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Abstract. Owing to the analogy between the solute and heatfer provides better-constrained groundwater flow and perme-
transport processes, it can be expected that the rate of growtbility estimates. It is therefore of great importance in char-
of the spatial second moments of the heat flux in a heterogeacterizing and predicting the heat transport processes in the
neous aquifer over relatively large space scales is greater thaaquifers. Comprehensive overviews of selected work on heat
that predicted by applying the classical heat transport modelare given by Anderson (2005) and Saar (2010).
The motivation of stochastic analysis of heat transport at the The spatially varied velocity field creates the degree of
field scale is therefore to quantify the enhanced growth of thespreading of a solute plume in a heterogeneous aquifer that
field-scale second moments caused by the spatially varyings greater than what would occur by local dispersion alone
specific discharge field. Within the framework of stochastic in the uniform velocity field. Motivated by that, a stochastic
theory, an effective advection-dispersion equation containmethodology is devoted to relating this enhanced spreading
ing effective parameters (namely, the macrodispersion coefto the characteristics of the velocity field and thus to the sta-
ficients) is developed to model the mean temperature fieldtistical properties of hydraulic conductivity field based on the
The rate of growth of the field-scale spatial second momentsepresentation of natural heterogeneity as a spatial random
of the mean temperature field in the principal coordinate di-variable characterized by a limited number of statistical pa-
rections is described by the macrodispersion coefficient. Th@ameters. This leads to a solution in terms of an effective dis-
variance of the temperature field is also developed to charpersion coefficient (macrodispersion coefficient) for describ-
acterize the reliability to be anticipated in applying the meaning the rate of growth of the second moments of the ensemble
heat transport model. It is found that the heterogeneity ofaveraged concentration field. The stochastic methodology
the medium and the correlation length of the log hydraulic has successfully provided a basis framework for quantifying
conductivity are important in enhancing the field-scale heatand understanding the effect of the natural heterogeneity on
advection, while the effective thermal conductivity plays the the field-scale spreading process.
role in reducing the field-scale heat advection. The stochastic methodology is generally built around ei-
ther the Eulerian or the Lagrangian framework for analyzing
the solute transport in heterogeneous media. More details on
1 Introduction the construction of the Eulerian and Lagrangian approaches
and their application to the analysis of the solute transport in
The temperature of the land surface is influenced by seasondleterogeneous media are provided in Rubin (2003). The Eu-
heating and cooling. Water seepage near the land atmosphelerian approach develops an effective advection-dispersion
interface results in a heat transport that modifies the temperequation (mean transport equation) containing effective pa-
ature profile and, in turn, affects most reactions occurring inrameters and seeks a quantitative measure of the uncertainty
the aquifers. In addition, the information on the heat trans-(the variance) anticipated in applying the effective transport
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equation. The effective parameter, which is the outcome o2 Mathematical formulation of the problem

the correlation between the velocity field and concentration

fluctuations, is introduced to quantify the enhanced spreadOwing to the analogy between the solute and heat trans-
ing of the solute plume (the field-scale dispersion). Theo-Port processes, the governing equations for transport in the
retical studies on the field-scale nonreactive solute transporgquifers can be represented by similar advection-dispersion
process have been carried out within the Eulerian frameworlequations. ~ Following de Marsily (1986), a temperature-
(e.g. Gelhar and Axness, 1983; Neuman et al., 1987; Grabased advection-dispersion equation at the local scale is of
ham and McLaughlin, 1989; Vomvoris and Gelhar, 1990; the form

Rehfeldt and Gelhar, 1992; Neuman, 1993; Kabala and Spos- 9 oT oT
ito, 1994; Kappor and Gelhar, 1994; Rajaram and Gelhar,a_Xi[(KTercDm)a_Xj_pWCWq"T]:pCE

1995; Kapoor and Kitanidis, 1997; Guadagnini and Neuman, i,j=123. (1)
1999a; Neuweiler et al., 2001; Cirpka and Attinger, 2003,

Attinger et al., 2004; Morales-Casique et al., 2006; Chang!" Ed- (@), 7 is the temperatureK is the effective ther-
and Yeh, 2007; Schwede et al., 2008). mal conductivity, Dy, is mechanical dispersion coefficient

