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Abstract. Deep drainage estimates are required for effec-
tive management of water resources. However, field mea-
surements are time consuming and costly so simple empir-
ical relationships are often used. Relationships developed
between clay content of the surface soil and deep drainage
have been used extensively in Australia to provide regional
estimates of deep drainage but these relationships have been
poorly justified and did not include rainfall in the relation-
ships. Here we present a rigorous appraisal of clay content of
soils and rainfall as predictors of deep drainage using an ex-
tensive database of field observations from across Australia.
This study found that annual average rainfall and the average
clay content of the top 2 m of the soil are statistically signif-
icant predictors of point scale deep drainage. Relationships
have been defined for annual, perennial and tree type vegeta-
tion as a line of best fit along with 95 % confidence intervals.
This allows the uncertainty in these deep drainage estimates
to be assessed for the first time.

1 Introduction

The capacity of effective groundwater management practices
are expanded as our understanding of the driving processes,
timescales and spatial distribution of groundwater recharge
develop. Rainfall is an important predictor of groundwater
recharge and as such there is value in understanding the spa-
tial and temporal nature of rainfall. Petheram et al. (2002)
established that rainfall variation accounted for 60 % of ob-
served recharge variation for annual vegetation on sand soils

and 23 % of observed recharge variation for annual vegeta-
tion on non-sand soils across Australia. However, accurate
measurement of recharge may be difficult to attain due to the
small deep drainage fluxes that occur below the root zone.
Invariably, groundwater recharge is associated interchange-
ably with deep drainage orpotential recharge albeit a dis-
tinct difference defines the two terms. Simply, recharge is
the flux of water that contributes to the saturated groundwa-
ter reservoir whereas deep drainage is the flux of water that
moves through the unsaturated zone past the root zone. Deep
drainage may become recharge after a lag time if there are
no impeding layers that would create lateral flow. Assuming
one-dimensional flow and that deep drainage will eventually
recharge the unconfined aquifer, unsaturated soil zone pro-
files can provide long-term mean annual recharge estimates
for both steady state and transient environments (Walker,
1998). Point scale methods are used to estimate low deep
drainage fluxes in a transient environment however scaling
up is often not practical because of the costs involved to ob-
tain the required data. Hence, it is necessary to use a surro-
gate measurement that is more readily available as a proxy
for deep drainage.

The first effort to introduce a surrogate clay measure-
ment for predicting deep drainage was by Kennett-Smith
et al. (1994) who defined a log-linear relationship between
deep drainage and clay content for the 0–2 m soil depth in-
terval. The relationship was based on 89 deep drainage es-
timates made using the chloride front displacement (CFD)
method (Walker et al., 1991) in the 300–400 mm rainfall ar-
eas of South Australia and Victoria in south-eastern Australia
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Fig. 1. Location of studies used to develop the multiple linear relationships.

(Fig. 1). The average clay content over the 0–2 m depth inter-
val (rather than 0–0.5 m or 0–1 m) was chosen as it provided
the highest correlation for deep drainage and clay content us-
ing the Kennett-Smith et al. (1994) data set (SKM, 2002).

More recent investigations (Leaney et al., 2004; Wohling,
2007) revised the relationship given by Kennett-Smith et
al. (1994) for higher rainfall areas based on local recharge
investigations; however minimal statistical rigour was em-
ployed in developing the revised correlations. Personal
judgement defined each new relationship rather than a sta-
tistical correlation.

Comparison of the log-linear relationship between deep
drainage and average clay content (0–2 m) data from
Kennett-Smith et al. (1994), Leaney et al. (2004) and
Wohling (2007) provided evidence for a trend attributable to
rainfall amount (Fig. 2). This can be seen in the relationship
of Wohling (2007) which gives the highest deep drainage
throughout the range of clay content using data from field
sites with a rainfall range of 470–570 mm yr−1, compared to
the 390–500 mm yr−1 range of Leaney et al. (2004) and 300–
400 mm yr−1 range of Kennett-Smith et al. (1994).

These relationships between deep drainage and average
clay content (0–2 m) have been widely used as a proxy for de-
termining deep drainage rate estimates beneath annual crops
and pastures on land previously cleared of native vegeta-
tion (Kennett-Smith et al., 1994; Leaney et al., 1999, 2004;
Leaney and Herczeg, 1999; Leaney, 2000; Cook et al., 2001,

2004; Wohling et al., 2005; Wohling, 2007) in southeastern
Australia.

