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Abstract. The development of methods for estimating the
parameters of hydrologic models considering uncertainties
has been of high interest in hydrologic research over the last
years. In particular methods which understand the estima-
tion of hydrologic model parameters as a geometric search
of a set of robust performing parameter vectors by applica-
tion of the concept of data depth found growing research in-
terest. B́ardossy and Singh (2008) presented a first Robust
Parameter Estimation Method (ROPE) and applied it for the
calibration of a conceptual rainfall-runoff model with daily
time step. The basic idea of this algorithm is to identify
a set of model parameter vectors with high model perfor-
mance called good parameters and subsequently generate a
set of parameter vectors with high data depth with respect
to the first set. Both steps are repeated iteratively until a
stopping criterion is met. The results estimated in this case
study show the high potential of the principle of data depth to
be used for the estimation of hydrologic model parameters.
In this paper we present some further developments that ad-
dress the most important shortcomings of the original ROPE
approach. We developed a stratified depth based sampling
approach that improves the sampling from non-elliptic and
multi-modal distributions. It provides a higher efficiency for
the sampling of deep points in parameter spaces with higher
dimensionality. Another modification addresses the problem
of a too strong shrinking of the estimated set of robust pa-
rameter vectors that might lead to overfitting for model cal-
ibration with a small amount of calibration data. This con-
tradicts the principle of robustness. Therefore, we suggest
to split the available calibration data into two sets and use
one set to control the overfitting. All modifications were
implemented into a further developed ROPE approach that

is called Advanced Robust Parameter Estimation (AROPE).
However, in this approach the estimation of the good param-
eters is still based on an ineffective Monte Carlo approach.
Therefore we developed another approach called ROPE with
Particle Swarm Optimisation (ROPE-PSO) that substitutes
the Monte Carlo approach with a more effective and efficient
approach based on Particle Swarm Optimisation. Two case
studies demonstrate the improvements of the developed algo-
rithms when compared with the first ROPE approach and two
other classical optimisation approaches calibrating a process
oriented hydrologic model with hourly time step. The focus
of both case studies is on modelling flood events in a small
catchment characterised by extreme process dynamics. The
calibration problem was repeated with higher dimensionality
considering the uncertainty in the soil hydraulic parameters
and another conceptual parameter of the soil module. We dis-
cuss the estimated results and propose further possibilities in
order to apply ROPE as a well-founded parameter estimation
and uncertainty analysis tool.

1 Introduction

Hydrologic models are designed to approximate the general
physical mechanism which govern the rainfall-runoff pro-
cess within a specific catchment. This is why these models
have found favour with many hydrologists and engineers in
practice and research. Most of the hydrologic models are
driven by a vector of model parameters. These parameters
are supposed to be estimated in order to approximate the gen-
eral system behaviour which governs the rainfall-runoff pro-
cess within a specific catchment. In most cases the model
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parameters cannot be related to measurements in a direct
way, but are supposed to be estimated through indirect meth-
ods such as calibration. In the process of calibration, the
modeller adjusts the values of the model parameters such that
the model is able to closely match the behaviour of the real
system it is intended to represent. Hence the success of a
model application is strongly dependent on a good estimation
of the model parameters.

In the past models were calibrated by hand. This is very
labour-intensive and requires an experienced modeller with
profound hydrologic knowledge. Thus recently automatic
methods for model calibration have evolved significantly
(e.g.Duan et al., 1992; Gupta et al., 1998) and have found
a common acceptance and broad use in the hydrologic com-
munity (e.g.Hogue et al., 2000; Cullmann, 2006; Kunstmann
et al., 2006; Marx, 2007; Grundmann, 2010). The param-
eter estimation of hydrologic models is affected by numer-
ous uncertainties.Beven and Binley(1992) described the
probability to estimate the same model performance for dif-
ferent estimated parameter vectors as the equifinality prob-
lem. Recently developed approaches address this problem
by estimating the uncertainty of the model parameter vectors
considering uncertainties in the observations and the model
structure. The uncertainty is often expressed by providing
a set of optimal parameter vectors. One well established
approach for a parameter estimation including uncertainty
are the Markov Chain Monte Carlo (MCMC) methods (e.g.
Vrugt et al., 2003b, 2009a; Kuczera et al., 2006). These
methods require the setup of a complete Bayesian uncertainty
framework. One major advantage of such a framework is the
possibility to describe all relevant sources of uncertainty in a
closed form and consequently the estimation of mathemat-
ically well founded results. However, also for those kind
of approaches a modeller has to make assumptions of all
sources of uncertainty to be considered. Often these assump-
tions are quite arbitrary because the information for a well
founded decision is not available. Subsequently these deci-
sions have a non negligible influence on the results. Thus, the
uncertainty estimates might get a rather subjective touch - a
fact that contradicts the original intention of the application
of a Bayesian framework. Furthermore in many real-world
applications modellers call for purpose-specific objectives in
calibration, this is difficult to integrate in the likelihood func-
tion Bayesian uncertainty framework. For example the for-
mulation and implementation of a likelihood function con-
sidering both peak flow difference and the Nash-Suttcliffe
efficiency is not straightforward. That is why also alternative
approaches, e.g. the previously mentioned generalized likeli-
hood uncertainty estimation (GLUE) or the robust parameter
estimation approach (ROPE) (Bárdossy and Singh, 2008) at-
tracted scientific interest in the hydrologic community. The
development of these methods was accompanied by a strong
debate in the hydrologic community regarding the require-
ments of an appropriate framework for uncertainty estima-
tion. The results of recently published studies comparing the

newly developed MCMC method DREAM with the GLUE
framework suggest that “formal and informal Bayesian ap-
proaches have more common ground than the hydrologic lit-
erature and ongoing debate might suggest” (e.g.Vrugt et al.,
2009b). Hence, the use of both Bayesian and non-Bayesian
approaches might be reasonable regarding the requirements
of a specific application.

Within this paper we will focus on a further development
of the ROPE approach proposed byBárdossy and Singh
(2008). ROPE is a non-Bayesian approach that addresses the
parameter and uncertainty estimation problem using the con-
cept of data depth. Data depth is a statistical method used for
multivariate data analysis which assigns a numeric value to
a point with respect to a set of points based on its centrality.
This provides the possibility of a center-outward orderings of
points in Euclidean space of any dimension and opens up a
new non-parametric multivariate statistical analysis method
in which no distributional assumptions are needed. Recent
studies of computational geometry and multivariate statis-
tics (e.g.Liu et al., 2006; Bremner et al., 2008) showed that
members that are in a geometrical central position with re-
spect to a given point set or distribution, are more robust in
order to represent the whole set. These points can be esti-
mated applying the concept of data depth, which has recently
attracted a lot of research interest in multivariate statistics
and robust modelling (e.g.Cramer, 2003; Liu et al., 2006).
This concept was basically adapted by an evolutionary pa-
rameter estimation method presented byBárdossy and Singh
(2008). They showed that it can be very useful for the es-
timation of robust hydrologic model parameters. This re-
sult was also found by preliminary studies with WaSiM in
the Rietholzbach catchment (Pompe, 2009). In a simplified
form the ROPE approach consists of two steps. In a first step
a set of model parameters with good model performance is
identified. According toBárdossy and Singh(2008) these
parameter vectors are from now on called the good parame-
ter vectors. Thereafter a set of parameter vectors with high
data depth with respect to the set of good parameter vectors
is generated under the assumption that these parameter vec-
tors are more likely to represent a robust solution than the
complete set of good parameter vectors. Thus, they called
this approach robust parameter estimation method. Within
this scope the concept of robustness is related to the term
of transferability. Thus, we call parameter vectors robust
which not just lead to good model performance over a se-
lected calibration time period but are transferable: they per-
form well for other time periods and might also perform well
on other catchments. Such parameter vectors are more likely
to lead to a hydrologically reasonable representation of the
corresponding processes and are less sensitive. This means
that small changes of the parameters should not lead to very
different results on time periods.

The first results of the method provided byBárdossy and
Singh(2008) are very promising. Therefore we reviewed the
presented methods and addressed some shortcomings of the
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first approach by the implementation of more efficient and ef-
fective methods to sample deep parameter vectors and the in-
troduction of well founded stopping criteria. All these ideas
were assembled into a further developed version of the ROPE
method, called Advanced Robust Parameter Estimation (A-
ROPE). Nonetheless the A-ROPE method is still based upon
the Monte Carlo method and consequently suffers from its
main disadvantage, i.e. that it is slow and requires a large
number of model runs to sample the feasible space with
reasonable accuracy. The required number of samples in-
creases exponentially with the number of considered param-
eters. That is in particular a problem for computationally
intensive process-oriented models where the number of sam-
ples is strictly limited by the available computational capac-
ity. However, the effectiveness of the depth based sampling
of parameter vectors is highly dependent on the quality of
the identified set of good parameter vectors. To overcome
the shortcomings of the Monte Carlo method for the esti-
mation of the good parameter vectors, we suggest to substi-
tute it by an approved evolutionary search strategy for high-
dimensional parameter spaces. We are convinced that Parti-
cle Swarm Optimisation (PSO) is a suitable candidate for this
task. PSO is a search strategy that bases on the concept of
swarm intelligence in order to estimate the global optimum
for a given single-objective optimisation problem. We modi-
fied the search strategy used in the normal PSO algorithm in
order to identify a set of good parameter vectors with given
tolerance. The modification adapts ideas coming from multi-
objective PSO algorithms that also estimate a set of optimal
parameters instead of just one global optimum. Afterwards
the second step of the ROPE procedure, the depth based pa-
rameter sampling can be applied. The new approach merges
the strength of PSO and depth based sampling. It is entitled
ROPE with Particle Swarm Optimisation (ROPE-PSO).

The remainder of this paper is organised as follows: After
the introduction, we will introduce the concept of data depth
and subsequently the ROPE method provided byBárdossy
and Singh(2008). This is followed by a presentation of
the newly developed approaches A-ROPE and ROPE-PSO
and the underlying concepts. The presentation of the algo-
rithms is completed by a brief introduction of an approach
provided byGrundmann(2010) that allows considering the
uncertainty in soil hydraulic parameters for the calibration
of hydrologic models. The general idea of this approach
is important to understand the following case studies. We
studied both algorithms calibrating a process-oriented hydro-
logic model with a high temporal resolution (hourly instead
of daily time-step) in a catchment where the dominant pro-
cesses have high dynamics. The focus of the model calibra-
tion is the modeling of flood events. The estimated results are
discussed comparing them to estimates obtained by the first
ROPE algorithm presented byBárdossy and Singh(2008)
and other automatic parameter estimation approaches.
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2 Parameter estimation using data depth metrics

Data depth

The algorithm applies the technique of data depth, a new ap-
proach used for multivariate data analysis that provides the

Fig. 1: 2-dimensional point set shaded according to assigned
depth. A darker point represents higher depth. The lines in-
dicate convex hulls enclosing the 25%, 50%, 75% and 100%
deepest points. The used depth function was halfspace depth.

possibility to analyse, quantify and visualise data sets. Most
proposed metrics used in data depth function are inherently
geometric, with a numeric value assigned to each data point
that represents its centrality within the given data set. Data
depth is a statistical method used for multivariate data analy-
sis which assigns a numeric value to a point with respect to a
set of points based on its centrality. Tukey (1975) introduced
this concept first in order to estimate the center of a multivari-
ate dataset. A formal definition of an arbitrary depth function
D for the d-dimensional space Rd is given as follows:

D : Rd×(Rd×R)→R (1)

The following concepts apply to the data depth methodol-
ogy and distinguish it from other statistical methods.

– Non-parametric methodology: Scientific measurements
can be viewed as sample points drawn from some un-
known probability distribution, where the analysis of
the measurements involves computation of quantitative
characteristics of the probability distribution (estima-
tors), based on the data set. If the underlying distri-
bution is known (for example normal distribution, log-
normal distribution, Cauchy, etc.), the characteristics of
the data can be computed using methods from classical
statistics. However, in most real life experiments the un-
derlying distribution is not known. The concept of data
depth requires no assumption about the underlying dis-
tribution and data is analysed according to the relative
position of the data points.

– Center-outward ordering of points: The data depth con-
cept allows the creation of a multivariate analog to

Fig. 1. 2-dimensional point set shaded according to assigned depth.
A darker point represents higher depth. The lines indicate convex
hulls enclosing the 25 %, 50 %, 75 % and 100 % deepest points. The
used depth function was halfspace depth.

2 Parameter estimation using data depth metrics

2.1 Data depth

The algorithm applies the technique of data depth, a new ap-
proach used for multivariate data analysis that provides the
possibility to analyse, quantify and visualise data sets. Most
proposed metrics used in data depth function are inherently
geometric, with a numeric value assigned to each data point
that represents its centrality within the given data set. Data
depth is a statistical method used for multivariate data analy-
sis which assigns a numeric value to a point with respect to a
set of points based on its centrality.Tukey(1975) introduced
this concept first in order to estimate the center of a multi-
variate dataset. The possibilities of the concept of data depth
is illustrated in Fig.1 using a small 2-dimensional synthetical
data set.

A formal definition of an arbitrary depth functionD for
thed-dimensional spaceRd is given as follows:

D : Rd×(Rd×R)→R (1)

The following concepts apply to the data depth methodology
and distinguish it from other statistical methods.

– Non-parametric methodology: scientific measurements
can be viewed as sample points drawn from some un-
known probability distribution, where the analysis of
the measurements involves computation of quantitative
characteristics of the probability distribution (estima-
tors), based on the data set. If the underlying distri-
bution is known (for example normal distribution, log-
normal distribution, Cauchy, etc.), the characteristics of
the data can be computed using methods from classi-
cal statistics. However, in most real life experiments
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the underlying distribution is not known. The concept
of data depth requires no assumption about the under-
lying distribution and data is analysed according to the
relative position of the data points.

– Center-outward ordering of points: the data depth con-
cept allows the creation of a multivariate analog to
the univariate statistical analysis tool ofrank statis-
tics. Rank statistics is based on the ordering of one-
dimensional observations, where the order reflects ex-
tremeness, contiguity, variability or the effect of exter-
nal contamination. In higher dimensions the order of
multivariate data is not well defined, and several or-
dering methods were suggested. The data depth con-
cept provides a method of extending order statistics to
any dimension by ordering the points according to their
depth values.

