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Abstract. The increasing importance of catchment-scale andl Introduction

basin-scale models of the hydrological cycle makes it de-

sirable to have a simple, yet physically realistic model for Many agriculturally productive regions in temperate climate
lateral subsurface water flow. As a first building block to- zones are located in areas with little topography and shallow
wards such a model, analytical solutions are presented fogroundwater, such as delta areas. The precipitation surplus
horizontal groundwater flow to surface waters held at pre-is often discharged via dense, partially man-made drainage
scribed water levels for aquifers with parallel and radial flow. Systems (Lennartz et al., 2009). For individual fields,
The solutions are valid for a wide array of initial and bound- drainage theory based on analytical solutions for the predom-
ary conditions and additions or withdrawals of water, and caninantly horizontal flow in the phreatic aquifer has proven its
handle discharge into as well as lateral infiltration from the value for several decades (Hooghoudt, 1940; Dumm, 1954;
surface water. Expressions for the average hydraulic head<raijenhoff van de Leur, 1958; van Schilfgaarde, 1970).

the flux to or from the surface water, and the aquifer-scale Currently, the changing climate drives efforts to model the
hydraulic conductivity are developed to provide output at theterrestrial hydrological cycle at the scale of entire catchments
scale of the modelled system rather than just point-scale valand basins. The horizontal saturated flow to and from the
ues. The upscaled conductivity is time-variant. It does notdrainage network is an important segment of the hydrologi-
depend on the magnitude of the flux but is determined bycal cycle at these larger scales. Basin-scale and global mod-
medium properties as well as the external forcings that drivegls tend to focus on the vertical column covering the unsat-
the flow. For the systems studied, with lateral travel distanceg!rated zone and the atmosphere. In many models, lateral
not exceeding 10 m, the circular aquifers respond very dif-flows between columns are represented in a conceptual man-
ferently from the infinite-strip aquifers. The modelled fluxes Ner (see the overview by Nijssen et al., 2001; Samaniego et
are sensitive to the magnitude of the storage coefficient. Fo@!., 2010, for a recent example). Often the focus is more on
phreatic aquifers a value of 0.2 is argued to be representativénountainous and hilly areas than on flatter terrain (see Gong
but considerable variations are likely. The effect of vary- €tal., 2011). The model columns can have horizontal dimen-
ing distributions over the day of recharge damps out rapidly;sions that render point-values of typical hydraulic parameters
a soil water model that can provide accurate daily totals isand variables such as hydraulic conductivity, hydraulic head,

preferable over a less accurate model hat correctly estimate@nd flux density useless. Therefore, an approach is desirable
the timing of recharge peaks. that is based on a simplified flow description that better re-

flects the essential features of lateral subsurface flow than the
conceptual approaches used so far and still expresses the re-
sults in terms of large-scale variables: the flux between the
groundwater and the surface water, and an average measure
of the phreatic level.
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An alternative path is offered by highly advanced inte- and head-dependent recharge. The solutions do not appear to
grative modelling that couples processes at the soil surfacehave been published before. These solutions are used to anal-
the soil, the groundwater, and the surface water (e.g. Hyyse the behaviour of the aquifers under different conditions,
droGeoSphere) (Brunner and Simmons, 2011; Hydrogeoand to compare the effects of parallel and radial geometry on
sphere, 2012). Such models hold great potential for comthe hydraulic head and the flow. Also, since precise rainfall
plicated local to continental studies (which will often involve predictions at the field scale are impossible, the effect of the
solute transport) in order to improve management strategietemporal distribution on recharge (generated by infiltrating
or guide measures to protect groundwater and surface waainfall) is considered.
ter (e.g. Li et al., 2008). Their sophistication makes them In view of potential applications in large-scale models that
very data-intensive. The optimal use of these models recannot accommodate local (point-scale) values of heads and
quires a prolonged and dedicated effort to set-up the modelffluxes, expressions are developed for the average hydraulic
provide the input, and store and analyze its output. The couhead and the flux at the groundwater-surface water interface.
pling with atmospheric models is less advanced than for theThe relationship between the two is investigated in some de-
large-scale models discussed above. In this manuscript weail. The solutions show that the linear relationship between
opt instead for a more explorative, less data-intensive, andverage hydraulic head and steady-state discharge proved by
computationally light approach. de Rooij (2011) does not exist for transient flows. Instead,

While traditional drainage theory is of limited use for a more complicated, time-dependent, but still explicit rela-
catchment-scale models, its analytical approach may suptionship connects the two. This relationship allows the cal-
port the development of a less conceptual and more physieulation of the hydraulic conductivity at the field scale (the
cal representation of the fluxes between the groundwater andcale of the system between the zero-flux boundary at the
the surface water. De Rooij (2009) explored the upscaledaxis of symmetry and the surface water) expressed solely in
equivalents of conventional Darcian flow descriptors by theirterms of the initial and boundary conditions and the geohy-
energy-conserving volume averages. De Rooij (2011) re-drological properties of the subsurface. Furthermore, fluxes
cently showed that aquifer-scale steady-state horizontal satowards the surface water and average hydraulic heads can
urated flows behave in a Darcian way in that the flux be-be calculated directly from the forcings and the geohydro-
tween the groundwater and the surface water is directly profogical parameters. The theory developed here thus provides
portional to the difference between the energy-conservinghe building blocks for an approach that can connect pre-
averaged hydraulic heads of the two water bodies. Thusdominantly horizontal, field-scale groundwater flows to the
in principle, the average groundwater level and the sur-essentially vertical hydrology of soil-vegetation-atmosphere
face water level, together with an upscaled hydraulic con-exchange processes.
ductivity would suffice to model groundwater-generated
stream discharge. Such average groundwater levels and up- Theory
scaled conductivities can readily be derived from the ana- . - .
lytical solutions to the saturated flow problems treated in2'1 Paral!el flow.: governing partial differential
drainage theory. equa_tl_on (PDE) and initial (IC) and boundary

Obviously, steady-state solutions will not be adequate for conditions (BC)
many practical problems. Based on de Rooij's (2011) prooflnvoking the Dupuit assumptions for groundwater flow elim-
of principle, this paper therefore explores linearized transieninates vertical gradients in the hydraulic head, and only the
groundwater flows in order to examine parallel and radialhorizontal coordinates remain. Phreatic aquifers may receive
flows toward or from surface waters. It does so through an+echarge from the unsaturated zone above that is independent
alytical solutions of the differential equations describing the of the local hydraulic head and may exchange water with a
flow. The advantages over numerical solutions are that theleeper aquifer if the separating aquitard is somewhat perme-
resulting expressions provide a more profound insight intoable. Such exchange fluxes are assumed here to be propor-
the fundamental behaviour of the systems and that upscaletional to the local hydraulic head. For a uniform, isotropic,
parameters and variables can be calculated exactly. Thiphreatic aquifer overlying a level aquitard, the governing
does not imply that future applications should necessarily be®?DE then becomes:
analytical also, but the insight gained from the analytically 4 [ 3 < 8H) 5 (

derived relationships can inform future implementations, beu-— =

OH
e H—)]—l—aH—i—b—i—R (1)

axy \ x1)  dx2 U dxz

they analytical or numerical.
Generic solutions are developed that cover nine differentwherex; andxz [L] are the horizontal coordinates; is time

scenarios that reflect combinations of different forcing mech-[T], H is the hydraulic head [L], defined with respect to the

anisms and changes in these forcings, caused, for instanctgp of the underlying aquitardk [LT ~1] is the hydraulic

by the commencement and cessation of rainfall, or humarconductivity, R [LT ~] is the recharge or loss to evapotran-

manipulation of surface water levels. The term forcing in this spiration R may be time dependent, is the storage coef-

paper refers to initial and boundary conditions, recharge rateficient (occasionally termed drainable porosity for a phreatic
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aquifer, e.g. van Schilfgaarde, 1974), anfl 1] (<0) and > YRRV y
b [LT 1] are constants determining the exchange with the |/ y TR, // A A NN /
deeper aquifer (see also Appendix D for a list of symbols). If

the deeper aquifer has a constant and uniform hydraulic head | T} Phreatic

H>, —a~1 is the resistance of the aquitard, ahd —a H>. .

