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Abstract. Owing to the analogy between the solute and heat
transport processes, it can be expected that the rate of growth
of the spatial second moments of the heat flux in a heteroge-
neous aquifer over relatively large space scales is greater than
that predicted by applying the classical heat transport model.
The motivation of stochastic analysis of heat transport at the
field scale is therefore to quantify the enhanced growth of the
field-scale second moments caused by the spatially varying
specific discharge field. Within the framework of stochastic
theory, an effective advection-dispersion equation contain-
ing effective parameters (namely, the macrodispersion coef-
ficients) is developed to model the mean temperature field.
The rate of growth of the field-scale spatial second moments
of the mean temperature field in the principal coordinate di-
rections is described by the macrodispersion coefficient. The
variance of the temperature field is also developed to char-
acterize the reliability to be anticipated in applying the mean
heat transport model. It is found that the heterogeneity of
the medium and the correlation length of the log hydraulic
conductivity are important in enhancing the field-scale heat
advection, while the effective thermal conductivity plays the
role in reducing the field-scale heat advection.

1 Introduction

The temperature of the land surface is influenced by seasonal
heating and cooling. Water seepage near the land atmosphere
interface results in a heat transport that modifies the temper-
ature profile and, in turn, affects most reactions occurring in
the aquifers. In addition, the information on the heat trans-

fer provides better-constrained groundwater flow and perme-
ability estimates. It is therefore of great importance in char-
acterizing and predicting the heat transport processes in the
aquifers. Comprehensive overviews of selected work on heat
are given by Anderson (2005) and Saar (2010).

The spatially varied velocity field creates the degree of
spreading of a solute plume in a heterogeneous aquifer that
is greater than what would occur by local dispersion alone
in the uniform velocity field. Motivated by that, a stochastic
methodology is devoted to relating this enhanced spreading
to the characteristics of the velocity field and thus to the sta-
tistical properties of hydraulic conductivity field based on the
representation of natural heterogeneity as a spatial random
variable characterized by a limited number of statistical pa-
rameters. This leads to a solution in terms of an effective dis-
persion coefficient (macrodispersion coefficient) for describ-
ing the rate of growth of the second moments of the ensemble
averaged concentration field. The stochastic methodology
has successfully provided a basis framework for quantifying
and understanding the effect of the natural heterogeneity on
the field-scale spreading process.

The stochastic methodology is generally built around ei-
ther the Eulerian or the Lagrangian framework for analyzing
the solute transport in heterogeneous media. More details on
the construction of the Eulerian and Lagrangian approaches
and their application to the analysis of the solute transport in
heterogeneous media are provided in Rubin (2003). The Eu-
lerian approach develops an effective advection-dispersion
equation (mean transport equation) containing effective pa-
rameters and seeks a quantitative measure of the uncertainty
(the variance) anticipated in applying the effective transport
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equation. The effective parameter, which is the outcome of
the correlation between the velocity field and concentration
fluctuations, is introduced to quantify the enhanced spread-
ing of the solute plume (the field-scale dispersion). Theo-
retical studies on the field-scale nonreactive solute transport
process have been carried out within the Eulerian framework
(e.g. Gelhar and Axness, 1983; Neuman et al., 1987; Gra-
ham and McLaughlin, 1989; Vomvoris and Gelhar, 1990;
Rehfeldt and Gelhar, 1992; Neuman, 1993; Kabala and Spos-
ito, 1994; Kappor and Gelhar, 1994; Rajaram and Gelhar,
1995; Kapoor and Kitanidis, 1997; Guadagnini and Neuman,
1999a; Neuweiler et al., 2001; Cirpka and Attinger, 2003,
Attinger et al., 2004; Morales-Casique et al., 2006; Chang
and Yeh, 2007; Schwede et al., 2008).

