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Abstract. This study assesses climate change impacts on wa-
ter balance components of the regional unconfined aquifer
systems in south-western Australia, an area that has experi-
enced a marked decline in rainfall since the mid 1970s and is
expected to experience further decline due to global warm-
ing. Compared with the historical period of 1975 to 2007,
reductions in the mean annual rainfall of between 15 and 18
percent are expected under a dry variant of the 2030 climate
which will reduce recharge rates by between 33 and 49 per-
cent relative to that under the historical period climate. Rel-
ative to the historical climate, reductions of up to 50 percent
in groundwater discharge to the ocean and drainage systems
are also expected. Sea-water intrusion is likely in the Peel-
Harvey Area under the dry future climate and net leakage to
confined systems is projected to decrease by up to 35 per-
cent which will cause reduction in pressures in confined sys-
tems under current abstraction. The percentage of net annual
recharge consumed by groundwater storage, and ocean and
drainage discharges is expected to decrease and percentage
of net annual recharge consumed by pumping and net leak-
age to confined systems to increase under median and dry
future climates. Climate change is likely to significantly im-
pact various water balance components of the regional un-
confined aquifer systems of south-western Australia. We as-
sess the quantitative climate change impact on the differ-
ent components (the amounts) using the most widely used
GCMs in combination with dynamically linked recharge and
physically distributed groundwater models.

1 Introduction

Climate change affects temperature, rainfall and relative hu-
midity and has a flow-on effect throughout the hydrological
cycle (Lóaiciga et al., 1996). There is evidence of a tempera-
ture increase of 0.74◦C in the average surface temperature of
the earth during the 20th century (IPPC, 2007; UNEP, 2007)
and a further increase of 1.4 to 5.8◦C by 2100 is projected
due to greenhouse gas emissions (McCarthy et al., 2001).
The climate change has impacted rainfall in many parts of
the world (Ducci and Tranfaglia, 2008) and has caused sig-
nificant reductions in a number of regions impacting on the
availability of both surface and groundwater resources. There
is evidence of decline in summer and autumn precipitation
in drier northeastern regions of China since 1960 (Piao et
al., 2010) and decline in mean annual rainfall in the south-
west Western Australia and parts of the southern and eastern
Australia during the second half of the 20th century (PM-
SEIC Independent Working Group, 2007). Climate change is
likely to further impact rainfall in the future in many regions
of the world and in some parts precipitation is projected to
increase (w.g. van Roosmalen, 2007, 2009). Increasing or de-
creasing precipitation and the resulting increase or decrease
in groundwater recharge or discharge may also deteriorate
dependent or associated ecosystems and agricultural produc-
tion (Aldous et al., 2011; Barron et al., 2012; Hinsby et al.,
2012; Jeppesen et al., 2009; Olesen et al., 2007; Sonnenborg
et al., 2012).

Global climate models (GCM) are used for projecting fu-
ture climates. Recent advances in modelling and improved
understanding of the physical processes of climate sys-
tems have made projections of future climate more reliable
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(Christensen et al., 2007; Pirani, 2011; Taylor et al., 2012)
and simulation results from downscaled global circulation
models have been used for regional studies of the impact
on the hydrological cycle by integrated hydrological mod-
els (e.g. van Roosmalen et al., 2007, 2009; Goderniaux et al.,
2009, 2011) including water quality issues (Sonnenborg et
al., 2012).

Both the temperature rise and rainfall decline due to cli-
mate change affects various components of the groundwa-
ter balance by directly and indirectly affecting multiple fac-
tors (Zagonari, 2010) such as groundwater recharge (Ng et
al., 2010) due to rainfall decline, potential evapotranspira-
tion due to temperature and vapour pressure deficits rise, and
groundwater discharge to drains due to groundwater levels
decline. It can increase seawater intrusion risks in coastal
aquifers and affect inter-aquifer leakage rates and flow di-
rection. Although the research on climate change effects
on groundwater systems is relatively scarce (Marshall and
Randhir, 2007) it is rapidly increasing (Barthel et al., 2011;
van Roosmalen et al., 2007, 2009; Goderniaux et al., 2011;
Sonnenborg et al., 2012). Some studies have either fully or
partly addressed the effects of recent past and projected cli-
mate change on groundwater resources using various hydro-
logical, regression, modelling and isotope techniques (Scibek
and Allen, 2006; Isaar, 2008; Ducci and Tranfaglia, 2008;
Polemio and Casarano, 2009; Sinha and Navada, 2008). Only
few studies have applied truly integrated hydrological mod-
els that are physically-based and spatially distributed both on
the surface and in the subsurface (Goderniaux et al., 2009).
Often variable results are produced (Jiang et al., 2007) due to
simplistic assumptions made in climate projections and rep-
resentation of physical processes of the hydrological system.