– Application to multivariate (high-dimensional) data
sets: the concept of data depth is defined with respect
to points in Euclidean space in any dimension, thus
enabling the derivation of multivariate distributional
characteristics of a data set.

– Robustness: in the statistical analysis of data sets, ob-
servations that deviate from the main part of the data
(outliers) can have an undesirable influence on the anal-
ysis of the data. Many depth functions are robust against
the possibility of several outliers that may occur in the
data and yield nevertheless reasonable results.

Tukey (1975) introduced this concept first with the def-
inition of the halfspace depth. According toDonoho
and Gasko(1992) the halfspace depth of an arbitrary
point θ ∈Rd with respect to ad-dimensional data set
Z={zi = (zi1,··· ,zid); i=1,··· ,n} is defined as the small-
est number of data points in any closed halfspace with bound-
ary throughθ . This is also called the Tukey or location depth,
and it can be written as

hdepth(θ |Z) := min
||u||=1

#{i,u>zi ≥u>θ} (2)

whereu ranges over all vectors inRd with ||u|| =1.
Very often the halfspace depth is normalised by division

with the number of points in the setZ:

hdepth∗(θ |Z) :=
hdepth(θ |Z)

#{Z}
(3)

The first publication ofTukey (1975) was then followed by
many generalizations and other definitions of this concept,
e.g. convex-hull peeling depth, simplicial depth, regression
depth and L1 depth. A good overview of a broad range of
different definitions of the concept of data depth and its ap-
plication for multivariate data analysis is given byHugg et al.
(2006) andLiu et al. (2006). A comprehensive study of dif-
ferent data depth measures in robust parameter estimation is
provided inKrauße and Cullmann(2011b).

2.2 The ROPE algorithm

Algorithm 1 ROPE
1: Selectd model parameters, to be considered for calibration and

identify prior boundaries[x lb,xub] for all selected parameters
2: n random parameter vectors forming the setXn are generated

in thed-dimensional rectangle bounded by the defined bound-
aries.

3: repeat
4: The hydrologic model is run for each parameter vector inXn

and the corresponding model performances are calculated
5: The subsetX∗n of the best performing parameters is identi-

fied. This might be for example the best 10 % ofXn
6: m random parameter vectors forming the setYm are gener-

ated, such that∀θ ∈Ym : D(θ |X∗n)≥L whereL≥1
7: The setYm is relabeled asXn and steps 3–6 are repeated

until .
8: until the performance corresponding toXn andYm does not

differ more than what one would expect from the observation
errors

9: return Ym

Bárdossy and Singh(2008) applied the principle of data
depth in order to generate parameter vectors that are deep
with respect to a previously identified set of good parameter
vectors. The algorithm is called ROPE. All details are pro-
vided in the pseudocode listing in Algorithm1. Note that the
notation was marginally changed fromBárdossy and Singh
(2008) in order to have a consistent syntax with other publi-
cations in the field of data depth. In principle the general pro-
ceeding of this algorithm, can be divided into three important
parts. After handling and pre-processing the input, a set of
good parameter vectors is identified (line 4 and 5). After-
wards a set of deep parameter vectors (w.r.t. the good ones)
is generated (line 6). These two operations are evolution-
ary repeated and after each iteration a stopping criterion is
checked (line 8). The iterated Monte Carlo sampling is used
in order to circumvent the shortcoming of a normal Monte
Carlo simulation in order to improve the sampling quality
with a limited number of samples and simultaneously apply-
ing the principle of data depth. The general approach of the
presented ROPE algorithm is well-founded.Bárdossy and
Singh(2008) showed that ROPE might be very useful for the
estimation of robust hydrologic model parameters.

2.3 A-ROPE

Bárdossy and Singh(2008) demonstrated the performance
of the ROPE algorithm calibrating the conceptual hydro-
logic model HBV for a catchment in south-west Germany
on a daily time step. The estimated results support the con-
cept of depth based sampling. Parameter vectors with high
data depth corresponded to a better transferability to other
time periods. We could reproduce these results calibrat-
ing the process-oriented model WaSiM on a daily time step
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focussing on modeling of the water-balance (Pompe, 2009).
However, in further studies focussing on flood events we
experienced problems in particular with the application of
the latter two parts of the ROPE algorithm, the generation
of deep parameter vectors and the exact definition of the
stopping criterion.

In the following we will give a brief overview of the
problems and explain how the new A-ROPE algorithm ad-
dresses these shortcomings. One of the major premises of
the application of the concept of data depth is the assump-
tion that the set of good parameter vectors is geometrically
well-structured. In concrete terms we rely on the assumption
that the depth contours will be indicative of the shape of the
cloud of good parameter vectors, while generating deep pa-
rameters. However, most existing depth measures are unable
to cope with non-elliptic, non-convex or multimodal data
sets (Hugg et al., 2006). This can affect the robustness of
the estimated deep parameter vectors because the parameter
space of most hydrologic models is dominated by distinct re-
gions of attraction and non-convex multidimensional ridges
(e.g.Duan et al., 1992; Sorooshian et al., 1993; Grundmann,
2010). Another issue is the efficiency of the depth based sam-
pling. A very simple sampling strategy of candidates is a
uniform sampling within the bounding box for the consid-
ered set of good parameter vectors. This strategy gets inef-
fective and computationally intensive for higher dimensions.
That is due to the fact that the volume ratio of the bound-
ing box to the set of parameter vectors itself decreases with
rising dimension. This issue is illustrated by Fig.2 where
the ratio between the volume of the unit sphere and the unit
cube is plotted. In addition, the computational complexity
of most depth functions increases tremendously for higher
dimensions. An approximation of the halfspace depth used
in this paper can for instance be computed in polynomial
time:O(md3

+mdn). In this equationd denotes the num-
ber of dimensions,n is the number of points in the reference
point set andm is the number of iterations that determine the
accuracy of the results.

To overcome these problems we propose to substitute the
uniform sampling of deep parameter vectors with an alterna-
tive stratified sampling strategy that samples candidate points
that are more likely to have a high data depth. In order to do
this, a Gaussian mixture model is fit to the underlying set of
good parameter vectors. This is done using an expectation
maximization (EM) algorithm that assigns posterior proba-
bilities to each component density with respect to each point
in the set. The number of components can either be set due
to prior knowledge or estimated by the EM algorithm. Af-
terwards the candidate points can be sampled from a Gaus-
sian mixture model that is an approximation of the set of the
reference point set. Consequently good parameter vectors
are more likely to be deep with respect to the reference set.
In addition this offers advantages to depth-based sampling
from non-elliptic or multimodal distributions. Most exist-
ing depth measures are unable to cope with non-convex or
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Fig. 2: Volume ratio of the unit sphere to the unit cube in n
dimensions as a continuous function of n

the process-oriented model WaSiM on a daily time step fo-
cussing on modeling of the water-balance (Pompe, 2009).
However, in further studies focussing on flood events we
experienced problems in particular with the application of
the latter two parts of the ROPE algorithm, the generation of
deep parameter vectors and the exact definition of the stop-
ping criterion.

In the following we will give a brief overview of the
problems and explain how the new A-ROPE algorithm ad-
dresses these shortcomings. One of the major premises of
the application of the concept of data depth is the assump-
tion that the set of good parameter vectors is geometrically
well-structured. In concrete terms we rely on the assumption
that the depth contours will be indicative of the shape of the
cloud of good parameter vectors, while generating deep pa-
rameters. However, most existing depth measures are unable
to cope with non-elliptic, non-convex or multimodal data sets
(Hugg et al., 2006). This can affect the robustness of the esti-
mated deep parameter vectors because the parameter space of
most hydrologic models is dominated by distinct regions of
attraction and non-convex multidimensional ridges (e.g Duan
et al., 1992; Sorooshian et al., 1993; Grundmann, 2010). An-
other issue is the efficiency of the depth based sampling.
A very simple sampling strategy of candidates is a uniform
sampling within the bounding box for the considered set of
good parameter vectors. This strategy gets ineffective and
computationally intensive for higher dimensions. That is due
to the fact that the volume ratio of the bounding box to the set
of parameter vectors itself decreases with rising dimension.
This issue is illustrated by Fig. 2 where the ratio between
the volume of the unit sphere and the unit cube is plotted. In
addition, the computational complexity of most depth func-
tions increases tremendously for higher dimensions. An ap-
proximation of the halfspace depth used in this paper can for
instance be computed in polynomial time: O(md3 +mdn).
In this equation d denotes the number of dimensions, n is the
number of points in the reference point set andm is the num-
ber of iterations that determine the accuracy of the results.

To overcome these problems we propose to substitute the
uniform sampling of deep parameter vectors with an alterna-
tive stratified sampling strategy that samples candidate points
that are more likely to have a high data depth. In order to do
this, a Gaussian mixture model is fit to the underlying set of
good parameter vectors. This is done using an expectation
maximization (EM) algorithm that assigns posterior proba-
bilities to each component density with respect to each point
in the set. The number of components can either be set due
to prior knowledge or estimated by the EM algorithm. Af-
terwards the candidate points can be sampled from a Gaus-
sian mixture model that is an approximation of the set of the
reference point set. Consequently good parameter vectors
are more likely to be deep with respect to the reference set.
In addition this offers advantages to depth-based sampling
from non-elliptic or multimodal distributions. Most existing
depth measures are unable to cope with non-convex or multi-
modal data sets (Hugg et al., 2006). A clustering of such data
sets and a subsequent sampling from single clusters provides
the possibility to filter points that are enclosed by the con-
vex hull of the data set, but are actually located outside. The
new strategy, entitled GenDeep, is provided in pseudocode
in Algorithm 2. Further details of this approach and a num-
ber of case studies are provided in Krauße and Cullmann
(2011b). Just for a small insight we present the result of a
case study discussed in that paper where we performed the
depth-based sampling with respect to a previously sampled
data set following a banana-shaped and multi-modal distri-
bution (cf. Fig. 3).

Algorithm 2 GenDeep

1: Perform a cluster analysis on the set of good parameter
vectorsX∗n, e.g with the expectation maximization (EM)
algorithm according to Dempster et al. (1977), which
identifies the most probable number of clusters k in X∗n
and assigns all members of the set X∗n to one (in case
of ambiguity also to more than one) of the clusters ci,
where i∈{1,...,k}.

2: Ym←∅
3: for all ci ∈{c1,...,ck} do
4: mi←m

(
#{Ci}

n

)
5: mi random parameter vectors forming the set Ymi

are
generated, such that ∀θ ∈ Ymi : {D(θ |ci)≥L where
L> 0

6: Ym←Ym∪Ymi

7: end for
8: return Ym

A third issue of the ROPE algorithm is the loosely defined
stopping criterion: “until the performance corresponding to
Xn and Ym does not differ more than what one would ex-
pect from the observation errors” (Bárdossy and Singh, 2008,
p. 1280). The problem is that there are countless possibili-

Fig. 2. Volume ratio of the unit sphere to the unit cube inn dimen-
sions as a continuous function ofn.

multimodal data sets (Hugg et al., 2006). A clustering of
such data sets and a subsequent sampling from single clus-
ters provides the possibility to filter points that are enclosed
by the convex hull of the data set, but are actually located
outside. The new strategy, entitled GenDeep, is provided in
pseudocode in Algorithm2. Further details of this approach
and a number of case studies are provided inKrauße and
Cullmann(2011b). Just for a small insight we present the
result of a case study discussed in that paper where we per-
formed the depth-based sampling with respect to a previously
sampled data set following a banana-shaped and multi-modal
distribution (cf. Fig.3).

Algorithm 2 GenDeep
1: Perform a cluster analysis on the set of good parameter vectors
X∗n, e.g. with the expectation maximization (EM) algorithm ac-
cording toDempster et al.(1977), which identifies the most
probable number of clustersk in X∗n and assigns all members
of the setX∗n to one (in case of ambiguity also to more than
one) of the clustersci , wherei ∈ {1,...,k}.

2: Ym←∅
3: for all ci ∈ {c1,...,ck} do

4: mi←m
(

#{Ci }
n

)
5: mi random parameter vectors forming the setYmi are gener-

ated, such that∀θ ∈Ymi : {D(θ |ci)≥L whereL>0
6: Ym←Ym∪Ymi
7: end for
8: return Ym

A third issue of the ROPE algorithm is the loosely defined
stopping criterion: “until the performance corresponding to
Xn andYm does not differ more than what one would ex-
pect from the observation errors” (Bárdossy and Singh, 2008,
p. 1280). The problem is that there are countless possibili-
ties in the prior estimation of the tolerance in the model per-
formance due to uncertainty in the observation data and it
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Fig. 3: Two-dimensional data sets (crosses) and corresponding deep points estimated by uniform sampling (blue dots) and
stratified sampling with GenDeep (red dots) using the halfspace depth. The datasets were sampled from a non-elliptic banana-
shaped distribution (left) and a Gaussian mixture model (right).

ties in the prior estimation of the tolerance in the model per-
formance due to uncertainty in the observation data and it
can hardly be determined exactly. A broad definition of this
tolerance can lead to sets with inferior model performance,
whereas a tighter tolerance can easily result in overfitting.
This is a severe shortcoming because it undermines the actual
goals of the algorithm. Overfitting in the context of robust
parameter estimation means that the model performance on
the calibration data still can be increased by further shrink-
ing the estimated set of the deep model parameter vectors,
whereas the model performance on (reasonably similar) con-
trol data decreases by further shrinking. Fig. 4 illustrates this
fact with the results of the calibration of WaSiM in the Ri-
etholzbach catchment w.r.t. to flood events. The FloodSkill
criterion was used as objective and the flood events no.4 and
no.14 were used as calibration and control data, respectively.
It is evident that the model performance on the control data
considerably decreases from iteration 3 whereas the model
performance on the calibration data could be increased by
further iterations.