Similar to Taylor’s (1921) classics analysis of turbulent
diffusion, the Lagrangian analysis of field-scale solute trans-
port is focused on the statistical properties of displacements
of solute particles through a random velocity field. It offers
an alternative and allows the development of preasymptotic
coefficients, travel time statistics of solute particles and so-
lute fluxes. Note that the effective dispersion coefficient is
determined by half the rate of change of the particle displace-
ment variance (or the spatial second moment of a concentra-
tion distribution). This approach has been applied to analyze
the nonreactive solute transport in heterogeneous media in
a number of papers (e.g. Dagan, 1984, 1987; Neuman and
Zhang, 1990; Dagan et al., 1992; Rubin and Seong, 1994;
Indelman and Rubin, 1996; Cvetkovic et al., 1996; Dagan
and Fiori, 1997; Andrǐcevíc, 1998; Fiori and Dagan, 1999;
Destoumi et al., 2001; Riva et al., 2001; Fiorotto and Caroni,
2002; Guadagnini et al., 2003; Caroni and Fiorotto, 2005;
Bellin and Tonina, 2007).

Due to the analogy between the contaminant and heat
transports, it is expected that the heterogeneity of natural
formations also plays an important role in influencing the
heat advection at field scale. In other words, predictions
from the classical heat transport equation in the uniform
velocity field subject to a great deal of uncertainty. How-
ever, the application of stochastic methods, used to predict
the field-scale solute transport, to the analysis of heat trans-
port by groundwater in heterogeneous aquifers has so far not
been attempted, and this is the task undertaken here. This
task is performed using a spectral approach (e.g. Gelhar and
Axness, 1983) based on Fourier-Stieltjes representations for
the perturbed quantities under the assumption of local sta-
tistical homogeneity. We seek a mean heat transport con-
taining macrodispersion coefficients for describing the field-
scale heat advection and the variance for quantifying the
uncertainty anticipated in applying the mean heat transport
equation. It is hoped that our findings will provide a ba-
sic framework for understanding and quantifying field-scale
heat transport processes and be useful in stimulating further
research in this area.

2 Mathematical formulation of the problem

Owing to the analogy between the solute and heat trans-
port processes, the governing equations for transport in the
aquifers can be represented by similar advection-dispersion
equations. Following de Marsily (1986), a temperature-
based advection-dispersion equation at the local scale is of
the form

∂

∂Xi

[(KT+ρCDm)
∂T

∂Xj

−ρwCwqi T ] = ρC
∂T

∂t

i,j = 1,2,3. (1)

In Eq. (1), T is the temperature,KT is the effective ther-
mal conductivity,Dm is mechanical dispersion coefficient
for heat transport,ρw andCw are density and specific heat of
fluid, respectively,qi is the specific discharge in the principal
coordinate directions, andρ andC are density and specific
heat of rock-fluid matrix, respectively.

The effect of thermal dispersion is very small and negli-
gible when compared with that of conduction (Bear, 1972;
Hopmans et al., 2002). This simplifies Eq. (1) to

µ
∂2T

∂Xi ∂Xj

−ν
∂

∂Xi

(qi T ) =
∂T

∂t
(2)

whereµ =KT/ρC andν = (ρwCw)/(ρC). Note thatKT, ρw,
Cw, ρ, andC in Eq. (2) are treated as constants since their
variabilities are usually smaller than the variability in hy-
draulic conductivity (Anderson, 2005).

It has been concluded from the analytical model of cold
water front movement in a geothermal reservoir by Stopa
and Wojnarowski (2006) that the velocity of the thermal front
found from the weak model solution differs from the velocity
obtained under the assumption of constant thermal properties
by about 1 to 14 %, depending on the temperatures used for
evaluation of the thermal properties. In addition, Lo Russo
and Taddia (2010) mentioned that the density and viscosity
variations with temperature can be considered negligible for
systems in an unconfined aquifer with temperature changes
below 10–15 K. On the other hand, the heat transport simula-
tion should take account of the physical temperature depen-
dencies of the thermal parameters for systems with higher
temperature changes (�10 K).