Equation () is the Boussinesq equation with additional pro- aquifer

duction terms and does not have a general analytical solution. [ =——="" " -{ . . Aduitard b=
To make the equation analytically tractable itneedstobe lin- ... ..o oo f oo 0 qur a --------- R
earized by assuming that the variation Ah is small with -
respect tad, and thafu is a constant: - Aquifer 2

= = +oH+ = 2
or* i ax% Bx% I @

8H_KD<82H 82H> a  b+R
u

where D [L] is the constant water level above the aquitard.
Figure 1 gives a definition sketch of the original and the lin-
earized problem. The combination of the Dupuit assump-
tions and the linearization has a sound footing in classical
drainage theory (e.g. Dumm, 1954, Kraijenhoff van de Leur, [ —
1958; van Schilfgaarde, 1970; Wesseling, 1979). Van Schil- t +— Phreatic

fgaarde (1974) gives a thoughtful discussion of the assump- H, aquifer
tions underlying the above linearization. See AppendixAfor |+ 5
a quantitative treatment of the storage coefficient. SR e B RS ~| Aquitard
To analyze flow towards parallel drains, ditches, or streams >
with spacing Z [L], we drop the second horizontal coor- Aquifer 2
dinate since the flow lines are all perpendicular to it. We
also make the independent variables dimensionless by the [ .
following transformations: Aquitard
x=2 ®)
Fig. 1. Sketch of the subsurface structures and its model
= KD £ 4) schematization. The variables are defined in the main text.
=12
to obtain: a=b=R=0 9)
OH 10°H L% a L2 b+R . Case 2. Initial hydrostatic equilibrium with step change of
o a2 kDA TkD 4 (5)  the water level in the soil at=0, reflecting a pulsed water

input (e.g. by short, heavy rainfall). The surface water level

This equation needs to be solved for various cases, all "temains constant. Mathematically, this problem is identical
the domain G< x <1 andrs > 0. For all casesy =0 lies to Case 1, and the same solution applies

at the midpoint between two surface water bodies or drains. Case 3. Like Case 1, but with constant recharge or loss.

It therefore constitutes an axis of symmetry where there 'SThis case reflects the sudden increase or decrease of the ditch

no flow: water level, while a steady flux to or from the unsaturated
dH(0,1) _0 © o to the phreatic aquifer is maintained.

ax IC, BC, and parameter values:
The BC atx =1, the IC, and the values af b, andR, vary H(x,0) = Hp (10)
from case to case:

Case 1. Initial hydrostatic equilibrium with a step change H(1,t) = Hx (11)

of H(1,0) atr =0. This case reflects the sudden increase or

decrease of the ditch water level, for instance to increase thé =2 = 0, R=R

groundwater level during dry periods.
IC, BC, and parameter values:

(12)

Case 4. Like Case 2, but with constant recharge or loss. This
reflects a pulsed water input followed by gentler recharge or

H(x,0)= Hp (7)  loss. Mathematically, Case 4 is identical to Case 3. _
Case 5. Like Case 1, but with recharge or loss proportional
H(1,t)=Hax (8) (but not necessarily directly proportional) to the hydraulic
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head. This case reflects the sudden increase or decrease Bf= {2;: ?ffftl (27)
the ditch water level, with a flux to or from the phreatic

aquifer that consists of a constant ané/adependent com-  Cases 1 through 6 are all covered by EdE3)4(15) of
ponent. This flux can be composed of recharge from or flowCase 5, which is itself a special case of Case 9. Cases 7 and
to the unsaturated zone and to a deeper aquifer across ®are special cases of Case 9 as well, governed by Egs. (

aquitard.
IC, BC, and parameter values:

through @7). Thus, all problems listed above are special
cases of the solution to this most general case. The derivation
of the solution for this case is presented in Appendix B. The

H(x,0)= Ho (13) resulting expression for the hydraulic head reads:
H(1,t)=Ha (14) H(x,t)=Hy
a=a,b=b, R=R (15)

Case 6. Like Case 2, but with recharge or loss a linear func- _
tion of H, like Case 5. Mathematically, this problem is

identical to that of Case 5.

Case 7. Initial hydrostatic equilibrium. Constant recharge
(or loss) Ry [LT1] for 0 <t <11, zero loss or recharge
This case can represent a single prolonged

for t > 1.
rainfall event.
IC, BC, and parameter values:

SN
(to— 1 el #C8T | _

—aHytbiRy (1_6{%‘[(”%)”]2}5) (28)
)]

e
L o)

+u(r—11)

H(x,0)= (16)
H(1,1)= Ho (17) } . : . .
wheren is a counter, and(z) is the Heaviside step function.
a=b=0 (18) . . . , ,
2.2 Radial flow: governing partial differential equation
R= {R1,0§t<t1 (19) (PDE) and initial (IC) and boundary conditions
0,r>11 (BC)

Case 8. Like Case 7, but with constant recharge or Rss
[LT 1] for + > r1. This can represent rainfall followed by
constant (possibly potential) evapotranspiration.

In axisymmetrical flows in a circular aquifer, the Dupuit as-
sumptions are invoked again and both head-dependent and -

IC, BC, and parameter values:

independent exchanges of water with a deeper aquifer and/or
the overlying unsaturated zone are permitted. For a uniform

H(x,0)=H (20) porous medium and IC and BCs that are independent of the
location on the boundary, all flows will be radial, and the an-

H(1,1)=Ho (21) gular coordinate can be eliminated. The governing PDE then
becomes:

a=b=0 (22)

M _ 1 2 (622N 2 (22 | fam+b+r (29)
R= {21’ O=t<n (23) o =% Lor or* r* or* “
2,121

Case 9. Like Case 8, but with recharge/loss linearly varylng

with H, and with a sudden ditch water level change=a0.

This case arises when the replenished phreatic aquifer loses

wherer* [L] is the horizontal, radial coordinate. Lineariz-
ing as before by assuming the vertical extent of the saturated
zone as well ag constant gives:

water to the aquifer below, or when the delivery of water 5y rp a2y kD 1 9H a b+

to the unsaturated zone is limited by the dropping hydraulic
head in the phreatic aquifer. The BCxat 1 adds additional

flexibility, compared to Cases 7 and 8.
IC, BC, and parameter values:

R
b —H+—— (30)
"

o woar 7 ok

We seek solutions of this equation for finite radial domains
(e.g., circular fields or reclaimed areas (polders) surrounded
by a ditch): O<r* < L. (The notationL is retained to facili-

Hx,0)= (24) tate comparison with the parallel flow solution.) Introducing
H.1)=H, (25) dimensionless variables

¥
a=a, b=b 26) r=7 (31)
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oH dx 0H KDoH
and i(x,t):—KD—:—KD—x—z———
Ax2 Bxl dx1 0x L ox
KD 2KD 1
=3t 4) Z( 1)"Sln[<n+ 2) ]
' r aL? 2 2 -
results in: (Ho— HA)e{ L [(n+2) ] };7
aH __ 1 113H L2 aL? 2
o _ 1 22Jr;;d—Jr AL H + K5 (b+ R(1) ) TR O {5 -[(+3)] )4 (37)
2
=2(ZH 4+ 1)  AH +B() B[ (n+3)7] —a
_ (R2—Rj)
. . . +u(t—r1) 2
(Non-consecutively numbered equations have been intro- %[(rz—i—%)n] —a
duced before and are labelled by their original number). We al? 1\ 121/
can develop the same nine cases as for parallel flow, this| | 1 e{T_[("+?)”] }<T)
time for the domain G » <1 andr > 0. For all cases; =0 i ]

constitutes an axis of symmetry where there is no flow:
where x, [L] represents the horizontal coordinate running

dH(0,7) parallel to the aquifer boundary with the surface water. At
=0 (33) . . T
or the interface with the surface watar £ 1), this simplifies to
The BC atr =1, the IC, and the values af, b, and R, 0 2KD &

vary from case to case. A very general problem analogoussz(l’t) =
to Case 9 for parallel flow is defined by:

[ RGN |
H(r,O):Ho (34) (Ho— HA)e< [( 2) ] }
aL2 1 2 1

aHs+b+Ry 1_e{ﬁ_[<n+i)ﬂj| }E

H(1,1)=Hy (25) Dl (n+3)x] —a
Fu(t — 1) R, %)

a=a,b=>b (26) ’Z—?[(Wr%)n]zﬂz
R= {2;: t0§;1<tl (27) (1_8{0%_[(n+%)”]2}(T))

Appendix C gives the derivation of the solution, which is: ] _ o
The average hydraulic heddl(z)in the aquifer is

H(r, l‘) =Hy
Jo(anr) H(r):/H(x t)dx
+ 9
ZO[,,J]_(Oln)
aL? _ 2\ 1 aL? _ 2\t 00 -2
o pel¥ RS e i | I :HA+$Z<n+%)
z ¢ n—
é_ 2\ (t—11 — 2 2 —
Ro—R Q m alLc 1 r
-I—u(l—ll)i(@_la) |:l—e(’“) )( / )] (HO—HA)E{ KD [(n+2)n':| }u (39)
ﬁ_ n+l T Z}L
whereJ; (y) is the Bessel function of the first kind and order +% (1—6{ KD [( 2) ] .
i, anda,, are the roots of ?[(’”?)”] —
(1 — 1) —Ke=R)