Similar to Taylor's (1921) classics analysis of turbulent for heattransportpy andCy, are density and specific heat of

diffusion, the Lagrangian analysis of field-scale solute trans-Uid: respectivelyg; is the specific discharge in the principal

port is focused on the statistical properties of displacementSo0rdinate directions, and and C are density and specific
of solute particles through a random velocity field. It offers N€at of rock-fluid matrix, respectively. ,
an alternative and allows the development of preasymptotic 1 "€ €ffect of thermal dispersion is very small and negli-
coefficients, travel time statistics of solute particles and so-9iPle when compared with that of conduction (Bear, 1972;
lute fluxes. Note that the effective dispersion coefficient is HOPmans etal., 2002). This simplifies E) {o
determined by half the rate of change of the particle displace- 32T 9 aT

ment variance (or the spatial second moment of a concentra{-‘m - "B_Xi(qi )= 9t

tion distribution). This approach has been applied to analyze
the nonreactive solute transport in heterogeneous media i¥€"ex = K1/pC andv = (owCw)/(pC). Note thatkr, pw,
a number of papers (e.g. Dagan, 1984, 1987; Neuman and"’ a_ndC in Eq. @) are treated as constants since their
Zhang, 1990; Dagan et al., 1992; Rubin and Seong, 1994\’/ar|al_all|t|es are qsually smaller than the variability in hy-
Indelman and Rubin, 1996; Cvetkovic et al., 1996; DagandraUIIC conductivity (Anderson, 2005).

and Fiori, 1997; Andievic, 1998: Fiori and Dagan, 1999 It has been concluded from the analytical model of cold
Destoum’i et al.,,2001; Rivayl et aI.,’ 2001; Fiorotto ana Caro’ni,Water front movement in a geothermal reservoir by Stopa

2002; Guadagnini et al., 2003; Caroni and Fiorotto 2005_and Wojnarowski (2006) that the velocity of the thermal front
Bellin and Tonina 2007)" ' ’ "found from the weak model solution differs from the velocity

btained under the assumption of constant thermal properties
y about 1 to 14 %, depending on the temperatures used for

&)

Due to the analogy between the contaminant and heag
a

transports, it is expected that the heterogeneity of natur X . "
P P g Y evaluation of the thermal properties. In addition, Lo Russo

formations also plays an important role in influencing the . X X . .
heat advection at field scale. In other words, predictionsand Taddia (2010) mentioned that the density and viscosity

from the classical heat transport equation in the uniformvariations_ with temper_ature can be c_onsidered negligible for
velocity field subject to a great deal of uncertainty. How- systems in an unconfined aquifer with temperature changes

ever, the application of stochastic methods, used to predic?elow 10-15K. On the other hand, the heat fransport simula-

the field-scale solute transport, to the analysis of heat transion should take account of the physical temperature depen-

port by groundwater in heterogeneous aquifers has so far noqencies tOf thehthermal girameters for systems with higher
been attempted, and this is the task undertaken here. Thi§mperature ¢ anges>(10K).

task is performed using a spectral approach (e.g. Gelhar and In the analysis that follows, the log-hydraulic conductiv-

Axness, 1983) based on Fourier-Stieltjes representations fo'};y field (Ink) is assumed second-order stationary and it is

the perturbed quantities under the assumption of local Sta(_:haracterlzed by its variance and correlation scale. Note

tistical homogeneity. We seek a mean heat transport cont—hat through the Darcy's law the specific discharge and

taining macrodispersion coefficients for describing the field-:.h'“TI hydraullli (;ondugtlwtyhatre d|rectl>: rglaﬁcé.{&h:&s,l spa-
scale heat advection and the variance for quantifying the' 2y correlated random heterogeneity in Ield 1

uncertainty anticipated in applying the mean heat transporfhe citau_se of trt1_e"stochas;u(i S dpecmccj: d|scha{geb, Vtv.h'Ch n ttlrj]m
equation. It is hoped that our findings will provide a ba- results in spatially correfated random perturbations in the

sic framework for understanding and quantifying field-scaleter_rl_]ﬁeratu;e field. fields of ific disch dt
heat transport processes and be useful in stimulating further € random space TIelds ot Spectlic discharge and temper-
research in this area. ature are typically represented, respectively, by the sum of a

mean and a small zero-mean perturbation as:

9 =9;+4q; 3
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T=T+T'. (4) vective movement of the heat distribution. As such, Ef. (
and @) take the following forms
The equation for mean temperature is found by substituting 927 3 9T
perturbation expansions in specific discharge and temperay —v—I|¢; T")=— )
ture, Eqgs. 8) and @), into Eq. @), assuming incompressibil- 9;9¢; & dt
ity of the fluid and taking the ensemble average, 927 CaT a1 ©
— _ _ N —Vq ;= .
3°T oT  ,, . oT 9&; 0§, ‘og o
ey gy V43 _V3_<qiT):8_ (5) . . .
XioX; X1 Xi 4 Equation B) can be solved using the spectral representation

(e.g. Gelhar and Axness, 1983; Rehfeldt and Gelhar, 1992)
based on Fourier-Stieltjes representation for the perturbed
guantities in wave number domain. By using this approach,

while the equation for the temperature perturbation is ob-
tained by subtracting the resulting mean equation from

Eq. @) the random perturbations in Ed)(are represented by the
927" 9T 5T 9T’ following 3-D wave number integrals:
/
— — U 6
MIXI0X, Yo Tk T e (6) 0

T'= /eXp{i[Rl(Sl-i-qu)+R2€2+R3§3]}dZT(R,t) 9

where the mean fluid flow is parallel to th&; coordinate
axis so that/; =g andg, =93 =0, and< > stands for the
ensemble average. o0

The last term on the left-hand side of E§) (s referred ¢/; = / expli[R1(§1+vqt) + R2&2+ R36311dZg, (R)  (10)
to as macrodispersive flux in the work of Gelhar and Ax-
ness (1983) for the case of the solute transport in a satu- )
rated heterogeneous aquifer. It reflects the additional (andVheréR = (R1, Rz, Rg) is the wave number vector, and
indeed dominant) heat advection produced as the result ofZ7(R, 1) and dZ,;(R) are the complex Fourier-Stieltjes in-
the correlation between specific discharge and temperaturé€ments. The tranS|en.t—st§1te spectral relation follows from
fluctuations. This term may be fully characterized by solv- EQ- @) through the application of Eqs9)and (L0) and the
ing Eq. 6), which describes the temperature perturbation due!Se of uniqueness of the representations:
to the variation of specific discharge. The evaluation of the ; ) 5T
macrodispersive flux is the focus of this paper. As will be 3, 427 (R.0)+ (v Ri+e R%)qdZ7 (R.1) =—V3?idzq,~ (®) (11)
seen below, this term introduces the dispersive effect of the
variability in the specific discharge on the temperature field. whereR? = RZ+ RZ+ RS ande = u/q.

In this study, the flow domain under consideration is as- Note that Eq. 11) has been obtained under the assump-
sumed to be of a sufficiently large extent. Note that totion of negligible perturbation-boundary effects. Naff and
fully characterize the variation in flow field, one must know Vecchia (1986) studied the impervious boundary effects on
the spatial behavior of the mean hydraulic head. The Specme head covariances for a Steady three-dimensional flow in
tral representation theorem of random head perturbations iR formation of infinite horizontal extent, bounded above and
Fourier space will not be feasible if the mean hydraulic headbP€elow by impervious horizontal boundaries. They demon-
has the pattern of spatial variability. In other words, the criti- Strated that the boundary effect is largely limited to a zone
cal condition needed in the solution of the flow perturbationsnear the medium boundary. Similar results were also ob-
is that the mean hydraulic gradient must be approximatelytdined by Rubin and Dagan (1988, 1989), who analyzed the
constant (or the mean fluid flow is uniform). The uniform effects of constant head and impervious boundary conditions
mean flow condition Corresponds to the case where the siz€n the head variation in semi-infinite aquifers. In addition,
of the flow domain becomes infinite. In practice, the validity it is of interest to note how the type of boundary conditions
of the uniform mean flow assumption (or infinite-domain as- affects the head covariance function in heterogeneous media.
sumption) requires that the correlation length of the randomBonilla and Cushman (2000) found that for a flow of constant