A reliable estimate of recharge is the first requirement
in estimating the impact of climate change on groundwater
systems because it represents the connection between atmo-
spheric, surface and sub-surface processes and is impacted
by many factors including changed precipitation and tem-
perature regimes, coastal flooding, urbanisation and surface
sealing, woodland creation and rotation changes (Holman,
2006). Various simple water balance techniques and mod-
els are available to estimate recharge (Aguilera and Murillo,
2009; Barr et al., 2003; Herrera-Pontoja and Hiscock, 2008;
Sanford, 2002). It can be used as input to numerical ground-
water models which distribute this recharge into various
components of the water balance, or a recharge model can
be dynamically linked with the groundwater models which
estimate recharge at each stress period depending on varia-
tions in climate and land surface conditions.

Input from recharge models can be used in groundwater
models to study the impacts of climate change on ground-
water systems. Scibek and Allen (2006) and Woldeamlak et
al. (2007) used physically-based distributed recharge mod-
els to estimate annual recharge and used this in MODFLOW
model to simulate groundwater in Grand Forks in south cen-
tral British Columbia and in Grote-N Belgium, respectively.

Various recharge and groundwater models have been used
in Australia to study the impacts of climate change on fu-
ture groundwater resource availability in the Murray-Darling
Basin, Northern Australia, Tasmania and south-west Western
Australia (Ali et al., 2010, 2012; Crosbie et al., 2010; CSIRO,
2008, 2009; Post et al., 2011).

Most studies used recharge as a direct input in groundwa-
ter models. Our study dynamically linked a recharge model
that takes account of variations in climate, land surface
condition and groundwater depth with MODFLOW based
groundwater models. By dynamically linking a recharge
model with a groundwater model the effect of depth to water
table on recharge was also taken into account. Quantification
of storage change and discharge changes by simultaneously
considering unsaturated and saturated processed based mod-
els is an important step forward in this field of study.

The main objectives of this study were to dynamically
link a recharge model with MODFLOW based groundwater
models and simulate the potential climate change impacts on
the water balance of the coastal plain unconfined aquifers of
south-western Australia.

2 Description of study area

The study area is located between Gingin to the north and
Augusta to the south of Perth (Fig. 1). For this study the
area was divided into three parts: the Central Perth Basin, the
Peel-Harvey Area and the Southern Perth Basin, all of which
are part of the Perth Basin (Fig. 1). The study area covers
about 20 000 km2 and is located in one of the highest rainfall
parts of south-western Australia. It includes all fresh, brack-
ish and marginal groundwater resources near the coast. In-
land groundwater supplies are either limited or too saline for
most domestic, irrigation and industrial uses and were there-
fore excluded from this assessment. The study area has over
80 percent of Western Australia’s population and accounts
for over half of the horticultural production of the state (van
Gool and Runge, 1999).

Groundwater is a major source of water in the study area.
The Perth Basin comprises the flat sandy Swan and Scott
coastal plains, and more elevated and clayey plateaux such
as the Blackwood in the Southern Perth Basin and Dandara-
gan in the Central Perth Basin (Fig. 1).

2.1 Climate

The study area has a Mediterranean type climate, with mean
annual rainfall of between 500 and 1200 mm, up to 80 per-
cent of which occurs between May and October. Temper-
atures are also at their lowest during this period, making
the rainfall more effective in terms of producing runoff and
recharge. There is a strong south-west to north-east gradi-
ent in rainfall (Fig. 2) with the highest rainfall in south-west
coastal parts and along the Darling Range east of the Darling
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Fig. 1.Map of the study area and main tectonic subdivisions.

Scarp. The mean annual areal potential evapotranspiration
(APET; Morton, 1983) varies from 1555 mm in the north to
1260 mm in the south. When mean annual rainfall deficit is
calculated by subtracting APET from rainfall, almost all of
the study area has a negative moisture balance.

2.2 Land cover

Major land covers in the study area include dryland agricul-
ture, native vegetation, pine plantation and urban (Fig. 3).
Over 88 percent of the study area is covered by either native
vegetation (45 percent) or dryland agriculture (43 percent).
Pine plantations cover 2 percent of the area. Horticulture,
valued at $166 million annually covers less than 1 percent of
the study area but makes up 33 percent of total agricultural
production (van Gool and Runge, 1999). Intensive urban and
commercial buildings cover about 6 percent of the study area
and occur in the Perth region and, to a lesser extent, around
Bunbury and Busselton.