Jo(ey)=0.n=0,1.2, .. (36) ER[(n+4)] ~a

2.3 Relationship between the flux to/from the surface
water and the average hydraulic head

2.3.1 Parallel flow

Note that forr =0, the term in braces equalf — H4 and

can be brought outside of the sum. Since we have for the
In Eqg. 28), only the cosine term depends onBy express-  series

ing the gradient of the hydraulic head in dimensional form, it ~ 5 ~ 5

can be used to find the horizontal fl@(x,¢) [L>T~] in the ( " }) —4y 2ngp12=" 40

case of parallel flow: ,;] " 2 X_:( ) 2 (40)
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(Euler, in Berggren et al., 2004, p. 116), the average hea®.3.2 Radial flow

attr =0 equals the initial headly, which is correct. From
Egs. @8) and @9), the flux across a stretchx; [L] of the

aquifer boundary is related to the average hydraulic head irFcriPes the dep

the aquifer as:

o0

ol =—F"% — (H(t)—Ha) (41)
2 2—:0(”+%> M, (1)
where

KD

= o 1yl BT
" aHs+b+ Ry (l—e{[;“)[("+%)”]2},i
)T
_ (Ro-Ry
b

Fort =0, all M,(0) are equal taHy — H4, and Q(1,0) is
infinitely large whenHg £ H 4 a@ zero wherHg = Hy.
The non-linearity in theQ—H relationship of Eq. 41)

(42)

+u(t—1)

arises from the term with the series. If only the first terms
of both series are retained, the relationship becomes linear:

0 _m2KD Mo(t)
A—xz(lJ)NTm(ﬁ(f)—HA)
2K D
=~ (H(t)—Ha) (43)

The series does not converge fast forralhowever, so this
simplification should be used with care. Foapproaching
infinity, the effect of the initial condition and ok, damps
out, and only the BCs angl, affect the head. For a non-leaky
aquifer withoutH -dependent evapotranspiratian= b = 0),
Eq. @1) for infinitely large time becomes

o0 1 -2
0 72K D ¥0<n+?) _
— 1L oo)= = (H(00)— Hy)
sz L x 1 —4
> (n+3)
KD 6r% —
=T%(H(OO)—HA) (44)

3KD

In Eq. 35, only term with the Bessel functions de-
endency @ on r. The horizontal flux
Q(r,t) =—27rKDL 2 [L3T2] for radial flow follows from
the gradient of the hydraulic head in dimensional form.
To find this gradient, the following relationship is used
(Abramowitz and Stegun, 1965, 9.1.30):

dJo(a,r)

Rl J1(otnr) (45)
From Eg. 85) then follows
o
Ji(our)
o(rt)=4nrKDY —=~
,,X:;) J1(an)
(Ho— HA)e(%‘“f)ﬁ + “”;;{j’*R)l [1_e(%—“3)ﬁ]
an —a
aL? t—t (46)
+u(t—n) IS;Rl |:1—e(ﬁ_a'%)( ul)]
(7_>

At the interface with the open water at=1 (r* = L) this
gives

Q(l,t):4nKDZ

n=0

2
(Hp— HA)E(%_O['%)ﬁ + aHp+b+Ry

[l_e(%_as)%]

e

a,%l;Dia)

L

al? 1—t (47)

Hut—11) (agf{;Rl ] [1_e(%‘“5) Tl)]
z ¢

If t =0, Eq. @7) reduces to
o0

Q(1,0)=47KD(Ho— Hp) Y 1 (48)
n=0

which equals infinity forHy # H4. For ¢ approaching in-
finity, O should approachrL?R; (or mL2Ry, if 1 = o) if
a=b=0:

0(1,00) =47 L?[R1 +u(co —11) (R2 — R1)]

1
Y S =nL’R; (49)
n:Oan

where the values of the series were taken from Euler (in because§ L =}1 (Elizalde et al., 1993, Eq. 2.7).
all

Berggren et al., 2004, p. 116). This result is consistent with

de Rooij’s (2011) steady-state analysis. Note that E4f3. (
and @4) differ by 17 %.

Hydrol. Earth Syst. Sci., 16, 649669 2012

The a\r/lgroage hydraulic head is

1 1
H(t)=2% [rH(r,t)dr =2H, [rdr
0 0

> 1
AN
* Z:O[n-]l(()ln)

n=0
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al? _ 2\1 al? _ 2\1
(HO—HA)G<W_Q”); +—“H§;:+Rl [1—e<“’_a")ﬂ]
nLZ —a
ﬁ_ 2\ (t—11
P S 1
(5°)
1
/rJo(an)dr
0 N (50)
1
=Hy+4) —
nZ:o“n )
aL 2\1t alL 2
(Ho—HA)e(Kifw”)ﬁ+—aH£\+h+Rl 1—e(’“)a”)/t‘]
oznléD_a
al? _ 2\(1=1
+u(t—t1)<a§f<—DRl[1—e(’<D 0‘”)( [z )]
o)

Fort =0, anda=b= R1= R>=0, Eq. 60) reduces to
[e¢)
_ 1
H(t)=Ha+4(Ho— Ha) ) — = Ho (51)
n=0"n
With g = 2.4048255577 (Abramowitz and Stegun, 1965,
p. 409), the contribution of the first term is 0.1729 (69 % of

the sum). o
With Egs. @7) and 60), the Q— H relationship is
o0
> Ou(d)
QL) =nKD"=>— (H(1)— Ha) (52)
O (1)
> =5
n=0 n
where
(&,QZ)L
On(t) = (Ho— Hy)e\k? ™/n
aL? _ 2\ 1
+aH£\+b+R1 |:1_e<KD an>ﬂi|
(%_) (53)
aL? 2\ (-1
S ]
(%)

As in the case of parallel flow, th@ — H relationship can be
linearized by retaining only the first term of both series in
Eq. 62, but again, this approximation can be poor owing to
slow convergence of the series.

Note, incidentally, that the linearization of Eq4.3] and
(53) makesQ proportional toH — Hy, which is the defini-

tion of a linear reservoir (e.g. Fenicia et al., 2006). The reser:

voir coefficients are fully defined in terms of porous media
properties, aquifer dimensions, and aquifer geometry.
For infinitely large time, Eq.53) reduces to

2
LS (@Ha+b+ Ro)
L2
(- 45)
where R, needs to be replaced Wy if ¢ is infinite. For a

non-leaky aquifer without/-dependent evapotranspiration,
a=b=0, and, Eq.%2) for t = co becomes

(o (OO) = (54)

www.hydrol-earth-syst-sci.net/16/649/2012/
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S o2
0(L,00) =7 K D"=2— (H(00) — Ha)
Yo
n=0
=81 K D (H(co)— Hy) (55)

o
because )" & = 3 (Elizalde et al., 1993, Eg. 2.9).

n=0""
This result is corroborated by de Rooij's (2011)

steady-state analysis.
2.4 The upscaled hydraulic conductivity

The equation pairs4)—(42) and 62)—(53) relate the flux
across the groundwater-surface water interface to the dif-
ference between the average hydraulic heads on either
side of this interface (in the surface water body, the av-
erage hydraulic head can be assumed identical to any lo-
cal value). The proportionality constankg,p [LT 1] and

27 LKy [L2T~1 for parallel and radial flow are defined from
Egs. @1) and 62), respectively, as:

%Mn(t)
2KD P
Kup(t) = =" (56)
X (n+3) Mao
> 0n(1)
20 LKu(r) =K D=2 (57)

The quantitiesXyp and K, represent field-scale equivalents

of the Darcian-scale hydraulic conductivity, in that they have
the same dimensions [C}] and relate a flux at a particu-

lar time to a difference in average hydraulic heads at that
time between connected but separate bodies of water. They
depend on the geohydrological parameters that characterize
the subsurface, on the IC and B8 andH,4), on the forc-

ing parameter®k1 and R», and on time. The Darcian prop-
erty that the magnitude of the flux does not affect the hy-
draulic conductivity is maintained in the upscaled conductiv-
ity, but the upscaled conductivity no longer is purely defined
by properties of the porous medium and the fluid: external

forcings also affect it. In this sense, saturated flow at the field

scale is fundamentally non-Darcian, even for uniform media
and uncomplicated flow patterns. The dependencgicamd

R> implies that the upscaled conductivities change abruptly
at 11, when the recharge rate changes instantaneously. The
time dependence makes them also change gradually. This de-
pendency upon the forcings at this scale arises directly from
the expressions for the flux and the average hydraulic head,
and exists despite the absence of heterogeneity. The reper-
cussions of this fundamental non-Darcianity at this scale
for large-scale groundwater flow modelling with model cells
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much larger than the Darcian scale are not entirely clear,

although it seems reasonable to expect that the assumption
of Darcianity at super-Darcian scales becomes increasingly
compromised as the curvature Bf(x*,t*) with x* within

1.8

e

the volume of interest increases. .16 ‘ ’..0.