fields is much smaller than the domain size (e.g. Ababou efnean head gradient, the effects of the Dirichlet boundary
al., 1988; Dagan, 1989). conditions (prescribed head) on the head covariance function

is restricted to a boundary layer from three to four integral

scales. However, under the same circumstances, effects of
3 Spectral solutions of macrdispersion coefficients the Neumann boundary conditions (prescribed flux) may per-

sist as far as three to eight integral scales from the boundary.
In analyzing changes in the temperature field in time, it is Therefore, it may conclude that the assumption of negligi-
convenient to introduce a moving coordinate Systém= ble boundary effects is applicable, at least far enough from
X1 -0, £2 = X», andés = X3, that follows the mean ad- the boundary.

—00
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The general solution to EgL{) can be found as T )
2 +v/exp(—8R qt)
dZ7(R,t)=—vexp—(ivR1+&R")qt]dZg4 (R) .
aT .
/exp[(ivR1+eR2)qt]—dt+dZO (12) v R1SIN(v R1g1) — & R?COS(v R141)
d&; 2p4 2 p2
o . . . ESR"VIR]
in which dZg is a constant of integration that depends on the R1R:
initial temperature distribution. In general, the mean temper-  (§i1— <2 )2 St (R)dR. (18)

ature field is a smooth function of space and time and the

perturbations fluctuate on a much smaller scale than that aSGeneraIIy the expression for the effective parameter {Byy

sociated with variations in the mean. The mean temperature, - <. .Jnd-order tensor. however. the off-diagonal compo-
gradientin Eq. {2) may therefore be approximated as a con- nents are zero due to an odd ternRnor R3 involved in the
stant and it may be taken outside of the time integration. It isintegration over the wave number domain

expected that the assumption of a constant mean temperatureBy substituting Eqs.15) and (L8) into Eq. (), we then

gradient will not be valid near the heat source where a large_, .~ : o
. obtain the following mean heat transport equation:
temperature gradient and sharp curvature occur.

Itis assumed that the initial temperature distribution in the 927 O
aquifer is known. Thus, there is no temperature perturbationu + g;;¢) ——— = —
atr = 0. Thatis, with &7 =0 atr =0. The solution of 9§;98; ot
Eq. @2 withdZy =0atr=0is

1—exp—(ivR1+& R)qt] dZg, (R)
eR2+iVR1

whereG, = —3T/8¢;. The random temperature perturbation
results from Egs.9) and (L3) as follows:

(19)

where (a) fori = j, B;; is defined by Eq.18), and (b) for

i #j, Bij =0. Itis clear from Eq. 18) that the macrodis-
persivities, while being dependent on travel time (or mean
travel distance), do not depend on the type of coordinates
used. Thus, these parameters are identical in the mean heat
transport equation that uses the fixed coordinaiées K>,

X3), and we can rewrite Eq10) as

dZ7r(R,1) =vG; (13)

o0

T'=vG; [ explilRaEs+van+ Rato+ Raa]) ] e
- 92T aT  dT
< ) M+Bii ) o — G = (20)
1—exgd—(ivR1+eR)qt] dZg (R) (14) 0Xi0X; 0X1 ot
eR2+ivR1 q '

The macrodispersive heat flux term in E@) (or EQ.5) is
then found by multiplying Eq.1(4) by the complex conjugate
of dZ,; and taking the ensemble average

4 Spectral solution of temperature variance

We have made use of the spectral representation and a per-
(T’q’,-)zqﬁ,-j Gj (15) turbation approximation to develop an effective advection-
dispersion Eqg.40) containing effective parameters (namely,
the macrodispersion coefficients, Ei@) in quantifying the
field-scale heat transport processes. The macrodispersion co-

where the macrodispersivity for heat transpgyt is given
by the integral

]

1—exp—(ivR1+& R)qt] Sa;q;(R) efficients in Eqs.Z0) or (18) are used to determine the field-
Bij=v f s RZ1ivRL 72 dR.  (16)  scale rate of growth of the spatial second moments of the heat
—o0 flux in the principal coordinate directions in a heterogeneous

The spectrum of the specific discharge in Etg)(can be ~ @quifer. Since the enhanced growth of the second moments
determined from the Fourier-Stieltjes representation for theS caused by the spatially varying specific discharge field,
first-order perturbed form of the Darcy equation and thethe outcome of the spatial variation in hydraulic conductiv-

Axness, 1983): hydraulic conductivity. This implies large uncertainty to be
RiRi RiR: anticipated in applying the mean transport E2D)( There-
Sq;q; (R) =q%(5i1— 22 ! (81— R2] ) St (R) a7 fore, there is a need to provide a basis for judging reliability

of the field-scale mean transport model.

