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Abstract. There are not many studies that report water
movement in freezing peat. Soil column studies under con-
trolled laboratory settings can help isolate and understand the
effects of different factors controlling freezing of the active
layer in organic covered permafrost terrain. In this study,
four peat Mesocosms were subjected to temperature gradi-
ents by bringing the Mesocosm tops in contact with sub-
zero air temperature while maintaining a continuously frozen
layer at the bottom (proxy permafrost). Soil water movement
towards the freezing front (from warmer to colder regions)
was inferred from soil freezing curves, liquid water content
time series and from the total water content of frozen core
samples collected at the end of freezing cycle. A substantial
amount of water, enough to raise the upper surface of frozen
saturated soil within 15 cm of the soil surface at the end
of freezing period appeared to have moved upwards during
freezing. Diffusion under moisture gradients and effects of
temperature on soil matric potential, at least in the initial pe-
riod, appear to drive such movement as seen from analysis of
freezing curves. Freezing front (separation front between soil
zones containing and free of ice) propagation is controlled by
latent heat for a long time during freezing. A simple concep-
tual model describing freezing of an organic active layer ini-
tially resembling a variable moisture landscape is proposed
based upon the results of this study. The results of this study
will help in understanding, and ultimately forecasting, the
hydrologic response of wetland-dominated terrain underlain
by discontinuous permafrost.

1 Introduction

Wetland-dominated terrain underlain by discontinuous per-
mafrost covers extensive parts of northern North America
and Eurasia. The hydrologic response of these areas is poorly
understood, in part due to the lack of understanding of role of
individual climatological and soil related factors (e.g., initial
moisture conditions) on active layer freeze-thaw processes.
The active layer overlies the permafrost and undergoes sea-
sonal freezing and thawing. In organic-covered permafrost
terrain, the topography of the relatively impermeable frost ta-
ble (defined as the 0◦C isotherm) plays an important role in
controlling spring runoff (Wright et al., 2009). It is broadly
understood that factors such as climate, canopy cover, ground
slope, and soil moisture and thermal properties of soil play
critical roles in development or degradation of permafrost.
The role of latent heat in the propagation of freezing front has
been examined (e.g., Carey and Woo, 2005), yet the effect of
different soil moisture conditions on freezing front propaga-
tion and freezing induced water redistribution remains un-
clear. Soil moisture profile at the onset of winter also gov-
erns the ice content in the surface layer of the organic soils.
The rate of thaw propagation is affected by the initial soil ice
content. Once thaw reaches a certain depth infiltration into
organic soils becomes unlimited (Gray et al., 1985, 2001).

Field studies have greatly contributed in advancing the
understanding of freeze-thaw processes, controls of runoff
and functions of different hydrological units in organic ter-
rains underlain by discontinuous permafrost (e.g., Quinton et
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al., 2005; Wright et al., 2009). For example, observations
of Quinton and Hayashi (2008) suggest that at the onset of
winter, the water table is typically deeper than 0.5 m below
ground, while at the start of spring melt, the upper surface
of the frozen, saturated soil is typically about 0.1 m below
the ground surface. How this condition developed during
the winter period remains unclear. Field investigations by
Quinton and Hayashi (2008) suggest that the amount of wa-
ter supplied to the soil during the spring melt event in addi-
tion to the cumulative amount of meltwater supplied during
over-winter melt events, is sufficient to saturate the∼0.4 m
thick soil zone between the water table position at the time
of freeze-up and the frost table position at the end of winter.
However, it is not clear if water redistribution towards freez-
ing front plays any role in development of such conditions.
Subzero soil temperatures result in higher capillary pressure
gradients between warmer and colder regions of frozen soils
(Philip and de Vries, 1957) driving water movement towards
the freezing front (Dirksen and Miller, 1966). Water carries
heat and therefore alters both thermal and hydraulic prop-
erties of soil during redistribution. Water redistribution in
freezing soil has been extensively studied in mineral soils in
laboratory (e.g., Dirksen, 1964; Jame, 1978) and field (e.g.,
Kane and Stein, 1983). By comparison only a few studies
have examined the process of freezing induced water move-
ment in organic soils (e.g., Gamayunov et al., 1990; Quinton
et al., 2005).

Soil column and lysimetric experiments, under controlled
laboratory conditions and without external source of water,
have helped comprehensively establish the process of freez-
ing induced water redistribution in freezing mineral soils.
Many examples of such experiments in frozen mineral soils
can be found in literature (Dirksen, 1964; Hoekstra, 1966;
Jame, 1978; Guymon et al., 1993, Stahli and Staedler, 1997;
Gergely, 2007). These experiments were conducted mostly
using repacked soil columns with uniform packing and cold
plates at least at one column end. The other end was ei-
ther thermally insulated (Mizoguchi, 1990), in contact with a
warm/cold plate (Jame, 1978), or exposed in a freezer/cold
room (Gergely, 2007). To best of our knowledge, study
of this nature using short peat columns has been reported
only by Gamayunov et al. (1990). Data from column ex-
periments have been used to successfully verify numerical
schemes and mathematical theories (e.g., Jame and Norum,
1980; Hansson et al., 2004). However, Zhang et al. (2010)
point to limitations of numerical schemes verified with such
data when applied to non-uniform/ layered soil conditions, or
large flux conditions such as snow melt infiltration. Data for
such verification cases is scarce and therefore experiments
under controlled laboratory settings need to be aimed at ob-
serving freeze-thaw processes that emulate field conditions
as closely as possible (e.g., undisturbed soil cores) with real-
istic boundary conditions.