All this results in a non-uniqu&@—H relationship that % " ‘ »?
is more a by-product of the full solution than a tool for § 4,4 4 \w | \‘ %
flow calculations. The three-variable relationship between 5 ‘ “ il ‘ *
the flux across the system boundary, average hydraulic head, 3 | \‘ g M ] {3«9‘. o
and time is unique, but of little practical interest: it is de- S L | Il | ‘ i
fined for a particular configuration of system parameters and + ) il L J’ 0.0 1
thus changes when the initial and boundary conditions and/or 1.0 100‘ Al | T ° 0.5 .0(\\@55
the recharge forcing are changed, even if the geohydrology Dimep.. 10 102 ‘ ‘ ) ((\00‘5\
remains the same. Furthermore, if the problem is fully de- ”s’onless time 109 10 o

fined, not only the upscaled hydraulic conductivities can be

computed directly, but also th_e flux as a fun(_:tion of time, Fig. 2. The evolution in space and time of the hydraulic head for the
through Egs. 8) and @7), which do not requiref (x,r). reference problem (Table 1) in an infinite strip-aquifer with parallel
Still, Egs. @2)—(43) and 62)—(53) provide a rigorously de-  fiow.

rived, insightful, and surprisingly direct relationship between

two field-scale subsurface flow characteristics. . . - e
bution of recharge was studied by providing similar amounts

of recharge either uniformly distributed over the first day of
3 Materials and methods the simulation period, or as a pulse at the beginning or the

The solutions were coded in Excel worksheets (availableend Of that first day.

upon request from the author), allowing maximum portabil-
ity and giving considerable flexibility in selecting the values 4 Results and discussion
of x, r, andr for output. After some testing, all infinite sums
were calculated with 2001 terms. For most values of, 41 General
and¢, this was much more than needed, with the last 100
or even 1000 terms adding less tharr3@o the total sum.  The hydraulic head as a function of space and time for the
Only immediately after a change in boundary conditions andparallel reference problem (Table 1) is given in Fig. 2. The
x orr equal to 0.99 or 1 did errors up to a few percent re-initial wetting from the ditch during the initial period without
main. In those cases, the error with 1001 terms in the sumainfall clearly shows, until the system is essentially at equi-
was not much larger than that with 2001 terms. Calculationlibrium at ¢+ = 0.60 (after 40 days). Despite the logarithmic
times on a standard laptop ran from too small to determinetime scale, it is still clear that the subsequent small recharge
to about 10s. flux leads to steady-state flowat 2.12, within 41 days af-
The solutions were used to run a variety of scenarios in-ter the start of recharge. The plot for the analogous radial
volving the nine cases discussed above to study the effect gfroblem (Fig. 3) illustrates how the gradients in radial flow
flow geometry (parallel vs. radial), recharge/loss independentan be much smaller. The effect of flow entering/leaving the
of the hydraulic head, and exchange with a lower aquifer.system in all radial directions leads to much quicker equi-
The scale of the modelled problems roughly represents thaibrium than does flow in a singular direction: at= 0.38
of an agricultural field with artificial drainage by ditches or (25 days) is the aquifer at equilibrium with the surface water
tube drains. The labels of the scenarios and the correspondevel, and at = 1.89 (26 days after the start of the recharge),
ing parameter values are given in Table 1. For the referencehe flow is steady (compare Figs. 2 and 3).
cases (Table 1) and the case of 1-day recharge, the accuracyUnder favourable circumstances, the series converge
of using truncated series (only the leading term or the firstrapidly enough for their first terms to provide accurate ap-
five terms) of the various series appearing in the equationgroximations (but it is recommended to verify this). In
for H(r), Q(0,), Kyp, andKy, was evaluated. that case, the aquifer behaves like a linear reservoir, with
Given the somewhat ambiguous character of the storagéhe reservoir coefficient determined By, D, L (for strip
coefficient (see Appendix A), the sensitivity of flux across aquifers only), and the aquifer geometry (strip or circular).
the groundwater-surface water interface to variationgin  The full solutions are more flexible than linear-reservoir ap-
was examined in some detail. For leaky aquiféfs,< Hy, proximations in that they can handle leaky aquifers, a more
while H, was set to exceefil 4, causing the flux across the flexible set of forcings, and lateral flow towards the sur-
groundwater-surface water interface to switch from lateralface water as well as lateral inflow from the surface water.
infiltration to discharge. The effect of the temporal distri- This may help explore the deviations from linear-reservoir
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Table 1. Parameter values for various illustrative problems.

Problem label
Parameter parallel/  parallel/ parallel/ parallel/ parallel/
radial radial radial radial radial
reference © 0.001 £ 0.01 n 0.1 n0.4
K (md1 0.5 0.5 0.5 0.5 0.5
D (m) 3.0 3.0 3.0 3.0 3.0
L (m) 10.0 10.0 10.0 10.0 10.0
7 0.2 0.001 0.01 0.1 0.4
Hg (m) 1.0 1.0 1.0 1.0 1.0
Hy (M) 15 15 15 15 15
Ry (md1 0 0 0 0 0
Ry (m d-1 0.005 0.005 0.005 0.005 0.005
zi‘ (d) 100 100 100 100 100
a@d1 0 0 0 0 0
b(md1 0 0 0 0 0
Table 1. Continued. Table 1. Continued.
Problem label Problem label
Parameter parallel/  parallel/  parallel/ Parameter parallel/radial leaky
radial radial radial K (md-1) 05
pulse0 pulsel evenrain D (m) 30
K (md1) 0.5 0.5 0.5 L (m) 10
D (m) 3.0 3.0 3.0 m 0.2
L (m) 10.0 10.0 10.0 Hp (m) 1.0
7 0.2 0.2 0.2 Hy (m) 15
Hp (m) 15 1.5 1.5 Ry (md™1 0
Hy (m) 1.6 1.6 15 Ry (md1 0.005
Ry (md1 0 0 0.02 £ (d) 100
Ry (md1 0 0 0 a(d=1 —0.01
zi‘ (d) arbitrary  arbitrary 1 b(md1) 0.04
a(d1 0 0 0
b(md=1) 0 0 0

1 This case follows from “parallel/radial pulse 0" by adding 1 day to the times well be possible_ The flux at the groundwater-surface water

pertaining to its solution, e.gipyise1(x,*) = Hpulsedx,t* —1). For 0 <1* < 1d, . . . _

i) = Ho. mterfgce, on t_he pther hand, is determined by the local gra
dient in H, which is affected by terms of any frequency, and
a (much) higher number of terms may be necessary. This

behaviour of groundwater reservoirs discussed by Feniciahould then also result in loss of accuracy in the estimates of
et al. (2006). Another advantage is that they provide a fuIIKup and K, based on truncated series.

map of the hydraulic head in the space-time domain, allow-
ing the results to be compared to, and possibly calibrated o
monitoring well data.

n Indeed, Fig. 4 (A for the reference case and B for the case
Wwith one-day recharge) show that even a single term approx-
imation of H works well except very shortly after an abrupt
change of the surface water level. The flows covered by these
figures involve flows into and out of the surface water, and
If sufficiently accurate results can be obtained with only aare driven by water level changes in the surface water as

few terms of the series, efficiency can be increased and imwell as by groundwater recharge by rainfall. Shortly after

plementing the solutions becomes easier. SIHCés ex- a change inH,, the fluxes require at least five terms of the
pected to be dominated by low-frequency terms, accurate apseries to avoid massive errors (Fig. 5a, early times). The ac-
proximations based on the first few terms of the series maycuracy eventually becomes excellent even for a single term

4.2 Accuracy of truncated series
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Fig. 3. The evolution in space and time of the hydraulic head for the Fig. 5. The quality of approximation of the flux across the ground-
reference problem (Table 1) in a circular aquifer with radial flow.  water — surface water interface by using 1 or 5 terms of the series
solutions compared to the solutions with 2001 terms (ref.) for the

' : : reference problemX(; Table 1) and the problem with one-day rain-
1.607 } T par. ref. fall (B; Table 1: even rain) in an infinite strip-aquifer (par.) and a
140f . - & par. 1 term circular aquifer (rad..). The. flux |n.the |nf|.n|te stnp-agun‘er is |nQ|-
L 7 cate_d on tr_le left vertical axis, that in the circular aquifer on the right
1.20¢ — = o par. 5 terms vertical axis.
E q0g e : o
T 107 10° 10 10? rad. ref. The upscaled hydraulic conductivities in Fig. 6 reflect the
% rad. 1 term deviations of the flux for truncated series. Using only the
I first term results in constant values, consistent with the ob-
Z 156f rad. 5 terms servation in the Theory section that using only the first terms
154 I of the series occurring in the expressions for the relationship
- betweenH and Q(0, ¢) linearizes the relationship. Figure 6
1.521 demonstrates the penalty for this simplification: particularly
1.50% J after sudden changes and during periods of recharge-driven
10° 10% 107 10° 10 fluxes, the single-term approximation fails. For recharge-