The main areas under native vegetation occur east of the
Darling Fault in the Darling Ranges, along the South Coast
and north of Perth. Pine plantations occur in the Gnangara
area north of Perth, near Myalup east of Lake Clifton and on
the Blackwood Plateau. Cleared areas used for dryland crop-
ping and grazing mainly occur on the Swan Coastal Plain. Ir-
rigated areas occur in the Harvey and Preston areas (Fig. 3).
Self-supplied horticultural areas, i.e. using water extracted
from farmer-owned wells or dams, occur around Gingin, in

peri-urban parts of Perth, and in south-western coastal areas
at Myalup, Jindong and Margaret River.

2.3 Hydrogeology

The Central Perth Basin extends 150 km north and 70 km
south of Perth and comprises the Swan Coastal Plain and
southern Dandaragan Plateau. The three main aquifers are
the Superficial, Leederville and Yarragadee. Locally impor-
tant aquifers include the Parmelia, Rockingham, Mirrabooka
and Poison Hill aquifers (Fig. 4). The lithology and hydraulic
conductivity of geological units are listed in Table 1. The
sub-surface geology and sub-cropping strata for the Cen-
tral Perth Basin (Fig. 4a) show the degree of connectivity
with underlying aquifers such as the Leederville Aquifer.
The unconfined Superficial Aquifer is mainly clayey (Guild-
ford Formation) in the east near Gingin Scarp and contains
various sandy formations such as Safety Bay Sand, Becker
Sand and Tamala Limestone towards the Indian Ocean in the
west. Its average thickness is about 30 m. The Pinjar, Wan-
neroo and Mariginiup members of the Leederville Forma-
tion directly underlie the superficial formations in the north-
east and south and the Osborne Formation in the middle
(Fig. 4b). The Yarragadee is too deep to underlie the Superfi-
cial Aquifer in most areas but it does subcrop in the extreme
north and underlies the Wanneroo Member between Guilder-
ton and Gingin, an important intake area of this aquifer. The
Leederville Aquifer is often separated from the Superficial
Aquifer by the Kardinya Shale (Osborne Formation) and the
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Fig. 2 Spatial distribution of mean annual historical (1975 to 2007) rainfall, areal evapotranspiration 123 
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Fig. 3. Major land cover types in the study area (using satellite im-
agery from 2005).

Leederville is often separated from the Yarragadee Aquifer
by the South Perth Shale (Fig. 4b).

Recharge by rainfall infiltration often decreases from the
coast to the east because of decreasing rainfall and sediments
becoming clayey in the east. Recharge can also occur from
upward leakage from underlying formations where there are

upward hydraulic gradients and confining beds are absent.
Recharge rates vary depending on rainfall, lithology, depth to
water table and topographic gradient and land cover. Ground-
water discharge is to the ocean, to natural and engineered
drainages and to coastal lakes. Large losses occur through
evaporation from wetlands and in areas with shallow water
tables. Groundwater flow is usually westwards towards the
coast. The Gnangara Mound north of Perth and the Jandakot
Mound south of Perth are the main flow systems. Further
details about hydrogeology and confined aquifer systems of
the Central Perth Basin can be found in CSIRO (2009) and
Davidson (1995).

The Peel-Harvey Area extends between the coastal cities
of Mandurah and Bunbury and the Darling Scarp (Fig. 5a).
The major aquifers are the Superficial, Leederville and Cock-
leshell Gully (Fig. 5b) and their lithology and hydraulic con-
ductivity is listed in Table 1. The Superficial Aquifer extends
over the entire region and consists of the Bassendean Sands
and the Ascot, Guildford and Yoganup formations. Its thick-
ness ranges from 20 to 30 m. The Superficial Aquifer is un-
derlain by a number of confined aquifer systems including
the Leederville, Cockleshell Gully and Yarragadee.

The water table is generally shallow in the area. Recharge
mainly occurs through rainfall infiltration but some is re-
jected due to shallow water tables. Groundwater flow is to-
wards the Indian Ocean in the west and discharges into the
natural and engineered drainages, wetlands and ocean. Fur-
ther details on the hydrogeology and confined aquifer sys-
tems of the Peel-Harvey Area are given in CSIRO (2009)
and URS (2009a).

The Southern Perth Basin lies between the Darling and
Dunsborough Faults and includes the easterly Bunbury
Trough and westerly Vasse Shelf which are separated by
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Fig. 4.Sub-surface geology of the Central Perth Basin(a) and geological cross-section A-A’(b) (adapted from Davidson and Yu, 2008).

the Busselton Fault (Fig. 6a, b). Major aquifers include
the Superficial, Leederville and Yarragadee (Baddock, 2005)
(Fig. 6b); their lithology and hydraulic conductivities are
listed in Table 1. The Lesueur Sandstone, Cockelshell Gully
and Sue Coal Measures are minor aquifers. The Superficial
Aquifer extends over the Swan Coastal and Scott Coastal
plains. The Superficial Aquifer material is more uniform and
sandy under the Scott Coastal Plain than under the Swan
Coastal Plain, however the aquifer can be locally confined
by a ferruginous cemented layer in the lower parts of the
formation (Strategen, 2005). Its thickness is often less than