Field studies in the recent years have helped us understand
the role of peat plateaus (permafrost slopes), elevated above

the bog levels, in routing of runoff (e.g., Woo, 1986). The
lateral flow rates decrease in these organic covered terrains
as the frost table depths increase (Glenn and Woo, 1987) due
to large reduction of saturated hydraulic conductivity of peat
with depth (Quinton et al., 2000). The frost table position and
topography therefore plays an important role as it defines the
hydrologic function of permafrost slopes. Frost table surveys
have shown that there is a strong relationship between soil
moisture and frost table position and topography (Wright et
al., 2009). However, it has not yet been established compre-
hensively if water migration towards the freezing front plays
any role in setting up of the frost table. This partly because
it is difficult to establish the role of water movement based
on field studies alone due to uncertainties in deciding the
origin of water participating in active layer freeze-up (e.g.,
inter-winter snowmelt vs. water migration). This study uses
four Mesocoms that are thermally insulated on the sides and
contain a basal layer of peat that is continuously frozen to
simulate permafrost (proxy permafrost). The air above the
Mesocosms was maintained at temperatures below 0◦C so
that the unfrozen peat above the simulated permafrost could
be subjected to bidirectional, one-dimensional freezing. Al-
though the experimental design is similar to past column ex-
periments in regards to subjecting the columns to a thermal
gradient by maintaining temperature at ends, having a proxy
permafrost allows for a clear transition zone as is present in
the field. The influence of initial soil moisture on freezing
processes was studied by maintaining the four Mesocosms at
different water contents at the start of freezing.

The experiments are aimed at complementing the under-
standing generated from the field investigations in organic
covered discontinuous permafrost terrain (e.g., Quinton et
al., 2005; Wright et al., 2009). In particular the process of
water redistribution in freezing peat has not been studied in
the past and needs to be investigated in isolation to support
the long term field studies. Study of water redistribution in
freezing peat is the major focus of this paper along with other
objectives as described below. The experiments were specif-
ically aimed at:

1. Observing the process of freezing-induced water redis-
tribution in peat, and the role of the initial soil wa-
ter content in movement of water towards the freezing
fronts. Correlating the freezing-induced soil water re-
distribution to the over-winter moisture redistribution
observed in the field is needed to understand the over-
winter moisture redistribution processes that result in
the saturation of most of the active layer by the end of
winter.

2. Understanding if the initial soil moisture profile gov-
erns the ice content in the peat near the ground surface,
which has implications for the partitioning of snowmelt
water into infiltration and runoff.
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3. Understanding the effects of initial water content on
(a) soil freezing characteristics; and (b) soil thermal
properties and freezing front propagation.

4. Organizing the observations of this study into a sim-
ple conceptual model to describe the processes of
freezing front movement and freezing induced water
redistribution.

2 Methodology

2.1 Experimental setup

The experimental setup consisted of four peat Mesocosms
(M1, M2, M3 and M4), each∼110 cm deep and 56 cm
in diameter. All Mesocosms consisted of a∼45 cm thick
proxy permafrost layer prepared by packing unprocessed hu-
mified peat to a bulk density of∼250 kg m−3. Once pre-
pared, this layer was completely saturated and allowed to
freeze at−6◦C. Intermediate layers of unprocessed humi-
fied peat were then packed in each Mesocosm (bulk density
varying from∼250 kg m−3 to ∼125 kg m−3) to a thickness
that allowed∼110 cm deep Mesocosms to be formed when
the undisturbed field sampled cores were placed over these
layers (Table 1). In field peat can have bulk densities (ρb) as
low as 35 kg m−3 and porosities sometimes exceeding 96 %
by volume. These characteristics are common in the peat de-
posits at or near the ground surface (e.g., Schlotzhauer and
Price, 1999; Quinton et al., 2009) and difficult to replicate
along with the structure by packing. The high porosities
and peat structure result in significant changes in the ther-
mal and hydrological properties of peat as soil water con-
tent varies (de Vries, 1963; Smerdon and Mendoza, 2010).
The unprocessed humified peat used for proxy permafrost
and intermediate layers was obtained from the Upsala, On-
tario operations of Peat Resources Ltd. The undisturbed
cores were extracted from Scotty Creek watershed, North-
west Territories, Canada situated in the wetland-dominated,
discontinuous permafrost region. Details of the site loca-
tion, landform types and site characteristics can be found
in Quinton et al. (2008), and details of coring methodol-
ogy can be found in Nagare (2011). Dry bulk densities and
porosities for Scotty Creek peat as reported by Hayashi et
al. (2007) are shown in Fig. 1a and b. The vertical hydraulic
conductivity of saturated peat was measured for different
depths in the laboratory (Fig. 1c). Water retention charac-
teristics for the peat layers were reported by Quinton and
Hayashi (2005) as shown in Fig. 1d. In general, deeper peat
layers hold more water at higher tension. The water pres-
sure head-unsaturated hydraulic conductivity relationship as
used by Zhang et al. (2010) in their study of infiltration into
frozen peat at Scotty Creek site is shown in Fig. 2. For a
comparison, the water content-water pressure head relation-
ship for upper and lower peat layers as reported by Zhang
et al. (2010) are also shown in Fig. 1d using blue and red

Table 1. Details of the thickness (cm) of peat layers in each
Mesocosm.