Time (d) driven fluxes, even five terms are not enough, as seen by the
deviations in Fig. 6a after 100d and in Fig. 6b during the
Fig. 4. The quality of approximation of the average hydraulic head first day. The results for the leaky aquifers and for the sce-
H by using 1 or 5 terms of the series solutions compared to the solunario with the smallest storage coefficient (0.001) showed no
tions with 2001 terms (ref.) for the reference proble Table 1)  major deviations from these findings.
and the problem with one-day rainfaB( Table 1: even rain) in an
infinite strip-aquifer (par.) and a circular aquifer (rad.). 4.3 Sensitivity to the storage coefficient

o _ . The solutions for parallel (Eq8) and radial flow (Eq35)
(indicating linear-reservoir-type behaviour), but as soon asshoy that the storage coefficient appears in exponents that
the flux becomes driven by recharge (after 100 d), the singlezontain the form—#/x and thus acts as a scaling factor for
term approximation fails. In Fig. 5b, the flux during the first ime- small values oft make the system respond faster. The
day is driven by rainfall-generated recharge, and clearly bothymgjlest values of. (0.001 and 0.01) reflect conditions for
truncated series underestimate the true discharge flux. DUksgnfined aquifers, while the values from 0.1 to 0.4 are more
ing the drying period after the cessation of rainfall, the acCU-rgpresentative for phreatic aquifers.

racy rapidly improves. Still, this.can give rise to serious mass  Tpe anticipated slowing down of the aquifer response is il-
balance errors over a given period: more water was added bystrated by the fluxes from the surface water into the aquifer
the rainfall than would be eventually discharged if an insuf-;,, Fig. 7. The aquifers with large not only respond more
ficient number of terms is computed. In cases where fivegjoyy bt also require more water to fill the larger volume
terms are insufficient, often between 1000 and 2000 termgyt ayailaple storage when water infiltrates laterally from the
are needed. Still, computational demand (10s or less on @rface water (until day 100). The fact that the amount of
standard laptop) was not an issue (see Sect. 3). storage in the circular aquifer diminishes farther away from
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Fig. 6. The quality of approximation of the upscaled hydraulic con-
ductivity by using 1 or 5 terms of the series solutions compared
to the solutions with 2001 terms (ref.) for the reference problem

(A; Table 1) and the problem with one-day rainf&l Table 1: even
rain) in an infinite strip-aquifer (parXyp) and a circular aquifer
(rad.;[(ur).

Fig. 8. The evolution in space and time of the hydraulic head in
an infinite strip-aquifer with parallel flow that receives water from a
deeper aquifer (Table 1: leaky).

The response to variations jinis marked. While the cor-
rect value ofu may be difficult to establish a priori, the sen-
sitivity of key model output to its value makes it a suitable

— calibration parameter.
;)O 0.06 . LU 3?0 @ g & e
£ ; g AL 4.4 Leaky aquifers
§ 0.00pe g —= ]
% EDD" N © 0.01 The values of parameters and b for the case of a leaky
2 -0.06 2N A ] aquifer are consistent with a hedfp in the lower aquifer
S T L. 1 o o1 of 4.0 m and a resistance of the aquitard between the aquifers
g 012, 20 40100 130 160 of 100d. With the imposed BC of 1.5m and the initial head
G 2 gE—a  * 02 of 1.0 m, this leads to an appreciable flux into the top aquifer
o'_?“tr@—ﬂ—@—@— that needs to be discharged into the surface water. The hy-
5 o+, ° . draulic head in the top aquifer rapidly rises, and kherofile
e ape 04 slopes down towards the surface water to facilitate the lateral
S 6l discharge flux (Fig. 8). At =0.38 (25d) for both parallel
8f B (Fig. 8) and radial flow (Fig. 9), the hydraulic head has be-
I P P— come nearly steady and is entirely determined by the heads
0 10 20 30100 115 130 in the surface water and in the lower aquifer. The additional
Time (d) head-independent recharge by infiltrating rain of 5mrhd

afterr = 1.5 (100d) is small compared to the recharge from

Fig. 7. Sensitivity of the flux across the groundwater — surface waterP€low and causes only a minor increaseHin The effect of

interface to the value of the storage coefficigrih the infinite strip
aquifer (A) and the circular aquifefB). The parameter values for
all cases are given in Table 1 (parallel/raglial.).

the dimensionality of the flow manifests itself predominantly
in the larger gradients required by parallel flow to drive the
lateral flow, resulting in larger deviations frofi, overall.
This is confirmed by Fig. 10: the responsebto the forc-
ings is more pronounced for parallel flow. During the early

the surface water is reflected in its faster response compare, age, where water moves in from the surface water (negative

to the infinite-strip aquifer. fluxes, owing to the fact thadily < H,), its value is lower for

After recharge starts at day 100, the hydraulic head risegy,q nfinite strip aquifer compared to the radial aquifer. Later,
more swiftly in aquifers with smali, and consequently, the - no, the influx from the deeper aquifer needs to be later-

flux tohthe surflace Watfer mcreaﬁes more ragldly (Fig. f|7) Here ally transported to the surface water, the infinite strip aquifer
too, dtl eh(:|rcuhar aqurters freac near steady-state flow morg, ;¢ e highest values. The initially negative fluxes gradu-
rapidly than the strip aquifers ally trend to zero and become positive within 2.5d for both
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Fig. 9. The evolution in space and time of the hydraulic head in a Fig. 11. As Fig. 10, for the fluxes across the groundwater — surface
circular aquifer with radial flow that receives water from a deeper water interface. The flux in the infinite strip-aquifer (par.) is indi-

aquifer (Table 1: leaky). cated on the left vertical axis, that in the circular aquifer (rad.) on
the right vertical axis.
50 o rL 1.0
. I rhnn el 05 —=— p avg H 4.5 Recharge distribution in time
, :
E I f'"ﬂ‘- 0.0 -; £ pK, Three recharge regimes were tested, all for rain showers
z 167 1 e delivering 0.02 m of water to the aquifer: two involved a
2 I 1.05 X ¢ ragH pulse application at =0d ort =1d (dimensionless time
< 14r ’ xg‘ 0.015), in the third regime water entered the aquifer evenly
I ] K, distributed over a one-day period startingt at O (Table 1,
e '_ 1.0 problem labels “parallel/radial pulse 0", “...pulse 1", and
N ,Am,,“, e T “...even”, respectively). The pulsed applications raised the
e hydraulic head by 0.10 m (0.02), followed by a decay back
to Hy (1.5m). During evenly distributed recharge, the peak
Time (d) hydraulic head was obviously reached after 1d: 1.58 m for

_parallel flow and 1.56 m for radial flow. Within three days,
Fig. 10. The average hydraulic head and the upscaled hydrauliche difference in average hydraulic head was about 1 cm for
conductivities Kup, Kur) for parallel (p) and radial flow (r) inleaky  pgth parallel and radial flow (Fig. 12). The average head in

aquifers (see Figs. 8 and 9) with head-dependent recharge from ghe circular aquifer dropped at more than twice the rate of the
deeper aquifer. strip aquifer.

The fluxes towards the surface water generated by the
parallel flow and radial flow (Fig. 11). In the mean tinf¢,  recharge show comparable behaviour (Fig. 13). The fluxes
gradually increases from being smaller tif&n to exceeding  for the strip aquifer and the circular aquifer differ by a factor
it (shortly after 2.5 d for parallel flow and shortly before 2.5d 62.8 (2rL) owing to the necessity of expressing the flux from
for radial flow). Thus, there is a brief period during which the the strip aquifer per unit length. For the pulse applications,
direction of the local flux at the groundwater-surface waterthe infinite head gradient at the groundwater-surface water
interface is inconsistent with the magnitude of the field-scaleinterface caused by the spiked increas&imakes the initial
H with respect taH,: the flux is in the direction of increas- flux go to infinity. The peak discharge for evenly distributed
ing averageH . Consequently, the field-scale hydraulic con- recharge is 0.062 fd~! per meter for the strip aquifer and
ductivity becomes negative during this period (Fig. 10, only 3.4 n? d—1 for the circular aquifer. After 3 days, the differ-
visible for parallel flow). ence between the largest and the smallest flux has already

The fluxes infiltrating into the aquifers early in the simula- dropped below 9 % of its peak for the strip aquifer and be-
tions are comparable (Fig. 11). The discharge fluxes genetow 12 % for the circular aquifer. From then on, the flux
ated by the influx from the lower aquifer and, after 100 d, by decays exponentially, with the difference between the three
recharge from above, are markedly different for the infinite rainfall regimes decaying exponentially as well (the distance
strip and the radial aquifer, reflecting their geometries. on the log scale remains about constant). After 20 days, the
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16047 T T ~%- p0 5 Summary and conclusions
158 p1 Solutions for linearized parallel and radial flow in aquifers
= were developed that have sufficient generality to be directly
%1 56 —=— 50-1 applicable to a wide range of forcings that cover most con-
i ditions occurring in nature. The solutions are valid for dis-
g 10 charge as well as lateral infiltration. Expressions for the flux
0 1.54 between groundwater and surface water, and for the average
< r hydraulic head, were developed. While the test cases were
1.52 geared towards artificially drained fields, the solutions can be
—5— 10-1 readily applied to hydrological systems with a much sparser
1.50 discharge network. The linearity of the PDEs allows the pos-
0 5 10 15 20 sibility to represent the forcing in a given time period as a
Time (d) sequence of time segments (possibly daily segments), the so-

lutions of which can be superimposed to acquire the solution

Fig. 12. The average hydraulic head during and after 0.02 mforlon_gertime periods with varying boundary conditions and
recharge delivered as a pulse at the start (0) or the end of dgy 1 ( he@d-independent and head-dependent recharge. To do so,
or evenly distributed over the day (0-1), for an infinite strip-aquifer Ho for a subsequent solution can be made equat{tce-

(p) and a circular aquifer (). The input parameters are given insulting from the solutions for previous time periods. This
Table 1 (pulse 0, pulse 1, even rain). introduces a small error that is likely to damp out rapidly.

