for the case of a leaky
aquifer are consistent with a headH2 in the lower aquifer
of 4.0 m and a resistance of the aquitard between the aquifers
of 100 d. With the imposed BC of 1.5 m and the initial head
of 1.0 m, this leads to an appreciable flux into the top aquifer
that needs to be discharged into the surface water. The hy-
draulic head in the top aquifer rapidly rises, and theH -profile
slopes down towards the surface water to facilitate the lateral
discharge flux (Fig. 8). Att = 0.38 (25 d) for both parallel
(Fig. 8) and radial flow (Fig. 9), the hydraulic head has be-
come nearly steady and is entirely determined by the heads
in the surface water and in the lower aquifer. The additional
head-independent recharge by infiltrating rain of 5 mm d−1

after t = 1.5 (100 d) is small compared to the recharge from
below and causes only a minor increase inH . The effect of
the dimensionality of the flow manifests itself predominantly
in the larger gradients required by parallel flow to drive the
lateral flow, resulting in larger deviations fromHA overall.

This is confirmed by Fig. 10: the response ofH to the forc-
ings is more pronounced for parallel flow. During the early
stage, where water moves in from the surface water (negative
fluxes, owing to the fact thatH0 < HA), its value is lower for
the infinite strip aquifer compared to the radial aquifer. Later,
when the influx from the deeper aquifer needs to be later-
ally transported to the surface water, the infinite strip aquifer
has the highest values. The initially negative fluxes gradu-
ally trend to zero and become positive within 2.5 d for both
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 1 

Figure 9. The evolution in space and time of the hydraulic head in a circular aquifer with 2 

radial flow that receives water from a deeper aquifer (Table 1: leaky). 3 

Fig. 9. The evolution in space and time of the hydraulic head in a
circular aquifer with radial flow that receives water from a deeper
aquifer (Table 1: leaky).

 64

 1 

Figure 10. The average hydraulic head and the upscaled hydraulic conductivities (Kup, Kur) for 2 

parallel (p) and radial flow (r) in leaky aquifers (see Figs. 8 and 9) with head-dependent 3 

recharge from a deeper aquifer. 4 

Fig. 10. The average hydraulic head and the upscaled hydraulic
conductivities (Kup, Kur) for parallel (p) and radial flow (r) in leaky
aquifers (see Figs. 8 and 9) with head-dependent recharge from a
deeper aquifer.

parallel flow and radial flow (Fig. 11). In the mean time,H

gradually increases from being smaller thanHA to exceeding
it (shortly after 2.5 d for parallel flow and shortly before 2.5 d
for radial flow). Thus, there is a brief period during which the
direction of the local flux at the groundwater-surface water
interface is inconsistent with the magnitude of the field-scale
H with respect toHA: the flux is in the direction of increas-
ing averageH . Consequently, the field-scale hydraulic con-
ductivity becomes negative during this period (Fig. 10, only
visible for parallel flow).

The fluxes infiltrating into the aquifers early in the simula-
tions are comparable (Fig. 11). The discharge fluxes gener-
ated by the influx from the lower aquifer and, after 100 d, by
recharge from above, are markedly different for the infinite
strip and the radial aquifer, reflecting their geometries.

 65

 1 

Figure 11. As Fig. 10, for the fluxes across the groundwater – surface water interface. The 2 

flux in the infinite strip-aquifer (par.) is indicated on the left vertical axis, that in the circular 3 

aquifer (rad.) on the right vertical axis. 4 

Fig. 11. As Fig. 10, for the fluxes across the groundwater – surface
water interface. The flux in the infinite strip-aquifer (par.) is indi-
cated on the left vertical axis, that in the circular aquifer (rad.) on
the right vertical axis.

4.5 Recharge distribution in time

Three recharge regimes were tested, all for rain showers
delivering 0.02 m of water to the aquifer: two involved a
pulse application att = 0 d or t = 1 d (dimensionless time
0.015), in the third regime water entered the aquifer evenly
distributed over a one-day period starting att = 0 (Table 1,
problem labels “parallel/radial pulse 0”, “. . . pulse 1”, and
“. . . even”, respectively). The pulsed applications raised the
hydraulic head by 0.10 m (0.02/µ), followed by a decay back
to HA (1.5 m). During evenly distributed recharge, the peak
hydraulic head was obviously reached after 1 d: 1.58 m for
parallel flow and 1.56 m for radial flow. Within three days,
the difference in average hydraulic head was about 1 cm for
both parallel and radial flow (Fig. 12). The average head in
the circular aquifer dropped at more than twice the rate of the
strip aquifer.