In the analysis that follows, the log-hydraulic conductiv-
ity field (lnK) is assumed second-order stationary and it is
characterized by its variance and correlation scale. Note
that through the Darcy’s law the specific discharge and
the hydraulic conductivity are directly related. Thus, spa-
tially correlated random heterogeneity in the lnK field is
the cause of the stochastic specific discharge, which in turn
results in spatially correlated random perturbations in the
temperature field.

The random space fields of specific discharge and temper-
ature are typically represented, respectively, by the sum of a
mean and a small zero-mean perturbation as:

qi = qi +q ′
i (3)
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T = T +T ′. (4)

The equation for mean temperature is found by substituting
perturbation expansions in specific discharge and tempera-
ture, Eqs. (3) and (4), into Eq. (2), assuming incompressibil-
ity of the fluid and taking the ensemble average,

µ
∂2T

∂Xi ∂Xj

−νq
∂T

∂X1
−ν

∂

∂Xi

〈
q ′

i T
′
〉
=

∂T

∂t
(5)

while the equation for the temperature perturbation is ob-
tained by subtracting the resulting mean equation from
Eq. (2)

µ
∂2T ′

∂Xi ∂Xj

−νq
∂T ′

∂X1
−νq ′

i

∂T

∂Xi

=
∂T ′

∂t
(6)

where the mean fluid flow is parallel to theX1 coordinate
axis so thatq1 = q andq2 = q3 = 0, and< > stands for the
ensemble average.

The last term on the left-hand side of Eq. (5) is referred
to as macrodispersive flux in the work of Gelhar and Ax-
ness (1983) for the case of the solute transport in a satu-
rated heterogeneous aquifer. It reflects the additional (and
indeed dominant) heat advection produced as the result of
the correlation between specific discharge and temperature
fluctuations. This term may be fully characterized by solv-
ing Eq. (6), which describes the temperature perturbation due
to the variation of specific discharge. The evaluation of the
macrodispersive flux is the focus of this paper. As will be
seen below, this term introduces the dispersive effect of the
variability in the specific discharge on the temperature field.

In this study, the flow domain under consideration is as-
sumed to be of a sufficiently large extent. Note that to
fully characterize the variation in flow field, one must know
the spatial behavior of the mean hydraulic head. The spec-
tral representation theorem of random head perturbations in
Fourier space will not be feasible if the mean hydraulic head
has the pattern of spatial variability. In other words, the criti-
cal condition needed in the solution of the flow perturbations
is that the mean hydraulic gradient must be approximately
constant (or the mean fluid flow is uniform). The uniform
mean flow condition corresponds to the case where the size
of the flow domain becomes infinite. In practice, the validity
of the uniform mean flow assumption (or infinite-domain as-
sumption) requires that the correlation length of the random
fields is much smaller than the domain size (e.g. Ababou et
al., 1988; Dagan, 1989).

3 Spectral solutions of macrdispersion coefficients

In analyzing changes in the temperature field in time, it is
convenient to introduce a moving coordinate system,ξ1 =

X1 – νqt, ξ2 = X2, andξ3 = X3, that follows the mean ad-

vective movement of the heat distribution. As such, Eqs. (5)
and (6) take the following forms

µ
∂2T̄

∂ ξi ∂ ξj

−ν
∂

∂ ξi

〈
q ′

i T
′
〉
=

∂T̄

∂t
(7)

µ
∂2T ′

∂ ξi ∂ ξj

−νq ′
i

∂T

∂ξi

=
∂T ′

∂t
. (8)

Equation (8) can be solved using the spectral representation
(e.g. Gelhar and Axness, 1983; Rehfeldt and Gelhar, 1992)
based on Fourier-Stieltjes representation for the perturbed
quantities in wave number domain. By using this approach,
the random perturbations in Eq. (8) are represented by the
following 3-D wave number integrals:

T ′
=

∞∫
−∞

exp{i[R1(ξ1+νqt)+R2ξ2+R3ξ3]}dZT (R,t) (9)

q ′
i =

∞∫
−∞

exp{i[R1(ξ1+νqt)+R2ξ2+R3ξ3]}dZqi
(R) (10)

where R = (R1, R2, R3) is the wave number vector, and
dZT (R, t) and dZqi(R) are the complex Fourier-Stieltjes in-
crements. The transient-state spectral relation follows from
Eq. (8) through the application of Eqs. (9) and (10) and the
use of uniqueness of the representations:

∂

∂t
dZT (R,t)+(iνR1+εR

2)qdZT (R,t)= −ν
∂T̄

∂ ξi

dZqi
(R) (11)

whereR2
= R2

1 +R2
2 +R2

3 andε = µ/q.
Note that Eq. (11) has been obtained under the assump-

tion of negligible perturbation-boundary effects. Naff and
Vecchia (1986) studied the impervious boundary effects on
the head covariances for a steady three-dimensional flow in
a formation of infinite horizontal extent, bounded above and
below by impervious horizontal boundaries. They demon-
strated that the boundary effect is largely limited to a zone
near the medium boundary. Similar results were also ob-
tained by Rubin and Dagan (1988, 1989), who analyzed the
effects of constant head and impervious boundary conditions
on the head variation in semi-infinite aquifers. In addition,
it is of interest to note how the type of boundary conditions
affects the head covariance function in heterogeneous media.
Bonilla and Cushman (2000) found that for a flow of constant
mean head gradient, the effects of the Dirichlet boundary
conditions (prescribed head) on the head covariance function
is restricted to a boundary layer from three to four integral
scales. However, under the same circumstances, effects of
the Neumann boundary conditions (prescribed flux) may per-
sist as far as three to eight integral scales from the boundary.
Therefore, it may conclude that the assumption of negligi-
ble boundary effects is applicable, at least far enough from
the boundary.
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The general solution to Eq. (11) can be found as

dZT (R,t)= −νexp[−(iνR1+εR
2)qt]dZqi

(R)∫
exp[(iνR1+εR

2)qt]
∂T̄

∂ ξi

dt+dZ0 (12)

in which dZ0 is a constant of integration that depends on the
initial temperature distribution. In general, the mean temper-
ature field is a smooth function of space and time and the
perturbations fluctuate on a much smaller scale than that as-
sociated with variations in the mean. The mean temperature
gradient in Eq. (12) may therefore be approximated as a con-
stant and it may be taken outside of the time integration. It is
expected that the assumption of a constant mean temperature
gradient will not be valid near the heat source where a large
temperature gradient and sharp curvature occur.

It is assumed that the initial temperature distribution in the
aquifer is known. Thus, there is no temperature perturbation
at t = 0. That is, with dZT = 0 at t = 0. The solution of
Eq. (12) with dZT = 0 att = 0 is

dZT (R,t) = νGi

1−exp[−(iνR1+εR
2)qt]

εR2+iνR1

dZqi
(R)

q
(13)

whereGi =−∂T̄/∂ξ i . The random temperature perturbation
results from Eqs. (9) and (13) as follows:

T ′
= νGi

∞∫
−∞

exp{i[R1(ξ1+νqt)+R2ξ2+R3ξ3]}

1−exp[−(iνR1+εR
2)qt]

εR2+iνR1

dZqi
(R)

q
. (14)

The macrodispersive heat flux term in Eq. (7) (or Eq. 5) is
then found by multiplying Eq. (14) by the complex conjugate
of dZqi and taking the ensemble average〈
T ′q ′

i

〉
= qβij Gj (15)

where the macrodispersivity for heat transportβij is given
by the integral

βij = ν

∞∫
−∞

1−exp[−(iνR1+εR
2)qt]

εR2+iνR1

Sqj qi
(R)

q2
dR. (16)