The solutions take the form of infinite series, but truncated
series of five terms or even a single term can still give accu-
rate results, particularly at times without exchange of water
with another aquifer or the unsaturated zone above (if the
aquifer is phreatic). When there is such an exchange (head-
independent and/or head-dependent recharge), or shortly af-
ter a change in the boundary conditions, truncated series will
0 lead to significant errors.

The expressions for the average hydraulic head, the flux
across the system boundary (to/from the surface water), and

100'_|||||||1||1|||||||§ —k—po

p1

—=— p0-1

Q (m*d")

Q per meter length (m®d")
>

-3
10 & the field-scale hydraulic conductivity contain infinite series.
5 0-1 The Darcian nature of the upscaled hydraulic conductivity
10+ for steady-state flows can be preserved for transient flows by
0 5 10 15 20 truncating the series appearing in the expressions for the up-

scaled conductivity after the leading term. This causes the
aquifer to behave like a linear reservoir, with the reservoir co-

Fig. 13. As Fig. 12, but for the fluxes across the groundwater — e_ff|C|ent ;eflectlngt por?gs/med:a pr?}:ﬁrtles’ .?nd LtJh? dlmeln_
surface water interface. The flux in the infinite strip-aquifer (p) is sions and geometry (strip/circular) of the aquifer. Using only

indicated on the left vertical axis, that in the circular aquifer (r) on the first term can lead to Signifipant errors. Itis not.yet clear
the right vertical axis. how the fundamental non-Darcianity at super-Darcian scales

that the solutions prove to exist even in homogeneous media

affects large-scale groundwater flow modelling.
flux from the strip aquifer is less than 1.5 % of the peak for The results presented here demonstrate that even for
any of the three regimes. The circular aquifer loses its watelquifers with small lateral flow distances, a temporal reso-
much faster: after ten days, all fluxes are around 1 % (1.1 %ution of recharge of one day will often be sufficient. This
at most) of the peak. The conclusion is warranted that forsuggests that soil water models should primarily focus on the
phreatic aquifers, the effect of the temporal distribution of accurate partitioning of the precipitation flux into evapotran-
recharge becomes negligible within a few days. For mostspiration, direct delivery to the surface water via flow routes
purposes, daily sums of net infiltration into the saturated zondhat bypass the groundwater (e.g. surface runoff and flow
will likely suffice on input. Since the PDE was linearized, through crack networks and other macropores), and ground-
the solution for more complicated rainfall regimes can bewater recharge. Adequate discharge estimates require the
obtained by superimposing the solutions for a sequence ofodel for groundwater-generated discharge described here
daily inputs. to be supplemented with a surface runoff and bypass flow

model to capture the rapid discharge generation.

Time (d)
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Appendix A aquifers with significant horizontal flow (low clay content),
often 0.25< (fs- 0;) < 0.4 (compare Table 1.3 of Kruseman
The magnitude of the storage coefficient and de Ridder, 1990, p. 24). Thereforer 0.2 may be a

reasonable approximation.
For confined aquifers, the storage coefficignteflects the

compressibility and consolidation effects on the matrix (the

increase in the amount of water stored acréssvith an Appendix B

increase of the hydraulic head) and generally lies between

5x 10~% and 5x 103 to 0.01 (Bouwer, 1978, p. 31; Kruse- The solution to the parallel flow problem

man and de Ridder, 1990, p. 23). For phreatic aquifers, it .

reflects the storage change across the vertical cross sectiome PDE for Case 9 is of the form (compare Bj.

with a change in the hydraulic head: 9H  19%H
— =-— - 4+ AH+B() (B1)
Ya 99 at w ox2
md"?ﬁ (A1) where the definitions oft and B follow from Eq. (6). The
0 IC and BC are:
wherexs (L) is the vertical coordinate (set to zero at the top H(x,0)=Hg (B2)

of the impermeable layer),is the volumetric water content,

andx, (L) is the height of the soil surface above the imperme- DHO.0)

able layer. If instantaneous hydraulic equilibrium is assumed 0 (B3)
in the vertical (consistent with the Dupuit assumptions), the dx
following equality holds if the phreatic level, [L] is suf-
ficiently deep for the water content at the soil surface to befl (1.1) = Ha (B4)
equal tod: This is a parabolic, non-homogeneous 2nd order PDE with
Xa 6s non-homogeneous BCs. The following substitution removes
f@dxg:xa9r+/—h(0)+xpd0 the termAH (see also Farlow, 1993, pp. 58—61):
B(t
0 Or H(x,t):eA’W(x,t)—Q (BS)
65 A
=xa0r — fh(@)d@ +xp(6s—6r) (A2) The system becomes:
9r aW _ 19°W e dB (86)
wheren is the matric potential [L]. This equality can be de- 3t  u 9x2 A dr
rived from a plot of the water content againstby first in-
tegratingd over the range ofz and subsequently integrating B(0)
the depth range for each water content over the range of W(x,00=Ho+ A (B7)
The integral on the RHS is a soil-specific constantHlis
changed, the Dupuit assumptions stipulate that this results ier(O 0
a similar change imrp. With Leibniz’ rule (Abramowitz and 5 — =0 (B8)
Stegun, 1965, 3.3.7), the resulting storage change in Eqg. (A1) .
can be found:
e B(1)
Xa Xa W, t)=¢€ Hjy+—— (Bg)
a0 d ad A
Fpdre= o | 0ds= o . . .
ot ot / ot The non-homogeneous term in the PDE is now independent
0 of H. The BC atr =1 is non-homogeneous. We seek a sub-
B dxp stitution that makes both BCs homogeneous (compare Far-
Xabh — / h(©)d0 +2xp(Os— ) | = (Os—0n) - low, 1993, p. 43-47). Thus:
Or
= (es—er)ngi W(x,t)=c(®)(1—x)+p()x+V(x,1) (B10)

In the other extreme, the capillary fringe reaches to the soiwhereV (x ) is the new dependent variable ar) ands(r)
surface. In that case, the storage change is similar to that of are as yet unknown functions. From the first BC (Eq. B8) we
confined aquifer. Thus, for phreatic aquifessranges from  have:

nearly zero to s — 6;). Kruseman and de Ridder (1990, aW(0,1) 3V (0,1)
p. 23) give a range between 0.01 and 0.30. For conductive—— — = —s()+B(1)+ =

0 (B11)
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From the second BC follows:

W@t =B +V(@d)=e (HA + %)

(B12)
To ensure homogeneous BCs fdKx,t), () needs to be
defined as:

B(1)

B(t)=e4 <HA + —)

y (B13)

From Egs. (B11) and (B13) follows the definition o{z):

ct)y=e A (HA+ %) (B14)
The substitution in Eq. (B10) thus becomes:

W(x,1)=e A (HA+%>+V(M) (B15)
The system now becomes:

v _1 82—V+e—Af (AHa+ B(1)) (B16)

B poax?

(Note that the term with B/dz in Eq. (B6) is cancelled by a

similar term that arises when Eq. (B15) is differentiated with

respect to time.)

V(x.0)= Ho— Hy (B17)

Waon_, (B18)
0x

V(1,1)=0 (B19)

This system can be solved by the method of eigenfunction
expansions (Farlow, 1993, p. 64—70). We start from the so-
lution of the associated homogeneous problem by separation

of variables:
Vx,)=Xx)T @) (B20)

where X and T are as yet unknown functions. From this
follows (Farlow, 1993, p. 33-41):

d’x

T 22X =0 (B21)

The BCs forV give for X:

dax© =0 (B22)
dx

X(1)=0 (B23)

The general solution foX is:

X (x) =Csin(Ax) + Ecogix) (B24)
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with C and E unknown constants. From Eq. (B22) follows
that C =0. From Eq. (B23) then follows that cos{) =0.
Thus, we have:

X, (6) = Ey COSpx). Ay = 17, o0, 2
n\X) = Ln nX), 11—27T,27T,27'[,...