The fluxes towards the surface water generated by the
recharge show comparable behaviour (Fig. 13). The fluxes
for the strip aquifer and the circular aquifer differ by a factor
62.8 (2πL) owing to the necessity of expressing the flux from
the strip aquifer per unit length. For the pulse applications,
the infinite head gradient at the groundwater-surface water
interface caused by the spiked increase inH makes the initial
flux go to infinity. The peak discharge for evenly distributed
recharge is 0.062 m3 d−1 per meter for the strip aquifer and
3.4 m3 d−1 for the circular aquifer. After 3 days, the differ-
ence between the largest and the smallest flux has already
dropped below 9 % of its peak for the strip aquifer and be-
low 12 % for the circular aquifer. From then on, the flux
decays exponentially, with the difference between the three
rainfall regimes decaying exponentially as well (the distance
on the log scale remains about constant). After 20 days, the
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 66

 1 

Figure 12. The average hydraulic head during and after 0.02 m recharge delivered as a pulse 2 

at the start (0) or the end of day 1 (1), or evenly distributed over the day (0-1), for an infinite 3 

strip-aquifer (p) and a circular aquifer (r). The input parameters are given in Table 1 (pulse 0, 4 

pulse 1, even rain). 5 

Fig. 12. The average hydraulic head during and after 0.02 m
recharge delivered as a pulse at the start (0) or the end of day 1 (1),
or evenly distributed over the day (0–1), for an infinite strip-aquifer
(p) and a circular aquifer (r). The input parameters are given in
Table 1 (pulse 0, pulse 1, even rain).

 67

 1 

Figure 13. As Fig. 12, but for the fluxes across the groundwater – surface water interface. The 2 

flux in the infinite strip-aquifer (p) is indicated on the left vertical axis, that in the circular 3 

aquifer (r) on the right vertical axis. 4 

 5 

Fig. 13. As Fig. 12, but for the fluxes across the groundwater –
surface water interface. The flux in the infinite strip-aquifer (p) is
indicated on the left vertical axis, that in the circular aquifer (r) on
the right vertical axis.

flux from the strip aquifer is less than 1.5 % of the peak for
any of the three regimes. The circular aquifer loses its water
much faster: after ten days, all fluxes are around 1 % (1.1 %
at most) of the peak. The conclusion is warranted that for
phreatic aquifers, the effect of the temporal distribution of
recharge becomes negligible within a few days. For most
purposes, daily sums of net infiltration into the saturated zone
will likely suffice on input. Since the PDE was linearized,
the solution for more complicated rainfall regimes can be
obtained by superimposing the solutions for a sequence of
daily inputs.

5 Summary and conclusions

Solutions for linearized parallel and radial flow in aquifers
were developed that have sufficient generality to be directly
applicable to a wide range of forcings that cover most con-
ditions occurring in nature. The solutions are valid for dis-
charge as well as lateral infiltration. Expressions for the flux
between groundwater and surface water, and for the average
hydraulic head, were developed. While the test cases were
geared towards artificially drained fields, the solutions can be
readily applied to hydrological systems with a much sparser
discharge network. The linearity of the PDEs allows the pos-
sibility to represent the forcing in a given time period as a
sequence of time segments (possibly daily segments), the so-
lutions of which can be superimposed to acquire the solution
for longer time periods with varying boundary conditions and
head-independent and head-dependent recharge. To do so,
H0 for a subsequent solution can be made equal toH re-
sulting from the solutions for previous time periods. This
introduces a small error that is likely to damp out rapidly.

The solutions take the form of infinite series, but truncated
series of five terms or even a single term can still give accu-
rate results, particularly at times without exchange of water
with another aquifer or the unsaturated zone above (if the
aquifer is phreatic). When there is such an exchange (head-
independent and/or head-dependent recharge), or shortly af-
ter a change in the boundary conditions, truncated series will
lead to significant errors.

The expressions for the average hydraulic head, the flux
across the system boundary (to/from the surface water), and
the field-scale hydraulic conductivity contain infinite series.
The Darcian nature of the upscaled hydraulic conductivity
for steady-state flows can be preserved for transient flows by
truncating the series appearing in the expressions for the up-
scaled conductivity after the leading term. This causes the
aquifer to behave like a linear reservoir, with the reservoir co-
efficient reflecting porous media properties, and the dimen-
sions and geometry (strip/circular) of the aquifer. Using only
the first term can lead to significant errors. It is not yet clear
how the fundamental non-Darcianity at super-Darcian scales
that the solutions prove to exist even in homogeneous media
affects large-scale groundwater flow modelling.

