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Abstract. The development of methods for estimating the is called Advanced Robust Parameter Estimation (AROPE).
parameters of hydrologic models considering uncertaintiedtHowever, in this approach the estimation of the good param-
has been of high interest in hydrologic research over the lasgters is still based on an ineffective Monte Carlo approach.
years. In particular methods which understand the estimaTherefore we developed another approach called ROPE with
tion of hydrologic model parameters as a geometric searchParticle Swarm Optimisation (ROPE-PSO) that substitutes
of a set of robust performing parameter vectors by applicathe Monte Carlo approach with a more effective and efficient
tion of the concept of data depth found growing research in-approach based on Particle Swarm Optimisation. Two case
terest. Eardossy and Singh (2008) presented a first Robusstudies demonstrate the improvements of the developed algo-
Parameter Estimation Method (ROPE) and applied it for therithms when compared with the first ROPE approach and two
calibration of a conceptual rainfall-runoff model with daily other classical optimisation approaches calibrating a process
time step. The basic idea of this algorithm is to identify oriented hydrologic model with hourly time step. The focus

a set of model parameter vectors with high model perfor-of both case studies is on modelling flood events in a small
mance called good parameters and subsequently generatecatchment characterised by extreme process dynamics. The
set of parameter vectors with high data depth with respectalibration problem was repeated with higher dimensionality
to the first set. Both steps are repeated iteratively until aconsidering the uncertainty in the soil hydraulic parameters
stopping criterion is met. The results estimated in this caseand another conceptual parameter of the soil module. We dis-
study show the high potential of the principle of data depth tocuss the estimated results and propose further possibilities in
be used for the estimation of hydrologic model parametersorder to apply ROPE as a well-founded parameter estimation
In this paper we present some further developments that adand uncertainty analysis tool.

dress the most important shortcomings of the original ROPE
approach. We developed a stratified depth based sampling
approach that improves the sampling from non-elliptic andl
multi-modal distributions. It provides a higher efficiency for
the sampling of deep points in parameter spaces with highefiydrologic models are designed to approximate the general
dimensionality. Another modification addresses the problemyhysical mechanism which govern the rainfall-runoff pro-
of a too strong shrinking of the estimated set of robust pa-cess within a specific catchment. This is why these models
rameter vectors that might lead to overfitting for model cal- haye found favour with many hydrologists and engineers in
ibration with a small amount of calibration data. This con- practice and research. Most of the hydrologic models are
tradicts the principle of robustness. Therefore, we sugges§riven by a vector of model parameters. These parameters
to split the available calibration data into two sets and usegre supposed to be estimated in order to approximate the gen-
one set to control the overfitting. All modifications were grg| system behaviour which governs the rainfall-runoff pro-
implemented into a further developed ROPE approach thagess within a specific catchment. In most cases the model
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604 T. Krau3e and J. Cullmann: Particle Swarm Optimisation and Robust Parameter Estimation

parameters cannot be related to measurements in a direoewly developed MCMC method DREAM with the GLUE
way, but are supposed to be estimated through indirect methframework suggest that “formal and informal Bayesian ap-
ods such as calibration. In the process of calibration, theproaches have more common ground than the hydrologic lit-
modeller adjusts the values of the model parameters such thatrature and ongoing debate might suggest” (¢rggt et al,
the model is able to closely match the behaviour of the real009h. Hence, the use of both Bayesian and non-Bayesian
system it is intended to represent. Hence the success of approaches might be reasonable regarding the requirements
model application is strongly dependent on a good estimatiorof a specific application.
of the model parameters. Within this paper we will focus on a further development

In the past models were calibrated by hand. This is veryof the ROPE approach proposed Bardossy and Singh
labour-intensive and requires an experienced modeller with(2008. ROPE is a non-Bayesian approach that addresses the
profound hydrologic knowledge. Thus recently automatic parameter and uncertainty estimation problem using the con-
methods for model calibration have evolved significantly cept of data depth. Data depth is a statistical method used for
(e.g.Duan et al. 1992 Gupta et al.1998 and have found multivariate data analysis which assigns a numeric value to
a common acceptance and broad use in the hydrologic coma point with respect to a set of points based on its centrality.
munity (e.gHogue et al.200Q Cullmann 2006 Kunstmann  This provides the possibility of a center-outward orderings of
et al, 2006 Marx, 2007 Grundmann2010Q. The param- points in Euclidean space of any dimension and opens up a
eter estimation of hydrologic models is affected by numer-new non-parametric multivariate statistical analysis method
ous uncertainties.Beven and Binley(1992 described the in which no distributional assumptions are needed. Recent
probability to estimate the same model performance for dif-studies of computational geometry and multivariate statis-
ferent estimated parameter vectors as the equifinality probtics (e.g.Liu et al, 2006 Bremner et a].2008 showed that
lem. Recently developed approaches address this problemembers that are in a geometrical central position with re-
by estimating the uncertainty of the model parameter vectorspect to a given point set or distribution, are more robust in
considering uncertainties in the observations and the modebrder to represent the whole set. These points can be esti-
structure. The uncertainty is often expressed by providingmated applying the concept of data depth, which has recently
a set of optimal parameter vectors. One well establishedittracted a lot of research interest in multivariate statistics
approach for a parameter estimation including uncertaintyand robust modelling (e.@ramey 2003 Liu et al, 2008.
are the Markov Chain Monte Carlo (MCMC) methods (e.g. This concept was basically adapted by an evolutionary pa-
Vrugt et al, 2003h 2009a Kuczera et al.200§. These rameter estimation method presented@ydossy and Singh
methods require the setup of a complete Bayesian uncertaint{2008. They showed that it can be very useful for the es-
framework. One major advantage of such a framework is thedimation of robust hydrologic model parameters. This re-
possibility to describe all relevant sources of uncertainty in asult was also found by preliminary studies with WaSiM in
closed form and consequently the estimation of mathematthe Rietholzbach catchmer®dmpe 2009. In a simplified
ically well founded results. However, also for those kind form the ROPE approach consists of two steps. In a first step
of approaches a modeller has to make assumptions of ak set of model parameters with good model performance is
sources of uncertainty to be considered. Often these assumjdentified. According toBardossy and Singf2008 these
tions are quite arbitrary because the information for a wellparameter vectors are from now on called the good parame-
founded decision is not available. Subsequently these deciter vectors. Thereafter a set of parameter vectors with high
sions have a non negligible influence on the results. Thus, thelata depth with respect to the set of good parameter vectors
uncertainty estimates might get a rather subjective touch - & generated under the assumption that these parameter vec-
fact that contradicts the original intention of the application tors are more likely to represent a robust solution than the
of a Bayesian framework. Furthermore in many real-world complete set of good parameter vectors. Thus, they called
applications modellers call for purpose-specific objectives inthis approach robust parameter estimation method. Within
calibration, this is difficult to integrate in the likelihood func- this scope the concept of robustness is related to the term
tion Bayesian uncertainty framework. For example the for-of transferability. Thus, we call parameter vectors robust
mulation and implementation of a likelihood function con- which not just lead to good model performance over a se-
sidering both peak flow difference and the Nash-Suttcliffe lected calibration time period but are transferable: they per-
efficiency is not straightforward. That is why also alternative form well for other time periods and might also perform well
approaches, e.g. the previously mentioned generalized likelion other catchments. Such parameter vectors are more likely
hood uncertainty estimation (GLUE) or the robust parameterto lead to a hydrologically reasonable representation of the
estimation approach (ROPBrdossy and Singl2008 at- corresponding processes and are less sensitive. This means
tracted scientific interest in the hydrologic community. The that small changes of the parameters should not lead to very
development of these methods was accompanied by a strorgjfferent results on time periods.
debate in the hydrologic community regarding the require- The first results of the method provided Bardossy and
ments of an appropriate framework for uncertainty estima-Singh(2008 are very promising. Therefore we reviewed the
tion. The results of recently published studies comparing thepresented methods and addressed some shortcomings of the
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first approach by the implementation of more efficient and ef-
fective methods to sample deep parameter vectors and the in
troduction of well founded stopping criteria. All these ideas
were assembled into a further developed version of the ROPE
method, called Advanced Robust Parameter Estimation (A-
ROPE). Nonetheless the A-ROPE method is still based upon
the Monte Carlo method and consequently suffers from its
main disadvantage, i.e. that it is slow and requires a large
number of model runs to sample the feasible space with
reasonable accuracy. The required number of samples in- /|
creases exponentially with the number of considered param-/
eters. That is in particular a problem for computationally {". = "
intensive process-oriented models where the number of sam

ples is strictly limited by the available computational capac-

ity. However, the effectiveness of the depth based sampling

of parameter vectors is highly dependent on the quality of

the identified set of good parameter vectors. To overcomerig. 1. 2-dimensional point set shaded according to assigned depth.
the shortcomings of the Monte Carlo method for the esti-A darker point represents higher depth. The lines indicate convex
mation of the good parameter vectors, we suggest to substihulls enclosing the 25 %, 50 %, 75 % and 100 % deepest points. The
tute it by an approved evolutionary search strategy for high-used depth function was halfspace depth.

dimensional parameter spaces. We are convinced that Parti-

cle Swarm Optimisation (PSO) is a suitable candidate for this L . .
task. PSO is a search strategy that bases on the concept %f Parameter estimation using data depth metrics
swarm intell?gence ip or.der to 'es.timgte the global optimu'mz_1 Data depth

for a given single-objective optimisation problem. We modi-

fied the search strategy used in the normal PSO algorithm impe algorithm applies the technique of data depth, a new ap-
order to identify a set of good parameter vectors with giveNproach used for multivariate data analysis that provides the
tolerance. The modification adapts ideas coming from muilti- ossibility to analyse, quantify and visualise data sets. Most
objective PSO algorithms that also estimate a set of OptimaEroposed metrics used in data depth function are inherently
parameters instead of just one global optimum. Afterwardsyeometric, with a numeric value assigned to each data point
the second step of the ROPE procedure, the depth based pgyat represents its centrality within the given data set. Data
rameter sampling can be applied. The new approach mergegepth is a statistical method used for multivariate data analy-
the strength of PSO and depth based sampling. Itis entitleds \hich assigns a numeric value to a point with respect to a
ROPE with Particle Swarm Optimisation (ROPE-PSO). set of points based on its centralifjukey (1975 introduced