10 m but is up to 200 m under the coastal sands. Three con-
fining beds occur within the basin: the middle clay unit of
the Parmelia Formation, the Bunbury Basalt and the up-
per Mowen/Quindalup Member of the Leederville Forma-
tion (Fig. 6b and Table 1). The middle clay unit is about
35 m thick and extends over the Bunbury Trough beneath
the Blackwood Plateau (Strategen, 2004). The overlying and
underlying formations are the Bunbury Basalt or the Leed-
erville Aquifer and the Yarragadee Aquifer, respectively.
The Lesueur Sandstone extends throughout the Southern
Perth Basin. The Cockelshell Gully Formation is overlain

www.hydrol-earth-syst-sci.net/16/4581/2012/ Hydrol. Earth Syst. Sci., 16, 4581–4601, 2012



4586 R. Ali et al.: Potential climate change impacts on the water balance of unconfined aquifers

 9 

The Peel-Harvey Area extends between the coastal cities of Mandurah and Bunbury and the Darling 173 

Scarp (Fig. 5a). The major aquifers are the Superficial, Leederville and Cockleshell Gully (Fig. 5b) and 174 

their lithology and hydraulic conductivity is listed in Table 1. The Superficial Aquifer extends over the 175 

entire region and consists of the Bassendean Sands and the Ascot, Guildford and Yoganup 176 

formations. Its thickness ranges from 20 to 30 m. The Superficial Aquifer is underlain by a number of 177 

confined aquifer systems including the Leederville, Cockleshell Gully and Yarragadee.  178 

The watertable is generally shallow in the area. Recharge mainly occurs through rainfall infiltration but 179 

some is rejected due to shallow watertables. Groundwater flow is towards the Indian Ocean in the 180 

west and discharges into the natural and engineered drainages, wetlands and ocean.  Further details 181 

on the hydrogeology and confined aquifer systems of the Peel-Harvey Area are given in CSIRO 182 

(2009), URS (2009a) and ANRA (2009). 183 

 184 

Fig.5 Sub-surface geology of the Peel-Harvey Area (a) and geological cross-section B-B’ (b) (adapted 185 

from URS, 2009) 186 

The Southern Perth Basin lies between the Darling and Dunsborough Faults and includes the easterly 187 

Bunbury Trough and westerly Vasse Shelf which are separated by the Busselton Fault (Fig. 6a, 6b). 188 

Major aquifers include the Superficial, Leederville and Yarragadee (Baddock, 2005) (Fig. 6b); their 189 

Fig. 5.Sub-surface geology of the Peel-Harvey Area(a) and geological cross-section B-B’(b) (adapted from URS, 2009).

by the Yarragadee Formation which is separated into the
lower Yarragadee 4, Yarragadee 3, Yarragadee 2 and upper
Yarragadee 1 (Fig. 6b).

On both Swan Coastal and Scott Coastal plains the Super-
ficial Aquifer is mainly recharged by rainfall infiltration with
some upward leakage from the underlying Leederville or
Yarragadee aquifers near Bunbury within the Swan Coastal
Plain and in the centre of the Scott Coastal Plain. The ground-
water discharge is to the natural drainages, wetlands, ocean
or to the underlying Leederville and Yarragadee aquifers.
The main groundwater flow direction is to the north to-
wards the Indian Ocean with some southerly flow towards the
Southern Ocean. The Leederville and the Yarragadee outcrop
over extensive areas and receive direct recharge from rainfall
infiltration. Further details about hydrogeology of the con-

fined aquifer systems of the Southern Perth Basin are given
in CSIRO (2009) and Strategen (2005).

2.4 Historical groundwater use and future demand

Western Australia is faced with a scientifically complex chal-
lenge as the state relies heavily on groundwater systems
which are difficult to quantify, due to their complex geology
and hydrogeology, so that resource availability often requires
sophisticated measurements (DoW, 2008a). Groundwater use
has been sharply increasing over 30-yr across all sectors in
Western Australia. The annual abstraction from aquifers in
the Central Perth Basin (Figs. 1 and 7a) trebled from 200 GL
in 1985 to nearly 600 GL in 2007. Abstraction from the Su-
perficial Aquifer in the Peel-Harvey Area (Figs. 1 and 7b)
has increased from about 0.3 GL in 1994 to about 20 GL by
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Table 1.Lithology and estimated horizontal hydraulic conductivity of geological units in the study area (Davidson and Yu, 2006; Strategen,
2005; Sun, 2005; URS, 2009).