The results presented here demonstrate that even for
aquifers with small lateral flow distances, a temporal reso-
lution of recharge of one day will often be sufficient. This
suggests that soil water models should primarily focus on the
accurate partitioning of the precipitation flux into evapotran-
spiration, direct delivery to the surface water via flow routes
that bypass the groundwater (e.g. surface runoff and flow
through crack networks and other macropores), and ground-
water recharge. Adequate discharge estimates require the
model for groundwater-generated discharge described here
to be supplemented with a surface runoff and bypass flow
model to capture the rapid discharge generation.
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Appendix A

The magnitude of the storage coefficient

For confined aquifers, the storage coefficientµ reflects the
compressibility and consolidation effects on the matrix (the
increase in the amount of water stored acrossD with an
increase of the hydraulic head) and generally lies between
5× 10−5 and 5× 10−3 to 0.01 (Bouwer, 1978, p. 31; Kruse-
man and de Ridder, 1990, p. 23). For phreatic aquifers, it
reflects the storage change across the vertical cross section
with a change in the hydraulic head:

xa∫
0

∂θ

∂t∗
dx3 (A1)

wherex3 (L) is the vertical coordinate (set to zero at the top
of the impermeable layer),θ is the volumetric water content,
andxa (L) is the height of the soil surface above the imperme-
able layer. If instantaneous hydraulic equilibrium is assumed
in the vertical (consistent with the Dupuit assumptions), the
following equality holds if the phreatic levelxp [L] is suf-
ficiently deep for the water content at the soil surface to be
equal toθ r:

xa∫
0

θdx3 = xaθr +

θs∫
θr

−h(θ)+xpdθ

= xaθr −

θs∫
θr

h(θ)dθ +xp(θs−θr) (A2)

whereh is the matric potential [L]. This equality can be de-
rived from a plot of the water content againstx3 by first in-
tegratingθ over the range ofx3 and subsequently integrating
the depth range for each water content over the range ofθ .
The integral on the RHS is a soil-specific constant. IfH is
changed, the Dupuit assumptions stipulate that this results in
a similar change inxp. With Leibniz’ rule (Abramowitz and
Stegun, 1965, 3.3.7), the resulting storage change in Eq. (A1)
can be found:

xa∫
0

∂θ

∂t∗
dx3 =

∂

∂t∗

xa∫
0

θdx3 =
∂

∂t∗xaθr −

θs∫
θr

h(θ)dθ +xp(θs−θr)

= (θs−θr)
∂xp

∂t∗

= (θs−θr)
∂H
∂t∗

In the other extreme, the capillary fringe reaches to the soil
surface. In that case, the storage change is similar to that of a
confined aquifer. Thus, for phreatic aquifers,µ ranges from
nearly zero to (θs – θ r). Kruseman and de Ridder (1990,
p. 23) give a range between 0.01 and 0.30. For conductive

aquifers with significant horizontal flow (low clay content),
often 0.25< (θs - θ r) < 0.4 (compare Table 1.3 of Kruseman
and de Ridder, 1990, p. 24). Therefore,µ ≈ 0.2 may be a
reasonable approximation.

Appendix B

The solution to the parallel flow problem

The PDE for Case 9 is of the form (compare Eq.5):

∂H

∂t
=

1

µ

∂2H

∂x2
+AH +B(t) (B1)

where the definitions ofA andB follow from Eq. (5). The
IC and BC are:

H(x,0) = H 0 (B2)

∂H(0,t)

∂x
= 0 (B3)

H(1,t)= HA (B4)

This is a parabolic, non-homogeneous 2nd order PDE with
non-homogeneous BCs. The following substitution removes
the termAH (see also Farlow, 1993, pp. 58–61):

H(x,t) = eAtW(x,t)−
B(t)

A
(B5)

The system becomes:

∂W

∂t
=

1

µ

∂2W

∂x2
+

e−At

A

dB

dt
(B6)

W(x,0) = H 0+
B(0)

A
(B7)

∂W(0,t)

∂x
= 0 (B8)

W(1,t)= e−At

(
HA +

B(t)

A

)
(B9)

The non-homogeneous term in the PDE is now independent
of H . The BC atx = 1 is non-homogeneous. We seek a sub-
stitution that makes both BCs homogeneous (compare Far-
low, 1993, p. 43–47). Thus:

W(x,t) = ς(t)(1−x)+β(t)x +V (x,t) (B10)

whereV (x,t) is the new dependent variable andζ (t) andβ(t)
are as yet unknown functions. From the first BC (Eq. B8) we
have:

∂W(0,t)

∂x
= −ς(t)+β(t)+

∂V (0,t)

∂x
= 0 (B11)

Hydrol. Earth Syst. Sci., 16, 649–669, 2012 www.hydrol-earth-syst-sci.net/16/649/2012/



G. H. de Rooij: Transient flow between aquifers and surface water 663

From the second BC follows:

W(1,t)= β(t)+V (1,t)= e−At

(
HA +

B(t)

A

)
(B12)

To ensure homogeneous BCs forV (x,t), β(t) needs to be
defined as:

β(t) = e−At

(
HA +

B(t)

A

)
(B13)

From Eqs. (B11) and (B13) follows the definition ofζ (t):

ς(t) = e−At

(
HA +

B(t)

A

)
(B14)

The substitution in Eq. (B10) thus becomes:

W(x,t)= e−At

(
HA +

B(t)

A

)
+V (x,t) (B15)

The system now becomes:

∂V

∂t
=

1

µ

∂2V

∂x2
+e−At (AHA +B(t)) (B16)

(Note that the term with dB/dt in Eq. (B6) is cancelled by a
similar term that arises when Eq. (B15) is differentiated with
respect to time.)