Crosbie et al. (2010a) recently compiled and reviewed a
database of 4386 recharge and deep drainage estimates over
172 studies across dry land areas of Australia. This included
a review of several previous Australian recharge review pa-
pers (Kennett-Smith et al., 1994; Petheram et al., 2000, 2002;
Cook et al., 2001; Tolmie and Silburn, 2003; Silberstein,
2010). Crosbie et al. (2010b) then used this database to de-
velop a tool for estimating the relationships between recharge
and rainfall, soil type and land use in data poor areas. The
soil type in these relationships were classified into five dis-
crete groups, however the soil properties relevant to deep
drainage are known to exist as a continuum rather than dis-
crete classes (Kennett-Smith et al., 1994).

This paper tests the finding of SKM (2002) that the av-
erage clay content of the top 2 m of the soil profile is the
best proxy for estimating deep drainage by examining a more
substantial database (Crosbie et al., 2010a) in terms of the
data quantity and spatial variability (including soil and rain-
fall variability) to provide the best unsaturated zone proxy
for estimating deep drainage.

A literature search of comparable studies found that no
other work had used actual soil clay content data as a proxy
for deep drainage or recharge in correlation with rainfall as
field clay content is typically not reported or reported incon-
sistently. Sophocleous (1992) used multi-linear regression
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Fig. 2. Summary of deep drainage and percent clay content (0–2 m) correlations.

analysis of total annual precipitation, average maximum
spring soil profile water storage, average shallowest spring
depth to water table and average spring precipitation rate to
assess recharge. Delin et al. (2000) applied multi-linear re-
gression models to assess the effects of topography and soil
properties on recharge on lowland and upland agricultural
field sites near Princeton, Minnesota; and used precipitation
(amount of water applied), average rainfall or irrigation water
application intensity and antecedent moisture content for the
entire unsaturated zone as the independent variables. Keese
et al. (2005) evaluated controls on recharge by simulating
deep drainage in a five metre thick one-dimensional unsatu-
rated flow code using climate data, vegetation and soil cov-
erages from online sources for Texas and simulated 30-year
mean annual recharge. Vegetation and soil textural variabil-
ity both resulted in a large range of recharge rates within
each region; however Keese et al. (2005) also found that the
spatially weighted long-term recharge rates were much less
variable and positively correlated with mean annual rainfall.
For non-vegetated, texturally variable simulations, Keese et
al. (2005) explained that multi-linear regressions using log-
log data showed that including clay content (profile average)
with precipitation explains 80 % of the variation in recharge
and that recharge varied over 1 to 2 orders of magnitude lo-
cally, because of textural variability among soil profiles. The
modelled results presented by Keese et al. (2005), specifi-
cally the order of magnitude over which recharge varied, are
comparable with the measured results presented in this paper.

This paper builds upon previous research by using multi-
ple linear regression (MLR) to develop relationships capable

of predicting deep drainage from measured soil clay content
and mean annual rainfall, where previous studies have not
used both rainfall and measured soil clay content to estimate
deep drainage. Specifically the aims of this paper are to:

1. determine if a statistically significant relationship can
be developed to predict deep drainage using previously
published field data;

2. determine the best metric of the clay content of the soil
for predicting deep drainage; and

3. estimate the uncertainty in the deep drainage estimates
made using MLR.

2 Methods

2.1 Data collation of previous studies

In order to improve the statistical correlation between deep
drainage, clay content and rainfall, as developed in this pa-
per; the database of Crosbie et al. (2010a) was filtered to
include only those recharge and deep drainage estimates
that reported rainfall amount and clay content of the soil.
Less than 5 % (202 recharge/deep drainage estimates) of the
original database (Crosbie et al., 2010a) fitted these criteria
(Fig. 1). It was from this filtered set of data, which includes
all data presented in Fig. 2, that the MLR was performed.
The data was re-queried and re-classified to assess how soil
structure may affect deep drainage rates. The average clay
content was determined over various intervals (0 to 0.5 m,

www.hydrol-earth-syst-sci.net/16/563/2012/ Hydrol. Earth Syst. Sci., 16, 563–572, 2012



566 D. L. Wohling et al.: Deep drainage estimates using multiple linear regression

0 to 1 m and 0 to 2 m) to determine the best depth for aver-
aging to use as a predictor of deep drainage. Also, a classi-
fication based on the highest clay percentage in a soil profile
(rather than an average over an interval) was used to investi-
gate whether or not the use of impeding layers could improve
the correlation.