Formation Lithology Horizontal hydraulic
conductivity
(m day−1)

Central Perth Basin (PRAMS) and Peel-Harvey Area (PHRAMS)

Superficial

Safety Bay sand Sand and shelly sand 10 to 15

formations

Becker sands
Fine to medium grained quartz and
skeletal sand with lenses of
calcareous clay

8

Tamala limestone
Limestone with weathered beds of
sand, marl and mud present at the base

100 to1000 for limestone
7 to 35 for sandy beds

Bassendean sand Sand and subordinate silt and clay 10 to 50

Guildford Fm Clay with subordinate sand and gravel <0.1 to 1

Yoganup Fm Sand, silt, clay and pebbles 8 to 10

Ascot Fm Limestone, sand, shells and clay 3 to 16

Rockingham sand Rockingham sand Slightly silty medium to
coarse-grained sand

20

Kings Park Aquifers Kings Park Aquifers Poorly sorted fine to coarse-grained
clayey sand

10 to 15

Osborne Fm
Mirrabooka Interbedded sandstone, siltstone and

shale sequence
4 to10

Osborne Fm
(Kardinya Shale Member)

Shale, siltstone, minor sandstone 10−4 to 10−6

Leederville Fm

Leederville
Henley Sandstone
Pinjar
Wanneroo
Mariginiup

Sandstone, siltstone and shale
Sandstone, shale
Sandstone, Siltstone and shale
Sandstone, siltstone, and shale
Sandstone, siltstone and shale

0.2 to 9
2 to 3
1 to 2
1 to 5
0.1 to 1

South Perth Shale South Perth Shale Shale, siltstone and minor sandstone 10−4 to 10−6

Parmelia Fm
Carnac Siltstone and shale 10−6

Parmelia Sandstone, siltstone and shale 0.5 to 2
Ottorowiri Siltstone and shale 10−6

Yarragadee
Yarragadee
Gage
Cattamarra

Sandstone, siltstone and shale
Sandstone, siltstone and shale
Sandstone, siltstone and shale

1 to 3
2 to 10
1 to 3

Cockleshell Gully Sandstone, siltstone, claystone coal 1 to 8

Southern Perth Basin (SWAMS)

Superficial Fm Superficial Sand, clay, limestone and gravel 1 to 10

Leederville FM
Quindalup/Mowen Members Clay and silty clay 0.1 to 0.5
Vasse Member Sand beds 0.1 to 10

Parmelia Fm Parmelia Fm Clay with a lower portion of silt and sand 0.005 to 0.05

Bunbury Basalt Rock and weathered clay 10−7 to 10−6

Yarragadee

Yarragadee 1 Sandstone, siltstone and shale 5 to 25
Yarragadee 2 Sandstone, siltstone and shale 3 to 20
Yarragadee 3 Sandstone, siltstone and shale 3 to 25
Yarragadee 4 Sandstone, siltstone and shale 2 to 15

Cockleshell Gully Fm Cockleshell Gully Fm Sandstone, siltstone, claystone coal 1 to 8

Lesueur sandstone Lesueur sandstone Sandstone and minor siltstone 0.2 to 5
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Fig. 6 Surface geology of the Southern Perth Basin (a) and geological cross-section C-C’ (b) (adapted 213 

from DoW, 2008b) 214 
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Fig. 6.Surface geology of the Southern Perth Basin(a) and geological cross-section C-C’(b) (adapted from DoW, 2008b).

2007. The total annual abstraction from the Southern Perth
Basin (Figs. 1 and 7c) increased from 0.5 GL in 1985 to about
75 GL in 2007.

In the study area the estimated total groundwater use in
2007 was about 700 GL. Groundwater demand is projected
to increase further with population and industrial growth,
and depleting surface water supplies (CSIRO, 2009). The
future population growth within the study area is likely to
be centred on the Greater Perth area, the Bunbury area, the
coastal area between Bunbury and Busselton and the Shire
of Augusta-Margaret River, and will therefore have increased
demand for water (DoW, 2007).

3 Methods

A flow diagram of the main methods (models and datasets)
used in this study is shown in Fig. 8. Recharge was estimated
using a vertical flux model (VFM) (Barr et al., 2003) linked
with three groundwater models: the Perth Regional Aquifer
Modelling System (PRAMS) of the Central Perth Basin; the
South West Aquifer Modelling System (SWAMS) of the
Southern Perth Basin; and the Peel-Harvey Regional Aquifer
Modelling System (PHRAMS) of the Peel-Harvey Area. The
PRAMS was previously dynamically coupled with the VFM.
In this study the VFM was dynamically coupled with the
MODFLOW based SWAMS model making it able to esti-
mate the water table depth at each simulation period which is
required to estimate the recharge and discharge amounts. For
PHRAMS the rainfall-recharge modelling was done using
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Fig. 7 Abstraction from four aquifers between 1985 and 2007 in the Central Perth Basin (a), licensed 245 

allocation from the Superficial Aquifer between 1994 and 2007 in the Peel-Harvey Area (b) and 246 

abstraction from three aquifers between 1985 and 2007 in the Southern Perth Basin (c). 247 