V (x,0) = H 0−HA (B17)

∂V (0,t)

∂x
= 0 (B18)

V (1,t)= 0 (B19)

This system can be solved by the method of eigenfunction
expansions (Farlow, 1993, p. 64–70). We start from the so-
lution of the associated homogeneous problem by separation
of variables:

V (x,t)= X(x)T (t) (B20)

whereX and T are as yet unknown functions. From this
follows (Farlow, 1993, p. 33–41):

d2X

dx2
+λ2X = 0 (B21)

The BCs forV give forX:

dX(0)

dx
= 0 (B22)

X(1) = 0 (B23)

The general solution forX is:

X(x) = Csin(λx)+Ecos(λx) (B24)

with C andE unknown constants. From Eq. (B22) follows
that C = 0. From Eq. (B23) then follows that cos(λx) = 0.
Thus, we have:

Xn(x) = Encos(λnx), λn =
1

2
π,

3

2
π,

5

2
π,... (B25)

Equation (B25) gives a valid solution for arbitrary values of
En. These are therefore set to 1. The non-homogeneous term
in Eq. (B16) needs to be expressed as a series ofXn:

e−At (AHA +B(t)) =

∞∑
n=0

fn(t)Xn(x) (B26)

with fn(t) determined from

1∫
0

e−At (AHA +B(t))Xmdx =

∞∑
n=0

fn(t)

1∫
0

XmXndx (B27)

Note thatXm andXn are orthogonal on the integration inter-
val for m 6= n (see Bruggeman, 1999, p. 701–703), and the
integral of their product therefore equals 0. In the sum, only
the term form = n is non-zero:

e−At (AHA +B(t))

1∫
0

cos(λmx)dx=fm(t)

1∫
0

cos2(λmx)dx (B28)

Note that setting the value ofEm equal to one above is ac-
commodated by the freedom to determinefm. Evaluating the
integrals leads to:

e−At (AHA +B(t))

sin
[(

m+
1
2

)
πx
]

(
m+

1
2

)
π

1

0

= fm(t)

[
(2m+1)πx +sin[(2m+1)πx]

(4m+2)π

]1

0
⇔ e−At (AHA +B(t))

(−1)m(
m+

1
2

)
π

=1
2fm(t)

⇔ fm(t) =
2
π

e−At (AHA +B(t))
(−1)m(
m+

1
2

)

(B29)

With this, the series expansion of the non-homogeneous term
is:

e−At (AHA +B(t))=
2

π
e−At (AHA +B(t))

∞∑
n=0

(−1)n(
n+

1
2

) cos

[(
n+

1

2

)
πx

]
(B30)

The solutionV (x,t) was assumed of the form:

V (x,t) = X(x)T (t) (B20)

The linearity of the system of Eqs. (B16)–(B19) and the ho-
mogeneity of the BCs ensures that any linear combination of
solutions is also a solution:

V (x,t) =

∞∑
n=0

Xn(x)Tn(t) (B31)
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Tn needs to be chosen such that the following equality holds
for an individual solutionVn:

∂V

∂t
=

1

µ

∂2V

∂x2
+

2

π
e−At (AHA +B(t))

(−1)n(
n+

1
2

)Xn (B32)

Including in Eq. (B22) the SOV solution toV to gives:

Xn

dTn

dt
=

Tn

µ

d2X

dx2
+

2

π
e−At (AHA +B(t))

(−1)n(
n+

1
2

)Xn (B33)

We replace the second spatial derivative ofXn by −λ2
nXn

(Eq. B21). This allowsXn to be divided out:

dTn

dt
= −

1

µ

[(
n+

1

2

)
π

]2

Tn

+
2

π
e−At (AHA +B(t))

(−1)n(
n+

1
2

)
= −

1

µ

[(
n+

1

2

)
π

]2

Tn +
2

π
AHA

(−1)n(
n+

1
2

)e−At

+
2

π

(−1)n(
n+

1
2

)e−AtB(t)

(B34)

This is an ordinary differential equation inTn. To simplify
the notation we introduce

γn = −
1

µ

[(
n+

1

2

)
π

]2

(B35)

and

ηn =
2

π

(−1)n(
n+

1
2

) (B36)

to simplify Eq. (B34) to:

dTn

dt
= γnTn +ηnAHAe−At

+ηne−AtB(t) (B37)

The solution to Eq. (B37) is:

Tn(t) = Fneγnt
+

t∫
0

eγn(t−τ)ηn

(
AHAe−Aτ

+e−AτB(τ)
)

dτ (B38)

with τ [T] an integration variable, andFn a constant that
needs to be determined from the IC. The integral in Eq. (B38)
can be written as:
t∫