The spectrum of the specific discharge in Eq. (16) can be
determined from the Fourier-Stieltjes representation for the
first-order perturbed form of the Darcy equation and the
spectral solution for the head perturbations (e.g. Gelhar and
Axness, 1983):

Sqj qi
(R) = q2(δi1−

R1Ri

R2
)(δj1−

R1Rj

R2
)Sff (R) (17)

where Sff (R) is the spectrum of lnK perturbations. The
macrodispersivities can thus be written from Eq. (16) with
the spectrum of the specific discharge given by Eq. (17) as

βii = νε

∞∫
−∞

R
2

ε2R4+ν2R
2
1

(δi1−
R1Ri

R2 )2
Sff (R)dR

+ν

∞∫
−∞

exp(−εR
2qt)

νR1sin(νR1qt)−εR
2cos(νR1qt)

ε2R4+ν2R
2
1

(δi1−
R1Ri

R2 )2
Sff (R)dR. (18)

Generally, the expression for the effective parameter (Eq.18)
is a second-order tensor, however, the off-diagonal compo-
nents are zero due to an odd term inR2 or R3 involved in the
integration over the wave number domain.

By substituting Eqs. (15) and (18) into Eq. (7), we then
obtain the following mean heat transport equation:

(µ+βij q)
∂2T̄

∂ ξi ∂ ξj

=
∂T̄

∂t
(19)

where (a) fori = j , βii is defined by Eq. (18), and (b) for
i 6= j , βij = 0. It is clear from Eq. (18) that the macrodis-
persivities, while being dependent on travel time (or mean
travel distance), do not depend on the type of coordinates
used. Thus, these parameters are identical in the mean heat
transport equation that uses the fixed coordinates (X1, X2,
X3), and we can rewrite Eq. (19) as

(µ+βij q)
∂2T̄

∂Xi ∂Xj

−q
∂T̄

∂X1
=

∂T̄

∂t
. (20)

4 Spectral solution of temperature variance

We have made use of the spectral representation and a per-
turbation approximation to develop an effective advection-
dispersion Eq. (20) containing effective parameters (namely,
the macrodispersion coefficients, Eq.18) in quantifying the
field-scale heat transport processes. The macrodispersion co-
efficients in Eqs. (20) or (18) are used to determine the field-
scale rate of growth of the spatial second moments of the heat
flux in the principal coordinate directions in a heterogeneous
aquifer. Since the enhanced growth of the second moments
is caused by the spatially varying specific discharge field,
the outcome of the spatial variation in hydraulic conductiv-
ity field, it has been related to the statistical properties of the
hydraulic conductivity. This implies large uncertainty to be
anticipated in applying the mean transport Eq. (20). There-
fore, there is a need to provide a basis for judging reliability
of the field-scale mean transport model.

The theoretical result (Eq.14) may also be used to de-
termine the variance of temperature fluctuations which can
be developed within the spectral framework as follows
(e.g. Vomvoris and Gelhar, 1990)

σ 2
T =

〈
T ′T ′∗

〉
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= ν2
G

2
i

∞∫
−∞

1−2cos(νR1qt)exp(−εR
2qt)+exp(−2εR

2qt)

ε2R4+ν2R
2
1

(δi1−
R1Ri

R2 )2
Sff (R)dR (21)

where the asterisk denotes the operation of complex conjuga-
tion. The temperature variance is a measure of the variation
of the temperature about the mean temperature. Thus, it turns
out that Eq. (21) will give us a quantitative measure of the
reliability to be anticipated in applying the mean transport
model (Eq.20).