The remainder of this paper is organised as follows: Afterhis concept first in order to estimate the center of a multi-
the introduction, we will introduce the concept of data depthyariate dataset. The possibilities of the concept of data depth
and subsequently the ROPE method providedBydossy  sillustrated in Fig1 using a small 2-dimensional synthetical
and Singh(2008. This is followed by a presentation of (atg set.
the newly developed approaches A-ROPE and ROPE-PSO A formal definition of an arbitrary depth functioB for

and the underlying concepts. The presentation of the algothe 4-dimensional spac®y is given as follows:
rithms is completed by a brief introduction of an approach

provided byGrundmann(2010 that allows considering the D: R x (R x R) - R (1)

uncertainty _in soil hydraulic paramet(_ers for the_ calibration e following concepts apply to the data depth methodology
of hydrologic models. The general idea of this approach,ng gistinguish it from other statistical methods.
is important to understand the following case studies. We

studied both algorithms calibrating a process-oriented hydro- — Non-parametric methodology: scientific measurements
logic model with a high temporal resolution (hourly instead can be viewed as sample points drawn from some un-
of daily time-step) in a catchment where the dominant pro- known probability distribution, where the analysis of
cesses have high dynamics. The focus of the model calibra-  the measurements involves computation of quantitative
tion is the modeling of flood events. The estimated resultsare  characteristics of the probability distribution (estima-
discussed comparing them to estimates obtained by the first  tors), based on the data set. If the underlying distri-
ROPE algorithm presented Wardossy and Singk2008 bution is known (for example normal distribution, log-
and other automatic parameter estimation approaches. normal distribution, Cauchy, etc.), the characteristics of
the data can be computed using methods from classi-
cal statistics. However, in most real life experiments
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the underlying distribution is not known. The concept 2.2 The ROPE algorithm
of data depth requires no assumption about the under-

lying distribution and data is analysed according to the
relative position of the data points.

Algorithm 1 ROPE

1: Selectd model parameters, to be considered for calibration and

identify prior boundarie$x |, xyp] for all selected parameters

n random parameter vectors forming the Xgtare generated

in the d-dimensional rectangle bounded by the defined bound-

aries.

repeat
The hydrologic model is run for each parameter vectoy,in
and the corresponding model performances are calculated
The subsei;' of the best performing parameters is identi-
fied. This might be for example the best 10 %6f
m random parameter vectors forming the ggtare gener-
ated, such thatd € Ym: D(0|X};) > L whereL > 1

Center-outward ordering of points: the data depth con-
cept allows the creation of a multivariate analog to ».
the univariate statistical analysis tool cdnk statis-

tics. Rank statistics is based on the ordering of one-
dimensional observations, where the order reflects ex- 3:
tremeness, contiguity, variability or the effect of exter- 4:
nal contamination. In higher dimensions the order of
multivariate data is not well defined, and several or- >
dering methods were suggested. The data depth con-
cept provides a method of extending order statistics to 6:
any dimension by ordering the points according to their

7:  The setY,, is relabeled ast, and steps 3-6 are repeated
depth values. until " P P
_ 8: until the performance corresponding X3, andY,, does not

Application to multivariate (high-dimensional) data
sets: the concept of data depth is defined with respect
to points in Euclidean space in any dimension, thus
enabling the derivation of multivariate distributional
characteristics of a data set.

differ more than what one would expect from the observation
errors
9: return Y,

_ o ) Bardossy and SingtR008 applied the principle of data

Robustness: in the statistical analysis of data sets, obgepth in order to generate parameter vectors that are deep
servations that deviate from the main part of the dataith respect to a previously identified set of good parameter
(outliers) can have an undesirable influence on the analyeciors. The algorithm is called ROPE. All details are pro-
ysis of the data. Many depth functions are robust againstiged in the pseudocode listing in Algorithin Note that the
the possib!lity of several outliers that may occur in the poiation was marginally changed froBérdossy and Singh
data and yield nevertheless reasonable resullts. (2008 in order to have a consistent syntax with other publi-
cations in the field of data depth. In principle the general pro-
ceeding of this algorithm, can be divided into three important
parts. After handling and pre-processing the input, a set of
good parameter vectors is identified (line 4 and 5). After-
wards a set of deep parameter vectors (w.r.t. the good ones)
is generated (line 6). These two operations are evolution-
ary repeated and after each iteration a stopping criterion is
checked (line 8). The iterated Monte Carlo sampling is used
in order to circumvent the shortcoming of a normal Monte
Carlo simulation in order to improve the sampling quality
with a limited number of samples and simultaneously apply-
whereu ranges over all vectors iRy with ||u|| = 1. ing the principle of data depth. The general approach of the

Very often the halfspace depth is normalised by division presented ROPE algorithm is well-foundeBardossy and

Tukey (1975 introduced this concept first with the def-
inition of the halfspace depth. According tbonoho
and Gasko(1992 the halfspace depth of an arbitrary
point # e RY with respect to ad-dimensional data set
Z=1{z; =(zi1,-*-,zia); i =1,---,n} is defined as the small-
est number of data points in any closed halfspace with bound
ary throughp. This is also called the Tukey or location depth,
and it can be written as

hdepth9|Z) := ||min Hiu'zi>u'0)

ul|=1

()

with the number of points in the s&t
hdepth6 | Z)

HZ) 3
The first publication ofTukey (1975 was then followed by

hdepthi (0|2) =

Singh(2008 showed that ROPE might be very useful for the
estimation of robust hydrologic model parameters.

2.3 A-ROPE

many generalizations and other definitions of this conceptgardossy and Singf2008 demonstrated the performance
e.g. convex-hull peeling depth, simplicial depth, regressionof the ROPE algorithm calibrating the conceptual hydro-
depth and L1 depth. A good overview of a broad range of|ogic model HBV for a catchment in south-west Germany
different definitions of the concept of data depth and its ap-on a da||y time step. The estimated results support the con-
plication for multivariate data analysis is givenHugg etal.  cept of depth based sampling. Parameter vectors with high
(2006 andLiu et al.(2006. A comprehensive study of dif-  data depth corresponded to a better transferability to other
ferent data depth measures in robust parameter estimation {fme periods. We could reproduce these results calibrat-
provided inKrau3e and Cullman(2011h. ing the process-oriented model WaSiM on a daily time step
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focussing on modeling of the water-balan&®hpe 2009. 1

However, in further studies focussing on flood events we

experienced problems in particular with the application of

the latter two parts of the ROPE algorithm, the generation 0.75

of deep parameter vectors and the exact definition of the

stopping criterion. 0.5
In the following we will give a brief overview of the

problems and explain how the new A-ROPE algorithm ad-

dresses these shortcomings. One of the major premises of) 25

the application of the concept of data depth is the assump-

tion that the set of good parameter vectors is geometrically 0

well-structured. In concrete terms we rely on the assumption

that the depth contours will be indicative of the shape of the 1'23456789101112131415

cloud of good parameter vectors, while generating deep pa- n

rameters. However, most existing depth measures are unable

to cope with non-elliptic, non-convex or multimodal data F.ig. 2.Volume ratio of the u.nit sphere to the unit cuberinimen-

sets Hugg et al, 2006. This can affect the robustness of SiOns as a continuous functionef

the estimated deep parameter vectors because the parameter

space of most hydrologic models is dominated by distinct re-ultimodal data setsHugg et al, 200. A clustering of

gions of attraction and non-convex multidimensional ndgesSuch data sets and a subsequent sampling from single clus-

(e.g.Duan et al, 1992 Sorooshian et 311993 Grundmann . - . :
2010). Another issue is the efficiency of the depth based Sam_ters provides the possibility to filter points that are enclosed

lina. A verv simple sampling strateav of candidates is aby the convex hull of the data set, but are actually located
piing. A very Simple sampiing egy ! 'S @outside. The new strategy, entitled GenDeep, is provided in
uniform sampling within the bounding box for the consid-

: . in Algorithra. Further ils of thi roach
ered set of good parameter vectors. This strategy gets me];_)seudocode gorithrd. Further details of this approac

fective and computationally intensive for higher dimensions and a number of case studies are providekiauRe and
That is due to the fact that the volume ratio of the bound-Cu"mann(ZOllb' Just for a small insight we present the

ing box to the set of parameter vectors itself decreases wit result of a case study discussed in that paper where we per-
9 P I?ormed the depth-based sampling with respect to a previously

rsing Q|men5|on. This issue is |IIustra_ted by Fiywhere .sampled data set following a banana-shaped and multi-modal
the ratio between the volume of the unit sphere and the umgistribution (cf. Fig.3)

cube is plotted. In addition, the computational complexity
of most depth functions increases tremendously for higher -
dimensions. An approximation of the halfspace depth useda‘lgor'thm 2 GlenDeep s . 5
in this paper can for instance be computed in polynomial 1 Perform a cluster analysis on the set of good parameter vectors
. 3 . . X}, e.g. with the expectation maximization (EM) algorithm ac-
time: O (md® +mdn). In this equationd denotes the num- ; S .