Mesocosm Undisturbed Repacked Repacked
peat (top layer (middle frozen
of core) of core) layer

(bottom of
the core)

M1 42 18 45
M2 50 15 45
M3 17 51 45
M4 57 8 45

lines respectively. The samples did not contain any mineral
material, and their ash content was<2 % of dry weight. For
peat from the same site, Rezanezhad et al. (2009) found the
degree of humification on the von Post scale to change from
H3 just below surface vegetation to H5 at a depth of 65 cm.

The Mesocosms were setup in the Earth Science module
(BESM) of the Biotron Institute for Experimental Climate
Change at the University of Western Ontario. The BESM is
a two level biome with four dedicated compressors, two each
for the upper and lower chambers with an air temperature
control range of−40◦C to +40◦C. By situating the Meso-
cosms between these two chambers it was possible to main-
tain a frozen state in the lower∼45 cm of the core while al-
lowing for freezing and thawing of the overlying peat. Light
intensity, rain, relative humidity, wind speeds, and CO2 con-
centrations can be controlled independently in upper cham-
ber. Further details on the BESM facility can be found in
Nagare (2011).

Mesocosms were instrumented at different depths with
time domain reflectometry (TDR) sensors (TDR100, CS610
and CS635 probes, Campbell Scientific, Inc., Logan UT) and
temperature sensors (107BAM, Campbell Scientific, Inc.,
Logan UT). A heat flux plate each (HFT3, Campbell Sci-
entific, Inc., Logan UT) was inserted near the soil’s sur-
face in M2 and M3. The depths at which sensors were
places are given in Table 2. The Mesocosms were placed
on four 81 cm× 81 cm load cells (KC600S, 10 g precision
over 600 kg, Mettler Toledo Canada, Mississauga, ON) for
continuous weighing such that the bottom∼45 cm of the
Mesocosms were the in lower chamber and the remainder
protruded into the upper chamber. The sides of the Meso-
cosms were insulated using a combination of neoprene foam
and mineral fibre insulation. The lower chamber was main-
tained at−1.9◦C to keep the bottom∼45 cm of the cores
continuously frozen while the air temperature was varied in
the upper chamber. Figure 3 shows a schematic of the ex-
perimental setup with detailed explanation of various com-
ponents. Soil dielectric permittivity, temperature, heat flux
and weight were recorded every 15 min.
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Table 2. TDR and temperature (Temp.) probe locations below surface (cm) in each Mesocosm. In addition to these probes, heat flux plates
were inserted at 8 cm in Mesocosms 2 and 3.

Mesocosm 1 Mesocosm 2 Mesocosm 3 Mesocosm 4

TDR Temp. TDR Temp. TDR Temp. TDR Temp.

5, 10, 0, 5, 10, 3, 8, 13, 0, 3, 8, 5, 10, 15, 0, 3, 8, 5, 10, 0, 5, 10,
15, 25, 15, 25, 18, 28, 13, 18, 20, 30, 13, 18, 15, 25, 15, 25,
37, 52 37, 52, 40, 55 28, 40, 42, 57 25, 37, 37, 52 37, 52,

64, 72 55, 72.5, 47, 60, 64, 72
84 80
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Fig. 1. Depth variation of(a) Bulk density (Hayashi et al., 2007),(b) porosity (Hayashi et al., 2007),(c) vertical hydraulic conductivity, and
(d) soil water retention curves (Quinton and Hayashi, 2005) for peat from Scotty Creek watershed. The different symbols in(d) represent
the samples taken at different depths as shown in legend. Also shown in(d) are the van-Genuchten models for upper peat layers (blue line)
and lower peat layers (red line) as reported by Zhang et al. (2010) during numerical study of infiltration in frozen peat at Scotty Creek.

2.2 Experimental conditions

Two freezing runs were conducted. In the first run, the Meso-
cosms were subjected to air temperature in the upper cham-
ber of−5◦C for 31 days and then−10◦C in the following
16 days. This first run was aimed at understanding the freez-
ing characteristics in general. All four Mesocosms had an
unfrozen, saturated layer at the commencement of the first

freezing run with water table depths of 27-, 43-, 40- and
32 cm below the surface respectively. To establish saturated
layers within the Mesocosms, water was sprayed daily (twice
a day in different amounts) on the surface and the Meso-
cosms were allowed to equilibrate for at least 30 days. Af-
ter 47 days of freezing, it took 75 days to thaw the active
layer down to the top of the proxy permafrost layer. The air
temperature in the upper chamber was maintained constant
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Fig. 2. Unsaturated hydraulic conductivity-water pressure head
model (based on van-Genuchten equation) reported by Zhang et
al. (2010) during numerical study of infiltration in frozen peat at
Scotty Creek. The model has not been validated for unsaturated
hydraulic conductivity values from Scotty Creek, but was devel-
oped based on values from another field site and validated numer-
ically. Reduction in hydraulic conductivity due to ice formation is
not included.