To address the problem of overfitting, we implemented
two changes to the algorithm. First, we slightly changed the
evolutionary shrinking of the generated deep parameter vec-
tors. To avoid the unintended exclusion of possibly robust
parameter vectors close to the boundary of the initial set of
good model parameters, we suggest merging the set of gen-
erated deep parameter vectors and the identified good param-
eter vectors as initial set for the next iteration, as follows:

Xn←Ym∪X∗n (4)

Second, we suggest the splitting of the data used for model
calibration in a calibration and a control set. The calibration
set is used for the actual model calibration, whereas the con-
trol set is just used to supervise the control process in order to
avoid overfitting. In each iteration of the algorithm the model
performance is estimated both on the calibration and control
set. The moment the performance does not improve anymore
for the control set, the algorithm is stopped. This kind of
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Fig. 4: Overfitting for the calibration of the model WaSiM
while calibrated with the method according to Bárdossy and
Singh (2008); Flood event no. 4 was used for calibration and
event no. 14 was used as control set

approach is a state of the art method in the supervised train-
ing of artificial neural networks in order to avoid overfitting
(Tetko et al., 1995). The splitting of the calibration data can
be done according to an approach based on self-organising
maps (SOM) (May et al., 2010) or any other possible strat-
egy. In the case of limited calibration data as for the calibra-
tion of hydrological models for flood forecasting we suggest
a subjective balanced split, e.g. such that the both calibration
and control set contain small and large flood events and all
types of characteristics.

All these improvements were integrated into a new ap-
proach, we call Advanced Robust Parameter Estimation (A-
ROPE). A flowchart of this advanced Monte Carlo-Depth

Fig. 3. Two-dimensional data sets (crosses) and corresponding deep points estimated by uniform sampling (blue dots) and stratified sampling
with GenDeep (red dots) using the halfspace depth. The datasets were sampled from a non-elliptic banana-shaped distribution (left) and a
Gaussian mixture model (right).
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Rietholzbach catchment w.r.t. to flood events. The FloodSkill
criterion was used as objective and the flood events no. 4 and
no. 14 were used as calibration and control data, respectively.
It is evident that the model performance on the control data
considerably decreases from iteration 3 whereas the model
performance on the calibration data could be increased by
further iterations.

To address the problem of overfitting, we implemented
two changes to the algorithm. First, we slightly changed
the evolutionary shrinking of the generated deep parame-
ter vectors. To avoid the unintended exclusion of possibly
robust parameter vectors close to the boundary of the ini-
tial set of good model parameters, we suggest merging the
set of generated deep parameter vectors and the identified
good parameter vectors as initial set for the next iteration,
as follows:

Xn←Ym∪X
∗
n (4)

Second, we suggest the splitting of the data used for model
calibration in a calibration and a control set. The calibration
set is used for the actual model calibration, whereas the con-
trol set is just used to supervise the control process in order to
avoid overfitting. In each iteration of the algorithm the model
performance is estimated both on the calibration and control
set. The moment the performance does not improve anymore
for the control set, the algorithm is stopped. This kind of
approach is a state of the art method in the supervised train-
ing of artificial neural networks in order to avoid overfitting
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further iterations.
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two changes to the algorithm. First, we slightly changed the
evolutionary shrinking of the generated deep parameter vec-
tors. To avoid the unintended exclusion of possibly robust
parameter vectors close to the boundary of the initial set of
good model parameters, we suggest merging the set of gen-
erated deep parameter vectors and the identified good param-
eter vectors as initial set for the next iteration, as follows:
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Second, we suggest the splitting of the data used for model
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set is used for the actual model calibration, whereas the con-
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ing of artificial neural networks in order to avoid overfitting
(Tetko et al., 1995). The splitting of the calibration data can
be done according to an approach based on self-organising
maps (SOM) (May et al., 2010) or any other possible strat-
egy. In the case of limited calibration data as for the calibra-
tion of hydrological models for flood forecasting we suggest
a subjective balanced split, e.g. such that the both calibration
and control set contain small and large flood events and all
types of characteristics.
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proach, we call Advanced Robust Parameter Estimation (A-
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Fig. 4. Overfitting for the calibration of the model WaSiM
while calibrated with the method according toBárdossy and Singh
(2008); flood event no. 4 was used for calibration and event no. 14
was used as control set.

(Tetko et al., 1995). The splitting of the calibration data can
be done according to an approach based on self-organising
maps (SOM) (May et al., 2010) or any other possible strat-
egy. In the case of limited calibration data as for the calibra-
tion of hydrological models for flood forecasting we suggest
a subjective balanced split, e.g. such that the both calibration
and control set contain small and large flood events and all
types of characteristics.

All these improvements were integrated into a new ap-
proach, we call Advanced Robust Parameter Estimation (A-
ROPE). A flowchart of this advanced Monte Carlo-Depth
based sampling approach is provided in Fig.5.
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7

START

Input: p=dimension, n=population size, m=final size, tolf =uncertainty boundary
constraints=CHRp, priors={p1(θ),...,pp(θ)}, maxIter=max. no. of iterations

if possible, split the used observation data (xobs,yobs) into a calibration and
control set

Sample n parameter vectors in the feasible space, Θ, accord-
ing to the given priors and constraints:

Xn← sample(Θ,{p1(θ),...,pp(θ)},CHRp);

The model mh is run for the calibration and control set; the corresponding model
performances are calculated by a purpose-specific objective function f :

∀θ∈ Xn do : ŷ←mh(θ,κ,xobs); ζ(θ)← f(ŷ,yobs); endfor

A subset Xn
∗ ⊂Xn of the good performing parameter vectors in Xn is identified,

such that X∗n comprises all parameter vectors in Xn better than a given percentile b.
b is dynamically adapted from 0.1 at the beginning up to 0.9:

Xn
∗←{θ∈Xn : ζ(θ)≥ ζb)

Identify good

Generate a set of
deep parameters Ym

w.r.t. X∗n

GenDeep
strategy

Generate robust

Stopping
criterion
satisfied?

Xn :=X∗n ∪Ym;

(1) no. of iterations ≥
maxIter?

(2) The spread of
the model per-
formances gets
smaller than tolf ?

(3) Improvement on
calibration data
gets smaller than a
tolerance?

(4) Improvement
on control data
decreases w.r.t
previous iteration?

Output: Ym=set of robust parameter vectors
ζ=calibration performance

STOP

No

Yes

Fig. 5: Flowchart of the Advanced Robust Parameter Estimation by Monte Carlo Simulation (A-ROPE) algorithmFig. 5. Flowchart of the Advanced Robust Parameter Estimation by Monte Carlo Simulation (A-ROPE) algorithm.
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Algorithm 3 Standard PSO algorithm
1: initialise global best positioňg ∈ U [x lb,xub]

and global bestg←∞
2: for all particlesi do
3: initialise position and local bestxi ,x̌i ∈ U [x lb,xub]

4: and velocityvi =0
5: end for
6: while stop criteria not metdo
7: for all particlesi do
8: update local best positioňxi as best position found so far

from the particle with indexi
9: update global best positioňg and corresponding fitness

value g as best position found so far from the whole
swarm

10: end for
11: for all particlesi do
12: update velocity using equation

vi←ωvi+φ1R2(x̌i−xi)+φ2R1(ǧ−xi)

13: update position using equation
xi← xi+vi

14: end for
15: end while

3 Merging the strengths of swarm intelligence and
depth based parameter sampling

3.1 Particle Swarm Optimisation

An approved search and optimisation strategy for high-
dimensional parameter spaces is the Particle Swarm Optimi-
sation which was first presented byKennedy and Eberhart
(1995). It is a population based search algorithm which tries
to solve an optimisation problem with arbitrary dimension-
ality by having a population (swarm) of candidate solutions,
here called particles. The performance of each particle is
computed and afterwards these particles are moved around
in the search-space. The movement is guided by the best
found positions of each of the particles and the currently
found global best solution. Often those optimisation prob-
lems are formulated as the problem of finding the minimum
of a function. Algorithm3 gives a simple version of a PSO
algorithm for the minimisation of a functionf with upper
and lower boundariesx lb andxub respectively. A good in-
troduction into the ideas of swarm intelligence and further
reading is given inKennedy et al.(2001).

3.2 Robust parameter estimation applying Particle
Swarm Optimisation: ROPE-PSO

The so far presented depth based parameter estimation algo-
rithms rely on the Monte Carlo method in order to identify a
set of good parameter vectors with a given tolerance. Hence
the proposed method suffers from the shortcomings of the
Monte Carlo method, namely a slow convergence and there-
fore a large number of samples are needed to estimate a stable
solution. This is a major disadvantage for the calibration of

Table 1. Default values of the parameters that control the PSO-GAu

algorithm.

Symbol Description Default value

ψ Breeding ratio 0.5
ω Particle inertia weight 0.9 decreasing to 0.4
φ1 Cognitive attraction 0.5
φ2 Social attraction 1.25

computationally intensive process-oriented models. Thus in
real-world application the maximum number of model runs
has to be limited to a computationally feasible maximum.
We try to overcome this problem by substituting the Monte
Carlo based estimation of a set of good model parameter vec-
tors with a PSO based approach. Although PSO and other
evolutionary optimisation approaches were not designed as
uncertainty analysis methods they can be adapted in order to
be used for a uncertainty quantification with a given toler-
ance (Mohamed et al., 2010). One possibility to do this is
to integrate a Markov Chain element and use them within the
scope of a Bayesian framework.Vrugt et al.spent a lot of ef-
fort on the development of effective and efficient algorithms
following this approach, e.g. SCEM-UA (Vrugt et al., 2003b)
and DREAM (Vrugt et al., 2009a). Another approach is to
store all so far found parameter vectors within a given uncer-
tainty limit to an archive and direct the search accordingly.
One well-known example is the use of PSO algorithms for
the approximation of a Pareto optimal set of parameter vec-
tors as the solution of a multi-objective calibration problem,
e.g. as provided byGill et al. (2006).

Algorithm 4 VPAC operator
1: pick random numbersφ1,φ2∼U(0,1)
2: update positions using equations

x1←
x1+x2

2 −φ1v1

x2←
x1+x2

2 −φ2v2
3: reset the particles memoryp1← x1andp2← x2
4: update the velocities:v1← v1andv2← v2

We will focus on the latter kind of approach. Thus, we
developed an algorithm that thoroughly but economically ex-
plores the space and stores all solutions within a given uncer-
tainty tolerance to an archive. The basis of our algorithm is a
modified version of the PSO presented bySettles and Soule
(2005) which is actually a hybrid between a genetic algo-
rithm (GA) and PSO. Thus, we call this algorithm PSO-GAu.
It can be controlled by a parameterψ that is called breeding
ratio. This parameter determines the proportion of the popu-
lation that is not moved according to PSO but is transformed
using the GA. Thus, values for the breeding ratio parameter
range from[0−1]. Settles and Soule(2005) propose a de-
fault value of 0.5, with the expectation that the best results

Hydrol. Earth Syst. Sci., 16, 603–629, 2012 www.hydrol-earth-syst-sci.net/16/603/2012/



T. Krauße and J. Cullmann: Particle Swarm Optimisation and Robust Parameter Estimation 611

Algorithm 5 PSO-GAu
Require: f = objective function,n= population size,m= final size, tolf = uncertainty boundary,

prior boundaries[θlb,θub], tα = minimum depth (corresponds to a desired depth contour)

// INIT
1: initialise global best positioňg ∈ U [θlb,θub]

2: initialise archive of good solutions withX∗←∅
3: for all particlesθi ∈Xn do
4: initialise positionθi , local bestθ̌i and velocityvi ∈ U [θlb,θub]

5: end for

// ITERATE
6: while stop criteria not metdo

7: // UPDATE FITNESS AND BEST
8: for all particlesθi ∈Xn do
9: evaluate model performancef (θi)

10: update the local besťθi as the best position found so far from the particle with indexi in case thatf (θi)better than f(ǧ+ tolf)
11: end for
12: update global best positioňg as best position found so far from the whole swarm
13: add all current positions with a performance better thanf (ǧ)+ tolf to the archiveX∗

14: remove all solutions with a performance worse thanf (ǧ)+ tolf from the archiveX∗

// GA
15: nGA←ψ ·n; discardnGA particles from the population while preserving the 10% best (elitism)
16: init empty genetic offspringXGA←∅

17: for i=1 to nGA
2 do

18: select a pair{θ1,θ2} from the population by tournament selection
19: apply the VPAC operator to generate new offspring:{θ ′1,θ

′

2}←VPAC({θ1,θ2}); consider that this notation includes an update of
the velocities and personal best according to the VPAC operator

20: XGA←XGA∪{θ
′

1,θ
′

2}

21: end for

// PSO
22: assign to each particle a random memberǧi ∈X

∗ as a “personal” global best
23: for all particlesθi ∈Xn do
24: update velocity using equationvi←ωvi+φ1R2(θ̌i−θi)+φ2R1(ǧi−θi)

25: update position using equationθi← θi+vi
26: end for

// MERGE
27: merge the population with genetic offspring

Xn←Xn∪XGA
28: end while

29: return the setX∗ as an approximation of the distribution of good parameter vectors within the uncertainty bounds defined by tolf

would be with an even mix of both GA and PSO. However,
other values for the breeding ratio may provide better results
depending on the characteristics of the considered calibration
problem. For further details we refer toSettles and Soule
(2005) and referred literature. The evolution of the parti-
cles by the GA is done using the following approach: from
the pool of possible breeding particles candidates are nom-
inated by tournament selection and recombined. In order
to do this they introduced the Velocity Propelled Averaged
Crossover (VPAC) operator. The goal is to create two child
particles whose position is between the parent’s position, but
accelerated away from the parent’s current direction (neg-
ative velocity) in order to increase diversity in the popula-

tion. Algorithm4 shows how the new child position vectors
and velocities are calculated using VPAC. The child parti-
cles retain their parent’s velocity vector. The previous best
vector is set to the new position vector, restarting the child’s
memory. Towards the end of a typical PSO run, the popu-
lation tends to be highly concentrated in a small portion of
the search space, effectively reducing the search space. With
the addition of the VPAC crossover operator, a portion of the
population is always pushed away from the group, increasing
the diversity of the population and the effective search space.
The general movement of the PSO part is a standard imple-
mentation that can be controlled by the following parame-
ters: the particle inertia weightω determines the velocity of
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the proper motion of the particles, the cognitive attraction
φ1 that controls the degree of movement towards the local
optimum and the social attractionφ2 doing the same with
respect to the global optimum of the swarm. We set the algo-
rithm’s parameters according to literature recommendations
(cf. Table1). For further details and studies regarding the
setting of the algorithm’s parameters refer toPerez and Be-
hdinan(2007), Settles(2005) that also provide references to
additional literature and materials. The used stopping crite-
rion is either a fixed number of iteration steps that has to be
set according to the given problem or a maximum number
of members in the set of good parameter vectors. Another
option might be a check that assesses the stability of the esti-
mated set. We suggest to carry out some test runs with differ-
ent limits and check the stability of the estimated parameter
vectors. For further details regarding this issue we refer to
Gill et al. (2006) andCabrera and Coello(2010).