) . . . . cording toDempster et al(1977), which identifies the most
ber of dimensions; is the number of points in the reference

. : ; ; . probable number of clustefsin X;; and assigns all members
point set andn is the number of iterations that determine the of the setX* to one (in case of ambiguity also to more than

accuracy of the results. one) of the clusters;, wherei € {1,...,k}.
To overcome these problems we propose to substitute the

uniform sampling of deep parameter vectors with an alterna- 2: Y <@

tive stratified sampling strategy that samples candidate points3: forall ¢; € {c1....,c} do

that are more likely to have a high data depth. In order to do 4:  m; <—M(@>

this, a Gaussian mixture model is fit to the underlying set of 5:  m; random parameter vectors forming the Bgf are gener-
good parameter vectors. This is done using an expectation ated, such thato € Yy, : {D(0]c;) > L whereL >0
maximization (EM) algorithm that assigns posterior proba- 6:  Ym < Y UYm,

bilities to each component density with respect to each point 7: €nd for

in the set. The number of components can either be set dug® "€tUM Ym

to prior knowledge or estimated by the EM algorithm. Af-

terwards the candidate points can be sampled from a Gaus- A third issue of the ROPE algorithm is the loosely defined
sian mixture model that is an approximation of the set of thestopping criterion: “until the performance corresponding to
reference point set. Consequently good parameter vectorX, andY,, does not differ more than what one would ex-
are more likely to be deep with respect to the reference setpect from the observation errord8érdossy and Singl2008

In addition this offers advantages to depth-based samplingy. 1280). The problem is that there are countless possibili-
from non-elliptic or multimodal distributions. Most exist- ties in the prior estimation of the tolerance in the model per-
ing depth measures are unable to cope with non-convex oformance due to uncertainty in the observation data and it
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Fig. 3. Two-dimensional data sets (crosses) and corresponding deep points estimated by uniform sampling (blue dots) and stratified sampling
with GenDeep (red dots) using the halfspace depth. The datasets were sampled from a non-elliptic banana-shaped distribution (left) and &
Gaussian mixture model (right).

can hardly be determined exactly. A broad definition of this
tolerance can lead to sets with inferior model performance,
whereas a tighter tolerance can easily result in overfitting.
This is a severe shortcoming because it undermines the actual 0.4
goals of the algorithm. Overfitting in the context of robust

parameter estimation means that the model performance on

—e— on calibration data on test data

the calibration data still can be increased by further shrink- _ 0.2
ing the estimated set of the deep model parameter vectors,2
whereas the model performance on (reasonably similar) con-2 0.0

overfitting starting here

trol data decreases by further shrinking. Figdrdustrates

this fact with the results of the calibration of WaSiM in the
Rietholzbach catchment w.r.t. to flood events. The FloodSkill 02
criterion was used as objective and the flood events no. 4 and
no. 14 were used as calibration and control data, respectively.

)
Q
[©]

p—

L

It is evident that the model performance on the control data 04

considerably decreases from iteration 3 whereas the model 0 1 5 3 4 5 6
performance on the calibration data could be increased by

further iterations. Iteration

To address the problem of overfitting, we implemented o o _
two changes to the algorithm. First, we slightly changedF'g_- 4. _Overflttlr_lg for the callbratlon_ of ’the model WgSlM
the evolutionary shrinking of the generated deep parame‘-Nh'le calibrated with the method accordln_gBa_rdossy and Singh
ter vectors. To avoid the unintended exclusion of possibly(zooa; flood event no. 4 was used for calibration and event no. 14
robust parameter vectors close to the boundary of the ini- 2 used as control set.

tial set of good model parameters, we suggest merging the

set of generated deep parameter vectors and the identifiedretko et al, 1999. The splitting of the calibration data can
good parameter vectors as initial set for the next iteration,be done according to an approach based on Se|f-0rganising
as follows: maps (SOM) Klay et al, 2010 or any other possible strat-
egy. In the case of limited calibration data as for the calibra-
tion of hydrological models for flood forecasting we suggest

Second, we suggest the splitting of the data used for moded subjective balanced_spllt, e.g. such that the both calibration
and control set contain small and large flood events and all

calibration in a calibration and a control set. The calibration .
. S types of characteristics.
set is used for the actual model calibration, whereas the con- . . .
All these improvements were integrated into a new ap-

trol setis just used to supervise the control process in order to S
avoid overfitting. In each iteration of the algorithm the model proach, we call Advanced Robust Parameter Estimation (A

performance is estimated both on the calibration and contro OPE). A flowchart of this advanced Monte Carlo-Depth

set. The moment the performance does not improve anymoreaSed sampling approach is provided in g,
for the control set, the algorithm is stopped. This kind of

approach is a state of the art method in the supervised train-

ing of artificial neural networks in order to avoid overfitting

Xy < Y UX) (4)
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N
Input:  p=dimension, n=population size, m=final size, tol y=uncertainty boundary
constraints=CHR,,, priors={p; (0),...,p,(0)}, maxIter=max. no. of iterations

if possible, split the used observation data (ps,Yobs) into a calibration and
control set

p
Sample n parameter vectors in the feasible space, ©, accord-
ing to the given priors and constraints:

Xy sample(©,{p1(0),...,p,(0)},CHR,);

l Identify good

(The model my, is run for the calibration and control set; the corresponding model |
performances are calculated by a purpose-specific objective function f:
Vo eXn do: 'g<—mh(0,n,mobs); C(e) <_f(:gayobs); endfor

- J J
(A subset X, C X, of the good performing parameter vectors in X, is identiﬁed,\
such that X*,, comprises all parameter vectors in X, better than a given percentile b.

b is dynamically adapted from 0.1 at the beginning up to 0.9:

L Xn* H{OE—XTL: C(g) ZQ’)

J

l Generate robust
G t t of
enerate a se OW GenDeep
deep parameters Y, strate
w.rt. X =
7 N
(1) no. of iterations >
maxlter?

(2) The spread of
the model per-
formances gets
smaller than tol ?

Stopping
[ Xn =X, UYn; } criterion (3) Improvement on
No satisfied? calibration data
gets smaller than a
1 Yes tolerance?
(4) Improvement

Output: Y, =set of robust parameter vectors on control data
(=calibration performance decreases w.r.t
l L previous iteration? ]

Fig. 5. Flowchart of the Advanced Robust Parameter Estimation by Monte Carlo Simulation (A-ROPE) algorithm.
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610 T. Kraul3e and J. Cullmann:

Algorithm 3 Standard PSO algorithm
1: initialise global best positiog € U[xp,xubl
and global besg < oo

2: for all particlesi do

3. initialise position and local best;,x; € U[x|p,xyp]

4:  and velocityv; =0

5: end for

6: while stop criteria not medlo

7:  forall particlesi do

8: update local best positiafy as best position found so far
from the particle with index

9: update global best positio$ and corresponding fitness
value g as best position found so far from the whole
swarm

10:  end for

11: forall particlesi do

12: update velocity using equation
Vi <0V +P1Ro(X; —x;) + P2 R1(& —x;)

13: update position using equation
X; < X;+v;

14:  end for

15: end while

3 Merging the strengths of swarm intelligence and
depth based parameter sampling

3.1 Particle Swarm Optimisation

An approved search and optimisation strategy for high-
sation which was first presented Bgnnedy and Eberhart
(1995. Itis a population based search algorithm which tries

to solve an optimisation problem with arbitrary dimension-
ality by having a population (swarm) of candidate solutions,

dimensional parameter spaces is the Particle Swarm Optimit

Particle Swarm Optimisation and Robust Parameter Estimation

Table 1. Default values of the parameters that control the PSQ-GA
algorithm.

Symbol  Description Default value

WY Breeding ratio ®

1) Particle inertia weight @ decreasing to.@
1 Cognitive attraction ®

¢2 Social attraction r5

computationally intensive process-oriented models. Thus in
real-world application the maximum number of model runs
has to be limited to a computationally feasible maximum.
We try to overcome this problem by substituting the Monte
Carlo based estimation of a set of good model parameter vec-
tors with a PSO based approach. Although PSO and other
evolutionary optimisation approaches were not designed as
uncertainty analysis methods they can be adapted in order to
be used for a uncertainty quantification with a given toler-
ance Mohamed et a).2010. One possibility to do this is

to integrate a Markov Chain element and use them within the
scope of a Bayesian frameworugt et al.spent a lot of ef-

fort on the development of effective and efficient algorithms
following this approach, e.g. SCEM-UA/fugt et al, 2003h

and DREAM {/rugt et al, 20093. Another approach is to
store all so far found parameter vectors within a given uncer-
ainty limit to an archive and direct the search accordingly.
One well-known example is the use of PSO algorithms for
the approximation of a Pareto optimal set of parameter vec-
tors as the solution of a multi-objective calibration problem,
e.g. as provided beill et al. (2006.

here called particles. The performance of each particle is
computed and afterwards these particles are moved arourf?*
in the search-space. The movement is guided by the besllf
found positions of each of the particles and the currently =

found global best solution. Often those optimisation prob-
lems are formulated as the problem of finding the minimum
of a function. Algorithm3 gives a simple version of a PSO
algorithm for the minimisation of a functiogf with upper
and lower boundaries|, andxp respectively. A good in-
troduction into the ideas of swarm intelligence and further
reading is given irkKennedy et al(2001).

3.2 Robust parameter estimation applying Particle
Swarm Optimisation: ROPE-PSO

The so far presented depth based parameter estimation alg
rithms rely on the Monte Carlo method in order to identify a

Igorithm 4 VPAC operator

pick random numbergq, ¢ ~ U (0, 1)

update positions using equations

X1 < szz —¢1v1

xp <« X122 oy,

3: reset the particles memopy < x1andps < x>
4: update the velocitiea!; < viandvy < vy

We will focus on the latter kind of approach. Thus, we
developed an algorithm that thoroughly but economically ex-
plores the space and stores all solutions within a given uncer-
tainty tolerance to an archive. The basis of our algorithm is a
modified version of the PSO presented®sttles and Soule
(2005 which is actually a hybrid between a genetic algo-
athm (GA) and PSO. Thus, we call this algorithm PSO-GA
It can be controlled by a parametgrthat is called breeding

set of good parameter vectors with a given tolerance. Henceatio. This parameter determines the proportion of the popu-
the proposed method suffers from the shortcomings of thdation that is not moved according to PSO but is transformed
Monte Carlo method, namely a slow convergence and thereusing the GA. Thus, values for the breeding ratio parameter
fore a large number of samples are needed to estimate a stabiange from[0— 1]. Settles and Soulé005 propose a de-
solution. This is a major disadvantage for the calibration offault value of 05, with the expectation that the best results
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Algorithm 5 PSO-GA,
Require: f = objective functionn = population sizey: = final size, tof = uncertainty boundary,
prior boundarie$6y, Oubl, f =minimum depth (corresponds to a desired depth contour)

/I INIT
. initialise global best positiog € U[0)p,Oubl
: initialise archive of good solutions witki™* <« ¢
: for all particless; € X, do
initialise positiong;, local bes®; and velocityv; € U[, Oyp]
: end for