In general, the stochastic analysis leading to the analytical
results (Eqs.18and21) relies on some kind of small parame-
ter expansions and the assumption of stationarity for the dis-
tribution of flow properties, where the small parameter cor-
responds to the variability of the underlying random log hy-
draulic conductivity field. The validity of those assumptions
requires that the standard deviation of the random log hy-
draulic conductivity fluctuations,σf , should be smaller than
unity (Gutjahr and Gelhar, 1981). However, from a Monte
Carlo simulation study, Zhang and Winter (1999) found it
to be accurate for the head moment solutions for the value
of variance of log hydraulic conductivity (σ 2

f ) as high as
4.38. A similar finding was reported in Guadagnini and Neu-
man (1999b) even for strongly heterogeneous media withσ 2

f
up to 4 from the comparison of the moments of hydraulic
head with the results of numerical Monte Carlo simulations.

Based on the application of the Continuous Time Random
Walk transport formalism to the fracture networks, Geiger
and Emmanuel (2010) concluded that in systems with a
low degree of heterogeneity, heat transfer is Fickian-like (or
Fourier-like). The implication is clear that in the flow fields
with a low degree of heterogeneity an effective advection-
dispersion equation containing the macrodispersion coeffi-
cients can be used to model the heat transport at the field
scale, as adopted in the paper. However, in systems with
a high degree of spatial variability in the flow fields, such
as often occurs in fractured systems, the thermal transport
is expected to become anomalous like (non-Fickian heat
transport) (Geiger and Emmanuel, 2010).

5 Closed-form expressions for macrdispersion
coefficients

The field-scale dispersivity in Eq. (18) and temperature vari-
ance in Eq. (21) are determined once the form of the spec-
trum of log hydraulic conductivity perturbations is specified.
The evaluation of Eqs. (18) and (21) cannot be performed an-
alytically for the general case of statistically anisotropic lnK

distribution. However, to take the advantage of closed-form
expressions, which provide a clear insight of the impact of
heterogeneity on the behavior of heat transport, we assume
statistical isotropy of the lnK field. In addition, the random
lnK perturbation field under consideration is characterized

by a Gaussian covariance function (Dagan, 1994; Zhang and
Di Federico, 1998)

Rff (`S) = σ 2
f exp(−

π`
2
S

4λ2
) (22)

which has the following spectral density function

Sff (R) =
1

8
λ3

π3/2
σ 2

f exp(−
λ2

4
R

2) (23)

where`S is the separation distance or lag,σ 2
f is the variance

of lnK andλ is the correlation scale of lnK.
The closed-form expressions for macrodispersivities in the

principal coordinate directions can be developed by substitut-
ing Eq. (23) into Eq. (18) and integrating over the wavenum-
ber domain:

β11= σ 2
f λ

{
−

16

P 3
−

8

3

1

P
+

16
√

π

P 4
exp(

P
2

4
)

[9(3)−9(
P

2
)]+[(

4

P 2
+

1

2
)η2

−
3

4
]
3

η4
exp(−η2)

+
√

π [(
16

P 4
+

4

P 2
+

1

2
)η4

−(
2

P 2
+

1

2
)η2

+
8

3
]

38(η)

η5
−

√
π

4

P

τ
(
3

4

1
η4

−
1
η2

+1)8(η)

−
1

4

P

τ
(−

3

2

1
η3

+
1

η
)exp(−η2)} (24)

β22= β33= σ 2
f λ

{
8

P 3
+

1

3

1

P
+

√
π(−

8

P 4
+

1

P 2
)exp(

P
2

4
)

[9(3)−9(
P

2
)]+(−2

η2

P 2
+

3

8
)
3

η4
exp(−η2)

+
√

π [−(
8

P 4
+

1

P 2
)η4

+(
2

P 2
+

1

8
)η2

−
3

16
]
38(η)

η5

+

√
π

16

P

τ
(
3

2

1
η4

−
1
η2

)8(η)−
3

16

P

τ

1
η3

exp(−η2) (25)

where8(-) and9(-) denote the error function and its com-
plementary error function, respectively,P =ρwCwqλ/KT,
τ = νqt/λ , η = [Pτ 2/(P + 4τ )]0.5, 3 = [P (P+4τ )]0.5/2 –η.