0
eγn(t−τ)ηn

(
AHAe−Aτ

+e−AτB(τ)
)
dτ

= ηnAHAeγnt
t∫

0
e−(γn+A)τ dτ

+ηneγnt
t∫

0
e−(γn+A)τB(τ)dτ

=
ηnAHA
γn+A

(
eγnt

−e−At
)
+ηneγnt

t∫
0

e−(γn+A)τB(τ)dτ

(B39)

From Eqs. (5), (27), and (B1) follows:

B(t) =
L2

µKD
b+

L2

µKD
R(t) =

L2

µKD
b

+
L2

µKD
[R1+u(t − t1)(R2−R1)] (B40)

whereu(t) is the Heaviside step function. With this, the final
integral in Eq. (B39) can be written as:

ηneγnt
t∫

0
e−(γn+A)τB(τ)dτ

= ηneγnt
t∫

0

{
L2

µKD
b+

L2

µKD
[R1+u(τ−t1)(R2−R1)]

}
e−(γn+A)τ dτ

=
ηneγntL2(b+R1)

µKD(γn+A)

[
1−e−(γn+A)t

]
+u(t − t1)

ηneγntL2(R2−R1)
µKD(γn+A)

[
e−(γn+A)t1−e−(γn+A)t

]
(B41)

where the multiplication with the Heaviside step function
ensures that the last term is zero for 0< t < t1.

Inserting this into Eq. (B39) gives
t∫

0

eγn(t−τ)ηn

(
AHAe−Aτ

+e−AτB(τ)
)

dτ

=
ηnAHA

γn +A

(
eγnt

−e−At
)

+
ηneγntL2(b+R1)

µKD(γn +A)

[
1−e−(γn+A)t

]
+u(t − t1)

ηneγntL2(R2−R1)

µKD(γn +A)[
e−(γn+A)t1−e−(γn+A)t

]
(B42)

Inserting this into Eq. (B38) and taking into account
Eqs. (B35) and (B36) gives:

Tn(t) = Fne
−

1
µ

[(
n+

1
2

)
π
]2

t

+
2
π

AHA

A−
1
µ

[(
n+

1
2

)
π
]2

(−1)n(
n+

1
2

)
(

e
−

1
µ

[(
n+

1
2

)
π
]2

t
−e−At

)
+

L2

πµKD
2

A−
1
µ

[(
n+

1
2

)
π
]2

(−1)n(
n+

1
2

)(
(b+R1)

{
e
−

1
µ

[(
n+

1
2

)
π
]2

t
−e−At

}
+u(t − t1)

(R2−R1)

{
e
−

1
µ

[(
n+

1
2

)
π
]2

(t−t1)−At1
−e−At

})
(B43)

For t = 0, this reduces to

Tn(0) = Fn (B44)

To findFn we therefore need to expand the IC ofV (x,t) in a
series of the eigenfunctionsXn(x).

Fn = Tn(0) =

1∫
0

(H0−HA)cos
[(

n+
1
2

)
πx
]
dx

1∫
0

cos2
[(

n+
1
2

)
πx
]
dx
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=
2

π
(H0−HA)

(−1)n(
n+

1
2

) (B45)

The full solution forTn(t) thus becomes:

Tn(t) =
2
π

(H0−HA)
(−1)n(
n+

1
2

)e
−

1
µ

[(
n+

1
2

)
π
]2

t

+
2
π

AHA

A−
1
µ

[(
n+

1
2

)
π
]2

(−1)n(
n+

1
2

)
(

e
−

1
µ

[(
n+

1
2

)
π
]2

t
−e−At

)
+

L2

πµKD
2

A−
1
µ

[(
n+

1
2

)
π
]2

(−1)n(
n+

1
2

)(
(b+R1)

{
e
−

1
µ

[(
n+

1
2

)
π
]2

t
−e−At

}
+u(t − t1)

(R2−R1)

{
e
−

1
µ

[(
n+

1
2

)
π
]2

(t−t1)−At1
−e−At

})
(B46)

The solution forV (x,t) then is:

V (x,t) =

∞∑
n=0

Xn(x)Tn(t)

=
2
π

∞∑
n=0

(H0−HA)
(−1)n(
n+

1
2

)e
−

1
µ

[(
n+

1
2

)
π
]2

t

+
AHA

A−
1
µ

[(
n+

1
2

)
π
]2

(−1)n(
n+

1
2

)
(

e
−

1
µ

[(
n+

1
2

)
π
]2

t
−e−At

)
+

L2

µKD
1

A−
1
µ

[(
n+

1
2

)
π
]2

(−1)n(
n+

1
2

)
(b+R1)

{
e
−

1
µ

[(
n+

1
2

)
π
]2

t
−e−At

}

+u(t − t1)(R2−R1)
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1
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1
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)
π
]2

(t−t1)−At1
−e−At

}

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n+

1

2

)
πx

]