/I 'TERATE
: while stop criteria not medio

6
7. /I UPDATE FITNESS AND BEST
8: forall particless; € Xn do

abswN R

9: evaluate model performang&®;)
10: update the local best as the best position found so far from the particle with indixcase thatf (9;)better than f(g +tolf)
11:  end for

12: update global best positighas best position found so far from the whole swarm
13:  add all current positions with a performance better tfig#) +tol ¢ to the archivex*
14:  remove all solutions with a performance worse thfag) +tol s from the archivex*

I GA
15:  nga < ¥ -n; discardngp particles from the population while preserving the 10% best (elitism)
16: init empty genetic offsprindga < ¢
17:  for i=1to "3 do

18: select a paif61,60>} from the population by tournament selection
19: apply the VPAC operator to generate new offsprif@., 0;} < VPAC({61,6,}); consider that this notation includes an update of
the velocities and personal best according to the VPAC operator
20: XGA<—XGAU{9/,9é}
21: endfor
/I PSO

22:  assign to each particle a random mem@gee X* as a “personal” global best
23:  forall particlesd; € Xn do

24: update velocity using equatian < wv; +¢1 Ro(6; — 6;) + ¢poR1(Z; —6))
25: update position using equatiép< 6; + v;
26: end for

/I MERGE

27:  merge the population with genetic offspring
Xn < XaUXGA
28: end while

29: return the setX™ as an approximation of the distribution of good parameter vectors within the uncertainty bounds defingd by tol

would be with an even mix of both GA and PSO. However, tion. Algorithm 4 shows how the new child position vectors
other values for the breeding ratio may provide better resultand velocities are calculated using VPAC. The child parti-
depending on the characteristics of the considered calibratiocles retain their parent’s velocity vector. The previous best
problem. For further details we refer ®Bettles and Soule vector is set to the new position vector, restarting the child’s
(2005 and referred literature. The evolution of the parti- memory. Towards the end of a typical PSO run, the popu-
cles by the GA is done using the following approach: from lation tends to be highly concentrated in a small portion of
the pool of possible breeding particles candidates are nomthe search space, effectively reducing the search space. With
inated by tournament selection and recombined. In ordethe addition of the VPAC crossover operator, a portion of the
to do this they introduced the Velocity Propelled Averaged population is always pushed away from the group, increasing
Crossover (VPAC) operator. The goal is to create two childthe diversity of the population and the effective search space.
particles whose position is between the parent’s position, buThe general movement of the PSO part is a standard imple-
accelerated away from the parent’s current direction (negmentation that can be controlled by the following parame-
ative velocity) in order to increase diversity in the popula- ters: the particle inertia weiglt determines the velocity of
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the proper motion of the particles, the cognitive attractioncan also prevent overfitting just by adding another objective
¢1 that controls the degree of movement towards the locafunction that assesses the performance on a control set. In
optimum and the social attractiafp doing the same with  this case the position of a particle is considered to be better
respect to the global optimum of the swarm. We set the algoin case that it shows an improvement on both the calibration
rithm’s parameters according to literature recommendationg@nd the control data. This basic idea can be used to advance
(cf. Tablel). For further details and studies regarding the this method into a full multi-objective calibration procedure.
setting of the algorithm’s parameters referRerez and Be- A pseudocode listing of the complete proposed PSQ-GA
hdinan(2007), Settles(2005 that also provide references to algorithm is provided in Algorithn®.

additional literature and materials. The used stopping crite- The set of good parameter vectors estimated by PSQ-GA
rion is either a fixed number of iteration steps that has to beshould not only comprise the global optimum but cover the
set according to the given problem or a maximum numbercomplete region within the given uncertainty bounds. That is
of members in the set of good parameter vectors. Anothean issue in so far that PSO, i.e. the underlying algorithm of
option might be a check that assesses the stability of the estROPE-PSO, was unlike Monte Carlo not designed to be used
mated set. We suggest to carry out some test runs with differas an uncertainty analysis method. Therefore we studied the
ent limits and check the stability of the estimated parametersets of good parameter vectors estimated by PSQ-&#l
vectors. For further details regarding this issue we refer tochecked whether they follow the same distribution as those

Gill et al. (2006 andCabrera and Coell(2010. estimated by iterative Monte Carlo used in the ROPE and A-
ROPE algorithm. We demonstrate this issue using the Rosen-
Algorithm 6 ROPE-PSO brock function as defined in Eg5) as an example. Itis a

1: Execute the PSO based PSO-Gprocedure to estimate a set  Smooth single extremum test function that represents the ex-
of good model parameter vectax$ with a model performance  istence of large flat regions on the error surface. This is quite

within a given tolerance tol typical for hydrologic modelsQuan et al. 1992. We set a
2: Apply the GenDeep algorithm to sample a set of parameter vec{subjective) tolerance value of 0.2 and applied the iterative
. torsY with high data depth w.r.tx* Monte Carlo method from in both ROPE and A-ROPE, and
sreturn Y

the PSO-GA algorithm in order to estimate a set of good
parameter vectors within the given tolerance.

An important difference is done considering the local and Jo1
glopal optimum of the swarm. Contrary tq normal PSO al- fx)= Z[(l—xiz)2+100(xi+1—xi2)2]
gorithms the PSO-GAalgorithm does not just account for =
one global optimum, but for a set of good parameter vectors, .. minf (x*) = 0 andx’ = 1 (5)
Good parameter vectors are all points evaluated so far that !
correspond to a model performance better than the global'he estimated scatter plots are provided in BigThe dark
optimum found so far plus a given uncertainty tolerance tol grey regions represent the true distribution of parameter vec-
which must be set with regards to the specific problem. Fortors with a function value less than the given tolerance. It
environmental model calibration tokhould be setaccording was estimated by a Monte Carlo simulation using Latin hy-
to the accuracy of the used observations and other sourcggercube sampling with a number of 1000.000 samples in the
of uncertainty to be considered. To ensure a sufficient butarget region. Considering the fact that the global optimum of
nonetheless economical cover of the feasible space not jushe Rosenbrock function is zero at the positip; = {1,1}
towards the global optimum the PSO-GAlgorithm follows  this region matches exactly the targeted distribution. It is ev-
an idea that is used in multi-objective PSO algorithms: allident that the parameters provided by PSO;Gdver the
so far found good parameter vectors are stored in an archiveomplete region of good parameter vectors, suggesting that
X*. An important difference between a normal PSO algo-the modified PSO approach provides a correct estimation of
rithm considers the movement at the end of each iterationthe target distribution and hence does not collapse to a small
Instead of moving the whole swarm towards the so far foundregion comprising the estimated global minimum.
global best position, the algorithm assigns to each particle The developed PSO-GAapproach can be easily used to
one random member of the archige € X*. We call this  substitute the Monte Carlo based approach in a robust pa-
position “personal” global best (cf. Algorithrs, line 14). rameter estimation algorithm. The new approach called Ro-
Another issue affects the update of the local best positjon  bust Parameter Estimation using PSO (ROPE-PSO) applies
Unlike in a normal PSO, it will only be changed in case that PSO-GA, in order to obtain a set of good parameter vec-
the old local optimum corresponds to a model performancetors X* with a given uncertainty. Afterwards a set of deep
worse than the global optimum plus the uncertainty bound.parameter vectors with respect X is sampled using the
This prevents a too small shrinkage of the swarm and ensuregreviously introduced by the GenDeep sampling strategy. A
that the algorithm not just searches into the direction of thepseudocode listing of the developed ROPE-PSO approach is
so far found global optimum but samples from the whole re-given in Algorithm 6. The proposed approach methodol-
gion within the given tolerance. Consider that this algorithm ogy can be extended to be used for an uncertainty analysis
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Fig. 6. A scatterplot of thg61,6) samples of good parameter vectors generated using the iterative Monte Carlo approach in the original
ROPE(a), the modified version A-ROP) and the PSO based PSO-Algorithm(c). The dark grey region represent the true distribution
of the good parameter vectors considering a tolerance of 0.2.

within a proper statistical context, by relating the likelihood 1. Identify the lower and upper boundaries of the grain-
of the parameter vectors to their depth. However further re- size fractions for each pre-dominant soil type in the
search is required to complete this task (&grdossy and catchment, according to the given soil information and
Singh 2008. The algorithm was implemented in a robust classification system.

parameter estimation framework which comprises other pub- ) _ _
lished ROPE approaches. The implementation was done in 2- For each considered soil type, draw a set of possi-

the MATLAB programming language. It is open source and Pl samples of the grain-size fractions by uniformed
available from the author. sampling (uniform distribution) over the identified

range.
4  Accounting for uncertain soil information on 3. Apply a suitable pedotransfer function to each sample
hydrologic parameter estimation in order to estimate a set of soil hydraulic parameters

describing their prior distribution.