The data was categorized into annuals, perennials and tree
type vegetation as differing vegetation types were found to
give differing rates of deep drainage for a particular soil type
and rainfall (Crosbie et al., 2010b). An analysis was also per-
formed on a combined perennial and tree category due to a
scarcity of data for both groups. Of those 202 recharge and
deep drainage estimates having soil textual data, 177 are esti-
mates beneath annuals, 7 beneath perennials and 18 beneath
trees. The mean annual rainfall ranged between 260 and
731 mm and clay content between zero and 60 % for those
annual vegetation sites; while for perennial vegetation, mean
rainfall ranged from 587 mm to 1265 mm and soil clay con-
tent between zero and 60 %; and for tree vegetation annual
rainfall varied from 460 mm to 731 mm with clay content be-
tween 0.7 and 60 %.

Data used in this paper are heavily biased in the south-
western Murray Darling Basin with the remaining data com-
ing from the mid coast of New South Wales (NSW) and south
eastern Queensland (Fig. 1). The studies that have generated
most of the data are summarised as follows. Kennett-Smith et
al. (1994) compiled a review of studies in the south-western
Murray Darling Basin, primarily the Mallee and Wimmera
regions of north-western Victoria, eastern South Australia
and south-western NSW. Kennett-Smith et al. (1994) used
the chloride front displacement (CFD), water balance, and
water table fluctuation (WTF) methods to determine deep
drainage and recharge associated with the clearing ofEu-
calyptusmallee woodland (in the form of shrub land, scrub
or heath) between 1900–1914 and 1920–1930 for rotational
cereal cropping, sheep and beef cattle grazing. Leaney and
Herczeg (1999) and Cook et al. (2001) studied the Mallee re-
gion of the south-west Murray Darling Basin including the
Little Desert and Big Desert using soil-water chloride con-
centration profiles, groundwater chloride, stable isotopes of
water and carbon-14 to determine recharge processes and
provide deep drainage estimates beneath Mallee vegetation
and cleared pastures and cropping. Similarly, Leaney (2000)
investigated recharge processes and provided deep drainage
estimates for the Tintinara area of South Australia using the
CFD and steady state soil chloride mass balance (CMB)
methods for mallee vegetation and cleared dry land cropping
and pastures. Cook et al. (2004) investigated deep drainage
and aquifer recharge in the north-east Mallee region of South
Australia and determined that clearing of native vegetation
(Eucalyptusmallee) and replacement with dryland cropping
and pastures lead to increased salt loads to the Murray River.
Cook et al. (2004) used the CFD method for estimating point
estimates of deep drainage and developed equations for es-
timating the time lag between an increase in deep drainage

and increase in aquifer recharge. They then spatially extrap-
olated the data to provide a deep drainage map and predicted
time delays for transport through the unsaturated zone.

Wohling et al. (2005) used the CFD method to estimate
deep drainage beneath pastures in the Padthaway region of
south east South Australia. Leaney et al. (2006) used the
CMB method under native vegetation, dry land pasture, and
tree plantations in the lower south-east of South Australia.
In the Border Designated Area and Keith region of south-
east South Australia, Wohling (2007) used the water bal-
ance, daily soil water balance, CMB, CFD and LEACHM
(Leaching Estimation and Chemistry Model, Hutson 2003)
to determine recharge and deep drainage rates beneath na-
tive vegetation, pastures and crops. Unpublished data used
in Wohling (2009) followed on from the work of Wohling
et al. (2005) to estimate additional deep drainage rates under
pastures using the CFD in the Padthaway region of south-east
South Australia.

Tolmie et al. (2004) used a transient CMB method in
south-east Queensland to determine recharge beneath native
vegetation, cropping and pastures, and perennial lucerne.
Crosbie et al. (2005) investigated recharge in the Tomago
Sand Beds near Newcastle, NSW. The WTF method was
used to predict gross recharge under perennial vegetation in
heath and mining revegetation areas.