(B47)

With Eq. (B15) we find forW(x,t):

W(x,t) = e−At
(
HA +

B(t)
A

)
+V (x,t)

= e−At
(
HA +

B(t)
A

)
+

2
π

∞∑
n=0

(H0−HA)e
−

1
µ

[(
n+

1
2

)
π
]2

t

+
AHA

A−
1
µ

[(
n+

1
2

)
π
]2

(
e
−

1
µ

[(
n+

1
2

)
π
]2

t
−e−At

)
+

L2

µKD
1

A−
1
µ

[(
n+

1
2

)
π
]2

(b+R1)

{
e
−

1
µ

[(
n+

1
2

)
π
]2

t
−e−At

}

+u(t − t1)(R2−R1)

{
e
−

1
µ

[(
n+

1
2

)
π
]2

(t−t1)−At1
−e−At

}



(−1)n(
n+

1
2

) cos

[(
n+

1

2

)
πx

]

(B48)

And finally, with Eq. (B5) we obtain the solution forH(x,t):

H(x,t) = eAtW(x,t)−
B(t)
A

= HA +
2
π

∞∑
n=0

(−1)n(
n+

1
2

) cos
[(

n+
1
2

)
πx
]



(H0−HA)e

{
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1
µ

[(
n+

1
2

)
π
]2
}
t

+
AHA
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1
µ
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1
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)
π
]2

e
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1
µ

[(
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1
2

)
π
]2
}
t
−1


+

L2

µKD
1

A−
1
µ

[(
n+

1
2

)
π
]2

(b+R1)

e

{
A−

1
µ

[(
n+

1
2

)
π
]2
}
t
−1


+u(t − t1)(R2−R1)

e

{
A−

1
µ

[(
n+

1
2

)
π
]2
}
(t−t1)

−1







(B49)

whereA is given by (compare Eqs.5 and B1):

A =
aL2

µKD
(B50)

leading to

H(x,t) = HA

+
2

π

∞∑
n=0

(−1)n(
n+

1
2

) cos

[(
n+

1

2

)
πx

]


(H0−HA)e

{
aL2
KD

−
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n+

1
2

)
π
]2
}

t
µ

+
aHA+b+R1

KD

L2

[(
n+

1
2

)
π
]2

−a

1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}

t
µ


+u(t − t1)

(R2−R1)

KD

L2

[(
n+

1
2

)
π
]2

−a1−e

{
aL2
KD

−

[(
n+

1
2

)
π
]2
}(
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µ

)



(B51)

Appendix C

The solution to the radial flow problem

The PDE for radial flow is (compare Eq.32):

∂H

∂t
=

1

µ

(
∂2H

∂r2
+

1

r

∂H

∂r

)
+AH +B(t) (C1)

with BCs (Eq.33)

∂H(0,t)

∂r
= 0 (C2)

and (Eq.34)

H(r,0) = H 0 (C3)

and IC (Eq.25)

H(1,t)= HA (C4)
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To solve the above system, we seek a transformation that
makes the inhomogeneous terms independent ofH . The
transformation of Eq. (B5) creates problems in the term with
1/r, however. Successive application of the Laplace trans-
form and the finite Hankel transform is another strategy
(Bruggeman, 1999, p. 744–748). By doing so, the initial con-
dition is transformed differently from the boundary condition
though, and there is no term with (HA − H0), which makes
the solution somewhat difficult to interpret. We therefore first
introduce a substitution to make the BC homogeneous:

H(r,t)= U(r,t)+HA (C5)

The PDE then becomes:

∂U

∂t
=

1

µ

(
∂2U

∂r2
+

1

r

∂U

∂r

)
+AU +AHA +B(t) (C6)

with IC and BC:

U(r,0) = H0−HA (C7)

U(1,t)= 0 (C8)

Equations (26) and (27) for a, b, andR(t) remain unchanged,
while the BC atr = 0 (Eq. C2) holds for bothH andU .

Eliminating the time coordinate by the Laplace transform
(Bruggeman, 1999, p. 652–653) gives:

sUL(r,s)+HA −H0 =
1

µ

d2UL

dr2
+

1

µ

1

r

dUL

dr

+AUL +
AHA

s
+BL(s) (C9)

dUL(0,s)

dr
= 0 (C10)

UL(1,s) = 0 (C11)

wheres is the Laplace variable, the subscriptL indicates a
transformed variable, andBL(s) follows from the definition
of the Laplace transform:

BL(s) =

∞∫
0

e−stB(t)dt (C12)

The transforms were taken from Abramowitz and Stegun
(1965, p. 1020–1029). The Laplace transform removes
the time coordinate and therefore the need for an initial
condition.