Algorithm 6 ROPE-PSO
1: Execute the PSO based PSO-GAu procedure to estimate a set

of good model parameter vectorsX∗ with a model performance
within a given tolerance tolf

2: Apply the GenDeep algorithm to sample a set of parameter vec-
torsY with high data depth w.r.t.X∗

3: return Y

An important difference is done considering the local and
global optimum of the swarm. Contrary to normal PSO al-
gorithms the PSO-GAu algorithm does not just account for
one global optimum, but for a set of good parameter vectors.
Good parameter vectors are all points evaluated so far that
correspond to a model performance better than the global
optimum found so far plus a given uncertainty tolerance tolf

which must be set with regards to the specific problem. For
environmental model calibration tolf should be set according
to the accuracy of the used observations and other sources
of uncertainty to be considered. To ensure a sufficient but
nonetheless economical cover of the feasible space not just
towards the global optimum the PSO-GAu algorithm follows
an idea that is used in multi-objective PSO algorithms: all
so far found good parameter vectors are stored in an archive
X∗. An important difference between a normal PSO algo-
rithm considers the movement at the end of each iteration.
Instead of moving the whole swarm towards the so far found
global best position, the algorithm assigns to each particle
one random member of the archiveǧi ∈X∗. We call this
position “personal” global best (cf. Algorithm5, line 14).
Another issue affects the update of the local best positionx̌i .
Unlike in a normal PSO, it will only be changed in case that
the old local optimum corresponds to a model performance
worse than the global optimum plus the uncertainty bound.
This prevents a too small shrinkage of the swarm and ensures
that the algorithm not just searches into the direction of the
so far found global optimum but samples from the whole re-
gion within the given tolerance. Consider that this algorithm

can also prevent overfitting just by adding another objective
function that assesses the performance on a control set. In
this case the position of a particle is considered to be better
in case that it shows an improvement on both the calibration
and the control data. This basic idea can be used to advance
this method into a full multi-objective calibration procedure.
A pseudocode listing of the complete proposed PSO-GAu

algorithm is provided in Algorithm5.
The set of good parameter vectors estimated by PSO-GAu

should not only comprise the global optimum but cover the
complete region within the given uncertainty bounds. That is
an issue in so far that PSO, i.e. the underlying algorithm of
ROPE-PSO, was unlike Monte Carlo not designed to be used
as an uncertainty analysis method. Therefore we studied the
sets of good parameter vectors estimated by PSO-GAu and
checked whether they follow the same distribution as those
estimated by iterative Monte Carlo used in the ROPE and A-
ROPE algorithm. We demonstrate this issue using the Rosen-
brock function as defined in Eq. (5) as an example. It is a
smooth single extremum test function that represents the ex-
istence of large flat regions on the error surface. This is quite
typical for hydrologic models (Duan et al., 1992). We set a
(subjective) tolerance value of 0.2 and applied the iterative
Monte Carlo method from in both ROPE and A-ROPE, and
the PSO-GAu algorithm in order to estimate a set of good
parameter vectors within the given tolerance.

f (x)=

d−1∑
i=1

[
(1−x2

i )
2
+100(xi+1−x

2
i )

2
]

with minf (x∗)=0 andx∗i =1 (5)

The estimated scatter plots are provided in Fig.6. The dark
grey regions represent the true distribution of parameter vec-
tors with a function value less than the given tolerance. It
was estimated by a Monte Carlo simulation using Latin hy-
percube sampling with a number of 1000.000 samples in the
target region. Considering the fact that the global optimum of
the Rosenbrock function is zero at the positionθopt= {1,1}
this region matches exactly the targeted distribution. It is ev-
ident that the parameters provided by PSO-GAu cover the
complete region of good parameter vectors, suggesting that
the modified PSO approach provides a correct estimation of
the target distribution and hence does not collapse to a small
region comprising the estimated global minimum.

The developed PSO-GAu approach can be easily used to
substitute the Monte Carlo based approach in a robust pa-
rameter estimation algorithm. The new approach called Ro-
bust Parameter Estimation using PSO (ROPE-PSO) applies
PSO-GAu in order to obtain a set of good parameter vec-
torsX∗ with a given uncertainty. Afterwards a set of deep
parameter vectors with respect toX∗ is sampled using the
previously introduced by the GenDeep sampling strategy. A
pseudocode listing of the developed ROPE-PSO approach is
given in Algorithm 6. The proposed approach methodol-
ogy can be extended to be used for an uncertainty analysis
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Fig. 6: A scatterplot of the (θ1,θ2) samples of good parameter vectors generated using the iterative Monte Carlo approach in
the original ROPE (a), the modified version A-ROPE (b) and the PSO based PSO-GAu algorithm (c). The dark grey region
represent the true distribution of the good parameter vectors considering a tolerance of 0.2.

Monte Carlo method from in both ROPE and A-ROPE, and
the PSO-GAu algorithm in order to estimate a set of good
parameter vectors within the given tolerance.

f(x) =
d−1∑
i=1

[
(1−x2

i )2 +100(xi+1−x2
i )2
]

(5)

with min(f(x∗) = 0 and x∗i = 1

The estimated scatter plots are provided in Fig. 6. The
dark grey regions represent the true distribution of parameter
vectors with a function value less than the given tolerance. It
was estimated by a Monte Carlo simulation using Latin hy-
percube sampling with a number of 1000.000 samples in the
target region. Considering the fact that the global optimum of
the Rosenbrock function is zero at the position θopt = {1,1}
this region matches exactly the targeted distribution. It is ev-
ident that the parameters provided by PSO-GAu cover the
complete region of good parameter vectors, suggesting that
the modified PSO approach provides a correct estimation of
the target distribution and hence does not collapse to a small
region comprising the estimated global minimum.

The developed PSO-GAu approach can be easily used to
substitute the Monte Carlo based approach in a robust param-
eter estimation algorithm. The new approach called Robust
Parameter Estimation using PSO (ROPE-PSO) applies PSO-
GAu in order to obtain a set of good parameter vectors X∗

with a given uncertainty. Afterwards a set of deep parameter
vectors with respect to X∗ is sampled using the previously
introduced by the GenDeep sampling strategy. A pseudocode
listing of the developed ROPE-PSO approach is given in Al-
gorithm 6. The proposed approach methodology can be ex-
tended to be used for an uncertainty analysis within a proper
statistical context, by relating the likelihood of the param-
eter vectors to their depth. However further research is re-
quired to complete this task (e.g. Bárdossy and Singh, 2008).

The algorithm was implemented in a robust parameter esti-
mation framework which comprises other published ROPE
approaches. The implementation was done in the MATLAB
programming language. It is open source and available from
the author.

4 Accounting for uncertain soil information on hydro-
logic parameter estimation

The soil hydraulic parameters determine the water retention
and conductivity curves and thus govern the process of water
movement in the unsaturated zone. For this reason they also
influence the generation of direct runoff and interflow in a
hydrologic model. In many studies the soil hydraulic param-
eters are considered as physically based parameters and are
used as fixed values. Often those values are simply estimated
by applying a pedotransfer function to physical soil proper-
ties, e.g. the distribution of the grain-size fractions, humus
content and bulk density. Typically the soil information is
given in a classified form which provides a possible range of
the physical soil properties referring to the used classification
system. This information is often visualised in a soil texture
triangle. However, in most cases the pedotransfer function is
just applied to the mean value for the considered soil type.
The uncertainty due to classified soil information is typi-
cally not considered. However, neglecting this uncertainty
can influence the accuracy and uncertainty of the estimation
of other conceptual model parameters.

Grundmann (2010) studied this problem and presented a
new method to account for those uncertainties. The proposed
approach has a high degree of general applicability because
it is independent of the used soil classification system and the
used pedotransfer function. Their approach can be summa-
rized by the following algorithmic steps:

1. Identify the lower and upper boundaries of the grain-
size fractions for each pre-dominant soil type in the

Fig. 6. A scatterplot of the(θ1,θ2) samples of good parameter vectors generated using the iterative Monte Carlo approach in the original
ROPE(a), the modified version A-ROPE(b) and the PSO based PSO-GAu algorithm(c). The dark grey region represent the true distribution
of the good parameter vectors considering a tolerance of 0.2.

within a proper statistical context, by relating the likelihood
of the parameter vectors to their depth. However further re-
search is required to complete this task (e.g.Bárdossy and
Singh, 2008). The algorithm was implemented in a robust
parameter estimation framework which comprises other pub-
lished ROPE approaches. The implementation was done in
the MATLAB programming language. It is open source and
available from the author.

4 Accounting for uncertain soil information on
hydrologic parameter estimation

The soil hydraulic parameters determine the water retention
and conductivity curves and thus govern the process of water
movement in the unsaturated zone. For this reason they also
influence the generation of direct runoff and interflow in a
hydrologic model. In many studies the soil hydraulic param-
eters are considered as physically based parameters and are
used as fixed values. Often those values are simply estimated
by applying a pedotransfer function to physical soil proper-
ties, e.g. the distribution of the grain-size fractions, humus
content and bulk density. Typically the soil information is
given in a classified form which provides a possible range of
the physical soil properties referring to the used classification
system. This information is often visualised in a soil texture
triangle. However, in most cases the pedotransfer function is
just applied to the mean value for the considered soil type.
The uncertainty due to classified soil information is typi-
cally not considered. However, neglecting this uncertainty
can influence the accuracy and uncertainty of the estimation
of other conceptual model parameters.

Grundmann(2010) studied this problem and presented a
new method to account for those uncertainties. The pro-
posed approach has a high degree of general applicability be-
cause it is independent of the used soil classification system
and the used pedotransfer function. Their approach can be
summarized by the following algorithmic steps:

1. Identify the lower and upper boundaries of the grain-
size fractions for each pre-dominant soil type in the
catchment, according to the given soil information and
classification system.

2. For each considered soil type, draw a set of possi-
ble samples of the grain-size fractions by uniformed
sampling (uniform distribution) over the identified
range.

3. Apply a suitable pedotransfer function to each sample
in order to estimate a set of soil hydraulic parameters
describing their prior distribution.

4. The estimated parameters can be scaled to a scaling pa-
rameterβ using a similar media concept in order to re-
duce their dimensionality. A suitable approach is pre-
sented inWarrick et al.(1977). The scaling parameter
β can now be considered for calibration.

The estimated distribution of the scaling parameters is a well-
founded a priori estimate of the uncertainty in the soil hy-
draulic parameters and can be used to study the influence of
the uncertain soil information on the simulation results of hy-
drologic models. Furthermore this information can be used
as a well-founded prior distribution for a subsequent model
calibration considering the soil hydraulic parameters as cali-
bration parameters. This approach contradicts the physically
based philosophy of the Richards equation model. On the
other hand, this opens the possibility to adapt this model to
the processes in the catchment. We are convinced that this is
a reasonable approach because the soil hydraulic parameters
can hardly be determined with the necessary precision on a
catchment scale just be using soil information maps. Dur-
ing calibration the scaling parameterβ is adjusted to suit-
able values. The model however cannot directly be driven
with β but with a vector of soil hydraulic parameters. They
can be derived fromβ using a mapping or rescaling proce-
dure as follows. First, the mapping assigns a soil hydraulic
parameter vector from the previously generated set to every
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Table 3: Overview of the three used conceptual model parameters considered for calibration; the reference parameter vector
θwb was estimated in order to use WaSiM for water-balance simulations in the Rietholzbach catchment; additionally we
provided the conceptual soil parameter krec that plays a role in another case study

parameter unit reference (θwb) upper and lower boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 0.01 40 storage coefficient of interflow
dr [-] 2.1 0.01 80 drainage density

1
Interflow

2
Interflow

3
Interflow

..
Interflow

ks, Θr, Θs,
α, n, krec

Richards equation
describes soil
water movement

Infiltration
(according to

Green & Ampt)

Precipitation

Direct runoff

Evapotranspiration

Groundwater

Capillary rise

Baseflow

kd

dr, ki

Fig. 7: Scheme of the WaSiM soil module with location of
impact of soil hydraulic and conceptual model parameters
(bold)

ies (Cullmann, 2006; Pompe, 2009; Grundmann, 2010) these
three parameters have been proven to be sensitive with re-
spect to modelling flood events. Besides the specified upper
and lower boundaries of the model parameters, the additional
constraint ki≥ 1.05 kd was introduced in order to account for
the basic consideration that the direct runoff from a cell has a
shorter travel time to the catchment outlet than the generated
interflow in the unsaturated zone. The reference parameter
vector θwb estimated for water-balance simulations was used
to estimate reasonable pre-event model states.