at 15◦C and lights (wavelength: 400–750 nm) were kept on
such that the soil surface level received an energy input of
160 W m−2. A further 75 days were required to establish the
initial conditions for the second freezing run. The air tem-
perature in the upper chamber was maintained at−7.5◦C for
93 days during the second freezing run. The air temperature
in the lower chamber was kept constant at−1.9◦C. Most of
the data from first freezing run could not be used because
of sequential failure of temperature sensors during this run.
Therefore, soil freezing characteristics and influence of ini-
tial water content on soil water redistribution and freezing
front propagation was examined from the data of the second
freezing run. Three additional temperature sensors at depths
of 8-, 28- and 55 cm were inserted in peat near the wall of
container holding Mesocosm 2. This was done in order to de-
termine the performance of the experimental setup by com-
paring with the temperature readings of the central sensors
(Fig. 4). A complete evaluation of the experimental setup
with regards to its performance is given in Nagare (2011).

2.3 TDR calibration

A detailed calibration of the TDR100 was performed by Na-
gare et al. (2011) at a constant temperature (30◦C) using
undisturbed peat samples from the Scotty Creek field site.
The temperature effects on relative bulk dielectric permittiv-
ity of soil (ε) have been studied in the past (e.g., Pepin et
al., 1995). In freezing soils it has been shown that the tem-
perature effects are primarily due to the temperature-ε rela-
tionship of water (e.g., Watanabe and Wake, 2009). Maxwell
De-Loor’s (MDL) mixing model can efficiently handle the
temperature effects on theε-volumetric water content (θ )

Fig. 3. Line diagram showing the experimental setup. U: up-
per level chamber of the BESM; 1L: lower level chamber of the
BESM; 2: 65–75 cm deep unfrozen layer; 3: 45 cm bottom frozen
layer (fully saturated before freezing); 4: TDR probes connected
to 11 through low-loss coaxial cables; 5: temperature probes con-
nected to 11; 6: heat flux plate; 7: LDPE container lined with neo-
prene from inside and insulated from outside; 8: stand pipe for water
level measurements; 9: weighing scale; 10: custom made stand to
support the entire experimental setup; 11: multiplexers and datalog-
ger connected to a personal computer.
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Fig. 4. Comparison between temperature time series of near-edge
and central sensors located at(a) 8 cm, (b) 28 cm and(c) 55 cm
below peat surface.

relationship. Therefore, MDL model was used to estimate
water content from observedε after calibrating with the em-
pirical equation given by Nagare et al. (2011). Although the
unfrozen water content can be overestimated by as much as
7 % when ice contents exceed 60 % by volume, the effect of
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ice on ε could not be incorporated because of inability of
determining ice contents at different time points in our ex-
periments. The MDL mixing model equation is given as:

θ =

3(εs−ε)+θbw

(
2(εbw−εfw(T ))−εεs

(
1

εbw
−

1
εfw(T )

))
+η

(
2(εa−εs )−ε εs

(
1
εa

−
1
εs

))
εεs

(
1

εfw(T )
−

1
εa

)
+2(εa−εfw(T ))

where subscripts s, bw, fw and a represent soil solids, bound
water, free water and air respectively,η is total porosity and
T is the soil temperature (◦C). Bound water was ignored as it
was found to have very little influence given its small quan-
tities as shown by Nagare et al. (2011). The temperature de-
pendency ofεfw was incorporated in the MDL model using
the relationship given by Wohlfarth (2010):

εfw(T ) =

{
249.21−0.79(T +273.15) + 0.00073(T +73.15)2 0≤ T ≤ 99
88 T ≤ 0

.

2.4 Final total water content

Final total water content (ice + liquid water) was measured at
the end of the second freezing run for all four Mesocosms.
Cores were extracted from the frozen Mesocosms using a
custom designed coring tool (30 cm long thin walled stainless
steel tube; 2.03 cm inner diameter) powered by an electric
drill. Two cores each from M2 and M4 were sampled from
depth intervals 0–25 cm and∼25–45 cm by slowly drilling
into the samples in two depth increments. Two cores between
depth intervals 0–25 cm and∼25–36 cm could be extracted
from M1. The final water content in M3 could be determined
only for the upper 9.1 cm, as efforts to core deeper in this
Mesocosm did not succeed due to high ice contents. The
cores were cut while frozen into smaller sections, weighed
and oven dried at 87◦C until no further change in weight was
recorded. The dry samples were weighed again for gravimet-
ric measurement of the final total water content.

The cores were extracted near the edges of the Meso-
cosms. Although it is best to determine total water content
at different depths for entire soil column, it was not possible
in our case as we continued using the Mesocosms for further
research on freezing and thawing processes in peat. Extract-
ing cores near edge may have resulted in relatively unrealistic
final total water contents possibly because of different flow
regimes near column edges, lateral heat leak effects and lat-
eral redistribution of water within the Mesocosms. However,
in this study the data from the cores is assumed to be good
enough for the purpose of process based discussion.