Next, the system is simplified further by the finite Hankel
transform (Bruggeman, 1999, p. 706–707):

fH (n) =

1∫
0

rf (r)J0(αnr)dr (C13)

with αn the roots of

J0(αn) = 0, n = 0,1,2,... (C14)

The usefulness of the Hankel transform arises from its trans-
formation of the derivatives with respect tor∗ or r that ap-
pear in the flow equations for radial flows (Bruggeman, 1999,
p. 707). Forr, the derivatives are transformed as:[

d2f

dr2
+

1

r

df

dr

]
H

= αnJ1(αn)f (1) (C15)

− lim
r→0

(
r

df

dr

)
−α2

nfH (n) (C16)

In the above equations,f denotes an arbitrary function of
r, Ji(y) is the Bessel function of the first kind and orderi,
and the subscriptH denotes a Hankel-transformed variable
or function. The boundary condition atr = 1 (r∗

= L) as
well as conditions imposed atr = 0 are incorporated in the
transform defined in Eq. (C15). Transforming Eq. (C9) gives:

sULH (s,n)+(HA −H0)

1∫
0

rJ0(αnr)dr

= −
α2

n

µ
ULH (s,n)+AULH (s,n)

+
AHA

s

1∫
0

rJ0(αnr)dr+BLH (s,n)

(C17)

where

BLH (s,n)=

1∫
0

rJ0(αnr)

∞∫
0

e−stB(t)dtdr (C18)

With the relationship for derivatives of Bessel functions
of integer order (Abramowitz and Stegun, 1965, 9.1.30;
Carslaw and Jaeger, 1959, p. 198, Eq.5), the integral in
Eq. (C16) can be expressed as:

1∫
0

rJ0(αnr)dr =

[
1

αn

rJ1(αnr)

]1

0
=

1

αn

J1(αn) (C19)

Solving Eq. (C16) forULH and using Eq. (C18) gives

ULH (s,n)=
J1(αn)(H0−HA)

αn

(
s +

α2
n

µ
−A

)
+

J1(αn)AHA

αns
(
s +

α2
n

µ
−A

)+
BLH (s,n)

s +
α2

n

µ
−A

(C20)

The final term contains the transform of functionB(t),
which hampers the inverse transform as long as it remains

Hydrol. Earth Syst. Sci., 16, 649–669, 2012 www.hydrol-earth-syst-sci.net/16/649/2012/



G. H. de Rooij: Transient flow between aquifers and surface water 667

unspecified. Combining Eqs. (27), (B40), (C17), and (C18)
gives:

BLH (s,n)=

1∫
0

rJ0(αnr)[
L2(b+R1)

µKD

∞∫
0

e−stdt +u(t−t1)
L2(R2−R1)

µKD

∞∫
0

e−stdt

]
dr

=

1∫
0

rJ0(αnr)
[

L2(b+R1)
µKDs

+
L2(R2−R1)

µKDs
e−st1

]
dr

=
J1(αn)

αn

[
L2(b+R1)

µKDs
+

L2(R2−R1)
µKDs

e−st1

]
(C21)

With this, the expression forULH (s,n) becomes

ULH (s,n)=
J1(αn)(H0−HA)

αn

(
s+

α2
n
µ

−A

) +
J1(αn)AHA

αns

(
s+

α2
n
µ

−A

)
+

J1(αn)L2(b+R1)

αnµKDs

(
s+

α2
n
µ

−A

) +
J1(αn)L2(R2−R1)

αnµKDs

(
s+

α2
n
µ

−A

)e−st1
(C22)

This is the solution in thes-n domain. We now seek the in-
verse transform from the Laplace domain to the time domain.
The first term of the right-hand-side (RHS) of Eq. (C21) is of
the form

fL(s) =
G1

s (s +G2)
(C23)

The inverse transform is (Abramowitz and Stegun, 1965,
29.3.8; Prudnikov et al., 1992, 2.1.7.18)

f (t) = G1e−G2t (C24)

The second and third terms of the RHS of Eq. (C21) are of
the form

fL(s) =
G3,i

s (s +G2)
, i ∈ {1,2} (C25)

which leads to (Abramowitz and Stegun, 1965, 29.3.12,
Prudnikov et al., 1992, 2.1.2.31)

f (t) =
G3,i

G2

(
1−e−G2t

)
(C26)

The final term of Eq. (C21) is of the form

fL(s) =
G4

s (s +G2)
e−st1 (C27)

Prudnikov et al. (1992, 1.1.1.14), combined with the inverse
transform of exp(-st1) according to Abramowitz and Ste-
gun (1965, 29.4.2), gives

f (t) = u(t − t1)
G4

G2

[
1−e−G2(t−t1)

]
(C28)

In the above equations,G1 through G4 follow from
Eq. (C21) as

G1 =
J1(αn)

αn

(H0−HA) (C29)

G2 =
α2

n

µ
−A (C30)

G3,1 =
J1(αn)

αn

AHA (C31)

G3,2 =
J1(αn)L

2(b+R1)

αnµKD
(C32)