Within our case studies we assume that the influence of
observation errors in temperature measurements is negligible
for the simulation of flood events whereas the uncertainty of
the measured precipitation can be expressed by an ensem-

Fig. 8: A 3D-view of the catchment with the potential rivers
flowpaths. This illustration is taken from the official Ri-
etholzbach website (http://www.iac.ethz.ch/en/research/riet/
overview.html).

ble. To keep the problem still computationally feasible we
do not consider the influence on the estimated parameter sets
due to the uncertainties in the observed precipitation and just
use the ensemble mean for the model calibration, but just
focus on the influence on the observation errors of the mea-
sured discharge. Following the assumptions of Bárdossy and
Singh (2008) we assume an accuracy of the measured dis-
charge qobs(t) of 5%. Thus, the real but unknown discharge
q(t) can be written as:

q(t) = qobs(t)(1+ε(t)) (6)

with ε(t) being a random error. This random error is due
to uncertainties of the rating curve, non-uniqueness of the
stage discharge relationship, changes of the cross section etc.
(Bárdossy and Singh, 2008). As many other authors (e.g.
Kuczera et al., 2006; Bárdossy and Singh, 2008) we assume
that this error obeys a normal distribution with a standard de-
viation of the measurement accuracy: N (0,0.05). For each
observed discharge time series we used this model and pro-
duced an ensemble with 100 members. This ensemble can
be used in order to assess the uncertainty due to observation
errors. It also opens the possibility to assess the uncertainty
of the results of classical optimisation algorithms as follows.
For such an algorithm we calibrate the model with respect to
every single ensemble member of the set of possible observa-

Fig. 7. Scheme of the WaSiM soil module with location of impact
of soil hydraulic and conceptual model parameters (bold).

estimated scaling parameter and stores this information into
a lookup table. For a newβ value that is not stored in the
database the rescaling selects the vectors of soil hydraulic
parameters from the previously generated database with the
closest corresponding scaling value.Grundmann(2010) used
the estimated prior distribution and estimated the posteriori
distribution of the soil hydraulic parameters in the context
of a Bayesian framework. The parameter estimation frame-
work used in this paper is no closed Bayesian uncertainty
framework. The priori estimates serve however as a well-
founded starting population of the evolutionary approach es-
timating the good model parameter vectors. The mapping
used in the rescaling ensures that the soil hydraulic param-
eters cannot leave the variation intervals given by the prior
distributions. Consider once again that we want to adapt the
soil hydraulic parameters to the catchment characteristics.
Therefore we do not use a probability-possibility transfor-
mation and propagate the prior uncertainty described by the
possibility distribution through the model. For further infor-
mation on this approach we refer toGrundmann(2010) and
Warrick et al.(1977).
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due to the uncertainties in the observed precipitation and just
use the ensemble mean for the model calibration, but just
focus on the influence on the observation errors of the mea-
sured discharge. Following the assumptions of Bárdossy and
Singh (2008) we assume an accuracy of the measured dis-
charge qobs(t) of 5%. Thus, the real but unknown discharge
q(t) can be written as:
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with ε(t) being a random error. This random error is due
to uncertainties of the rating curve, non-uniqueness of the
stage discharge relationship, changes of the cross section etc.
(Bárdossy and Singh, 2008). As many other authors (e.g.
Kuczera et al., 2006; Bárdossy and Singh, 2008) we assume
that this error obeys a normal distribution with a standard de-
viation of the measurement accuracy: N (0,0.05). For each
observed discharge time series we used this model and pro-
duced an ensemble with 100 members. This ensemble can
be used in order to assess the uncertainty due to observation
errors. It also opens the possibility to assess the uncertainty
of the results of classical optimisation algorithms as follows.
For such an algorithm we calibrate the model with respect to
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Fig. 8. A 3-D-view of the catchment with the potential rivers flow-
paths. This illustration is taken from the official Rietholzbach web-
site (http://www.iac.ethz.ch/en/research/riet/overview.html).

5 Case studies

5.1 Calibrating of the hydrologic model WaSiM
focussing on flood events

In two real world case studies the developed approach is
tested on the calibration of the hydrologic model WaSiM-
ETH/6.4 (in the further referred to as WaSiM). WaSiM is a
spatial distributed process-oriented rainfall-runoff model and
was developed bySchulla(1997) at the ETH Zurich. WaSiM
has been used successfully for modeling the rainfall-runoff
processes in several studies in catchments located within
mid mountain ranges (e.gGrundmann, 2010) and especially
also in the pre-alpine Rietholzbach catchmentGurtz et al.
(1999, 2003b,a); Krauße and Cullmann(2011b). Further-
more WaSiM-ETH has been used for extrapolation of ex-
treme flood events byCullmann(2006). For this study we
used the version with the approach according to Richards for
the simulation of the unsaturated zone. An overview of the
model structure is given in Fig.7. For further details of the
model, we refer toSchulla and Jasper(2007) and the official
website of the modelhttp://www.wasim.ch.

The model was calibrated focussing on flood events in the
small prealpine Rietholzbach catchment (3.18 km2). As a
sub-basin of the Thur catchment it is located in the north-east
of Switzerland. A 3-D-view of the catchment area is given in
Fig. 8. This basin has been observed as a research catchment
by the ETH Zurich since 1975. Continuous hourly measure-
ments have taken place since 1981. For the case studies pre-
sented in this paper we used a time series consisting 27 yr of
meteorological (temperature, precipitation, global radiation,
and wind speed) and discharge measurements. Due to its
longterm observation as a research catchment and its limited
size, the Rietholzbach catchment has a long record of hourly
data sets and the perturbing impact of data heterogeneity is
relatively small in this catchment. The data we based our
study upon is a time series consisting 27 yr of meteorologi-
cal and discharge measurements. Out of this time series we
selected a set of 24 flood events with a peak flow of at least
1 mm h−1. All events are in the time from May until Oc-
tober to avoid the problem of modeling snow accumulation
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Table 2. Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value.

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm h−1] Volume [mm] Type Volume [mm] 20−−0.5 m [vol %]

1 06/07/1994 24:00

13

Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

7.61 33.2 convective 75.0 65

2 23/06/1986 22:00
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Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

7.52 20.2 convective 39.7 75

3 06/07/1994 21:00

13
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Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

6.23 33.2 convective 75.0 65
4 08/08/2007 20:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

5.69 51.2 convective 64.1 90
5 07/06/2007 23:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

5.48 16.0 convective 36.1 79
6 06/08/1982 19:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

5.35 21.2 convective 28.3 87
7 25/07/1989 20:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

4.64 11.7 convective 13.7 80
8 30/05/1995 22:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

4.01 16.9 convective 39.4 84
9 15/08/1982 20:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

4.01 18.3 convective 43.6 80
10 06/08/2000 13:00

13

Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

3.61 28.9 stratiform 48.8 83
11 17/09/2006 09:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

3.13 36.1 convective 101.8 71
12 24/09/2002 10:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

3.04 120.1 stratiform 125.2 87
13 09/09/2001 01:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

2.96 18.4 convective 49.4 78
14 09/06/1994 07:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

2.52 27.9 stratiform 40.7 86
15 11/05/1991 24:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

2.50 44.6 stratiform 75.3 80
16 01/07/1987 16:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

2.37 12.1 convective 30.7 78
17 02/08/2005 22:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

2.03 26.0 convective 54.2 74
18 25/05/1990 11:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

2.02 14.3 stratiform 54.9 75
19 11/06/1995 07:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

1.98 28.8 stratiform 36.8 88
20 31/05/2000 09:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

1.76 19.4 stratiform 57.7 78
21 09/09/2005 21:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

1.62 6.9 convective 37.1 67
22 28/09/1995 01:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

1.47 17.3 stratiform 38.2 81
23 13/05/2002 01:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 84

1.02 4.6 convective 21.4 81
24 14/09/1993 01:00
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Table 2: Overview of the database of the 24 flood events used for calibration and validation sorted by peak flow value

Event Discharge Rainfall Pre Soil Moisture

No. Time (CET) Hydrograph Peak [mm/h] Volume [mm] Type Volume [mm] Θ0−0.5m [vol %]

1 06/07/1994 24:00 7.61 33.2 convective 75.0 65

2 23/06/1986 22:00 7.52 20.2 convective 39.7 75

3 06/07/1994 21:00 6.23 33.2 convective 75.0 65

4 08/08/2007 20:00 5.69 51.2 convective 64.1 90

5 07/06/2007 23:00 5.48 16.0 convective 36.1 79

6 06/08/1982 19:00 5.35 21.2 convective 28.3 87

7 25/07/1989 20:00 4.64 11.7 convective 13.7 80

8 30/05/1995 22:00 4.01 16.9 convective 39.4 84

9 15/08/1982 20:00 4.01 18.3 convective 43.6 80

10 06/08/2000 13:00 3.61 28.9 stratiform 48.8 83

11 17/09/2006 09:00 3.13 36.1 convective 101.8 71

12 24/09/2002 10:00 3.04 120.1 stratiform 125.2 87

13 09/09/2001 01:00 2.96 18.4 convective 49.4 78

14 09/06/1994 07:00 2.52 27.9 stratiform 40.7 86

15 11/05/1991 24:00 2.50 44.6 stratiform 75.3 80

16 01/07/1987 16:00 2.37 12.1 convective 30.7 78

17 02/08/2005 22:00 2.03 26.0 convective 54.2 74

18 25/05/1990 11:00 2.02 14.3 stratiform 54.9 75

19 11/06/1995 07:00 1.98 28.8 stratiform 36.8 88

20 31/05/2000 09:00 1.76 19.4 stratiform 57.7 78

21 09/09/2005 21:00 1.62 6.9 convective 37.1 67

22 28/09/1995 01:00 1.47 17.3 stratiform 38.2 81

23 13/05/2002 01:00 1.02 4.6 convective 21.4 81

24 14/09/1993 01:00 1.02 10.9 stratiform 26.8 841.02 10.9 stratiform 26.8 84

Table 3. Overview of the three used conceptual model parameters considered for calibration; the reference parameter vectorθwb was
estimated in order to use WaSiM for water-balance simulations in the Rietholzbach catchment; additionally we provided the conceptual soil
parameterkrec that plays a role in another case study

parameter unit reference (θwb) upper and lower boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 0.01 40 storage coefficient of interflow
dr [-] 2.1 0.01 80 drainage density
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and melting processes. An overview of all selected 24 flood
events with their specific characteristics and pre-conditions
is given in Table2. A significant number of studies have
been conducted in this basin. For further information we
refer to Gurtz et al.(1999); Zappa(2002) and the website
http://www.iac.ethz.ch/research/rietholzbach.

Table3 gives the model parameters considered for calibra-
tion. Those are the storage coefficients of direct runoff and
interflow, kd andki , and the drainage densitydr which is a
scaling parameter of interflow generation. In previous stud-
ies (Cullmann, 2006; Pompe, 2009; Grundmann, 2010) these
three parameters have been proven to be sensitive with re-
spect to modelling flood events. Besides the specified upper
and lower boundaries of the model parameters, the additional
constraintki ≥1.05kd was introduced in order to account for
the basic consideration that the direct runoff from a cell has a
shorter travel time to the catchment outlet than the generated
interflow in the unsaturated zone. The reference parameter
vectorθwb estimated for water-balance simulations was used
to estimate reasonable pre-event model states.

Within our case studies we assume that the influence of
observation errors in temperature measurements is negligible
for the simulation of flood events whereas the uncertainty of
the measured precipitation can be expressed by an ensem-
ble. To keep the problem still computationally feasible we
do not consider the influence on the estimated parameter sets
due to the uncertainties in the observed precipitation and just
use the ensemble mean for the model calibration, but just
focus on the influence on the observation errors of the mea-
sured discharge. Following the assumptions ofBárdossy and
Singh (2008) we assume an accuracy of the measured dis-
chargeqobs(t) of 5%. Thus, the real but unknown discharge
q(t) can be written as:

q(t)= qobs(t)(1+ε(t)) (6)

with ε(t) being a random error. This random error is due
to uncertainties of the rating curve, non-uniqueness of the
stage discharge relationship, changes of the cross section
etc. (Bárdossy and Singh, 2008). As many other authors (e.g.
Kuczera et al., 2006; Bárdossy and Singh, 2008) we assume
that this error obeys a normal distribution with a standard de-
viation of the measurement accuracy:N (0,0.05). For each
observed discharge time series we used this model and pro-
duced an ensemble with 100 members. This ensemble can
be used in order to assess the uncertainty due to observation
errors. It also opens the possibility to assess the uncertainty
of the results of classical optimisation algorithms as follows.
For such an algorithm we calibrate the model with respect to
every single ensemble member of the set of possible observa-
tions. All estimated best parameter vectors are merged into
a set that expresses the uncertainty due to the observation er-
rors. For further details refer toBárdossy and Singh(2008).
To ensure comparability the same should be done for the dif-
ferent ROPE algorithms either. However, in order to reduce
the computation time, we previously checked the stability of

Table 4. Objective functions used in this study, wherexi andyi(θ)
are the observed and simulated discharge (by the parameter vector
θ ) at time-stepi respectively andn is the number of observation
points

Criterion Formula

NS 1−
1
n

∑n
i=1(xi−yi(θ))

2

1
n

∑n
i=1(xi−x̄)

2

rPD
|xmax−ymax(θ)|

xmax

FloodSkill NS− rPD

the estimates of the considered ROPE algorithms for a sub-
set of the discharge ensemble members and subsequently just
used the ensemble mean for calibration.

A successful calibration requires the definition of a per-
formance criterion that quantifies the matching with the in-
tended objective. Focussing on flood events a suitable per-
formance criterion should quantify both the model’s ability
to provide a good estimate of the peak flow values and to
provide a behaviour that is at least in fundamentals similar
to the catchment behaviour. A good measure to asses the
the first point is the relative peak flow deviation (rPD) which
is defined as the absolute value of the relative deviation of
the simulated with respect to the observed peak flow value.
The general quality of the fit of the model and the catch-
ment behaviour can be assessed by a global performance cri-
terion, e.g. the efficiency criterion according toNash and
Sutcliffe (1970) (NS). It has been widely used to quantify
the global performance of hydrologic models. We combined
both the Nash efficiency and the relative peak flow devia-
tion into an aggregated performance criterion, we call Flood-
Skill. The higher the FloodSkill the better is the model’s
ability to represent the catchment’s behaviour focussing on
flood events. A perfect fit corresponds to a FloodSkill of
one. A least acceptable model with Nash value of 0.5 and
a relative peak flow deviation of 0.5 correspond to a Flood-
Skill of zero1. A formal definition of the FloodSkill and the
previously introduced criteria is given in Table4.