3 Results and discussion

3.1 Initial conditions

The influence of water content at the start of the freezing
run on active layer freezing processes was studied during the
second freezing run. Initial water content is the unfrozen wa-
ter content at the start of the freezing run estimated from

TDR observations. Mesocosms 1 and 4 were variably sat-
urated at the start of this freezing run with the water tables
located at 42 cm and 27 cm below the ground surface respec-
tively. Mesocosm 2 was variably saturated throughout the
depth with no saturated zone, while the water table was lo-
cated at∼5.5 cm in Mesocosm 3 at the start of the freezing
run. The initial temperature profile in each Mesocosm was
achieved by maintaining the air temperatures in lower and
upper chambers at−1.9◦C and 4◦C respectively until a rel-
atively stable profile was achieved. Figure 5 shows the initial
water content and temperature profiles in all four Mesocosms
at the start of the second freezing run.

3.2 Soil freezing characteristics

Soil freezing characteristics (SFCs) at different depths were
determined from observed liquid water content and soil tem-
perature data collected during the second freezing run. Water
in M1, M2, M3 and M4 started to freeze at−0.08◦C, 0◦C,
−0.05◦C and−0.08◦C respectively, and represent the tem-
peratures at which peat water starts to freeze (freezing point
before further depression) in each Mesocosm in the discus-
sion to follow (Fig. 6). It is evident that some water remained
unfrozen even after 2000 h (83 days) of freezing with residual
liquid water contents between 0.02 m3 m−3 and 0.11 m3 m−3

continuing to exist even at−5◦C. Depths with higher initial
water contents are left with slightly larger amounts of resid-
ual water at similar temperatures, which could be because
of influence of pore size distribution as well as varying ice
content on TDR readings. Overall the SFCs appear to fol-
low a common path during freezing. As theorized by Low
et al. (1968), liquid water content in frozen soils must have
a fixed value for each temperature at which the liquid and
ice phase are in equilibrium, regardless of the amount of ice
present. It is convenient to define a single soil freezing curve
for a particular soil type in order to simplify the relationship
between soil temperature and liquid water content. An ex-
ample of a single curve defining the temperature-liquid wa-
ter content relationship based on the van Genuchten model
(van Genuchten, 1980) is shown in Fig. 7. The curve was
obtained by fitting into the soil temperature and liquid wa-
ter content data. This approximation of the SFCs in a single
curve is important for numerical studies as it simplifies the
constitutive relationship between soil temperature and liquid
water content.

3.3 Freezing induced water redistribution within the
active layer

Soil water redistribution during the second freezing run in
each Mesocosm was inferred based on initial and final total
water contents, liquid water content time series (Fig. 8) and
SFCs at different depths.
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Fig. 5. Initial temperature (red line) and water content (black line) in Mesocosms(a) 1, (b) 2, (c) 3, and(d) 4 for second freezing run. The
depth to the groundwater table is shown by free water surface symbol. Mesocosm # 2 was unsaturated throughout the depth for before the
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3.3.1 Variably saturated conditions with a water table
at depth (Mesocosms 1 and 4)

In both M1 and M4 water from the zone near and above
the water table is redistributed most likely towards the freez-
ing front before the soil temperature falls below the freez-
ing point. This movement is evident from the reduction of
water content at 15 cm and 25 cm depths prior to soil freez-
ing (Fig. 6a and d). Combining these SFC’s with final to-
tal water contents in Mesocosms 1 and 4 (Fig. 10a and d),
it can be presumed that the water moved upwards toward
the downward propagating freezing front. Freezing reduces
the soil pore pressures significantly because soil retains un-
frozen water (Dash et al., 1995) creating large pore pressure
gradients between the colder and warmer regions. A reduc-
tion in water content can be observed at different depths in
both M1 and M4 prior to the temperature falling to freezing
point. For example, before the arrival of freezing front the
reduction in water content of∼0.07 m3 m−3 at 25 cm depth
in M1 (237 h) and∼0.27 m3 m−3 in M4 (281 h) can be ob-
served. A simple calculation using hydraulic conductivities
from Fig. 2 indicates that potential gradients of∼4 m m−1

in M1 and∼0.12 m m−1 in M4 are required to cause such
magnitudes of water flow towards the freezing front. Note
that the model presented in Fig. 2 does not include reduc-
tion in hydraulic conductivity due to ice formation and was

used by Zhang et al. (2010) for numerical study of infiltration
process in frozen peat at Scotty Creek field site. The exist-
ing potential gradients even before the effects of freezing on
pore pressure as inferred from Figs. 1d and 5 are much larger
(∼18 m m−1 in M1 and∼7 m m−1 in M4). If the effect of ice
formation on hydraulic conductivities is considered, the dif-
ference in amount of water movement could be explained by
the hydraulic conductivity differences resulting from water
content differences in the upper 10 cm of these two Meso-
cosms. Gamayunov et al. (1990) give detailed explanation
of moisture migration mechanisms towards freezing front in
freezing peat. Their experiments comprehensively show a
slow but large amount of water movement towards freezing
front. Quinton et al. (2009) show prominent existence of con-
nected water films (flow networks) even at reduced hydraulic
conductivities in peat. The process of moisture migration in
peat is more diverse than in mineral soils and differences in-
clude the easily deforming nature of peat particles which fur-
ther aids moisture migration (Gamayunov et al., 1990). The
final total water contents in Mesocosms 1 and 4 (Fig. 10a
and d) also indicate differences in water movement and the
location of maximum water accumulation in these two Meso-
cosms. This appears to be partly attributed to the differences
in hydraulic conductivities (∼10−12 vs.∼10−8 m s−1) in the
upper 10 cm of these two Mesocosms. In addition, based on
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Fig. 6. Soil freezing characteristics of all four Mesocosms obtained from recorded unfrozen water and soil temperature data.

the mechanism explained by Gamayunov et al. (1990), dry
initial conditions in upper 10 cm of Mesocosm 1 must have
resulted in very less compression of the peat particles neces-
sary for water migration into this zone.