2.2 Statistical methods

Regression analysis explains movements in the dependant
variable (Y ) as a function of the independent variables (X)

through the quantification of an equation. The simplest mea-
sure of the quality of fit is the coefficient of determination
(R2), which is the proportion of variation ofY about its mean
(Y ) that is explained by the model. The higher theR2 the
closer the estimated regression fits the sample data.

The level of significance (significantF ) tests whether the
hypothesis, that the data forms a relationship, is null, specif-
ically testing whether the data has no relationship. If the hy-
pothesis is null it can be concluded that the equation does
have a significant overall fit. For example, when signifi-
cantF is less than 0.05 (5 %), then a relationship is likely.
If significant F is more than 0.05, then a relationship is
unlikely.

The P-value provides a measure of how much evidence we
have against the null hypothesis, i.e. we test the probability
of getting statistics approaching the actual observed data, as-
suming a hypothesis that is null. The lower the P-value, the
more significant the result is as it is unlikely the null hypoth-
esis is true.

Average annual deep drainage estimates (d, mm yr−1)
were set as the dependantY variable and clay content (either
average or highest percentage, %) and average annual rainfall
(mm) were set as the independentX variables.R2, signifi-
cantF , P-value and regression coefficients were presented
as outputs, along with the 95 % prediction intervals around
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Table 1. Multiple linear regression results under annual vegetation.

Data treatment, ANNUALS Average Average Average Highest
clay % clay % clay % clay %
(0–0.5 m) (0–1 m) (0–2 m) (0–2 m)

R2 0.4323 0.4890 0.3521 0.3233
Observations 79 83 177 51
SignificantF 4.54E-10 2.17E-12 3.99E-17 8.51E-05
P-value (clay variable) 0.867 0.837 3.7E-05 0.608
P-value (rainfall variable) 1.16E-10 2.84E-13 5.68E-18 2.65E-05
Coefficient – Intercept (y0) multiple regression −0.493 −0.757 −0.039 −1.006
Coefficient –b (clay) multiple regression −6.20E-04 7.87E-04 −1.19E-02 −2.75E-03
Coefficient –a (rainfall) multiple regression 3.52E-03 3.98E-03 3.03E-03 4.38E-03
Coefficient – intercept interval – (y0) 95 % prediction – lower −0.993
Coefficient –b (clay) 95 % prediction interval – lower −1.19E-02
Coefficient –a (rainfall) 95,% prediction interval – lower 2.99E-03
Coefficient – intercept (y0) 95 % prediction interval – higher 0.915
Coefficient –b (clay) 95 % prediction interval – higher −1.19E-02
Coefficient –a (rainfall) 95 % prediction interval – higher 3.06E-03

the best fit for the best model for each vegetation type. All
regression equations were given in the form:

log d = y0 + (b · clay) + (a · rainfall) (1)

wherey0, b anda were fitting parameters.

3 Results

3.1 Determine if a statistically significant relationship
an be developed to predict deep drainage
using previously published field data

Within each vegetation category, the data was interrogated to
summarise average clay contents over various depth intervals
or the highest clay content across a depth interval. For each
interrogated data set, a MLR analysis was performed for both
deep drainage and log deep drainage terms. Consistently the
log deep drainage regression gave a superiorR2, and there-
fore we only provide those results here. Table 1 summarises
results from the MLR for annual vegetation and emphasizes
that statistically significant relationships between the average
clay content over the 0–0.5 m, 0–1 m and 0–2 m intervals and
highest clay content over the 0–2 m interval can be developed
to predict deep drainage. For each case stated in Table 1, the
SignificantF term is less than 0.05, indicating that a rela-
tionship between log deep drainage, rainfall and each clay
content variable are likely to be true.

Results from the MLR analysis for deep drainage under
trees and perennials are summarised in Table 2 and again
highlight statistically significant relationships with Signifi-
cantF less than 0.05 in each case. Limited soil textural in-
formation was available in conjunction with deep drainage or

recharge estimates for trees and perennials around Australia
and as such a combined category was assessed.