5.1.1 Case study I: Comparison of ROPE, A-ROPE and
ROPE-PSO considering just the conceptual model
parameters

In a first case study we studied the developed ROPE ap-
proaches on the basis of a first real world case study. The
original ROPE approach and the two classical optimisation
algorithms, the interior-point method (IPM) according to

1Consider that such a model performance is rather realistic for
flood events in a very small catchment with less than 5 km2 using
just hourly data.
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Table 5. Sub-division of all flood events in a calibration, control
and validation set

Set Used flood events

Calibration {6,11,20}

Control {14,18,24}

Validation
{1,2,3,4,5,7,8,9,10,12,...
13,15,16,17,19,21,22,23}

Waltz et al.(2006) which is a gradient based method and
a genetic algorithm (GA) according toConn et al.(1997)
served as additional benchmarks. Nonetheless the focus al-
ways remains on A-ROPE and ROPE-PSO. The conceptual
model parameters of the model WaSiM were calibrated fo-
cussing on flood events. Out of the mentioned set of 24 flood
events, three events were used for calibration, three for over-
fitting control and the remaining events were used for valida-
tion (cf. Table5). Both the calibration and control set contain
three events covering the possible range of peak flow values
in our database of 24 flood events. The ROPE and A-ROPE
were set with a population size of 25002 and a maximum of
five iterations. For PSO-GAu we set the population size to
50. These settings were set after a small number of test runs
with different population sizes. The used objective was the
proposed FloodSkill criterion.

Before deep parameters were generated we validated all
good parameter vectors and studied the relationship between
their corresponding data depth and model performance on
the validation data. An overview of the results is provided
in Fig. 9. Especially for the results estimated by ROPE-
PSO the correlation between the calibration objective, i.e.
the FloodSkill criterion, and the data depth is clearly posi-
tive. The correlation for the results estimated by the Monte
Carlo based ROPE algorithms is less intense. This a first
hint that the set estimated by ROPE-PSO is a stable solu-
tion and the application of depth based sampling makes sense
in order to improve the calibration results. The scatterplot
given in Fig. 10 where each parameter vector of the esti-
mated set is shaded according to its validation performance
shows that the parameter vectors with worse model perfor-
mance are particularly located at the boundary of the esti-
mated set. However, this conclusion does not hold true for
the single performance criteria the FloodSkill consists of3.
As shown in Fig.11, the optimal regions for this criteria are
even located on opposite sides of the estimated set. This is an
indication of a clear tradeoff between the two objective cri-
teria rPD and problems of the model to represent the global
system behaviour of the catchment and a good representa-
tion of the peak flow values. This may also be due to the
relatively coarse time step considering the small catchment

2This corresponds to the parametersn andm in Algorithm 1
3These criteria are NS and rPD.

size. In this case a multi-objective calibration might be use-
ful, but this is in the scope of future research. In a second
step deep parameter vectors were sampled with respect to
the estimated set of good parameter vectors. The statistics
of the estimated samples in comparison with those estimated
by ROPE and A-ROPE are given in Table6. Although both
sets overlap each other, it is evident that the mean value of the
storage coefficientskd andki of the ROPE-PSO estimates are
considerably higher than those estimated by A-ROPE. How-
ever, the correlation between the two most sensitive model
parameters focussing on flood events,kd anddr is approxi-
mately the same for both algorithms. The standard deviation
for the ROPE-PSO estimates is smaller than the estimates
of the Monte Carlo based estimates or all considered model
parameters except for the less sensitive parameterki . We as-
sume that the iterative Monte Carlo based sampling cannot
identify the region with the best parameters as exact as the
PSO based ROPE-PSO due to its limited sample size (2500
samples per iteration) and the subjective fixed boundary4 that
is used for the determination of the best parameter in the in-
dividual iteration steps. Due to a coarse resolution in the first
iterations, this might exclude regions at the outer boundary
of the good parameters that might contain better parameters.
An adaptive selection of the boundary might solve this prob-
lem for the Monte Carlo based search. The validation results
of the estimated parameter vectors are shown in Table7. The
ROPE-PSO estimates provide a slightly better validation per-
formance than those estimated by A-ROPE. ROPE-PSO also
outperforms all other compared algorithms compared in the
case study ofKrauße and Cullmann(2011a). In compari-
son with the classic optimisation algorithms IPM and GA the
model performances achieved by the depth based estimates
in validation are not just better in mean but show a clearly
smaller standard deviation. Among themselves the variances
of ROPE, A-ROPE and ROPE-PSO are approximately in the
same range.

These results indicate that the estimated solution is robust
and transferable. The proposed algorithm also converges
faster with less parameter vectors to be evaluated. We stud-
ied the stability of the solution estimated by ROPE-PSO for
a maximum number of model evaluations of 3000, 1000 and
500. According to this test we set the limit to 1000 whereas
the Monte Carlo based A-ROPE made full use of the 10 000
parameter evaluations. This advantage in terms of computa-
tional efficiency gets even more weight considering that one
parameter evaluation takes approximately three minutes on a
standard CPU5.

4 In the current setup the algorithm strictly selects the 10 % best
parameter vectors in each iteration.

5That means that 3 model runs have to be carried out, one for
each calibration event.

www.hydrol-earth-syst-sci.net/16/603/2012/ Hydrol. Earth Syst. Sci., 16, 603–629, 2012



618 T. Krauße and J. Cullmann: Particle Swarm Optimisation and Robust Parameter Estimation

Table 6. Mean value (Mean), standard deviation (Std), coefficient of variation (CV), minimum, maximum and correlation coefficients
between the generated samples for the conceptual model parameters estimated by ROPE(a), A-ROPE(b) and ROPE-PSO(c).

a)

Parameter Mean Std CV Min Max kd ki dr

kd 2.34 0.62 0.24 1.56 3.37 1.00 0.11−0.45
ki 4.86 2.22 0.46 2.12 9.95 ... 1.00−0.10
dr 5.61 1.44 0.31 2.14 10.02 ... ... 1.00

b)

Parameter Mean Std CV Min Max kd ki dr

kd 2.30 0.41 0.18 1.47 3.54 1.00 0.05−0.39
ki 4.60 1.24 0.27 2.22 8.06 ... 1.00−0.30
dr 5.13 1.52 0.30 2.04 9.91 ... ... 1.00

c)

Parameter Mean Std CV Min Max kd ki dr

kd 2.78 0.30 0.11 2.04 3.67 1.00−0.20 −0.38
ki 6.54 1.36 0.21 3.12 12.65 ... 1.00 −0.64
dr 5.23 0.96 0.18 3.08 8.20 ... ... 1.00
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Table 6: Mean value (Mean), standard deviation (Std), coefficient of variation (CV), minimum, maximum and correlation
coefficients between the generated samples for the conceptual model parameters estimated by ROPE (a), A-ROPE (b) and
ROPE-PSO (c).

Parameter Mean Std CV Min Max kd ki dr

kd 2.34 0.62 0.24 1.56 3.37 1.00 0.11 −0.45
ki 4.86 2.22 0.46 2.12 9.95 ... 1.00 −0.10
dr 5.61 1.44 0.31 2.14 10.02 ... ... 1.00

a)

Parameter Mean Std CV Min Max kd ki dr

kd 2.30 0.41 0.18 1.47 3.54 1.00 0.05 −0.39
ki 4.60 1.24 0.27 2.22 8.06 ... 1.00 −0.30
dr 5.13 1.52 0.30 2.04 9.91 ... ... 1.00

b)

Parameter Mean Std CV Min Max kd ki dr

kd 2.78 0.30 0.11 2.04 3.67 1.00 −0.20 −0.38
ki 6.54 1.36 0.21 3.12 12.65 ... 1.00 −0.64
dr 5.23 0.96 0.18 3.08 8.20 ... ... 1.00

c)
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Fig. 9: Correlation between data depth and overall validation performance for the solutions estimated by ROPE, A-ROPE and
ROPE-PSO.

the single performance criteria the FloodSkill consists of3.
As shown in Fig. 11, the optimal regions for this criteria
are even located on opposite sides of the estimated set. This
is an indication of a clear tradeoff between the two objec-
tive criteria rPD and problems of the model to represent the
global system behaviour of the catchment and a good repre-
sentation of the peak flow values. This may also be due to
the relatively coarse time step considering the small catch-
ment size. In this case a multi-objective calibration might be
useful, but this is in the scope of future research. In a sec-

3These criteria are NS and rPD.

ond step deep parameter vectors were sampled with respect
to the estimated set of good parameter vectors. The statistics
of the estimated samples in comparison with those estimated
by ROPE and A-ROPE are given in Table 6. Although both
sets overlap each other, it is evident that the mean value of the
storage coefficients kd and ki of the ROPE-PSO estimates are
considerably higher than those estimated by A-ROPE. How-
ever, the correlation between the two most sensitive model
parameters focussing on flood events, kd and dr is approxi-
mately the same for both algorithms. The standard deviation
for the ROPE-PSO estimates is smaller than the estimates

Fig. 9. Correlation between data depth and overall validation performance for the solutions estimated by ROPE, A-ROPE and ROPE-PSO.

5.1.2 Case study II: Calibrating WaSiM for flood
forecasting considering the uncertainty of
the soil hydraulic parameters

In a second case study we calibrated WaSiM again, however
this time we additionally considered the uncertainty in the
soil hydraulic parameters in the model calibration. As al-
ready introduced in Sect.4 the uncertainty due to coarse soil
information and the resulting uncertainty in the soil hydraulic
parameters can have a tremendous influence on the model un-
certainty in the case of flood events. In a preliminary study
with WaSiM in the Rietholzbach catchment (e.g.Seifert,
2010) we could prove this conclusion. From the five pre-
dominant soil types in the basin (Table8), we found the soil
hydraulic parameters of SL and SiL and the soil parameter
krec to be sensitive referring to the simulated discharge for

flood events.krec defines the gradient of the saturated con-
ductivity ks with increasing soil depth and has a valid range
between 0.01 and 1. Its default value estimated for water
balance calibration runs was set to 0.1. This value ofkrec
is used to estimate reasonable pre-event model states. We
considered bothkrec and the introduced soil hydraulic pa-
rameters together with the conceptual model parameters for
model calibration.

In a first step prior to the actual model calibration we es-
timated the prior uncertainty in the soil hydraulic parameters
of the soils SL and SiL according to the approach developed
in Grundmann(2010). As a results we obtained a set of
10 000 soil hydraulic parameter vectors for each soil. Fol-
lowing the ideas of this approach we mapped the computed
set of soil hydraulic parameter vectors to two scaling pa-
rametersβLS andβSiL, one for each soil. The scaling was
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Fig. 10. Scatter plot of the good parameter vectors shaded according to their validation performance. Red points have a good validation
performance, blue points are worse (cf. colorbar). The size of the shades is proportional to the data depth of each point with respect to the
whole cloud.
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Fig. 11. Scatter plot of the good parameter vectors shaded according to their validation performance for the criteria NS and rPD. Red points
have a good validation performance, blue points are worse (cf. colorbar). The size of the shades is proportional to the data depth of each
point with respect to the whole cloud.
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Table 7. Mean overall validation performance for the parameter vectors estimated by all compared algorithms; the model performance was
calculated on the validation set as given in Table5.

FloodSkill NS rPD

Mean Std Worst Best Mean Std Worst Best Mean Std Worst Best

IPM 0.14 0.088 −0.16 0.23 0.52 0.049 0.33 0.58 0.37 0.048 0.52 0.32
GA 0.15 0.048 0.08 0.24 0.53 0.043 0.43 0.61 0.38 0.040 0.46 0.32

ROPE 0.18 0.029 0.11 0.25 0.56 0.039 0.46 0.61 0.39 0.031 0.46 0.30
A-ROPE 0.15 0.030 0.09 0.23 0.55 0.036 0.47 0.61 0.38 0.030 0.44 0.30

ROPE-PSO 0.20 0.031 0.11 0.25 0.55 0.036 0.44 0.61 0.35 0.021 0.41 0.30

Table 8. Expectation values of the physical properties of the prevailing soil types in the Rietholzbach catchment, classified according to
USDA, and corresponding soil hydraulic parameters; the parameterisation of the soil hydraulic parameters is done for each soil according to
the approach provided inGrundmann(2010) by the help of the pedotransfer functions provided inWösten et al.(1999) andBrakensiek et al.
(1984); the expectation values are the mean over 10 000 realisations

L SL SiCL SiL LS
loam sandy loam silty clay loam silt loam loamy sand

catchment area [%] 15 20 3 51 11

clay [%] 20 10 33.5 13.5 7.5
silt [%] 39 25 56.5 69 15
sand [%] 41 65 10 17.5 77.5
humus content [%] 2.5

ks [m s−1] 1.81·10−6 1.45·10−5 8.61·10−8 2.85·10−7 4.26·10−5

α [1/m] 3.49 4.48 2.00 1.35 5.52
θr 0.01
θs 0.42 0.41 0.43 0.42 0.41
n 1.18 1.27 1.13 1.24 1.32

done using the algorithm provided inWarrick et al.(1977).
The prior uncertainty of the soil hydraulic parameters with
best fits for Gaussian (N ), logarithmic Gaussian (logN ),
Gamma (0) and bimodal Gaussian (GM) distribution is given
in Fig.12. The fitted distributions are just an additional infor-
mation in order to show that the estimated prior distributions
could also be described by commonly used distribution func-
tions. Consider that the residual water contentθr was con-
stantly 0.01 for both SL and SiL with a deviation of less than
10e−14 and thus is not shown in the plots. The distribution
of the saturated conductivities has the maximum density in
the range of the lowest possible values and is characterised
by a high skewness. The other soil hydraulic parameters ac-
cording to the Mualem – Van Genuchten model have distri-
butions which can be approximated by a normal distribution.
The distribution of the corresponding scaling parameters is
given in Fig.13. It is evident that the distribution of the scal-
ing parameters is strongly influenced by the distribution of
the saturated conductivities. This is due to the relatively high
spread of this parameter.

The conceptual and the soil parameters form a six di-
mensional calibration problem with the model parameters

{kd ,ki,dr,βSL,βSiL,krec} to be estimated. Considering that
the error surface of WaSiM is very bumpy this is already a
challenging calibration problem, especially for Monte Carlo
based approach. Again we estimated the parameters of
WaSiM with ROPE, A-ROPE and ROPE-PSO. The Monte
Carlo based algorithms were limited to a maximum of 10 000
model parameter vector evaluations whereas the ROPE-PSO
was tested with both a maximum of 2000, 3000, 5000 and
10 000 model runs. There was not much difference between
the estimates of the different runs. This is why we set the
maximum to 3000 in order to save computing time. This is
another confirmation of the computational efficiency of the
ROPE-PSO approach.