The soil hydraulic parameters determine the water retention
and conductivity curves and thus govern the process of water ™
movement in the unsaturated zone. For this reason they also
influence the generation of direct runoff and interflow in a
hydrologic model. In many studies the soil hydraulic param-
eters are considered as physically based parameters and are

used as flxed values. Often thosg values areIS|mp|¥ estlmate.ghe estimated distribution of the scaling parameters is a well-
by applying a pedotransfer function to physical soil PrOPer¢hnded a priori estimate of the uncertainty in the soil hy-

tles:[ e.tg. trljebdllsl:rhbuth? othhg g:;eur;-hsae flra}c;lons, t.hum,usdraulic parameters and can be used to study the influence of
conten anl u.f. defn5| Y- hypr):ca y'd € soifin F’glma lon 1S fthe uncertain soil information on the simulation results of hy-
given in a classitied form which provides a possible range o drologic models. Furthermore this information can be used

the physical soil properties referring to the used classificationaS a well-founded prior distribution for a subsequent model

system. This information is often visualised in a soil 1eXIUre colibration considering the soil hydraulic parameters as cali-

f[rlangle. .However, in most cases the pedotrgnsfer funptlon '$yration parameters. This approach contradicts the physically
just applied FO the mean valug'for thF." gon3|der¢d S.O'I tyF.)ebased philosophy of the Richards equation model. On the
The uncertam_ty due to classified soil mformgnon IS typl- other hand, this opens the possibility to adapt this model to
cally not considered. However, neglecting this uncertamtythe processes in the catchment. We are convinced that this is

can influence the accuracy and uncertainty of the esumanog reasonable approach because the soil hydraulic parameters

of gtherdconcegtgfl mi)d(;e_l pc)jatrﬁmeterg. d ted can hardly be determined with the necessary precision on a
rundmann(2010 studied this problem and presented a catchment scale just be using soil information maps. Dur-

new method to account for those uncertainties. _ Th(_e_ P%%ng calibration the scaling parametgris adjusted to suit-
posed approach has a high degree of general applicability bey, s \5yes. The model however cannot directly be driven

cause it is independent of the used soil classification systen)itn 8 but with a vector of soil hydraulic parameters. They
and the used pedotransfer function. Their approach can b8an be derived frong using a mapping or rescaling proce-

summarized by the following algorithmic steps: dure as follows. First, the mapping assigns a soil hydraulic
parameter vector from the previously generated set to every

The estimated parameters can be scaled to a scaling pa-
rameterB using a similar media concept in order to re-
duce their dimensionality. A suitable approach is pre-
sented inWarrick et al.(1977. The scaling parameter

B can now be considered for calibration.
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Precipitation

l

Infiltration
(according to —
Green & Ampt) Direct runoff
l Evapotranspiration
Fig. 8. A 3-D-view of the catchment with the potential rivers flow-
Interflow paths. This illustration is taken from the official Rietholzbach web-
site (ttp://www.iac.ethz.ch/en/research/riet/overview.html
ks, ©,, O, Interflow
o, Ny K. . 5 Case studies
—
Richards equation Interflow 5.1 Calibrating of the hydrologic model WaSiM
describes soil - dr. k. focussing on flood events
water movement Interflow 7

In two real world case studies the developed approach is
Capillary rise tested on the calibration of the hydrologic model WaSiM-
ETH/6.4 (in the further referred to as WaSiM). WaSiM is a
spatial distributed process-oriented rainfall-runoff model and
Groundwater _Basalow was developed b@chulla(1997 at the ETH Zurich. WaSiM
has been used successfully for modeling the rainfall-runoff
processes in several studies in catchments located within
Fig. 7. Scheme of the WaSiM soil module with location of impact mid mountain ranges (e @rundmann2010 and especially
of soil hydraulic and conceptual model parameters (bold). also in the pre-alpine Rietholzbach catchménirtz et al.
(1999 2003ha); KrauRe and Cullmani2011h. Further-
. . o .. more WaSiM-ETH has been used for extrapolation of ex-
estimated scaling parameter and stores this information intQ.ome flood events bgullmann(2006. For this study we
a lookup table. For a new value that is not stored in the ;s the version with the approach according to Richards for
database the rescaling selects the vectors of soil hydraulig,e simulation of the unsaturated zone. An overview of the
parameters from the previously generated database with thg,qel structure is given in Fig. For further details of the
closest corresponding scaling val@undmanr{2010 used model, we refer t&chulla and Jasp€2007) and the official
the estimated prior distribution and estimated the posterioriyopsite of the modeittp:/Aww.wasim.ch
distribution of the soil hydraulic parameters in the context the model was calibrated focussing on flood events in the
of a Bayesian framework. The parameter estimation framey 4| prealpine Rietholzbach catchmentl@kn?). As a
work used in this paper is no closed Bayesian uncertaintyy,p, hasin of the Thur catchment it is located in the north-east
framework. The priori estimates serve however as a well-¢ gyitzerland. A 3-D-view of the catchment area is given in
founded starting population of the evolutionary approach esgjq g This basin has been observed as a research catchment
timating the good model parameter vectors. The mapping,y ihe ETH Zurich since 1975. Continuous hourly measure-
used in the rescaling ensures that the soil hydraulic parama o hts have taken place since 1981. For the case studies pre-
e.ters ca_nnot Ieave_the variation .intervals given by the priorganted in this paper we used a time series consisting 27 yr of
distributions. Consider once again that we want to adapt theneteqrological (temperature, precipitation, global radiation,
soil hydraulic parameters to the catchment characteristics,, 4 \ind speed) and discharge measurements. Due to its
Therefore we do not use a probability-possibility transfor- o, q1erm observation as a research catchment and its limited
mation and propagate the prior uncertainty described by thgjze he Rietholzbach catchment has a long record of hourly
pos§|b|llty d|§tr|but|on through the model. For further infor- 4¢3 sets and the perturbing impact of data heterogeneity is
mation on this approach we refer &undmanr(2010 and  y|atively small in this catchment. The data we based our
Warrick et al.(1977). study upon is a time series consisting 27 yr of meteorologi-
cal and discharge measurements. Out of this time series we
selected a set of 24 flood events with a peak flow of at least
1 mmirt. All events are in the time from May until Oc-
tober to avoid the problem of modeling snow accumulation

L e e i i e
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Table 2. Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value.

Event Discharge Rainfall Pre Soil Moisture
No. Time (CET) Hydrograph  Peak [mnTA]  Volume [mm] Type \Volume [mm] ®qg__q5m [vol %]
1 06/07/1994 24:00 L 7.61 33.2 convective 75.0 65
2 23/06/1986 22:00 L 7.52 20.2 convective 39.7 75
3 06/07/1994 21:00 L 6.23 33.2 convective 75.0 65
4 08/08/2007 20:00 M 5.69 51.2 convective 64.1 90
5 07/06/2007 23:00 5.48 16.0 convective 36.1 79
6 06/08/198219:00 N 5.35 21.2 convective 28.3 87
7 25/07/1989 20:00 _ /N 4.64 11.7 convective 13.7 80
8 30/05/199522:00 A 4.01 16.9 convective 394 84
9 15/08/198220:00 A~ 4.01 18.3 convective 43.6 80
10 06/08/200013:00 3.61 28.9 stratiform 48.8 83
11 17/09/2006 09:00 3.13 36.1 convective 101.8 71
12 24/09/2002 10:00 __~~_ _ 3.04 120.1 stratiform 125.2 87
13 09/09/2001 01:00 __ ~_ 2.96 18.4 convective 49.4 78
14 09/06/1994 07:00 ~_ 2.52 27.9 stratiform 40.7 86
15 11/05/199124:00 __~_ _ 2.50 44.6 stratiform 75.3 80
16 01/07/1987 16:00 _~— 2.37 12.1 convective 30.7 78
17 02/08/200522:00 __ s~ 2.03 26.0 convective 54.2 74
18 25/05/199011:00 _ 2.02 14.3 stratiform 54.9 75
19 11/06/199507:00 _~— 1.98 28.8 stratiform 36.8 88
20 31/05/200009:00 ___~_ 1.76 19.4 stratiform 57.7 78
21 09/09/200521:00 _~ 1.62 6.9 convective 37.1 67
22 28/09/199501:.00 _— 1.47 17.3 stratiform 38.2 81
23 13/05/2002 01:.00 __-— 1.02 4.6 convective 21.4 81
24 14/09/199301:00 _—— 1.02 10.9 stratiform 26.8 84

Table 3. Overview of the three used conceptual model parameters considered for calibration; the reference paramefgj,weeator
estimated in order to use WaSiM for water-balance simulations in the Rietholzbach catchment; additionally we provided the conceptual soil
parametekrec that plays a role in another case study

parameter unit referencéy,) upper and lower boundary description

kq [hy 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 001 40 storage coefficient of interflow
dr [ 2.1 001 80 drainage density
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and melti.ng pro.cesses..- An overview Qf all selected 24 _ﬂ_OOdTabIe 4. Objective functions used in this study, whereandy; (6)
events with their specific characteristics and pre-conditions,e the observed and simulated discharge (by the parameter vector

is given in Table2. A significant number of studies have gy at time-stepi respectively and: is the number of observation
been conducted in this basin. For further information we points

refer toGurtz et al.(1999; Zappa(2002 and the website

http://www.iac.ethz.ch/research/rietholzbach Criterion  Formula
Table3 gives the model parameters considered for calibra- < 5

tion. Those are the storage coefficients of direct runoff and NS 1— 7 2i=1(xi—yi(0))

interflow, k; andk;, and the drainage densiti which is a s (xi—%)?

scaling parameter of interflow generation. In previous stud-

ies Cullmann 2006 Pompe 2009 Grundmann2010 these PD |Xmax—Ymax(6)|

three parameters have been proven to be sensitive with re- Xmax

spect to modelling flood events. Besides the specified upper

and lower boundaries of the model parameters, the additional

constraink; > 1.05k,; was introduced in order to account for

the basic consideration that the direct runoff from a cell has a

shorter travel time to the catchment outlet than the generateti® estimates of the considered ROPE algorithms for a sub-
interflow in the unsaturated zone. The reference parametetet of the discharge ensemble members and subsequently just
vectoréyp estimated for water-balance simulations was useduSed the ensemble mean for calibration.
to estimate reasonable pre-event model states. A successful calibration requires the definition of a per-
Within our case studies we assume that the influence oformance criterion that quantifies the matching with the in-
observation errors in temperature measurements is negligiblnded objective. Focussing on flood events a suitable per-
for the simulation of flood events whereas the uncertainty offormance criterion should quantify both the model’s ability
the measured precipitation can be expressed by an enserif Provide a good estimate of the peak flow values and to
ble. To keep the problem still computationally feasible we provide a behaviour that is at least in fundamentals similar
do not consider the influence on the estimated parameter sef@ the catchment behaviour. A good measure to asses the

due to the uncertainties in the observed precipitation and justhe first point s the relative peak flow deviation (rPD) which

focus on the influence on the observation errors of the meathe simulated with respect to the observed peak flow value.
sured discharge. Following the assumptionBafdossy and ~ The general quality of the fit of the model and the catch-
chargegops(r) of 5%. Thus, the real but unknown discharge terion, e.g. the efficiency criterion according kash and