3.3.2 Dry conditions (Mesocosm 2)

Mesocosm 2 was the driest among the four at the start of
second freezing run with only residual water contents in up-
per 30 cm (∼0.15 m3 m−3 at 28 cm, Fig. 5b), had no satu-
rated layer and had a degree of saturation of∼50 % at 55 cm.
No reduction of water content was observed in M2 at tem-
peratures above freezing (Fig. 6b). This can be attributed
to extremely low hydraulic conductivities (10−12 m s−1) in
the dry zone. In addition, as explained by Gamayunov et
al. (1990), water migration in freezing peat only takes place
at higher moisture contents because of its complex mecha-
nisms involving the deformation of the peat material. This is
corroborated well by the final total water content profile for
Mesocosm 2 (Fig. 10b).

3.3.3 Saturated conditions (Mesocosm 3)

At the start of the freezing run, the water table in M3 was
at ∼5.5 cm. It is difficult to infer any water movement for
this Mesocosm from SFC alone, except at 5 cm depth, where
water loss commenced prior to the temperature falling below
freezing.

Water movement in freezing peat, as explained by
Gamayunov et al. (1990), is driven by water concentration
gradients and steep water content gradients at the start of
freezing could have aided in water movement in M1 and M2.
The weights of the Mesocosms 1 and 2 continued to drop
during the entire freezing period and resulted into weight
changes of∼5 kg (M1) and∼4.5 kg (M2). This indicates
that water was escaping from the Mesocosms during freez-
ing (evaporation or sublimation). The total amount of wa-
ter equivalent to∼18.56 mm and∼16.7 mm respectively es-
caped from these two Mesocosms.
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Fig. 7. Soil freezing curves chosen from four different Mesocosms
and initially at different water contents (θi ). A best fit defined by
van-Genuchten model (VG Model, van Genuchten, 1980) is also
shown along with the VG Model parameters. The SFC’s were cho-
sen from each Mesocosm such thatθi ≥ 0.5 m3 m−3.

3.4 Significance for field studies

One critical issue in field studies is to understand the role
of over-winter snowmelt events, and the origin of water par-
ticipating in the freezing of active layer over the winter sea-
son. Figure 11 shows the water content values observed at
the Scotty Creek research site at beginning and end of winter
season of 2002–2003. Initial moisture conditions for the field
were not measured below 40 cm. The depth to permafrost at
the onset of winter was 70 cm. This site is underlain by spo-
radic/discontinuous permafrost (Smith et al., 2004; Quinton
and Hayashi, 2005).

Figure 11 indicates that water from other zones may
have moved into 0–40 cm depths during winter. Compar-
ing Figs. 10 and 11 indicates that it is possible that water
from deeper zones at initial high water contents moved up-
ward towards the freezing front during the winter season and
resulted into the final profiles in Fig. 11. The measurements
in Fig. 11 indicate 41.85 mm change (average of two cores)
in storage in the upper 40 cm depth. A change of storage of
33.65 mm and 42.11 mm in upper 29 cm and 21 cm in M1
and M4 respectively was inferred from the initial and final
profiles (Fig. 10). Mass balance calculation for Mesocosm 4
indicates that this increase in storage is 17 mm higher than
explained by the loss from the deeper depths. As explained
in Sect. 2.4, the frozen cores were taken near the edges of the
Mesocosms and thus there could have been variable move-
ment as well as lateral redistribution. Additionally, the cores
were not taken for the entire column depths and not account-
ing the loss of water from depth>45 cm could in part explain
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Fig. 8. Unfrozen water content time series of Mesocosm 1 for
(a) run 1 and(b) run 2. Please note the different time axes for runs 1
and 2. The difference in water contents (m3 m−3) prior to freezing
and after thawing is also shown. The temperature boundary condi-
tions (air temperature in upper and lower chambers) for runs 1 and 2
are shown in Fig. 9.
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per and lower chambers) during(a) run 1 and(b) run 2. Note the
differences in axis limits.

the difference in the mass balance calculation. It must be
noted that the initial water content in upper 40 cm depth in
both Mesocosms (Fig. 5) was higher than the initial water
content in the field (initial moisture in Fig. 11). Also, the
water table was within upper 40 cm depth in both Meso-
cosms and the air temperature at the surface was constantly
at−7.5◦C. All these conditions may have resulted into rela-
tively larger amount of water movement towards the freezing
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Fig. 11. Observed initial (liquid) and final water contents (liq-
uid + ice) at Scotty Creek field site for winter of 2002–2003 (Quin-
ton and Hayashi, 2008). The initial and unfrozen moisture content
readings are from a soil pit being measured using a water content
reflectometer. Two frozen cores were sampled at the end of win-
ter season near the soil pit and total (liquid + ice) water content was
determined gravimetrically.

front in the Mesocosms than in the field. This is an important
observation as it suggests that temperature gradients drive an
upward flux of water from deeper regions of the soil into the
upper 10 cm zone where it can be supplemented by an in-
termittent downward flux of snowmelt water over the winter
period. This combination of freezing induced upward migra-
tion of water supplemented by an intermittent downward flux
of snowmelt water over the winter period results into raising
the upper surface of the frozen, saturated soil typically within
about 0.1 m below the ground surface.