The distribution of the parameter vectors estimated by A-
ROPE and ROPE-PSO is given in Fig.14. Furthermore the
distribution of the soil hydraulic parameters corresponding
to the scaling parametersβSL andβSiL estimated by both al-
gorithms are given in Fig.15. The soil hydraulic parameters
corresponding to the identified distribution of the scaling pa-
rameter parameters were generated using the rescaling pro-
cedure provided in Sect.4. For further details we refer to
Warrick et al.(1977) andGrundmann(2010). These results
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ks θs α n

Mean 2.227e-05 0.4120 4.62 1.29
Std 2.185e-05 0.0083 1.85 0.05
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Fig. 12: Prior distribution of the soil hydraulic parameters
for the soils SL (a) and SiL (b)
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Fig. 13: Prior distribution of the scaling paramters βSL and
βSiL

conductivity in the soil model. Preferential flow in macrop-
ores can become a dominant process within the Rietholzbach
catchment (Germann, 1981). However, the Richards equa-
tion implemented in WaSiM just describes the process of ma-
trix flow in the unsaturated zone and is not able to describe
the process of preferential flow. With WaSiM it can either be
modelled by adjusting the saturated conductivities in the soil
module to higher values or by adapting the conceptual model
parameters, in particular the parameters kd and krec, in or-
der to represent this phenomena. From a process-oriented
point of view it might be better to “blame” the preferential
flow on the conceptual model parameters instead of trying
to describe a physically completely different process by a
physically based model, i.e. trying to fit the Richards equa-
tion to represent preferential flow and matrix flow instead of
just matrix flow. In general the distribution of the param-
eters estimated ROPE-PSO has a much smaller spread than
the ones estimated by A-ROPE. This suggests that the Monte
Carlo based algorithm cannot identify the region with the
best model performance as the PSO based ROPE-PSO. Con-
sequently the region comprising the good parameter vectors,
i.e. the best plus a given uncertainty tolerance, gets larger
and might be less robust, i.e. less transferable to other flood
events, which means the validation set.

The calibration performance of all considered algorithms
is given in Fig. 16. The results of PSO-GAu (before deep
samples were drawn) are given for an additional compari-
son. The calibration performance results are better than the
results for the calibration in the previous case study just con-
sidering the conceptual model parameters. That result is not
surprising. The better fit in the calibration might just be due
to a larger number of free model parameters and has to be
confirmed on the validation data in order to be considered
as improvement. A better model fit is always possible with
more free model parameters, but just makes sense if the esti-
mated parameters can be transferred on other time periods or
events. Referring to the mean estimated FloodSkill the origi-
nal ROPE with a value of 0.43 is slightly outperformed by the
A-ROPE (0.46) and a bit more by the ROPE-PSO algorithm
(0.48). The corresponding uncertainty intervals according
to the uncertainty in the observations are nearly the same
for all algorithms. They correspond to a bandwidth of the
FloodSkill of approximately 0.1. Hence the PSO provides
advantages in finding the region with the best model perfor-
mance, however the differences are just marginal. Consider
however that the slightly worse model performance of the A-
ROPE estimates correspond to a much wider distribution of
the model parameters as already discussed based on the re-
sults provided in Fig. 14. Furthermore it is evident that the
deep parameter vectors estimated by ROPE-PSO in compar-
ison with PSO-GAu do not have a better model performance
on the calibration data. The deep parameter vectors just show
a small decrease of the standard deviation of the correspond-
ing model performances.

The transferability of the estimated parameters and thus

Fig. 12. Prior distribution of the soil hydraulic parameters for the
soils SL(a) and SiL(b).

show that the parameter vectors estimated by ROPE-PSO
are distributed over a considerably smaller region than those
estimated by A-ROPE. The estimated parameter distribu-
tions even indicate that the ROPE-PSO estimates form a sub-
region of the large region described by the parameter vec-
tors estimated by A-ROPE. This suggests that the PSO based
search strategy in ROPE-PSO can more precisely identify the
region in the parameter space that corresponds to the highest
model performance. Consequently the upper boundary of the
least model performance defined by the assumed measure-
ment uncertainty gets higher and the region of good model
parameter vectors can be more precisely identified. Another
issue concerns the distribution of the soil hydraulic param-
eters only. By means of comparison of observed and sim-
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Fig. 12: Prior distribution of the soil hydraulic parameters
for the soils SL (a) and SiL (b)
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conductivity in the soil model. Preferential flow in macrop-
ores can become a dominant process within the Rietholzbach
catchment (Germann, 1981). However, the Richards equa-
tion implemented in WaSiM just describes the process of ma-
trix flow in the unsaturated zone and is not able to describe
the process of preferential flow. With WaSiM it can either be
modelled by adjusting the saturated conductivities in the soil
module to higher values or by adapting the conceptual model
parameters, in particular the parameters kd and krec, in or-
der to represent this phenomena. From a process-oriented
point of view it might be better to “blame” the preferential
flow on the conceptual model parameters instead of trying
to describe a physically completely different process by a
physically based model, i.e. trying to fit the Richards equa-
tion to represent preferential flow and matrix flow instead of
just matrix flow. In general the distribution of the param-
eters estimated ROPE-PSO has a much smaller spread than
the ones estimated by A-ROPE. This suggests that the Monte
Carlo based algorithm cannot identify the region with the
best model performance as the PSO based ROPE-PSO. Con-
sequently the region comprising the good parameter vectors,
i.e. the best plus a given uncertainty tolerance, gets larger
and might be less robust, i.e. less transferable to other flood
events, which means the validation set.

The calibration performance of all considered algorithms
is given in Fig. 16. The results of PSO-GAu (before deep
samples were drawn) are given for an additional compari-
son. The calibration performance results are better than the
results for the calibration in the previous case study just con-
sidering the conceptual model parameters. That result is not
surprising. The better fit in the calibration might just be due
to a larger number of free model parameters and has to be
confirmed on the validation data in order to be considered
as improvement. A better model fit is always possible with
more free model parameters, but just makes sense if the esti-
mated parameters can be transferred on other time periods or
events. Referring to the mean estimated FloodSkill the origi-
nal ROPE with a value of 0.43 is slightly outperformed by the
A-ROPE (0.46) and a bit more by the ROPE-PSO algorithm
(0.48). The corresponding uncertainty intervals according
to the uncertainty in the observations are nearly the same
for all algorithms. They correspond to a bandwidth of the
FloodSkill of approximately 0.1. Hence the PSO provides
advantages in finding the region with the best model perfor-
mance, however the differences are just marginal. Consider
however that the slightly worse model performance of the A-
ROPE estimates correspond to a much wider distribution of
the model parameters as already discussed based on the re-
sults provided in Fig. 14. Furthermore it is evident that the
deep parameter vectors estimated by ROPE-PSO in compar-
ison with PSO-GAu do not have a better model performance
on the calibration data. The deep parameter vectors just show
a small decrease of the standard deviation of the correspond-
ing model performances.

The transferability of the estimated parameters and thus

Fig. 13. Prior distribution of the scaling paramtersβSL andβSiL

ulated discharge, the parameter estimation algorithms try to
reject soil hydraulic parameter vectors that are not suitable
to represent the catchment’s behaviour and identify a distri-
bution with the most suitable model parameters. It is obvi-
ous that the spread of the distributions of the soil hydraulic
parameters compared to their prior uncertainty gets smaller
for both algorithms. Furthermore it stands out that the mean
ks of the ROPE-PSO estimates is smaller than the prior ex-
pectancy whereas the meanks of the A-ROPE values is
higher than the prior value. In terms of the model that means
that ROPE-PSO identifies parameter vectors that try to simu-
late just the slow matrix flow in the unsaturated zone whereas
faster runoff processes in the unsaturated zone, e.g. preferen-
tial flow, are approximated by a fit of the conceptual model
parameters controlling direct runoff. Probably that is also the
reason why the less sensitive conceptual parameterki can be
much better identified than in the previous case study. In con-
trast A-ROPE identifies parameter sets which try to represent
the faster components by a higher saturated conductivity in
the soil model. Preferential flow in macropores can become
a dominant process within the Rietholzbach catchment (Ger-
mann, 1981). However, the Richards equation implemented
in WaSiM just describes the process of matrix flow in the
unsaturated zone and is not able to describe the process of
preferential flow. With WaSiM it can either be modelled by
adjusting the saturated conductivities in the soil module to
higher values or by adapting the conceptual model param-
eters, in particular the parameterskd and krec, in order to
represent this phenomena. From a process-oriented point
of view it might be better to “blame” the preferential flow
on the conceptual model parameters instead of trying to de-
scribe a physically completely different process by a phys-
ically based model, i.e. trying to fit the Richards equation
to represent preferential flow and matrix flow instead of just
matrix flow. In general the distribution of the parameters
estimated ROPE-PSO has a much smaller spread than the
ones estimated by A-ROPE. This suggests that the Monte
Carlo based algorithm cannot identify the region with the
best model performance as the PSO based ROPE-PSO. Con-
sequently the region comprising the good parameter vectors,
i.e. the best plus a given uncertainty tolerance, gets larger
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and might be less robust, i.e. less transferable to other flood
events, which means the validation set.

The calibration performance of all considered algorithms
is given in Fig.16. The results of PSO-GAu (before deep
samples were drawn) are given for an additional compari-
son. The calibration performance results are better than the
results for the calibration in the previous case study just con-
sidering the conceptual model parameters. That result is not
surprising. The better fit in the calibration might just be due
to a larger number of free model parameters and has to be
confirmed on the validation data in order to be considered
as improvement. A better model fit is always possible with
more free model parameters, but just makes sense if the esti-
mated parameters can be transferred on other time periods or
events. Referring to the mean estimated FloodSkill the origi-
nal ROPE with a value of 0.43 is slightly outperformed by the
A-ROPE (0.46) and a bit more by the ROPE-PSO algorithm
(0.48). The corresponding uncertainty intervals according to
the uncertainty in the observations are nearly the same for all
algorithms. They correspond to a bandwidth of the Flood-
Skill of approximately 0.1. Hence the PSO provides advan-
tages in finding the region with the best model performance,
however the differences are just marginal. Consider however
that the slightly worse model performance of the A-ROPE es-
timates correspond to a much wider distribution of the model
parameters as already discussed based on the results provided
in Fig. 14. Furthermore it is evident that the deep parameter
vectors estimated by ROPE-PSO in comparison with PSO-
GAu do not have a better model performance on the calibra-
tion data. The deep parameter vectors just show a small de-
crease of the standard deviation of the corresponding model
performances.

The transferability of the estimated parameters and thus
the performance of the algorithms they are generated by can
just be shown using the validation data. An overview of the
estimated model performances on the validation events6 is
given in Fig.17. Regardless of the used parameter estimation
procedure, the achieved model performance on the validation
data is better than the calibration with the conceptual model
parameters only. This result confirms the results ofGrund-
mann(2010), that a consideration of the uncertainty in the
soil hydraulic parameters for flood events can improve the
performance of a process-oriented hydrologic model when
focus lies on modeling on flood events. Although the A-
ROPE provides a slight advantage over the original ROPE
approach, both Monte Carlo based algorithms ROPE and A-
ROPE are clearly outperformed by the PSO based PSO-GAu

and related ROPE-PSO estimates. This suggests that the pre-
viously discussed advantages of the PSO approach providing
a better global optimum and a consequently smaller region
of good parameter vectors correspond to a better robustness.
That means that the set of estimated parameters contains less
outliers with clearly below-average performance. Consid-

6For details refer to Table5

ering the limited number of maximum function evaluations
used for the ROPE-PSO algorithm these results also confirm
the efficiency of the PSO based approach. This is not sur-
prising but should be taken into consideration when choosing
between the Monte Carlo based and PSO based ROPE algo-
rithms. Referring to the results of PSO-GAu and ROPE-PSO
it is obvious that the parameters with high data depth do not
have just a marginal better model performance on the valida-
tion data but also much less outliers on the side of the dis-
tribution corresponding to a lower model performance. For
instance the worst overall FloodSkill for PSO-GAu is 0.18
whereas it is 0.26 after the depth based sampling, i.e. for
ROPE-PSO. These results show the advantages of the depth
based sampling, namely the possibility to filter out parameter
vectors corresponding to a more volatile and consequently
lower model performance. However a comparison of the
Monte Carlo based algorithms (ROPE and A-ROPE) with the
PSO based ROPE-PSO also show the limits of this approach.
The performance of the sampled deep parameter vectors re-
quires both an optimal sampling of the set of good parameter
vectors and an effective sampling of deep parameters with
respect to this set. This result is also supported by a clearly
lower standard deviation of the ROPE-PSO results referring
to all compared performance criteria. The better accuracy of
the ROPE-PSO estimates together with less negative outliers
is also reflected by a reduced model uncertainty. That means
that not just the parameter uncertainty but also the complete
model uncertainty can be tremendously reduced. Figure18
shows the hydrographs and the corresponding parameter and
model uncertainties for both algorithms. The model errors
were computed by two normal distribution fitted on the posi-
tive and negative discharge errors, transformed with the nor-
mal quantile transformation (NQT) (Krzysztofowicz, 1997)
according to a method presented byEngeland et al.(2010).