Equation (B25) gives a valid solution for arbitrary values of
E,. These are therefore setto 1. The non-homogeneous term
in Eq. (B16) needs to be expressed as a seriés, of

(B25)

e M(AHA+B(1) =Y fu()Xu(x) (B26)

n=0
with f,,(¢) determined from

1 1
e @t B Xt =Y 10 [Xa e (B20)
0 n=0 0

Note thatX,, and X, are orthogonal on the integration inter-
val for m £ n (see Bruggeman, 1999, p. 701-703), and the
integral of their product therefore equals 0. In the sum, only
the term form =n is non-zero:

1 1
e~ A (AHA+B(t))/cos(kmx)dx:fm(t)/cosz(kmx)dx (B28)
0 0

Note that setting the value &,, equal to one above is ac-
commodated by the freedom to determifye Evaluating the

integrals leads to:
Siﬂ[(m + %) nx] j|

1)
(2m +L)mx +sin[(2m + 1] ]l

(dm+2)m
(_1)111

(m+%)71

& fult) =26 (AHs+ B(1))

1

e A" (AH4 +B(1)) {

= fu m[ (829)

& e A (AHA+ B(1))

0

=3 fn (1)

(71)111

<m+%)

With this, the series expansion of the non-homogeneous term
is:

e (AHA+B<r)>:§ ~A(AH4 + B(1))

> ) COS[(n—i—})nx] (B30)
n=0 (n + %) 2
The solutionV (x,r) was assumed of the form:
Vx,0)=Xx)T () (B20)

The linearity of the system of Eqgs. (B16)—(B19) and the ho-
mogeneity of the BCs ensures that any linear combination of
solutions is also a solution:

V=Y Xa(0)Ty()

n=0

(B31)
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T,, needs to be chosen such that the following equality holdg=rom Egs. %), (27), and (B1) follows:
for an individual solutiorV,,: 2 2 2

B(t) = b+ R(t)= b
oV 197V 2 " KD KD KD
= na R (AHa+B®) = )1 X,  (B32) “Lz a a
(n+ ) +MKD[R1+u(t—t1)(R2—R1)] (B40)
Including in Eq. (B22) the SOV solution (6 to gives: whereu(t) is the Heaviside step function. With this, the final
ar, T,dx 2 —1" i i . i ;
= n ;e“” (AHx+B(1)) ( )1 X, (B33) mtegratl in Eq. (B39) can be written as
(’H—?) nneV"’fe_(V'l+A)fB(t)dr
We replace the second spatial derivativeXof by —)L,len
(Eq. B21). This allowsY,, to be divided out: =n,e" f{,uwb+ KD [R1+u(r—r1) (R2— Rl)]}
a, 1 [( N 1) ]ZT o it T gy (B41)
= n—4|nw n ty2
n €1 L7 (b+R1) A
Yo wth B Ly = Do L€ Y ul -
to€ T (AHA+BW) 7% 1€ LRo—Ry) [t A gt A ]
7 (n+ 2) wK Dy +A)
1 1 2 2 ", (B34)  where the multiplication with the Heaviside step function
= —[(ﬂ+ )ﬂ] T,+—AHjy 1 e ensures that the last term is zero fog0 < #1.
(”+ ?) Inserting this into Eq. (B39) gives

2 (=" t
T (n—l—%) /e’/”(t_f)nn (AHAe_AT—l—e_ATB(t))dT

This is an ordinary differential equation if},. To simplify _ mAHp AH
. . n A wt 7At
the notation we introduce v S TA (eV )
n

e 'B(1t)

1 1\ 712 M€ L2(b+ R1) (B42)
= —— = B35 A e Rl
i’ u[<”+2)”} B39+ uKD(yn+A>2[ ]
€ Le(Ry— R
and fut—)! (R2—Ry)
M= — (B36) [e—(yn+A)z1_e—<yn+A>r]
™ (n+3) o o
Inserting this into Eq. (B38) and taking into account
to simplify Eq. (B34) to: Egs. (B35) and (B36) gives:
d7, 2
o =yuTn+nnAHae " +n,6 Y B(1) (B37)  T,00)= Fne_%[(’““%)”} !
2
The solution to Eq. (B37) is: +2 AHa , =" (e—i[(wr%)ﬂ] ’_eAt>
1
¢ T A—%[(n—i—%)n] (’H’é)
T,(t)=F, ey,,t+/eyn(t—r)n + LI?'D 2 5 ="
n n n TH A,%[(,Hr%)n] (n-i—%) (B43)
BT AT
(AHAe‘AT+e AIB(I)>dr (B38) <(b+R1) e ) ]t_e At]+”(’—t1)

with 7 [T] an integration variable, and, a constant that . p\ g ~2[(n+3)= ]2(1—t1)—A11_e—At
needs to be determined from the IC. The integral in Eq. (B38)

can be written as: Fort =0, this reduces to

t
[ =, (AHAe AT +e 47 B(1))dr T,(0)=F, (B44)
0 ; To find F,, we therefore need to expand the ICVofx,7) in a

=n, AHpe"! [t ATy series of the eigenfunction, (x).

0 (B39) 1
t
+nneyntfe—(y,,+A)rB(.L.)dr Of(Ho— HA)cos[<n+ %)nx]dx
¢ Fn = Tn (0) = 1
”}I/I’IA+[ZA (e}/nl —e AI)+nne}/nl‘é'e—()/n+A)‘rB(r)dT gco§|:(n+%)nx:|dx
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2 1y
= 2 (Ho—H -2
T

()

The full solution forT,, (¢r) thus becomes:

2
T,(1)= 2 (Ho— H ) —2e it (e g)e]

(n+3)
2 AHp (-1 —%[(n+%)nrz_ Car
Tl T °
L2 22
HMKDAf%l[(n+%>JT (n—&—%)

2
((b +R1) e #(r3)7] t—e‘A’} +u(t—t1)

(R2—R1){e -k [(rrd) ]z(ttl)Atl—e_A’}>

The solution forV (x,t) then is:

VD=3 Xa()T(0)

n=0

—
S
+
=
iy
<
m\
Ele
—
-
+
Nl
~
E]
[
o~
|
?
LN
=
—_——

+u(t —t1) (R2— R1) [e‘i[(”*%)”] (—t)=An_ o ar }
cos 1

n—+ E) X
With Eg. (B15) we find forW (x,¢):

Wx,n=e* (HA + %’)) +V(x,0)
—e Al (HA + %)

_
S
+
= >
- |
g™
—_——
(DI =
=+
—_
3 Bl
[
o ol
Nui?
]
[
)
|
®
>
—_——

2
+u(r—r)(Ro—R1) e i [(rrd) ](”1>A’1_e—Ar}
=D cos[<n+}) nx]

e 1
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(B45) And finally, with Eq. (B5) we obtain the solution f&{ (x,¢):
H(x,t)=eMW(x,t n- 20
=H 1) 1
Atz nZO (r+8) COS[(n + 2)7”]
(HO_HA)e{Af%[(nJr%)n] }1

" AHp . eiAfé[(iH»%)n]Z}l_l
Al

L? 1
+//.KD A—% (n+%)71 2

(849) (b+R1) e{A‘i[(’”é)”]z}’_l)

2
+u(t —11)(Ro — Ry) (e{A‘ﬁ[(”%)”] Jem 1)

whereA is given by (compare Eg8.and B1):

(B49)

2
A “;D (B50)
m

leading to

H(x,1)=Hy
_Z(( 1)) s[( +%>ﬂx]
(HO_HA)e{“K—D—[(H%)nf}ﬁ _

n aHA+b+R12 (l—e{%_[<”+%>”r}’i) (B51)
(o]

bl — 1) —e=h

(B47)

Appendix C

The solution to the radial flow problem

The PDE for radial flow is (compare E§2):

OH 1 82H+18
ot pu\ar2 " ror

)+AH+B(r) (C1)

with BCs (Eq.33)

dH(0,7)
or

and (Eq.34)

H(r,0)=Hg (C3)

and IC (Eq.25)

H(l,t)=Hy (C4)

(B48)

=0 (C2)
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To solve the above system, we seek a transformation thawith «,, the roots of

makes the inhomogeneous terms independent! of The

transformation of Eq. (B5) creates problems in the term with Jo(e,) =0, n=0,1,2, ... (C14)

1/r, however. Successive application of the Laplace trans- ) )

form and the finite Hankel transform is another strategyThe us_efulness of th_e H_ankel Fransform arises from its trans-
(Bruggeman, 1999, p. 744-748). By doing so, the initial Con_formz_atnon of the denyatwes Wlth_ respect td or r that ap-
dition is transformed differently from the boundary condition P&ar in the flow equations for radial flows (Bruggeman, 1999,
though, and there is no term witlf§ — Ho), which makes ~ P: 707). Forr, the derivatives are transformed as:

the solution somewhat difficult to interpret. We therefore first -
introduce a substitution to make the BC homogeneous: |:d_72r }d_f} — oy J1 () f(D) (C15)
dr r dr " "
H(r,t)=U(r,t)+ Ha (C5) o7 "
i ary 2
The PDE then becomes: J@o<r dr ) oy i (n) (C16)
oU 1 (0°U 10U In the above equations denotes an arbitrary function of
o ﬁ (ﬁ ;5) +AU+AHA+B(O) (C6) r, Ji(y) is the Bessel function of the first kind and order