3.2 Determine the best metric of the clay content of the
soil for predicting deep drainage

As described previously, the simplest measure of fit,R2, il-
lustrates how well the MLR model fits the sampled data.
For the case of deep drainage below annuals (post-clearing)
data, the strongest correlation was given by the average clay
content (0–1 m),R2 = 0.489. However when we investi-
gated the statistical fit more thoroughly we found that even
though there was an overall significance to the MLR for av-
erage clay content (0–1 m), (SignificantF = 2.17E-12), there
was no correlation between log deep drainage and clay (P-
value = 0.837). It was similarly true for the average clay
content (0–0.5 m) and highest clay content (0–2 m) MLR
results. Despite having a lower degree of fit to the data
(R2 = 0.3521), the MLR statistical results for average clay
content (0–2 m) showed a relationship was very likely to ex-
ist between average clay content (0–2 m), rainfall and log
deep drainage (SignificantF = 3.99E-17). Moreover, there
was evidence for correlations between log deep drainage and
clay (P-value = 3.7E-05); and log deep drainage and rainfall
(P-value = 5.68E-18). From the evidence provided in Table 1,
we conclude that the best metric of clay content to use as a
surrogate for determining deep drainage is the average be-
tween zero and two metres.

A MLR using the average clay content (0–2 m) for trees
gave a good fit against the data,R2 = 0.7665. A MLR
was performed on average clay contents (0–0.5 m) and (0–
1 m) beneath trees, however the results are not given here.
Whilst a relationship was likely between log deep drainage,
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Table 2. Multiple linear regression results under trees and perennial vegetation types.

TREES PERENNIALS TREES &
PERENNIALS

Data treatment, TREES & Average clay % Average clay % Average clay %
PERENNIALS (0–2 m) (0–2 m) (0–2 m)

R2 0.7665 0.9373 0.8696
Observations 18 7 25
SignificantF 1.83E-05 3.93E-03 1.86E-10
P-value (clay variable) 4.92E-06 0.727 1.62E-06
P-value (rainfall variable) 5.89E-03 0.039 2.27E-07
Coefficient – intercept (y0) multiple regression −0.986 −1.846 −0.723
Coefficient –b (clay) multiple regression −3.35E-02 −4.77E-03 −2.74E-02

Coefficient –a (rainfall) multiple regression 3.62E-03 3.91E-03 2.99E-03
Coefficient – intercept (y0) 95 % prediction interval – lower −1.671
Coefficient –b (clay) 95 % prediction interval – lower −2.76E-02
Coefficient –a (rainfall) 95 % prediction interval – lower 2.92E-03
Coefficient – intercept (y0) 95 % prediction interval – higher 0.225
Coefficient –b (clay) 95 % prediction interval – higher −2.72E-02
Coefficient –a (rainfall) 95 % prediction interval – higher 3.08E-03

rainfall and average clay content (0–0.5 m and 0–1 m), sig-
nificantF < 0.05, in each case a relationship was not likely
between log deep drainage and clay; and log deep drainage
and rainfall, P-value> 0.05. The database included deep
drainage, rainfall and average clay content (0–2 m) informa-
tion for seven perennial vegetation sites that provided a very
good statistical fit (R2 = 0.9373) and showed that a relation-
ship was likely to exist (SignificantF = 3.93E-03). However,
it was unlikely that a correlation existed between log deep
drainage and average clay content (0–2 m), P-value = 0.727.

A review of the recharge and deep drainage database
(Crosbie et al., 2010a) provided limited soil textural data for
tree and perennial land use types and as such a merged MLR
analysis was performed to test whether an increased sam-
ple size would improve the data fit and to test the level of
significance of the data set. The merged tree and perennial
MLR provided a better fit of the data compared to trees alone,
R2 = 0.8696, and illustrated that a relationship between av-
erage clay (0–2 m), rainfall and log deep drainage for the
merged data was likely to exist, SignificantF = 1.86E-10.

3.3 Estimate the uncertainty in the deep drainage
estimates made using MLR

Given that a relationship between average clay content (0–
2 m), rainfall and log deep drainage was very likely to exist
(SignificantF = 3.99E-17), we were warranted in producing
95 % prediction intervals for the annual vegetation log deep
drainage, rainfall and average clay content (0–2 m) correla-
tion (Table 1, Fig. 3). The 95 % prediction interval described
a range within which 95 % of data was expected to occur.
Data points that fell outside of this range were for estimates

Fig. 3. Plot of multi linear regression equation developed for annual
vegetation type also showing 95 % prediction intervals.
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Fig. 4. Plot of multi linear regression equation developed for com-
bined tree and perennial vegetation types also showing 95 % predic-
tion intervals.

of deep drainage in very low rainfall zones (<300 m) that
have very low deep drainage (<1 mm yr−1).