G4 =
J1(αn)L

2(R2−R1)

αnµKD
(C33)

The solution as a function of time and the Hankel
transformation variablen thus becomes:

UH (t,n)= G1e−G2t +
G3,1+G3,2

G2

(
1−e−G2t

)
+u(t − t1)

G4
G2

[
1−e−G2(t−t1)

]
=

J1(αn)
αn

(H0−HA)e

(
A−

α2
n
µ

)
t
+

J1(αn)

αn

(
α2
n
µ

−A

)
[
AHA +

L2(b+R1)
µKD

]1−e

(
A−

α2
n
µ

)
t


+u(t − t1)

J1(αn)L2(R2−R1)

µKDαn

(
α2
n
µ

−A

)
1−e

(
A−

α2
n
µ

)
(t−t1)



(C34)

The inverse Hankel transform is (Bruggeman, 1999, p. 706)

f (r) = 2
∞∑

n=0

fH (n)

J 2
1 (αn)

J0(αnr) (C35)

The solution thus becomes

U(r,t) = 2
∞∑

n=0

J0(αnr)

αnJ1(αn)
(C36)

(H0−HA)e

(
A−

α2
n
µ

)
t

+
1(

α2
n
µ

−A

) [AHA +
L2(b+R1)

µKD

]1−e

(
A−

α2
n
µ

)
t


+u(t − t1)

L2(R2−R1)

µKD

(
α2
n
µ

−A

)
1−e

(
A−

α2
n
µ

)
(t−t1)




With Eqs. (B50) and (C5) we finally obtain

H(r,t) = HA +2
∞∑

n=0

J0(αnr)

αnJ1(αn)
(C37)

(H0−HA)e

(
aL2
KD

−α2
n

)
t
µ +

aHA+b+R1(
α2
nKD

L2 −a

) [1−e

(
aL2
KD

−α2
n

)
t
µ

]
+u(t − t1)

R2−R1(
α2
nKD

L2 −a

) [1−e

(
aL2
KD

−α2
n

)(
t−t1
µ

)]

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Appendix D

Table D1.List of symbols.

Symbol Meaning Dimensions

A Function defined in Eq. (B50)
a Constant governing head-dependent recharge T−1

B Function defined in Eq. (B40) L
BL Laplace transform ofB L
BLH Hankel transform ofBL L
b Constant related to head-dependent recharge LT−1

C Function introduced in Eq. (B24) Same asX

D Aquifer thickness (water level above aquitard) L
E Function introduced in Eq. (B24) Same asX

Fn Constant Same asT
f (r) Arbitrary function ofr Arbitrary
fH (n) Hankel transform off (r) Arbitrary
fn Function defined from Eq. (B27)
G1. . .G4 Terms and functions defined in Eqs. (C28)–(C32) Varying
H Hydraulic head L
H Average hydraulic head in the aquifer L
H0 Uniform hydraulic head att = 0 (initial condition) L
HA Hydraulic head of the surface water (boundary condition) L
h Soil matric potential L
Ji(y) Bessel function of the first kind and orderi

K Hydraulic conductivity LT−1

Kup Upscaled hydraulic conductivity for parallel flow LT−1

Kur Upscaled hydraulic conductivity for radial flow LT−1

L Distance between the no-flow and prescribed-head boundaries of the aquifer L
Mn Function defined in Eq. (42) L
m Arbitrary value of the countern
n Counter in the summation terms
On Function defined in Eq. (53) L
Q Flux across a stretch1x2 of a strip aquifer or across the entire aquifer boundary of a circular aquifer L3T−1

R Recharge or extraction LT−1

R1 Value ofR for 0 ≤ t < t1 LT−1

R2 Value ofR for t ≥ t1 LT−1

r Dimensionless radial coordinate
r∗ Radial coordinate L
s Laplace variable
T Function introduced in Eq. (B20)
t Dimensionless time
t1 Dimensionless time at whichR changes abruptly
t∗ Time T
U Dependent variable obtained by transformingH L
UL Laplace transform ofU L
ULH Hankel transform ofUL L
u(t) Heaviside step function
V Dependent variable obtained by transformingW L
W Dependent variable obtained by transformingH L
X Function introduced in Eq. (B20)
x Dimensionless spatial coordinate
x1 Horizontal coordinate L
x2 Horizontal coordinate L
x3 Vertical coordinate L
xa Height of the soil surface above the aquitard L
xp Height of the phreatic level above the aquitard L
αn Root ofJ0(αn) = 0
β Function defined by Eq. (B10)
γ n Term defined in Eq. (B35)
ηn Term defined in Eq. (B36)
ζ Function defined by Eq. (B10)
λ Constant
λn

1
2π, 3

2π, 5
2π,...n = 0,1,2,. . .

µ Storage coefficient
θ Volumetric water content
θ r Residual volumetric water content
θs Saturated volumetric water content
τ Integration variable
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