In the limit of τ → ∞, the longitudinal and transverse
macrodispersivities converge, respectively, to

β11(τ → ∞) = σ 2
f λ

{

√
π

2
+

16
√

π

P 4
−

16

P 3
+

4
√

π

P 2
−

8

3

1

P
−

16
√

π

P 4
exp(

P
2

4
)9(

P

2
)} (26)

β22= β33(τ → ∞) = σ 2
f λ

{−
8
√

π

P 4
+

8

P 3
−

√
π

P 2
+

1

3

1

P
−

√
π(−

8

P 4
+

1

P 2
)exp(

P
2

4
)9(

P

2
)]. (27)

The linear relationship between the longitudinal and trans-
verse macrodispersivities andσ 2

f in Eqs. (24) and (25) sug-
gests that the dispersive flux of the heat at the field scale in-
creases linearly with the heterogeneity of the medium. Fig-
ure 1a and b depicts the behavior of normalized longitudinal

www.hydrol-earth-syst-sci.net/16/641/2012/ Hydrol. Earth Syst. Sci., 16, 641–648, 2012



646 C.-M. Chang and H.-D. Yeh: Stochastic analysis of field-scale heat advection
Figures 499 

500  

 501 

502  

 503 

504 

505 

506 

507 

508 
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Fig. 1. Normalized(a) longitudinal and(b) transverse macrodisper-
sivities as a function of normalized travel time.

and transverse macrodispersivities, respectively, as a func-
tion of normalized time. Similar to the case of nonreactive
solute transport, the longitudinal macrodispersivity for heat
transport increases monotonically with time to its asymptotic
value, while the transverse macrodispersivity ?rst increases
to its maximum and then decreases to its asymptotic value.
These figures also indicate that macrodispersivities are in-
versely dependent upon the effective thermal conductivity
KT at fixed travel time. The larger the effective thermal con-
ductivity, the higher the capacity of the medium to attenuate
the advection of heat front in the longitudinal and transverse
directions.

The result of Eq. (26) is presented graphically in terms
of a function ofP (or the correlation scale of lnK, λ) in
Fig. 2. It is clear that the correlation scale of lnK has a pos-
itive effect on the asymptotic longitudinal macrodispersivity
(or the field-scale heat advection). An increase inλ produces
more persistence of the specific discharge fluctuation and in
turn leads to larger deviations of specific discharge from the
mean specific discharge. It is clear from Eq. (14) that the
fluctuations in the temperature field are positively correlated
to those in the specific discharge. Therefore, the field-scale
heat advection increases with the correlation scale of lnK.
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Fig. 2. Dimensionless longitudinal macroscopic dispersivity as a function of  where  = 

KT /(wCwq). 
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Fig. 2. Dimensionless longitudinal macroscopic dispersivity as a
function ofP where4 = KT/(ρwCwq).

6 Conclusions

Within the framework of stochastic theory, this paper has pre-
sented the analysis of field-scale heat transport in heteroge-
neous aquifers. Making use of the spectral representation and
a perturbation approximation leads to closed-form solutions
for the field-scale dispersive heat flux in the principal co-
ordinate directions in terms of macrodispersion coefficients.
These solutions, expressed in terms of the statistical proper-
ties of log hydraulic conductivity and the effective thermal
conductivity, are allowed to investigate the influence of the
effective thermal conductivity and correlation scale of log
hydraulic conductivity on the field-scale heat advection. The
general expression for the variance of the temperature field is
also developed to characterize the reliability to be anticipated
in applying the mean heat transport model.

Our results indicate that the heterogeneity of the medium
has a positive influence on the dispersive flux of the heat at
the field scale. Larger effective thermal conductivity results
in reduced the field-scale dispersive heat flux and produces
less heat advection. The correlation scale of log hydraulic
conductivity is important in enhancing the variability of the
specific discharge and in turn the field-scale heat advection.
It is hoped that our findings will stimulate further research in
this area.
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