Figure 4 illustrates the MLR analysis for the merged trees
and perennials data set and includes 95 % prediction inter-
vals to indicate the level of uncertainty surrounding the anal-
ysis. Perennials (red circles) and trees (green circles) are
highlighted in different colours to distinguish between the
two data sources. Two clusters of perennial vegetation data
are evident in Fig. 4; (1) those having high rainfall, zero
clay content and high recharge; and (2) those having lower
rainfall, high clay content (42–60 %) and minimal recharge.
The lack of perennial vegetation recharge data prevented a
meaningful relationship being developed and hence use of
the merged perennial and tree data set has been provided.

4 Discussion

SKM (2002) summarised a compilation of work undertaken
during the 1990’s by various authors (Kennett-Smith et al.,
1992a,b, 1993; HydroTechnology, 1994; O’Connell et al.,
1997) and provided an assessment of recharge dependence
on the average clay content for several intervals in the unsat-
urated zone (0–0.5 m, 0–1 m and 0–2 m) beneath non-cleared

and cleared land in the Wimmera-Mallee region of southern
Australia. With limited data available in terms of clay con-
tent, and encompassing a narrow rainfall range, SKM (2002)
suggested that clay content within the 0–2 m interval pro-
vided the best fit as a proxy measurement for determining
deep drainage. Now, with the aid of a larger database of
recharge and deep drainage estimates across Australia detail-
ing clay content in the unsaturated zone over a larger rainfall
range, we have been able to develop a more reliable approach
for predicting deep drainage and can now provide an uncer-
tainty range about those deep drainage estimates. Using this
larger data set, we have provided statistical evidence that

– the average clay content rather than the highest clay
content for a soil profile was a more appropriate proxy
measure;

– the average clay content (0–2 m) as opposed to 0–0.5 m
and 0–1 m still provided the best predictor of deep
drainage;

– in conjunction with rainfall data improved the signifi-
cance of such a correlation with deep drainage that had
previously not been specified; and

– have an improved confidence in using the average
clay content (0–2 m) of the unsaturated zone as a re-
liable proxy for estimating deep drainage rates across
Australia.

It must be noted that all deep drainage estimates presented
were point-scale measurements and as such any uncertainty
range relates to that point-scale. Crosbie et al. (2010b) ex-
plains that if relationships developed to predict deep drainage
at smaller than paddock scale were then used to estimate
deep drainage at regional scales, the uncertainty would be
overstated.

Many of the deep drainage data analysed here have been
estimated using the CFD method; assumptions to these es-
timates include the date of native vegetation clearance. The
clearance date has a large effect on deep drainage rate predic-
tions using the CFD method. In some cases, we have taken
broad scale information rather than paddock scale and sub-
sequently have used a very uncertain date rather than the ex-
act date. If a site was not cleared or cleared sometime after
we had originally assumed, then there is a probability that
we have been looking at a historical rather than a displaced
chloride profile, particularly in very low rainfall zones like
the Mallee region.

A larger sample size can imply that there will be a reduced
likelihood of a few data points skewing the result. For ex-
ample, the average clay content (0–1 m) annual data set had
three data points with low deep drainage rates that had very
low clay contents and tended to bias the data set, therefore
giving the MLR a negative relationship between clay and
deep drainage. This was a relationship that was opposite to
what we would have expected.
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The 95% prediction intervals given in Fig. 3 (logd vs. av-
erage clay content 0–2 m vs. rainfall) display an approximate
two order of magnitude spread of data. The method of Cros-
bie et al. (2010b) developed to predict recharge in data poor
areas presented 95 % prediction intervals having greater than
two orders of magnitude threshold. Our 95 % prediction in-
tervals were realised via the development of regression equa-
tions made using field measurements of soil clay content, as
compared to Crosbie et al. (2010b) who assigns an Australia-
wide coverage of integrated vegetation and soil types to cor-
relate mean annual rainfall with recharge estimates. More
importantly, our work provided an indication of the uncer-
tainty in the deep drainage vs. percent clay correlation that
has been used in studies for the last two decades without
any such consideration or quantification of the level of un-
certainty involved.