3 Methods 248 

A flow diagram of the main methods (models and datasets) used in this study is shown in Fig. 8. 249 

Recharge was estimated using a Vertical Flux Model (VFM) (Barr et al., 2003) linked with three 250 

groundwater models: the Perth Regional Aquifer Modelling System (PRAMS) of the Central Perth 251 

Basin; the South West Aquifer Modelling System (SWAMS) of the Southern Perth Basin; and the 252 

Fig. 7.Abstraction from four aquifers between 1985 and 2007 in the Central Perth Basin(a), licensed allocation from the Superficial Aquifer
between 1994 and 2007 in the Peel-Harvey Area(b), and abstraction from three aquifers between 1985 and 2007 in the Southern Perth
Basin(c).
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Fig. 8. A flow diagram showing main methodologies (mod-
els and datasets) used for the study (WTD: water table depth;
RRU: recharge response unit).

a linked but not dynamically coupled VFM. Groundwater
models (PRAMS, SWAMS and PHRAMS) were used for
scenario modelling. The modelling results were analysed to
estimate the climate change impacts on various components
of the water balance.

3.1 Recharge estimation

The VFM calculates recharge to, and discharge from, an
aquifer system. “VFM Manager” incorporates a number of
different recharge models such as WAVES (water, atmo-
sphere, vegetation, energy simulation; Zhang and Dawes,
1998) and other simple empirical models (Barr et al., 2003).
WAVES is a 1-dimensional biophysical model and simulates
vertical water flow through soil and water uptake by vege-
tation such as pasture, pine plantations and Banksia wood-
lands. Simple empirical models are used for urban areas,
market gardens, wetlands and areas where water tables are
close to the soil surface. Two of these simple models include

a “linear vertical flux model” and a “piece-wise linear verti-
cal flux model”. For the linear vertical flux model a constant
multiplier for the rainfall and potential evaporation is used to
calculate recharge as (Barr et al. 2003):

R = (Crainfall × P) − (Cevap× E) (1)

whereR is the rate of recharge per unit surface area in a
cell; Crainfall is the multiplier for the rainfall in that cell;P
is the rainfall per unit surface area per unit time;Cevap is the
multiplier for the evaporation; andE is the potential evapo-
ration per unit surface area per unit time.

The “piece-wise linear flux model” is based on a piece-
wise linear relationship about critical water table depths for
both rainfall and evaporation. The critical water table depths
may be different for the rainfall and evaporation and a mul-
tiplier (Crainfall andCevap) is supplied for each critical water
table depth. This is expressed in Eq. (2) (Barr et al., 2003):

WT ≤ Depthlowest : MLT = Multiplier lowest

WT ≥ Depthhighest: MLT = Multiplierhighest

Depthi−1 < WT < Depthi : MLT

=

(
Multiplieri − Multiplieri−1

)(
Depthi − Depthi−1

)
∗
(
WT − Depthi−1

)
+ Multiplieri−1 (2)

where MLT is the multiplier for the climate quantity (it may
beCrainfall or Cevap) at the specified water table depth; WT is
the given water table depth; Depthi is theith specified depth;
and Multiplieri is the multiplier associated with that depth.

The VFM estimates aquifer recharge or discharge from in-
puts of climate; land cover; soil type; and water table depth
as shown in Fig. 8. Before running the VFM, the grid cells
of similar attributes are grouped together into recharge re-
sponse units (RRUs) based on climate zone, soil type, and
land cover. For grouping into RRUs the study area was di-
vided into 12 climate zones based on rainfall and evapora-
tion gradients. The future climate data, for each climate zone,
was derived following the procedure described in Sect. 3.3.
The study area was also divided into 14 land cover classes.
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The current land cover (2007) and LAI (leaf area index) re-
mained constant for all future scenarios, except the develop-
ment scenario, although McCallum et al. (2010) noted pos-
sible changes in LAI under projected future climate scenar-
ios. The soil units were grouped into 11 soil types of similar
hydrological properties and texture based on Australian Soils
Resource Information System (ASRIS) level 4 data. For each
RRU the VFM estimated the recharge and discharge rates at
each stress period by obtaining the water table depth from
the groundwater model.

3.2 Groundwater models – description and calibration

Three groundwater models (PRAMS, SWAMS and
PHRAMS) distributed recharge from the VFM into various
components of the water balance using numerical schemes
of the physical processes.