3.5 Soil temperature and freezing front propagation

Figure 12 shows the isothermal maps for all four Mesocosms
plotted from temperature measurements during the second
freezing run. Bi-directional freezing, with a relatively fast
moving downward and a slower moving upward freezing
front, can be observed in all four Mesocosms. The freezing
front propagates faster and deeper in upper dry∼35 cm of
M2 due to minimal latent heat release. Freezing slows down
considerably below this depth due to relatively high satura-
tion and latent heat effects. Strong thermal gradients can be
seen near surface in the wetter M1, M3 and M4 Mesocosms
indicating presence of high amounts of water near the freez-
ing front. In all four Mesocosms, the propagation of freezing
front is controlled by competing roles of thermal diffusivity
and latent heat. The slow progression of the freezing front
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Fig. 12. Isolines of equal temperature across depth and time for(a) M1, (b) M2, (c) M3 and(d) M4.

in M2 below the upper 30 cm is due to a combination of la-
tent heat, and low thermal conductivity owing to drier peat
and higher air volume relative to M1, M3 and M4. The role
of higher water content in heat balance can be seen from the
difference in ground heat flux (from heat balance calculations
based on Hayashi et al., 2007) for Mesocosms M2 and M3
(Fig. 13). It can be seen that the cumulative heat removed
from the saturated Mesocosm M3 is higher than from the dry
M2. This is because of more contribution from latent heat
and higher thermal conductivity in the M3 as compared to
M2. Most water in Mesocosms M1, M3 and M4 freezes
around∼2000 h after which the freezing front propagates
deeper and at a higher rate. Thus, latent heat plays a sig-
nificant role in keeping the soil warm, yet higher water con-
tents result in colder horizons at depths owing to higher ther-
mal conductivity and lower heat capacity during late freezing
periods.

The results of this study are used to describe the evolu-
tion of frost table topography for a peat plateau through a
simple conceptual model (Fig. 14). While the model is hy-
pothetical, it provides a useful framework for discussion. At
the onset of winter, the organic active layer resembles a vari-
able moisture landscape made up of areas with (1) full satu-
ration (under the topographic depression); (2) low moisture
content (dry surface layer); and (3) relatively wetter unsatu-
rated zone below the dry surface layer and under the mound.
The water table more or less resembles the surface topog-
raphy. When the air temperatures drop below freezing, the
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Fig. 13. Calculated cumulative ground heat flux in fully saturated
M3 and dry M2.

freezing front migrates at variable rates in the different re-
gions. The rate of migration in early winter is maximum in
the dry surface layer because there is very little moisture to
slow down the descent (Fig. 14b). In comparison the rate
of freezing front movement is slowest under the topographic
depression where peat is fully saturated. Water from the re-
gions just above the water table moves upward in response
to the pressure head gradient created between the colder and
warmer regions drawing the water table downward. As the
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Fig. 14. Conceptual model describing freezing induced water redistribution and freezing front propagation inside an organic active layer
on a peat plateau(a) onset of winter,(b) early winter,(c) early-mid winter,(d) mid winter, (e) and (f) mid-late winter, and(g) end of
winter and spring runoff (large downward arrow denotes unimpeded infiltration). Variable moisture landscape made up of regions with
deeper unsaturated zones plus dry surface layer (zone of lower hydraulic conductivity) and shallow water table with wetter unsaturated zone
(zone of higher hydraulic conductivity) result into variable amount of freezing induced moisture movement and different rates of freezing
front movement. Note: gray areas indicate regions with saturation approaching total porosity. The freezing front separates the gray areas
into regions with frozen (partially or fully) and unfrozen states. Soil pores in regions above the freezing front contain ice and liquid water
(frozen) and below the freezing front contain liquid water only (unfrozen). Pores of unsaturated soil (white areas) above the freezing front
contain liquid water, ice and air, and below the freezing front contain liquid water and air only.

winter progresses, so does the freezing front drawing more
water from regions of higher saturation creating a continuous
zone of increased saturation just below it (Fig. 14c). Much
more water is accumulated behind the freezing front in re-
gions where the initial water content in unsaturated zone was
relatively high (e.g., under the mound higher rate of water
flow is shown by longer arrow). This occurs because of the