FloodSkill NS—rPD

¢(t) can be written as: Sutcliffe (1970 (NS). It has been widely used to quantify
the global performance of hydrologic models. We combined
q (1) = qobs(r) (1 +€(1)) (6)  poth the Nash efficiency and the relative peak flow devia-

with €(¢) being a random error. This random error is due tion into an aggregated performance criterion, we call Flood-
to uncertainties of the rating curve, non-uniqueness of theSKill. The higher the FloodSkill the better is the model's
stage discharge relationship, changes of the cross sectigapility to represent the catchment's behaviour focussing on
etc. @ardossy and Singl200§. As many other authors (e.g. flood events. A perfect fit corresponds to a FloodSkill of
Kuczera et a].2006 Bardossy and Singl2008 we assume ~ ©One. A least acceptable model with Nash value & &nd
that this error obeys a normal distribution with a standard de-2 relative peak flow deviation of.® correspond to a Flood-
viation of the measurement accuracy?(0,0.05). For each Skill of zerot. A formal definition of the FloodSkill and the
observed discharge time series we used this model and prd¥réviously introduced criteria is given in Table

duced an ensemble with 100 members. This ensemble can )

be used in order to assess the uncertainty due to observationl-1 Case study I: Comparison of ROPE, A-ROPE and
errors. It also opens the possibility to assess the uncertainty ROPE-PSO considering just the conceptual model

of the results of classical optimisation algorithms as follows. parameters

For such an algorithm we calibrate the model with respect toIn a first case study we studied the developed ROPE ap-

every single ensemble member of the set of possible observa- . )

: . .~ proaches on the basis of a first real world case study. The
tions. All estimated best parameter vectors are merged intd 2 . T

) - original ROPE approach and the two classical optimisation
a set that expresses the uncertainty due to the observation ellgorithms. the interior-point method (IPM) according to
rors. For further details refer 8ardossy and Sing{20089. 9 ' P 9

To ensure comparability the same should be done for the dif-  1consider that such a model performance is rather realistic for
ferent ROPE algorithms either. However, in order to reduceflood events in a very small catchment with less than % kasing

the computation time, we previously checked the stability ofjust hourly data.
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Table 5. Sub-division of all flood events in a calibration, control size. In this case a multi-objective calibration might be use-

and validation set ful, but this is in the scope of future research. In a second
step deep parameter vectors were sampled with respect to
Set Used flood events the estimated set of good parameter vectors. The statistics
— of the estimated samples in comparison with those estimated
Calibration ~ {6,11,20} by ROPE and A-ROPE are given in Talfle Although both
Control {14,18 24} sets overlap each other, it is evident that the mean value of the
validation  (1:234.57.8910.12... storage coefficients; andk; of the ROPE-PSO estimates are
13,1516,17,19,21,22,23) considerably higher than those estimated by A-ROPE. How-

ever, the correlation between the two most sensitive model

parameters focussing on flood evertisanddr is approxi-
Waltz et al. (2006 which is a gradient based method and mately the same for both algorithms. The standard deviation
a genetic algorithm (GA) according ©onn et al.(1997) for the ROPE-PSO estimates is smaller than the estimates
served as additional benchmarks. Nonetheless the focus abf the Monte Carlo based estimates or all considered model
ways remains on A-ROPE and ROPE-PSO. The conceptugbarameters except for the less sensitive paranigtée as-
model parameters of the model WaSiM were calibrated fo-sume that the iterative Monte Carlo based sampling cannot
cussing on flood events. Out of the mentioned set of 24 flooddentify the region with the best parameters as exact as the
events, three events were used for calibration, three for overPSO based ROPE-PSO due to its limited sample size (2500
fitting control and the remaining events were used for valida-samples per iteration) and the subjective fixed bourftiiat
tion (cf. Table5). Both the calibration and control set contain is used for the determination of the best parameter in the in-
three events covering the possible range of peak flow valuegdividual iteration steps. Due to a coarse resolution in the first
in our database of 24 flood events. The ROPE and A-ROPHterations, this might exclude regions at the outer boundary
were set with a population size of 258@nd a maximum of  of the good parameters that might contain better parameters.
five iterations. For PSO-GAwe set the population size to An adaptive selection of the boundary might solve this prob-
50. These settings were set after a small number of test runiem for the Monte Carlo based search. The validation results
with different population sizes. The used objective was theof the estimated parameter vectors are shown in Tablée
proposed FloodSkill criterion. ROPE-PSO estimates provide a slightly better validation per-

Before deep parameters were generated we validated afprmance than those estimated by A-ROPE. ROPE-PSO also

good parameter vectors and studied the relationship betweeputperforms all other compared algorithms compared in the
their corresponding data depth and model performance ogase study oKrauRe and Cullman20113. In compari-
the validation data. An overview of the results is provided son with the classic optimisation algorithms IPM and GA the
in Fig. 9. Especially for the results estimated by ROPE- model performances achieved by the depth based estimates
PSO the correlation between the calibration objective, i.ein validation are not just better in mean but show a clearly
the FloodSkill criterion, and the data depth is clearly posi- Smaller standard deviation. Among themselves the variances
tive. The correlation for the results estimated by the Monteof ROPE, A-ROPE and ROPE-PSO are approximately in the
Carlo based ROPE algorithms is less intense. This a firsfame range.
hint that the set estimated by ROPE-PSO is a stable solu- These results indicate that the estimated solution is robust

tion and the application of depth based sampling makes sens#d transferable. The proposed algorithm also converges
in order to improve the calibration results. The scatterplotfaster with less parameter vectors to be evaluated. We stud-

given in Fig. 10 where each parameter vector of the esti- ied the stability of the solution estimated by ROPE-PSO for
mated set is shaded according to its validation performanc@ maximum number of model evaluations of 3000, 1000 and
shows that the parameter vectors with worse model perfor500. According to this test we set the limit to 1000 whereas
mance are particularly located at the boundary of the estithe Monte Carlo based A-ROPE made full use of the 10000
mated set. However, this conclusion does not hold true fofparameter evaluations. This advantage in terms of computa-
the single performance criteria the FloodSkill consists of tional efficiency gets even more weight considering that one
As shown in Fig11, the optimal regions for this criteria are parameter evaluation takes approximately three minutes on a
even located on opposite sides of the estimated set. This is agfandard CPBI

indication of a clear tradeoff between the two objective cri-

teria rPD and problems of the model to represent the global

system behaviour of the catchment and a good representa-

tion of the peak flow values. This may also be due to the
relatively coarse time step considering the small catchment 4 In the current setup the algorithm strictly selects the 10 % best
parameter vectors in each iteration.

2This corresponds to the parameterandm in Algorithm 1 5That means that 3 model runs have to be carried out, one for
3These criteria are NS and rPD. each calibration event.
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Table 6. Mean value (Mean), standard deviation (Std), coefficient of variation (CV), minimum, maximum and correlation coefficients
between the generated samples for the conceptual model parameters estimated fg)ROROPE(b) and ROPE-PSQx).

a)

Parameter Mean Std CV  Min Max k4 k; dr

kq 234 062 024 156 337 1.00 0.11-0.45
k; 486 222 046 212 995 1.00-0.10
dr 561 144 031 214 10.02 1.00
b)

Parameter Mean Std CV  Min Max kg k; dr

kq 230 041 018 147 354 1.00 0.05-0.39
k; 460 124 027 222 8.06 1.00-0.30
dr 513 152 030 204 9091 1.00
c)

Parameter Mean Std CV  Min Max kg ki dr
kq 278 030 011 204 367 1.00-0.20 -0.38
ki 6.54 136 021 3.12 12.65 1.00 —0.64
dr 523 096 0.18 3.08 8.20 1.00

0.25 ©8%002 © o
}."’.‘ :.\... : °
T 090.. - S = 0g°8 °
c% mocds 5 Ey :.‘. ce © % %
3 e "(” ¢ AN 3 3
S 0155880 T " S RS
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Fig. 9. Correlation between data depth and overall validation performance for the solutions estimated by ROPE, A-ROPE and ROPE-PSO.

5.1.2 Case study II: Calibrating WaSiM for flood flood events.krec defines the gradient of the saturated con-
forecasting considering the uncertainty of ductivity k; with increasing soil depth and has a valid range
the soil hydraulic parameters between 1 and 1. Its default value estimated for water

balance calibration runs was set td 0 This value ofkyec
In a second case study we calibrated WaSiM again, howevel® Used 1o estimate reasonable pre-event model states. We
this time we additionally considered the uncertainty in the considered botlkrec and the introduced soil hydraulic pa-
soil hydraulic parameters in the model calibration. As al- rameters together with the conceptual model parameters for

ready introduced in Seot.the uncertainty due to coarse soil M0del calibration.

information and the resulting uncertainty in the soil hydraulic  In a first step prior to the actual model calibration we es-
parameters can have atremendous influence on the model utimated the prior uncertainty in the soil hydraulic parameters
certainty in the case of flood events. In a preliminary studyof the soils SL and SiL according to the approach developed
with WaSiM in the Rietholzbach catchment (e Seifert in Grundmann(2010. As a results we obtained a set of
2010 we could prove this conclusion. From the five pre- 10000 soil hydraulic parameter vectors for each soil. Fol-
dominant soil types in the basin (Tal8g we found the soil  lowing the ideas of this approach we mapped the computed
hydraulic parameters of SL and SiL and the soil parameterset of soil hydraulic parameter vectors to two scaling pa-
krec 10 be sensitive referring to the simulated discharge forrameterss; s and 8s;z., one for each soil. The scaling was
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Fig. 10. Scatter plot of the good parameter vectors shaded according to their validation performance. Red points have a good validation
performance, blue points are worse (cf. colorbar). The size of the shades is proportional to the data depth of each point with respect to the

whole cloud.
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Fig. 11. Scatter plot of the good parameter vectors shaded according to their validation performance for the criteria NS and rPD. Red points
have a good validation performance, blue points are worse (cf. colorbar). The size of the shades is proportional to the data depth of each
point with respect to the whole cloud.
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Table 7. Mean overall validation performance for the parameter vectors estimated by all compared algorithms; the model performance was
calculated on the validation set as given in Tahle

FloodSkill NS rPD
Mean Std Worst  Best Mean Std Worst Best Mean Std Worst  Best
IPM 0.14 0.088 —-0.16 0.23 052 0.049 0.33 0.58 0.37 0.048 052 0.32
GA 0.15 0.048 0.08 0.24 0.53 0.043 0.43 0.61 0.38 0.040 0.46 0.32
ROPE 0.18 0.029 0.11 0.25 0.56 0.039 0.46 0.61 0.39 0.031 0.46 0.30
A-ROPE 0.15 0.030 0.09 0.23 055 0.036 047 0.61 0.38 0.030 0.44 0.30
ROPE-PSO 0.20 0.031 0.11 0.25 055 0.036 044 0.61 0.35 0.0212 041 0.30

Table 8. Expectation values of the physical properties of the prevailing soil types in the Rietholzbach catchment, classified according to
USDA, and corresponding soil hydraulic parameters; the parameterisation of the soil hydraulic parameters is done for each soil according to
the approach provided iBrundmanr(2010 by the help of the pedotransfer functions providetMisten et al(1999 andBrakensiek et al.