The theoretical result (EdL4) may also be used to de-
termine the variance of temperature fluctuations which can
be developed within the spectral framework as follows

where S¢(R) is the spectrum of IK perturbations. The
macrodispersivities can thus be written from Eb6)(with
the spectrum of the specific discharge given by B@) s

oo R2 RiR: (e.g. Vomvoris and Gelhar, 1990)
ﬂiiZVS/ a5 o3 8l 5 ) S (R)dR
) e?RA+V2R] R oA =(1"T")
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22 1 2cogv R1gt) exp(—e R2qt) +exp(—2s R%qt) by a Gaussian covariance function (Dagan, 1994; Zhang and
L / €2RA+v2R? Di Federico, 1998)
—00
. nzz
(51— R;f )25t (R)AR (1) Rules) =ofexp—72) (22)

: . . which has the following spectral density function
where the asterisk denotes the operation of complex conjuga- gsp y
3 2

tion. The temperature variance is a measure of the variation (R) _} A ozexp(—)‘—Rz) (23)
of the temperature about the mean temperature. Thus, it turngff T8m32t 4

OUIF tg'?t Eq. El) will give lijs'a qualnt'ltatlvﬁ measure of the \hore/c s the separation distance or lagf. is the variance
reliability to be anticipated in applying the mean transport | & 45 is the correlation scale of ki

model (Eq-20). The closed-form expressions for macrodispersivities in the

In general, the stochastic analysis leading to the analytical, i, ina| coordinate directions can be developed by substitut-
results (Egsl8and2l) relies on some kind of small parame- ing Eq. @3) into Eq. (L8) and integrating over the wavenum-

ter expansions and the assumption of stationarity for the disber domain:

tribution of flow properties, where the small parameter cor-

responds to the variability of the underlying random log hy- 5 . _ 2, _ 16 81, 167 p(P_z)
draulic conductivity field. The validity of those assumptions © p3 3P p4 4

requires that the standard deviation of the random log hy- p 4 1 3 A

draulic conductivity fluctuationss;, should be smaller than [V(A)— \IJ(E)]+ [(? + E)HZ—Z]ﬁeXp(—ﬂz)
unity (Gutjahr and Gelhar, 1981). However, from a Monte

Carlo simulation study, Zhang and Winter (1999) found it +ﬁ[(1_i+iz+})n4_(£2+})n2+§]
to be accurate for the head moment solutions for the value Pt pP° 2 pe 2 3
of variance of log hydraulic conductivitysf) as high as AP () _££(§i_i+l)®( )
4.38. A similar finding was reported in Guadagnini and Neu- n° 4 t 4nt n2 "
man (1999b) even for strongly heterogeneous mediaaith _}f(_§i n })exp(—nz)} (24)
up to 4 from the comparison of the moments of hydraulic 47 213 g
head with the results of numerical Monte Carlo simulations.
Based on the application of the Continuous Time Random ) 8 11 8 1 P2
Walk transport formalism to the fracture networks, Geiger P22= P3z=0t 2 ﬁ"‘ §F+ﬁ(—?+?)exp(7)

and Emmanuel (2010) concluded that in systems with a » 2 3 A
low degree of heterogeneity, heat transfer is Fickian-like (or —wel o S A _n2
Fourier-like). The implication is clear that in the flow fields LP(A) = 2 N+ 2P2 + 8) n4 EXPp(=T")
with a low degree of heterogeneity an effective advection- 8 1 2 1
dispersion equation containing the macrodispersion coeffi- +ﬁ[—(?+?)n4+(?+§)n2
cients can be used to model the heat transport at the field /7 p 31 1 3P1 )
scale, as adopted in the paper. However, in systems with +E—(——4 — )P — —— Zexp(—1) (25)
. . A ! T 27 16t 1
a high degree of spatial variability in the flow fields, such
as often occurs in fractured systems, the thermal transpo
is expected to become anomalous like (non-Fickian hea
transport) (Geiger and Emmanuel, 2010).