The VFM coupled PRAMS model, used for the Central
Perth Basin, covers an area of about 10 000 km2 between
Mandurah in the south and Dandaragan in the north (Fig. 1).
It is a finite difference MODFLOW-based model (McDon-
ald and Harbaugh, 1996) with a uniform grid size of 500 by
500 m (Cymod, 2009). The version 3.2 of the model has 13
layers representing various aquifers and confining beds. The
western boundary in the superficial aquifer was modelled as a
constant head with a head of 0.5 m. A constant head bound-
ary was also assigned to the first set of faults lying off the
Western Australian coast in layer 4 of the model. No flow
boundary conditions were assigned in the Leederville and
Yarragadee aquifers. The eastern Darling Fault boundary was
set as no-flow for all model layers. The southern and north-
ern boundaries were also set as no-flow boundaries since
flow direction in the superficial aquifer is almost parallel to
these boundaries. Since most drainages act as groundwater
discharges these were modelled as drains in MODFLOW.
Groundwater discharge to these drains occurs once the wa-
ter table rises above the specified drain invert level.

In the VFM the upper surface of the model was defined as
the top of layer 0. The two boundaries of the VFM were the
ground surface and the water table. At groundwater surface
the VFM models a number of processes (rainfall, insolation,
wind and plant growth). The conditions on ground surface
boundary were specified as part of the input to the VFM. The
VFM estimated daily net recharge to a 500× 500 m soil col-
umn, ranging in depth from 1 to 50 m. This daily recharge
was aggregated over the MODFLOW stress period and pro-
vided as net recharge to the saturated aquifer model. The in-
tegration of VFM into the MODFLOW effectively replaced
the EVT module. The VFM estimated net rainfall recharge
was the major source of water into the model. The other
boundary conditions, such as constant heads on the coast and
drains within the model domain typically discharged water
from the model. Groundwater abstraction by the Water Cor-
poration and licensed and unlicensed groundwater abstrac-
tion by private users was included in the calibration. The re-

turn groundwater flow to the superficial aquifer from irriga-
tion was taken into account by reducing the licensed and un-
licensed abstraction from the Superficial Aquifer by 20 and
30 %, respectively.

The quasi steady-state VFM-coupled PRAMS model was
calibrated by adjusting vertical and horizontal hydraulic con-
ductivities, storage coefficients and specific yields and by set-
ting licensed and unlicensed abstraction to that estimated in
1980. The calibration and validation periods of the transient
VFM-coupled PRAMS model were from 1985 to 2003 and
from 2004 to 2008, respectively (Cymod, 2009). All together
groundwater monitoring data (water table and heads) from
862 bores were used for calibration. The model calculated
and measured groundwater levels were compared and aquifer
parameters adjusted to minimise error. The residual error be-
tween measured and calculated heads indicates deficiencies
either in the calibration process or the conceptual model. The
model calibration error (Root Mean Squared Error, RMSE)
was 2.1 m for the Superficial Aquifer. The model calculated
water levels show a random distribution around the unity line
with little or no systematic deviation (Fig. 9). The simulated
water levels have a response consistent with measured data,
they maintain correct trends and magnitude of error is con-
stant which suggests that the error stems from initial condi-
tions. The spatial distribution of error shown in Fig. 9 also
suggests that the calibration error is typically less than 2 m
over most of the model domain. However there are few areas
where the error is relatively large.

The VFM-coupled SWAMS version 2.1 model, used in
the Southern Perth Basin, covers an active area of about
8500 km2 of which onshore area is approximately 6000 km2.
The model boundaries extend from the Brunswick River
north of Bunbury to the Warren River south of Pemberton,
and from the Dunsborough Fault in the west to the Darling
Scarp to the east (Fig. 1). It is a variable finite difference
grid, with 363 rows and 193 columns, rotated 4.5 degrees
anti-clockwise from north. The cell size varies from 250 by
250 m to 1000 by 1000 m. Eight layers of the model represent
the major aquifers and aquitards in the region.

In the Southern Perth Basin all groundwater resources
originate from rainfall recharge to the Superficial and Leed-
erville aquifers and to the Yarragadee Aquifer where it out-
crops. The northern and southern ocean model boundaries
were set as constant head of 0 m in the Superficial Aquifer.
Constant head boundaries were also defined for off-shore
submerged areas of layer 2 and the aquifer limits off-shore
for layers 3 to 8 in the north and south. It allowed upward
flow and groundwater discharge as described in the hydroge-
ology investigations by Baddock (2005). The Southern Perth
Basin is bounded by major faults on the east and the west
which permit no flow into or out of the model (no flow
boundaries on the east and west). All drainages were mod-
elled as drains to represent groundwater discharge to river
systems.
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Fig. 9. Comparison of the model calculated and measured water
levels and spatial distribution of error in the Superficial Aquifer for
the PRAMS, SWAMS and PHRAMS.