(1984); the expectation values are the mean over 10 000 realisations

L SL SIiCL SiL LS

loam sandy loam  silty clay loam silt loam loamy sand
catchment area [%)] 15 20 3 51 11
clay [%] 20 10 33.5 135 7.5
silt [%] 39 25 56.5 69 15
sand [%)] 41 65 10 17.5 77.5
humus content [%] 25
ks [ms™ 1.81.10% 14510 861108 285107 4.26.10°°
o [1/m] 3.49 4.48 2.00 1.35 5.52
6 0.01
Oy 0.42 0.41 0.43 0.42 0.41
n 1.18 1.27 1.13 1.24 1.32

done using the algorithm provided Warrick et al.(1977). {ka,ki,dr, BsL, BsiL, krec} t0 be estimated. Considering that
The prior uncertainty of the soil hydraulic parameters with the error surface of WaSiM is very bumpy this is already a
best fits for Gaussian\(), logarithmic Gaussian (lof), challenging calibration problem, especially for Monte Carlo
Gammarl’) and bimodal Gaussian (GM) distribution is given based approach. Again we estimated the parameters of
in Fig. 12. The fitted distributions are just an additional infor- WaSiM with ROPE, A-ROPE and ROPE-PSO. The Monte
mation in order to show that the estimated prior distributionsCarlo based algorithms were limited to a maximum of 10 000
could also be described by commonly used distribution func-model parameter vector evaluations whereas the ROPE-PSO
tions. Consider that the residual water cont&ntvas con-  was tested with both a maximum of 2000, 3000, 5000 and
stantly Q01 for both SL and SiL with a deviation of less than 10000 model runs. There was not much difference between
10e — 14 and thus is not shown in the plots. The distribution the estimates of the different runs. This is why we set the
of the saturated conductivities has the maximum density inmaximum to 3000 in order to save computing time. This is
the range of the lowest possible values and is characterisednother confirmation of the computational efficiency of the
by a high skewness. The other soil hydraulic parameters acROPE-PSO approach.

cording to the Mualem — Van Genuchten model have distri- The distribution of the parameter vectors estimated by A-

butions which can be approximated by a normal distribution.ROPE and ROPE-PSO is given in Fih. Furthermore the

The distribution of the corresponding scaling parameters iyjstribution of the soil hydraulic parameters corresponding

given in Fig.13. Itis evident that the distribution of the scal- g the scaling parametefs. andfsi. estimated by both al-

ing parameters is strongly influenced by the distribution Ofgorithms are given in Figl5. The soil hydraulic parameters

the saturate_d conductivities. This is due to the relatively highcorresponding to the identified distribution of the scaling pa-

spread of this parameter. rameter parameters were generated using the rescaling pro-
The conceptual and the soil parameters form a six di-cedure provided in Sect. For further details we refer to

mensional calibration problem with the model parametersWarrick et al.(1977 andGrundmann(2010. These results
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ks 0, « n
>
Mean 2.227e-05 0.4120 4.62 1.29 = 05 0.75
Std 2.185e-05 0.0083 1.85 0.05 g :
Ccv 0.98 0.02 0.40 0.04 R
00 10 20 00 5 10
x10* BsL BsiL
10 190 10 ‘\:|Data‘ —N —logN r —GM
Z
g 5 7 5
Q i 'ﬁii‘
A i ‘|i||||| Fig. 13. Prior distribution of the scaling paramtefg; andSs;.
1 2 03 oa 05 0 5 10 T 12 15
ks x10* 0, [e% n
‘\:lDam —N —logN I —GM ‘

ulated discharge, the parameter estimation algorithms try to
reject soil hydraulic parameter vectors that are not suitable
@ to represent the catchment’s behaviour and identify a distri-
bution with the most suitable model parameters. It is obvi-
ous that the spread of the distributions of the soil hydraulic
ks 0s o n parameters compared to their prior uncertainty gets smaller
Mean 7.207¢-07 04165 135 126 for both algorithms. Furthermore_ it stands out that the_ mean
Std 5726e-07 0.0048 033 008 ks of the ROPE-PSO estimates is smaller than the prior ex-
cV 0.79 0.01 024  0.06 pectancy whereas the mean of the A-ROPE values is
higher than the prior value. In terms of the model that means
that ROPE-PSO identifies parameter vectors that try to simu-
late just the slow matrix flow in the unsaturated zone whereas

1.5 10
faster runoff processes in the unsaturated zone, e.g. preferen-
o 5 tial flow, are approximated by a fit of the conceptual model
parameters controlling direct runoff. Probably that is also the
J / reason why the less sensitive conceptual paranigtesan be

2 04 oomoos 00 21 s 1s much better identified than in the previous case study. In con-

ks x107 0; o n trast A-ROPE identifies parameter sets which try to represent

‘DDara —N —logN r —GM the faster components by a higher saturated conductivity in

the soil model. Preferential flow in macropores can become
a dominant process within the Rietholzbach catchm@et{
mann 1981). However, the Richards equation implemented
Fig. 12. Prior distribution of the soil hydraulic parameters for the in WaSiM just describes the process of matrix flow in the
soils SL(a) and SiL(b). unsaturated zone and is not able to describe the process of
preferential flow. With WaSiM it can either be modelled by
adjusting the saturated conductivities in the soil module to
higher values or by adapting the conceptual model param-
show that the parameter vectors estimated by ROPE-PS@ters, in particular the parametérg and krec, in order to
are distributed over a considerably smaller region than thoseepresent this phenomena. From a process-oriented point
estimated by A-ROPE. The estimated parameter distribu-of view it might be better to “blame” the preferential flow
tions even indicate that the ROPE-PSO estimates form a sulsn the conceptual model parameters instead of trying to de-
region of the large region described by the parameter vecscribe a physically completely different process by a phys-
tors estimated by A-ROPE. This suggests that the PSO basddally based model, i.e. trying to fit the Richards equation
search strategy in ROPE-PSO can more precisely identify théo represent preferential flow and matrix flow instead of just
region in the parameter space that corresponds to the highestatrix flow. In general the distribution of the parameters
model performance. Consequently the upper boundary of thestimated ROPE-PSO has a much smaller spread than the
least model performance defined by the assumed measurenes estimated by A-ROPE. This suggests that the Monte
ment uncertainty gets higher and the region of good modelCarlo based algorithm cannot identify the region with the
parameter vectors can be more precisely identified. Anothebest model performance as the PSO based ROPE-PSO. Con-
issue concerns the distribution of the soil hydraulic param-sequently the region comprising the good parameter vectors,
eters only. By means of comparison of observed and simi.e. the best plus a given uncertainty tolerance, gets larger

(b)
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and might be less robust, i.e. less transferable to other floo@ring the limited number of maximum function evaluations
events, which means the validation set. used for the ROPE-PSO algorithm these results also confirm
The calibration performance of all considered algorithmsthe efficiency of the PSO based approach. This is not sur-
is given in Fig.16. The results of PSO-GA(before deep  prising but should be taken into consideration when choosing
samples were drawn) are given for an additional compari-between the Monte Carlo based and PSO based ROPE algo-
son. The calibration performance results are better than th&thms. Referring to the results of PSO-GaAnd ROPE-PSO
results for the calibration in the previous case study just conit is obvious that the parameters with high data depth do not
sidering the conceptual model parameters. That result is nddave just a marginal better model performance on the valida-
surprising. The better fit in the calibration might just be due tion data but also much less outliers on the side of the dis-
to a larger number of free model parameters and has to beribution corresponding to a lower model performance. For
confirmed on the validation data in order to be considerednstance the worst overall FloodSkill for PSO-G#s 0.18
as improvement. A better model fit is always possible with whereas it is @6 after the depth based sampling, i.e. for
more free model parameters, but just makes sense if the estROPE-PSO. These results show the advantages of the depth
mated parameters can be transferred on other time periods dxased sampling, namely the possibility to filter out parameter
events. Referring to the mean estimated FloodSkill the origi-vectors corresponding to a more volatile and consequently
nal ROPE with a value of.@3 is slightly outperformed by the lower model performance. However a comparison of the
A-ROPE (046) and a bit more by the ROPE-PSO algorithm Monte Carlo based algorithms (ROPE and A-ROPE) with the
(0.48). The corresponding uncertainty intervals according toPSO based ROPE-PSO also show the limits of this approach.
the uncertainty in the observations are nearly the same for alThe performance of the sampled deep parameter vectors re-
algorithms. They correspond to a bandwidth of the Flood-quires both an optimal sampling of the set of good parameter
Skill of approximately 1. Hence the PSO provides advan- vectors and an effective sampling of deep parameters with
tages in finding the region with the best model performancefespect to this set. This result is also supported by a clearly
however the differences are just marginal. Consider howevelower standard deviation of the ROPE-PSO results referring
that the slightly worse model performance of the A-ROPE es-to all compared performance criteria. The better accuracy of
timates correspond to a much wider distribution of the modelthe ROPE-PSO estimates together with less negative outliers
parameters as already discussed based on the results providiscalso reflected by a reduced model uncertainty. That means
in Fig. 14. Furthermore it is evident that the deep parameterthat not just the parameter uncertainty but also the complete
vectors estimated by ROPE-PSO in comparison with PSO+model uncertainty can be tremendously reduced. Fig8re
GA, do not have a better model performance on the calibrashows the hydrographs and the corresponding parameter and
tion data. The deep parameter vectors just show a small denodel uncertainties for both algorithms. The model errors
crease of the standard deviation of the corresponding modelere computed by two normal distribution fitted on the posi-
performances. tive and negative discharge errors, transformed with the nor-
The transferability of the estimated parameters and thugnal quantile transformation (NQT)K(zysztofowicz 1997
the performance of the algorithms they are generated by cafccording to a method presentedibygeland et ak2010.
just be shown using the validation data. An overview of the
estimated model performances on the validation efeists
given in Fig.17. Regardless of the used parameter estimation6  Discussion and conclusions
procedure, the achieved model performance on the validation
data is better than the calibration with the conceptual model — This paper presents two new depth based parameter es-