Numerous factors affect diffuse recharge to unconfined
aquifers including vegetation type and density, climate vari-
ability, soil texture, land use and land management practices.
As a general rule, recharge decreases as soil texture becomes
heavier i.e. percent clay content is elevated (Kennett-Smith
et al., 1994). Heavy textured soils have lower hydraulic
conductivities and higher water holding capacities, whereas
sandy soils have high permeability and low water holding
capacity and as such deep drainage through sandier tex-
tured soils is likely to be higher than through heavier (clay)
soils (SKM, 2002). Although under very high clay contents
the correlation between deep drainage and soil structure be-
comes less apparent as cracks and other preferential flow
paths can increase deep drainage (SKM, 2002).

The frequency and distribution of heavy rainfall events,
particularly in more arid areas, may provide a greater de-
pendence on localised recharge (e.g. flooding, stream bed
recharge) as opposed to diffuse recharge mechanisms. In
semi-arid to arid landscapes where low water fluxes are com-
mon, residence times in unsaturated zones may be long,
and as such the potential for spatial and temporal variabil-
ity of deep drainage can be significant. Moreover, the un-
predictability of recharge due to climatic variability (rainfall
and evapotranspiration amount, duration and intensity) com-
bined with spatial variability of soil texture presents diffi-
culties when estimating the spatial and temporal variability
of recharge. While the spatial variability within a land use
class may present uncertainties when assessing site specific
recharge rates in a broad ranging correlation. For example,
annuals encompass a considerable diversity of annual crops
and pastures and can represent a variety of farming manage-
ment practices, including cropping and fallow rotations, di-
rect drill or conventional tillage, and winter crops or summer
crops.

Given the range of variables that impact on deep drainage
estimates and the resultant level of uncertainty of any such
estimate, it would be natural to pose questions over the ap-
plicability of scaling up point deep drainage measurements to
management scale estimates of deep drainage and associated

uncertainty predictions. Up scaling requires mapping of per-
centage clay content over large areas. Consequently, the
accuracy of deep drainage estimates at management scale
boundaries are dependent upon the correlation between the
measured soil profile clay content at each investigation site
compared to an estimate of clay content from a Geographical
Information System (GIS) layer, for example the Soil Land-
scape Unit (SLU) coverage (DWLBC, 2010). A regression
through measured soil textural data and SLU soil textural es-
timates from Wohling (2007) (data not provided here) gave
evidence that use of such a relationship for up scaling was
not reliable. Consequently up scaling using SLU estimates
of clay content (0–2 m), which will ultimately depend on a
correlation between field and SLU estimates of clay content,
should be exercised with caution.

An over-riding question is whether there was enough data
to give indicative deep drainage information about perennial
(clay content 0–2 m, 7 sites) and tree (clay content 0–2 m,
18 sites) vegetation types? When we combined the trees
(clay content 0–2 m, 18 sites) and perennials (clay content
0–2 m, giving a total of 25 data points), the MLR correla-
tion was more significant than either of the individual trees
or perennials datasets. It also provided a better regression co-
efficient (R2) than either of the tree datasets. Until such time
as the database can be expanded with more trees and peren-
nials information, use of a combined correlation is prudent.

5 Conclusions

By incorporating a multi-linear regression approach, we have
been able to establish significant relationships to predict deep
drainage beneath annual and, tree and perennial vegetation
types using measured and published soil clay content field
data and mean annual rainfall data. Furthermore, we have
statistically established that the best metric of the clay con-
tent of the soil is the average clay content from 0 to 2 m
for both annual vegetation and a combined tree and peren-
nials data set. Previous studies had not used both mean an-
nual rainfall and measured soil textural data to estimate deep
drainage. Furthermore, given the significance of the correla-
tions between deep drainage, percent clay content and rain-
fall, we provided 95 % prediction intervals to illustrate the
uncertainty of those deep drainage estimates.

As in the future, deep drainage rates are estimated at new
sites concurrently with the collection of soil texture data, we
will be able to improve the relationships between rainfall,
clay content and deep drainage. We expect that the order
of magnitude that our 95 % prediction intervals encompass
will diminish as the uncertainty of deep drainage estimates
improves with the addition of further data, that encompasses
a greater range of clay content and annual rainfall data.

Improving our methodology for estimating deep drainage
rates in areas where data capture has traditionally been dif-
ficult, or of low priority, enables predictions of groundwater
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flow to be developed and modelled with greater reliability.
However it is the prediction of uncertainty surrounding those
estimates that will ultimately facilitate our capacity to bet-
ter manage the groundwater resource in times of increasing
demand.
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