_ and the subscript denotes a Hankel-transformed variable
with IC and BC: or function. The boundary condition at=1 (+* = L) as
well as conditions imposed at= 0 are incorporated in the

U(r,0)=Ho—Ha (€7 transform defined in Eq. (C15). Transforming Eq. (C9) gives:
Un=0 (C8) ;
U , Hjy — H J d
Equations26) and @7) for a, b, andR(¢) remain unchanged, sUn(s,m)+(Hy 0)/r o(nritr
while the BC at- =0 (Eqg. C2) holds for botlif andU'. o2 0
Eliminating the time coordinate by the Laplace transform = —"2U; y(s,n)+ AUr g (s,n) (C17)
(Bruggeman, 1999, p. 652—653) gives: my
o AHy
1d°U; 11dUg +—— | rJo(ayr)dr+Bry (s,n)
sUL(r,s)+ Hy—Ho=———+———— s
W drz2 - opr dr 0
AH
+AUL + TA +BL(s) (C9)  where
1 o0
dur (0,s) -0 (C10) Bru(s,n) =/rJ0(oz,,r)/e_‘”B(t)dtdr (C18)
dr o 0
Ur(1,5)=0 (C11) With the relationship for derivatives of Bessel functions

of integer order (Abramowitz and Stegun, 1965, 9.1.30;

wheres is the Laplace variable, the subscriptindicates a  Carslaw and Jaeger, 1959, p. 198, BY. the integral in
transformed variable, andy (s) follows from the definition  Eq. (C16) can be expressed as:

of the Laplace transform:
o
BL(s)=fe‘”B(t)dt
0

1 1 1
(C12) /rJO(a”r)dr = |:a—r.]1((¥nr):| = a_Jl(Oln) (C19)
0

n 0 n

The transforms were taken from Abramowitz and StegunS0Ving Ed. (C16) fot/ ;7 and using Eg. (C18) gives

(1965, p. 102Q—1029). The Laplace transform removes J1(ey) (Ho— Hy)
the time coordinate and therefore the need for an |n|t|aIULH(S,n)=T
condition. oy (S +o - A)

Next, the system is simplified further by the finite Hankel Ji(an)AHA By (s, n)
transform (Bruggeman, 1999, p. 706—707): 2 2 (C20)

ans<s+J—A) s+-2—A
1 ® 1
fH(n):/rf(r)Jo(anr)dr (C13) The final term contains the transform of functidk(),
0 which hampers the inverse transform as long as it remains
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o - 2
upspemfled. Combining Eqs27), (B40), (C17), and (C18) Gr= Y _ 4 (C30)
gives: 2
; J1(e)
1
BLH(S,n)Z/VJo(OtnF) G31= ” "~ AH, (C31)
n
0
L2(b+Ry) j"e—stdt bt —1y) ERe=RD) j"e—ndt d J1(on)L2(b+ Ry)
KD U=l =—,%p " (C21) G3o= (C32)
) 0 0 ’ o, KD
2 2
=/ rh(wr)[%%’i“ +£ (’%BR“G’“‘”]W @ L2(Ra— RD)
1(ay 2— R
2 2 Ga= C33
- o[t | st ST kD )
With this, the expression fdv; 4 (s,2) becomes The solution as a function of time and the Hankel

transformation variable thus becomes:

Ui (s,n) = Aoy | (e 4Hy G )
an(s+-4) a5+ -a) Up (t,n) = G1e 07! 4 2343732 (1—e~C2)
G —Go(t—
HE20R) [ et R Ry s (C22) +u(r—n) g [1-e 920)

2 2
Ot“LKDS(S‘I*D%*A) (x,,,uKDs(s+a7"fA> J (A—O‘—”)t
_ Jilan) _ w J1(atn)
==, (Ho—Hay)e 4l

This is the solution in the-n domain. We now seek the in-

verse transform from the Laplace domain to the time domain. . < ,ﬁ)t (C34)
The first term of the right-hand-side (RHS) of Eq. (C21) is of [AH + M] l-e 8
the form

G =% ) (t—n)
fL(s)z—l (C23) +u(,_,l)M(Rzz—Rl) 1—e< ”) '

s(s+G2) uKDa,,(%"—A)

The inverse transform is (Abramowitz and Stegun, 1965, ) _
29.3.8; Prudnikov et al., 1992, 2.1.7.18) The inverse Hankel transform is (Bruggeman, 1999, p. 706)

-G
f(=Ge €29 s Z f ”( ) = Jotaur) (C35)
The second and third terms of the RHS of Eq. (C21) are of
the form The solution thus becomes

Gsi . Jo(ar)

(5)=—""——,i€{l,2} C25 — 0Cn
fL SG1Ga) (C25) y@,n= 22 < i) (C36)
which leads to (Abramowitz and Stegun, 1965, 29.3.12, (A_‘Ln>z
Prudnikov et al., 1992, 2.1.2.31) (Ho— Hy)e\ "
Gs,i Gt A-CL )
= —(1—e %2 Cc26 1 L2(b+Ry) _ w
F="25( ) (C26) +(a3_A>[AH a+ Bl 1 %)
n
The final term of Eq. (C21) is of the form (A 2)( )
2 =11
Ga c27) Fu(r —1g) LB R (RZQZR” l-e :|
—_— "% @ KD(%_4

Ji(s) SG1Ga) : (“ )

Prudnikov et al. (1992, 1.1.1.14), combined with the inverseWith Egs. (B50) and (C5) we finally obtain
transform of exp(t;) according to Abramowitz and Ste-

gun (1965, 29.4.2), gives H(rt)= Ha+ 22 Jot@ar) (C37)
Oanl(‘xn)

_ Ga —Ga(1—11) 2 2

f(t)_u(t_tl)G_ZI:l_e ] (C28) (HO_HA)e((;{LD az)u +aHé4+b+R1 |:1_e(111})a5),3:|
ot,,KD_a
In the above equationsGi through G4 follow from L22 B
Eq. (C21) as Sl — 1) Re=Ra_ [1_6(%—“3)(;3)}
,IKD

J z ¢

G1= 22 (ho— hy) (C29) '
Oy
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Appendix D
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Table D1.List of symbols.

Symbol Meaning Dimensions
A Function defined in Eq. (B50)

a Constant governing head-dependent recharge -1
B Function defined in Eq. (B40) L
B Laplace transform oB L
Bru Hankel transform o3, L

b Constant related to head-dependent recharge 4T
C Function introduced in Eq. (B24) Same&s
D Aquifer thickness (water level above aquitard) L
E Function introduced in Eq. (B24) Same s
F, Constant Same ag’
fr) Arbitrary function ofr Arbitrary
fun) Hankel transform off (r) Arbitrary
fa Function defined from Eq. (B27)

G1...G4 Terms and functions defined in Egs. (C28)—(C32) Varying
H Hydraulic head L
H Average hydraulic head in the aquifer L
Hyp Uniform hydraulic head at= 0 (initial condition) L
Hy Hydraulic head of the surface water (boundary condition) L
h Soil matric potential L

Ji (y) Bessel function of the first kind and ordier

K Hydraulic conductivity LTt
Kup Upscaled hydraulic conductivity for parallel flow ot
Kur Upscaled hydraulic conductivity for radial flow iy

L Distance between the no-flow and prescribed-head boundaries of the aquifer L
My Function defined in Eq4Q) L

m Arbitrary value of the counter

n Counter in the summation terms

On Function defined in Eq5Q) L

0 Flux across a stretchx, of a strip aquifer or across the entire aquifer boundary of a circular aquifer  3T-%

R Recharge or extraction LTt
R1 Value of R for0<r <1 LTt
R Value of R for ¢ > 11 LTt

r Dimensionless radial coordinate

r* Radial coordinate L

K Laplace variable

T Function introduced in Eq. (B20)

t Dimensionless time

1 Dimensionless time at whicR changes abruptly

* Time T

U Dependent variable obtained by transformitig L
Ur Laplace transform of/ L
Urn Hankel transform ot/;, L
u(t) Heaviside step function

% Dependent variable obtained by transformifig L

w Dependent variable obtained by transformitig L

X Function introduced in Eq. (B20)

x Dimensionless spatial coordinate

X1 Horizontal coordinate L
x2 Horizontal coordinate L
X3 Vertical coordinate L
Xa Height of the soil surface above the aquitard L
Xp Height of the phreatic level above the aquitard L
ap Root of Jo(es) =0

B Function defined by Eq. (B10)

Yn Term defined in Eq. (B35)

Nn Term defined in Eq. (B36)

Ie Function defined by Eq. (B10)

A Constant

An %n,%n,gn,...n=0,l,2,...

w Storage coefficient

0 Volumetric water content

Oy Residual volumetric water content

Os Saturated volumetric water content

Integration variable
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