6 Discussion and conclusions

– This paper presents two new depth based parameter es-
timation method, that are well suited for the robust cal-
ibration of hydrologic models considering uncertain-
ties. The Advanced Robust Parameter Estimation (A-
ROPE), is a modified version of the depth based param-
eter estimation procedure presented byBárdossy and
Singh(2008). There are two differences between the A-
ROPE algorithm and the original ROPE algorithm. The
further development enables us sampling from different
non-convex regions of attraction and at the same time
preventing the algorithm from overfitting. The second
algorithm is a PSO based Robust Parameter Estimation
algorithm algorithm, entitled Robust Parameter Estima-
tion with Particle Swarm Optimisation (ROPE-PSO).
The major difference between ROPE-PSO and the pre-
viously presented ROPE algorithm is a substitution of
the Monte Carlo based approach for the identification
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Fig. 14: Distribution of the model parameter vectors estimated by A-ROPE (a) and ROPE-PSO (b)Fig. 14. Distribution of the model parameter vectors estimated by A-ROPE(a) and ROPE-PSO(b).
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Fig. 15: Distribution of the soil hydraulic parameters estimated by A-ROPE (left column) and ROPE-PSO (right column) for
the soils SL ((a) and (b)) and SiL ((c) and (d))

the performance of the algorithms they are generated by can
just be shown using the validation data. An overview of the
estimated model performances on the validation events6 is
given in Fig. 17. Regardless of the used parameter estimation
procedure, the achieved model performance on the validation
data is better than the calibration with the conceptual model
parameters only. This result confirms the results of Grund-
mann (2010), that a consideration of the uncertainty in the
soil hydraulic parameters for flood events can improve the
performance of a process-oriented hydrologic model when
focus lies on modeling on flood events. Although the A-
ROPE provides a slight advantage over the original ROPE
approach, both Monte Carlo based algorithms ROPE and A-
ROPE are clearly outperformed by the PSO based PSO-GAu

and related ROPE-PSO estimates. This suggests that the pre-

6For details refer to Table 5

viously discussed advantages of the PSO approach providing
a better global optimum and a consequently smaller region
of good parameter vectors correspond to a better robustness.
That means that the set of estimated parameters contains less
outliers with clearly below-average performance. Consid-
ering the limited number of maximum function evaluations
used for the ROPE-PSO algorithm these results also confirm
the efficiency of the PSO based approach. This is not sur-
prising but should be taken into consideration when choosing
between the Monte Carlo based and PSO based ROPE algo-
rithms. Referring to the results of PSO-GAu and ROPE-PSO
it is obvious that the parameters with high data depth do not
have just a marginal better model performance on the valida-
tion data but also much less outliers on the side of the dis-
tribution corresponding to a lower model performance. For
instance the worst overall FloodSkill for PSO-GAu is 0.18
whereas it is 0.26 after the depth based sampling, i.e. for

Fig. 15. Distribution of the soil hydraulic parameters estimated by A-ROPE (left column) and ROPE-PSO (right column) for the soils SL (a
andb) and SiL (c andd)

of good parameter vectors by a newly developed algo-
rithm, entitled PSO-GAu. We study the effectiveness of
the newly developed algorithms in two case studies cal-
ibrating a process-oriented hydrologic model focussing
on flood events. The results are compared with esti-
mates generated by the original ROPE algorithm and
two stats-of-the-art optimisation algorithms.

– In a first case study we compared the original ROPE,
and the newly developed A-ROPE and ROPE-PSO ap-
proaches estimating three conceptual model parameters
of the model WaSiM. We study the effect of observa-
tion uncertainty and confirm the results ofBárdossy and
Singh(2008): the parameter vectors estimated by clas-
sic optimisation algorithms can lead to very different
results in the validation and are not robust. Parame-
ter vectors with equal model performance on the cal-
ibration data can lead to very different results in vali-
dation. Considering a set of identified parameters with

good model performance on the calibration data, mem-
bers with shallow data depth near the boundary are sen-
sitive to small changes and have a less probability to
perform well on other time periods than solutions with
high depth. The depth based parameter estimation ap-
proaches can identify a set of parameter vectors that
shows a clearly better performance in the validation
with tighter variation intervals, i.e. less outliers. In com-
parison with the original ROPE, the modifications of the
Monte Carlo based A-ROPE provide slight advantages
in terms of the validation performance. These results
are even outperformed by the substitution of the Monte
Carlo based sampling by ROPE-PSO approach where
the good parameters are determined using an adapted
PSO strategy.

– In a further case study we increased the number of con-
sidered model parameters. The additional parameters
allow to account for the uncertainty in the soil hydraulic
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0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76

0.4 0.42 0.44 0.46 0.48 0.5 0.52

FloodSkill NS rPD
Mean Std Range Mean Std Range Mean Std Range

ROPE 0.43 0.019 0.40 - 0.49 0.69 0.020 0.63 - 0.72 0.26 0.021 0.20 - 0.30
A-ROPE 0.46 0.019 0.42 - 0.51 0.70 0.019 0.63 - 0.73 0.25 0.021 0.19 - 0.30

PSO-GAu 0.47 0.016 0.44 - 0.52 0.74 0.012 0.70 - 0.76 0.27 0.016 0.23 - 0.30
ROPE-PSO 0.48 0.014 0.45 - 0.52 0.74 0.011 0.71 - 0.76 0.27 0.015 0.23 - 0.30

Fig. 16: Calibration performance for the parameter vectors estimated by ROPE, A-ROPE, PSO-GAu and ROPE-PSO

ROPE-PSO. These results show the advantages of the depth
based sampling, namely the possibility to filter out parameter
vectors corresponding to a more volatile and consequently
lower model performance. However a comparison of the
Monte Carlo based algorithms (ROPE and A-ROPE) with the
PSO based ROPE-PSO also show the limits of this approach.
The performance of the sampled deep parameter vectors re-
quires both an optimal sampling of the set of good parameter
vectors and an effective sampling of deep parameters with
respect to this set. This result is also supported by a clearly
lower standard deviation of the ROPE-PSO results referring
to all compared performance criteria. The better accuracy of
the ROPE-PSO estimates together with less negative outliers
is also reflected by a reduced model uncertainty. That means
that not just the parameter uncertainty but also the complete
model uncertainty can be tremendously reduced. Fig. 18
shows the hydrographs and the corresponding parameter and
model uncertainties for both algorithms. The model errors
were computed by two normal distribution fitted on the posi-
tive and negative discharge errors, transformed with the nor-
mal quantile transformation (NQT) (Krzysztofowicz, 1997)

according to a method presented by Engeland et al. (2010).

6 Discussion and conclusions

– This paper presents two new depth based parameter es-
timation method, that are well suited for the robust cal-
ibration of hydrologic models considering uncertain-
ties. The Advanced Robust Parameter Estimation (A-
ROPE), is a modified version of the depth based param-
eter estimation procedure presented by Bárdossy and
Singh (2008). There are two differences between the A-
ROPE algorithm and the original ROPE algorithm. The
further development enables us sampling from different
non-convex regions of attraction and at the same time
preventing the algorithm from overfitting. The second
algorithm is a PSO based Robust Parameter Estimation
algorithm algorithm, entitled Robust Parameter Estima-
tion with Particle Swarm Optimisation (ROPE-PSO).
The major difference between ROPE-PSO and the pre-
viously presented ROPE algorithm is a substitution of
the Monte Carlo based approach for the identification

Fig. 16. Calibration performance for the parameter vectors estimated by ROPE, A-ROPE, PSO-GAu and ROPE-PSO.

parameters and an additional conceptual parameter of
the soil module in WaSiM. The results of this case study
show the limits of the Monte Carlo based ROPE and A-
ROPE approaches for problems with a nonsmooth pa-
rameter surfaces with large flat areas in higher dimen-
sions. Nonetheless the modifications in A-ROPE help
to achieve an improved set of robust solutions. In this
case study the effective and efficient PSO based search
strategy in ROPE-PSO can show its full potential esti-
mating an optimal approximation of the set of good pa-
rameter vectors. This is an important pre-requisite for
the effectivity of the depth based sampling. The PSO
based strategy can identify a much more concentrated
set of good parameter vectors with the same tolerance
interval on the calibration data. As a consequence the fi-
nal deep solutions estimated by ROPE-PSO outperform
the ROPE and A-ROPE estimates by lengths.

– The case studies in this paper revealed that the used
hydrologic model WaSiM is not able to represent the
correct peak flow values and the global catchment be-
haviour in terms of the streamflow at the catchment out-
let with the same parameter vectors equally well. The
tradeoff in these two objectives that are important for
the modelling of flood events suggests the application of
a multi-objective calibration strategy. Consider that the
presented algorithm can be easily altered to a general
multi-objective parameter estimation procedure.

– The application of data depth metrics can help to iden-
tify sets of robust parameter vectors. In general pa-
rameters with low data depth are near the boundary
of a set of good model performance in the calibration
are sensitive to small changes and do transfer to other
time periods less well as high depth ones. However
the model performance of the sampled deep parameters
is also dependent to the quality of the estimated good
parameter vectors.

www.hydrol-earth-syst-sci.net/16/603/2012/ Hydrol. Earth Syst. Sci., 16, 603–629, 2012



626 T. Krauße and J. Cullmann: Particle Swarm Optimisation and Robust Parameter Estimation24 Krauße and Cullmann: Particle Swarm Optimisation and Robust Parameter Estimation

 

 

AROPE-IIPSO-GAuAROPE-IROPE

rPD

NS

Flood-Skill

0.250.30.350.40.45

0.4 0.45 0.5 0.55 0.6 0.65
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A-ROPE 0.22 0.038 0.06 - 0.29 0.55 0.039 0.39 - 0.62 0.34 0.033 0.27 - 0.43

PSO-GAu 0.25 0.021 0.18 - 0.32 0.60 0.027 0.48 - 0.64 0.33 0.027 0.27 - 0.42
ROPE-PSO 0.30 0.014 0.26 - 0.32 0.62 0.018 0.55 - 0.64 0.32 0.023 0.28 - 0.37

Fig. 17: Validation performance for the parameter vectors estimated by ROPE, A-ROPE, PSO-GAu and ROPE-PSO

of good parameter vectors by a newly developed algo-
rithm, entitled PSO-GAu. We study the effectiveness of
the newly developed algorithms in two case studies cal-
ibrating a process-oriented hydrologic model focussing
on flood events. The results are compared with esti-
mates generated by the original ROPE algorithm and
two stats-of-the-art optimisation algorithms.

– In a first case study we compared the original ROPE,
and the newly developed A-ROPE and ROPE-PSO ap-
proaches estimating three conceptual model parameters
of the model WaSiM. We study the effect of observa-
tion uncertainty and confirm the results of Bárdossy and
Singh (2008): the parameter vectors estimated by clas-
sic optimisation algorithms can lead to very different
results in the validation and are not robust. Parame-
ter vectors with equal model performance on the cal-
ibration data can lead to very different results in vali-
dation. Considering a set of identified parameters with
good model performance on the calibration data, mem-
bers with shallow data depth near the boundary are sen-
sitive to small changes and have a less probability to

perform well on other time periods than solutions with
high depth. The depth based parameter estimation ap-
proaches can identify a set of parameter vectors that
shows a clearly better performance in the validation
with tighter variation intervals, i.e. less outliers. In com-
parison with the original ROPE, the modifications of the
Monte Carlo based A-ROPE provide slight advantages
in terms of the validation performance. These results
are even outperformed by the substitution of the Monte
Carlo based sampling by ROPE-PSO approach where
the good parameters are determined using an adapted
PSO strategy.

– In a further case study we increased the number of con-
sidered model parameters. The additional parameters
allow to account for the uncertainty in the soil hydraulic
parameters and an additional conceptual parameter of
the soil module in WaSiM. The results of this case study
show the limits of the Monte Carlo based ROPE and A-
ROPE approaches for problems with a nonsmooth pa-
rameter surfaces with large flat areas in higher dimen-
sions. Nonetheless the modifications in A-ROPE help to

Fig. 17. Validation performance for the parameter vectors estimated by ROPE, A-ROPE, PSO-GAu and ROPE-PSO.

– The case studies in this paper just consider a limited
number of calibration parameters parameters. This is
sufficient for the given model setup considering the
small amount of observation data for flood events. The
suggested method might perform even better for cali-
bration tasks with a higher amount of useful calibra-
tion data or lower process dynamics where the set of
good parameter vectors is much more clearly defined,
e.g. water balance simulations.Bárdossy and Singh
(2008) applied the original ROPE method for the esti-
mation of nine parameters in the conceptual model HBV
in a much larger catchment on daily basis. According to
these results and our experience with other small test
problems, we strongly believe that the developed tech-
nique might provide good results for higher dimensions
as well. Consider however that the application of com-
plex data depth functions, e.g. halfspace depth is limited
on lower dimensions due to the computational complex-
ity and the required number of solutions. For a limited

number of points and a high dimensionality, all points
are in the convex hull and have low depth.

The robust parameter estimation approach is a relatively
new method which was applied to a limited number of case
studies. We strongly propose a comparison with estab-
lished uncertainty estimation methods, e.g. MCMC, GLUE
or multi-objective calibration, in further research. Further-
more we suggest the further development of the ROPE
method to a well-founded calibration tool considering un-
certainties, e.g. assigning a likelihood based on the depth of
the estimated parameters instead of their model performance
as it is done in classical approaches. Due to the probably
high tradeoff between the model’s ability to represent both
the peak flow values and the global system behaviour equally
well, we propose the development and application of a multi-
objective version of the presented approach.
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Fig. 18: Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter shading) and parameter
estimates (darker shading) for the flood events 4 (a), 12 (b) and 19 (c), estimated by A-ROPE (left column) and ROPE-PSO
(right column). The dots correspond to the observed streamflow data. The shaded areas of uncertainty correspond to the 95%
confidence intervals.

Fig. 18. Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter shading) and parameter estimates (darker
shading) for the flood events 4(a), 12(b) and 19(c), estimated by A-ROPE (left column) and ROPE-PSO (right column). The dots correspond
to the observed streamflow data. The shaded areas of uncertainty correspond to the 95% confidence intervals.
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Germann, P.: Untersuchungenüber den Bodenwasserhaushalt im
hydrologischen Einzugsgebiet Rietholzbach, no. 51 in Mitteilun-
gen der Versuchsanstalt für Wasserbau, Hydrologie und Glazi-

ologie, ETH Z̈urich, Versuchsanstalt für Wasserbau, Hydrologie
und Glaziologie, ETH Z̈urich, 1981.

Gill, M. K., Kaheil, Y. H., Khalil, A., McKee, M., and Basti-
das, L.: Multiobjective particle swarm optimization for param-
eter estimation in hydrology, Water Resour. Res., 42, W07417,
doi:10.1029/2005WR004528, 2006.

Grundmann, J.: Analyse und Simulation von Unsicherheiten in
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sage, vol. 160 of Mitteilungen des Instituts für Wasser-
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Abscḧatzung der Folgen von Klimaänderungen, Ph.D. thesis,
Eidgen̈ossische Technische Hochschule Zürich, diss. ETH Nr.
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