_ 3 ,A00)
16" 15

I)fvherecb(-) and W (-) denote the error function and its com-
plementary error function, respectively, = pwCwOA/ KT,
T=vqtix, n =[Pt 2(P+4)]%°, A =[P (P+47)]%%2 —1.

In the limit of t — oo, the longitudinal and transverse
macrodispersivities converge, respectively, to
5 Closed-form expressions for macrdispersion

=0 Bra(t — 00) =0f A
coefficients 1 f

Jr 16/ 16 4/7 81 16/

The field-scale dispersivity in Eq1$) and temperature vari- 2 pt p3 p2 3P 4
ance in Eqg. 21) are determined once the form of the spec- 2

trum of log hydraulic conductivity perturbations is specified. £22=P33(t = 00) =074

The_ evaluation of Eqs1g) and @1) cannot be pe(formeq an- _@Jr%_~/7§+}1_ﬁ(_ﬁ4+i2)exp(iz)\y(f)] @7)
alytically for the general case of statistically anisotropi& In pP* P> P° 3P Pt P 47 2
distribution. However, to take the advantage of closed-formThe linear relationship between the longitudinal and trans-
expressions, which provide a clear insight of the impact ofverse macrodispersivities amf in Egs. @4) and @5) sug-
heterogeneity on the behavior of heat transport, we assumgests that the dispersive flux of the heat at the field scale in-
statistical isotropy of the Ik field. In addition, the random creases linearly with the heterogeneity of the medium. Fig-
InK perturbation field under consideration is characterizedure 1a and b depicts the behavior of normalized longitudinal

2 p
exp )W (5))(26)
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Fig. 2. Dimensionless longitudinal macroscopic dispersivity as a
0T L P Cugh P=1 function of P whereZ = K1/(owCwq).
E:
0015 .
B 6 Conclusions
a7 A

Within the framework of stochastic theory, this paper has pre-
sented the analysis of field-scale heat transport in heteroge-
neous aquifers. Making use of the spectral representation and
a perturbation approximation leads to closed-form solutions
for the field-scale dispersive heat flux in the principal co-
ordinate directions in terms of macrodispersion coefficients.
gt/ A These solutions, expressed in terms of the statistical proper-
ties of log hydraulic conductivity and the effective thermal
Fig. 1. Normalized(a) longitudinal andb) transverse macrodisper- - conductivity, are allowed to investigate the influence of the
sivities as a function of normalized travel time. effective thermal conductivity and correlation scale of log
hydraulic conductivity on the field-scale heat advection. The
Cc_]eneral expression for the variance of the temperature field is

and transverse macrodispersivities, respectively, as a fun . L .
. ) ; pers P Y . _also developed to characterize the reliability to be anticipated
tion of normalized time. Similar to the case of nonreactive.

solute transport, the longitudinal macrodispersivity for heat" applying the mean heat transport model.

. . L . . Our results indicate that the heterogeneity of the medium
transport increases monotonically with time to its asymptotic o . )

) . L ; has a positive influence on the dispersive flux of the heat at
value, while the transverse macrodispersivity ?rst increase

t0 its maximum and then decreases to its asymptotic valuefne field scale. Larger effective thermal conductivity results

These figures also indicate that macrodispersivities are int reduced the fl_eld-scale dlsper5|ye heat flux and produc_es

. . less heat advection. The correlation scale of log hydraulic
versely dependent upon the effective thermal Conductlvnyconductivit is important in enhancing the variability of the
KT at fixed travel time. The larger the effective thermal con- y b g Y

. . ) . specific discharge and in turn the field-scale heat advection.
ductivity, the higher the capacity of the medium to attenuate, " o I ;
) X . It is hoped that our findings will stimulate further research in
the advection of heat front in the longitudinal and transverse

directions. this area.
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heat advection increases with the correlation scale Kf In
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