parameters only. This result confirms the result&afind-

mann (2010, that a consideration of the uncertainty in the
soil hydraulic parameters for flood events can improve the
performance of a process-oriented hydrologic model when
focus lies on modeling on flood events. Although the A-
ROPE provides a slight advantage over the original ROPE
approach, both Monte Carlo based algorithms ROPE and A-
ROPE are clearly outperformed by the PSO based PSQ-GA
and related ROPE-PSO estimates. This suggests that the pre-
viously discussed advantages of the PSO approach providing
a better global optimum and a consequently smaller region
of good parameter vectors correspond to a better robustness.
That means that the set of estimated parameters contains less
outliers with clearly below-average performance. Consid-

8For details refer to Tablg

Hydrol. Earth Syst. Sci., 16, 603629 2012

timation method, that are well suited for the robust cal-
ibration of hydrologic models considering uncertain-
ties. The Advanced Robust Parameter Estimation (A-
ROPE), is a modified version of the depth based param-
eter estimation procedure presented BArdossy and
Singh(2008. There are two differences between the A-
ROPE algorithm and the original ROPE algorithm. The
further development enables us sampling from different
non-convex regions of attraction and at the same time
preventing the algorithm from overfitting. The second
algorithm is a PSO based Robust Parameter Estimation
algorithm algorithm, entitled Robust Parameter Estima-
tion with Particle Swarm Optimisation (ROPE-PSO).
The major difference between ROPE-PSO and the pre-
viously presented ROPE algorithm is a substitution of
the Monte Carlo based approach for the identification
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of good parameter vectors by a newly developed algo-
rithm, entitled PSO-GA. We study the effectiveness of
the newly developed algorithms in two case studies cal-
ibrating a process-oriented hydrologic model focussing
on flood events. The results are compared with esti-
mates generated by the original ROPE algorithm and
two stats-of-the-art optimisation algorithms.

In a first case study we compared the original ROPE,
and the newly developed A-ROPE and ROPE-PSO ap-
proaches estimating three conceptual model parameters
of the model WaSiM. We study the effect of observa-
tion uncertainty and confirm the resultsBérdossy and
Singh(2008: the parameter vectors estimated by clas-
sic optimisation algorithms can lead to very different
results in the validation and are not robust. Parame-
ter vectors with equal model performance on the cal-
ibration data can lead to very different results in vali-
dation. Considering a set of identified parameters with

Hydrol. Earth Syst. Sci., 16, 603629 2012
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Fig. 15. Distribution of the soil hydraulic parameters estimated by A-ROPE (left column) and ROPE-PSO (right column) for the sails SL (
andb) and SiL ¢ andd)

good model performance on the calibration data, mem-
bers with shallow data depth near the boundary are sen-
sitive to small changes and have a less probability to
perform well on other time periods than solutions with
high depth. The depth based parameter estimation ap-
proaches can identify a set of parameter vectors that
shows a clearly better performance in the validation
with tighter variation intervals, i.e. less outliers. In com-
parison with the original ROPE, the modifications of the
Monte Carlo based A-ROPE provide slight advantages
in terms of the validation performance. These results
are even outperformed by the substitution of the Monte
Carlo based sampling by ROPE-PSO approach where
the good parameters are determined using an adapted
PSO strategy.

— In a further case study we increased the number of con-

sidered model parameters. The additional parameters
allow to account for the uncertainty in the soil hydraulic

www.hydrol-earth-syst-sci.net/16/603/2012/



T. Krauf3e and J. Cullmann: Particle Swarm Optimisation and Robust Parameter Estimation 625
ROPE AROPE-I PSO-GA, AROPE-II
L 1 L L 1 L L 1 L L 1 L L 1 L 1
0.4 0.42 0.44 0.46 0.48 5 0.52
Flood-Skill
T T
P 1 P 1 P N1 P N1 P N1 P P P 1
0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76
NS
L 1 L L L L 1 L L 1 L L L L 1 L L L | L
0.3 0.28 0.26 0.24 0.22 0.2
rPD
FloodSKill NS rPD
Mean Std Range Mean Std Range Mean Std Range
ROPE 0.43 0.019 0.40-0.49 0.69 0.020 0.63-0.72 0.26 0.021  0.20-0.30
A-ROPE 0.46 0.019 0.42-0.51 0.70 0.019 0.63-0.73 0.25 0.021  0.19-0.30
PSO-GA,, 0.47 0.016 0.44-0.52 0.74 0.012 0.70-0.76 0.27 0.016 0.23-0.30
ROPE-PSO 0.48 0.014 045-0.52 0.74 0.011  0.71-0.76  0.27 0.015 0.23-0.30

Fig. 16. Calibration performance for the parameter vectors estimated by ROPE, A-ROPE, PS@nGROPE-PSO.

parameters and an additional conceptual parameter of —
the soil module in WaSiM. The results of this case study
show the limits of the Monte Carlo based ROPE and A-
ROPE approaches for problems with a nonsmooth pa-
rameter surfaces with large flat areas in higher dimen-
sions. Nonetheless the modifications in A-ROPE help

to achieve an improved set of robust solutions. In this
case study the effective and efficient PSO based search
strategy in ROPE-PSO can show its full potential esti-
mating an optimal approximation of the set of good pa-
rameter vectors. This is an important pre-requisite for
the effectivity of the depth based sampling. The PSO -
based strategy can identify a much more concentrated
set of good parameter vectors with the same tolerance
interval on the calibration data. As a consequence the fi-
nal deep solutions estimated by ROPE-PSO outperform
the ROPE and A-ROPE estimates by lengths.

www.hydrol-earth-syst-sci.net/16/603/2012/

The case studies in this paper revealed that the used
hydrologic model WaSiM is not able to represent the
correct peak flow values and the global catchment be-
haviour in terms of the streamflow at the catchment out-
let with the same parameter vectors equally well. The
tradeoff in these two objectives that are important for
the modelling of flood events suggests the application of
a multi-objective calibration strategy. Consider that the
presented algorithm can be easily altered to a general
multi-objective parameter estimation procedure.

The application of data depth metrics can help to iden-
tify sets of robust parameter vectors. In general pa-
rameters with low data depth are near the boundary
of a set of good model performance in the calibration
are sensitive to small changes and do transfer to other
time periods less well as high depth ones. However
the model performance of the sampled deep parameters
is also dependent to the quality of the estimated good
parameter vectors.
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ROPE AROPE-I PSO-GA, AROPE-II
© 0%
 ————
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0.05 0.15 0.2 0.2 0.3
Flood-Skill
. | . . | . | ) . . . | .
0.4 0.4 0.5 0.5 0.6 0.65
NS
| | . . . . | . .
0.45 0.4 0.35 0.3 0.25
rPD
FloodSkill rPD
Mean Std Range Mean Std Range Mean Std Range
ROPE 0.19 0.043 0.03-0.28 0.54 0.040 0.38-0.62 0.35 0.035 0.27-0.45
A-ROPE 0.22 0.038 0.06-0.29 0.55 0.039 0.39-0.62 0.34 0.033 0.27-0.43
PSO-GA, 0.25 0.021  0.18-0.32 0.60 0.027 0.48-0.64 0.33 0.027  0.27-0.42
ROPE-PSO 0.30 0.014 0.26-0.32 0.62 0.018 0.55-0.64 0.32 0.023  0.28-0.37

Fig. 17. Validation performance for the parameter vectors estimated by ROPE, A-ROPE, P3@r@8ROPE-PSO.

— The case studies in this paper just consider a limited
number of calibration parameters parameters. This is
sufficient for the given model setup considering the

small amount of observation data for flood events. The The robust parameter estimation approach is a relatively
Suggested method m|ght perform even better for cali-neéw method which was applled to a limited number of case
bration tasks with a higher amount of useful calibra- studies.
tion data or lower process dynamics where the set Oﬂished uncertainty estimation methods, e.g. MCMC, GLUE
good parameter vectors is much more C|ear|y defined Or multi-objective calibration, in further research. Further-
e.g. water balance simulationsBardossy and Singh Mmore we suggest the further development of the ROPE
(2008 applied the original ROPE method for the esti- method to a well-founded calibration tool considering un-
mation of nine parameters in the conceptual model HBV certainties, e.g. assigning a likelihood based on the depth of
in a much larger catchment on daily basis. According tothe estimated parameters instead of their model performance
these results and our experience with other small tes@s it is done in classical approaches. Due to the probably
prob|ems’ we strong|y believe that the deve|oped techhigh tradeoff between the model's abl'lty to represent both
nique might provide good results for higher dimensions the peak flow values and the global system behaviour equally
as well. Consider however that the application of com- Well, we propose the development and application of a multi-

number of points and a high dimensionality, all points
are in the convex hull and have low depth.

We strongly propose a comparison with estab-

plex data depth functions, e.g. halfspace depth is limitedobjective version of the presented approach.
on lower dimensions due to the computational complex-
ity and the required number of solutions. For a limited

Hydrol. Earth Syst. Sci., 16, 603629 2012
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Fig. 18. Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter shading) and parameter estimates (darker
shading) for the flood eventq4d), 12(b) and 19(c), estimated by A-ROPE (left column) and ROPE-PSO (right column). The dots correspond
to the observed streamflow data. The shaded areas of uncertainty correspond to the 95% confidence intervals.
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