higher hydraulic conductivity of the wetter unsaturated zones
as compared to the drier ones. In comparison, the initially
dry surface layer remains on lower side of saturation because
the low hydraulic conductivity in this layer slows down the
upward movement of water beyond its interface with the wet-
ter unsaturated zone underneath. By mid-winter (Fig. 14d),
there is no longer a saturated unfrozen zone on the entire peat
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plateau. The entire plateau is unsaturated because of freez-
ing induced water redistribution or partial freezing of soil
water. The soil moisture migration towards freezing front
continues from areas where there is still substantial liquid
water. As the water accumulating behind the freezing front
freezes, it also retards the movement of the freezing front
(Fig. 14c and d). The rate of descent still is slowest below
the topographic depression and the mound where the zone of
increased saturation is at its maximum thickness behind the
freezing front. By mid to late winter (Fig. 14e and f), most
of the water behind the freezing front is frozen, except under
the topographic depression and the mound. Elsewhere on the
peat plateau, the downward freezing front movement accel-
erates. By this time, freezing induced water movement has
slowed down considerably except near the depression where
the larger effects of temperature on soil matric potential (due
to higher ice contents) and initially higher hydraulic conduc-
tivity, result in a comparatively higher rate of upward wa-
ter redistribution. As most water freezes behind the freez-
ing front, the front migrates much more rapidly owing to in-
creased thermal conductivity and lower release of latent heat.
By the end of winter most water redistribution ceases and the
entire soil profile is now below freezing temperatures. The
significant water movement upwards in early to mid, late-
mid winter periods results in a continuous saturated frozen
layer near surface of varying thickness. The thickness is min-
imum below the dry surface layer and maximum below the
topographic depression and the mound. This saturated frozen
layer creates a near impermeable frost table near surface with
variable thickness of unsaturated zone above it. As spring ar-
rives and snow melts, runoff takes place in different modes
in different regions of the peat plateaus. There is unimpeded
infiltration into the dry surface layer with lowest ice content.
The infiltrating water runs off down-slope along the topogra-
phy of the frost table through the subsurface. Near the topo-
graphic depression and the mound, where the impermeable
surface is flush with ground surface, most snowmelt runoff
takes place as overland flow along the topographic slopes.

4 Conclusions and implications

Four peat Mesocosms with different initial moisture contents
were subjected to freezing to study the impact of soil water
content on soil freezing characteristics, freezing induced soil
water redistribution, and frost penetration.

There appears to be very little effect of initial soil mois-
ture on soil freezing characteristics of peat. This implies that
liquid water content in frozen peat has a fixed value for each
temperature at which the liquid and ice phase are in equilib-
rium, regardless of the amount of ice present. A single freez-
ing curve can be derived, regardless of initial soil moisture.
This simplifies the temperature-liquid water content param-
eterization required for numerical studies. Initial moisture
profiles seem to control the amount of water moving upwards

by influencing the hydraulic conductivities in variably satu-
rated media. Substantial water redistribution appears to have
taken place within the active layer during its freezing. This
suggests that under favorable conditions the water moving
from deeper depths under temperature gradients, with “com-
plementary” contribution from preceding over-winter melt
events, could be sufficient to raise the upper surface of frozen
saturated soil within upper 10 cm zone. It is also likely that
water from slowly freezing bogs moves up-slope resulting
into fully saturated active layer on permafrost plateaus at the
end of winter season. Diffusion under moisture gradients and
effects of temperature on soil matric potential, at least in the
initial period, appear to drive such movement towards freez-
ing front. Initial water content in the surface layer (∼10 cm)
appears to control the amount of ice and location of the zone
where maximum ice is formed near the surface. It appears
that if there is a relatively thick dry layer, then water moving
towards the freezing front from below is accumulated rela-
tively at a deeper depth as compared to if the surface layer
was moist. Also, the ice content in a dry surface layer would
be much lower than a relatively wetter surface layer. This has
implications in the timing and mode of runoff during the ini-
tial thaw period because an initially dry surface layer would
result into unimpeded higher infiltration.

The freezing front movement in the four Mesocosms with
different initial moisture content shows that it’s movement
in freezing peat is controlled by a combination of latent heat
and thermal properties of the peat-air-water-ice system. La-
tent heat governs the frost penetration for a long time dur-
ing freezing because of high water contents in peat. Once
water in peat is frozen, higher thermal conductivity and low-
ered heat capacity of frozen peat-ice system helps in faster
movement of the freezing front. Climate change scenarios
predict shorter periods of snow cover in northern latitudes
(Serreze et al., 2000; IPCC, 2007). This will increase the
rate of freezing of peat pore water. If the peat contains sub-
stantial water at the onset of winter, then this might lead into
deeper frost depths. Mean annual air temperature and rain-
fall in the northern hemisphere are also predicted to increase
(Serreze et al., 2000; IPCC, 2007). A system with competing
dynamics of frost penetration due to longer ground exposure
to winter air temperatures and overall higher annual mean air
temperature forcing deeper permafrost appears to be a possi-
ble scenario.

This study demonstrates that soil moisture profiles at the
onset of winter play an important role in modulating the hy-
draulic and thermal properties of peat and therefore affecting
the freezing induced water redistribution and freezing front
propagation during the freezing of active layer. For example,
the results of this study are in agreement with the modeling
study of Jorgenson et al. (2010) in which the modeled tem-
peratures for permafrost overlain by dry organic mats was
found to be much colder than for wet overlying mats. The re-
sults of this study will help in understanding, and ultimately
forecasting, the seasonal freeze-thaw hydrologic response of
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wetland-dominated terrain underlain by discontinuous per-
mafrost. Further research through numerical modeling and
laboratory work involving experimental design similar to that
of this study is required to understand the exact mechanisms
of water flow in freezing peat, and the impacts of the compet-
ing dynamics driving the water and heat movement in frozen
peat.
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