The VFM coupled SWAMS model was calibrated from
1990 to 2000 using 54 bores in the Superficial Aquifer, 98
calibration bores in the Leederville Aquifer, and 88 calibra-
tion bores in the Yarragadee Aquifer. Measured heads were
compared with model calculated heads and aquifer param-
eters adjusted to minimise the error. All measured ground-
water abstraction by the Water Corporation (public licensed)
and by other users such as mining companies, regional coun-
cils, and licensed private users was included in model cali-
bration. The Superficial Aquifer calibration error was 2.9 m
(RMSE) (CSIRO, 2009). The calibration error in the Superfi-
cial Aquifer (Fig. 9) shows that model calculated water levels
are consistently higher than measured levels. The width of
distribution suggests the presence of some calibration error
between measured and calculated water levels. The model
validation spanned between 2000 and 2008 with an error of
3.3 m (RMSE). Model calculated water levels during the val-
idation period typically follow measured trends in the Su-
perficial Aquifer. The error is almost randomly distributed
around the unity line. Model also underpredicts at some loca-
tions which may be due to lack of information about hydro-

geology, monitoring data and groundwater abstraction. The
spatial distribution suggests that the calibration error is small
in some areas and relatively large (2 to 5 m) in others (Fig. 9).

For the Peel-Harvey Area a newly developed PHRAMS
covers an area of 4095 km2 between the Peel Inlet and Bun-
bury (Fig. 1). This model was not coupled with VFM. Its
boundary extends from the Darling Fault to the east to the
Indian Ocean to the west, and the South Dandalup River,
the Murray River and Peel Inlet to the north to the Collie
River to the south. Visual MODFLOW Version 2009.1 Pro
with MODFLOW-SURFACT Version 3.0 was used for the
construction of the PHRAMS for the Superficial Aquifer.
The model consists of 6 layers; upper three layers repre-
sent the Superficial Aquifer and lower three layers represent
the underlying confined formations. Since it was a Superfi-
cial Aquifer model the spatial discretisation focused on this
aquifer. It has a uniform grid of 500 by 500 m. The concep-
tual hydrogeology suggests that all groundwater resources
originate from rainfall recharge. Since groundwater levels are
shallow all drainages were modelled as drains. The eastern
Darling Fault boundary was assumed as no flow since no sig-
nificant flow enters the model from this boundary. The west-
ern boundary was assumed as a constant head of 0 m AHD
for the Superficial Aquifer (layers 1 to 3) and 2.5 m AHD
for the offshore (layers 4 to 6) confined aquifers to represent
groundwater discharge from these aquifers into the Ocean as
upward flow. The northern and southern boundaries were as-
sumed as river boundaries.

Groundwater abstraction by licensed private users, re-
gional councils for town water supplies and industrial users
was used for model calibration. The model calibration pe-
riod spanned between 1980 and 2002 and used groundwater
monitoring data (water levels) from 162 observation wells.
The model calibration error was 1.83 m (RMSE). The model
calculated water levels follow measured trends (Fig. 9) and
the error is randomly distributed around the unity line. Rela-
tively large deviation of model calculated water levels from
the measured levels at some locations is most likely due to
lack of hydrogeology, groundwater monitoring or groundwa-
ter abstraction data. The spatial distribution of error is rela-
tively small in most areas (Fig. 9). The mode validation pe-
riod was from 2003 to 2007 and validation error was similar
(1.88 m) to that for the transient calibration.

The maximum potential recharge rates were provided as
input and the net recharge rate was estimated internally using
the evapotranspiration (EVT) package of MODFLOW. The
EVT package in Visual MODFLOW simulates the effects of
plant transpiration and direct evaporation and requires evap-
otranspiration rate that occurs when the water table is equal
to the top of the grid cell and extinction depth (the depth be-
low the top of grid cell elevation where the evapotranspira-
tion is negligible). The extinction depth of 2 m was assumed
for agriculture land and 5 m for native forests and planta-
tions. The VFM was used to estimate recharge rates from
input of land use, vegetation type, soil type, climate zone
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and water table depth. Irrigation recharge from irrigated ar-
eas was added to rainfall recharge. Further details about this
model are given in URS (2009b).

Using these groundwater models the impacts on compo-
nents of the water balance under six modelling scenarios (five
climates and one development scenario) were assessed. For
modelling purposes the groundwater abstractions were kept
constant at 2007 levels in all scenarios except the develop-
ment scenario where they were increased to full allocation
levels.

3.3 Modelling scenarios

The following procedure was used for deriving the future cli-
mate data for the six modelling scenarios.

1. The historical climate scenario was based on the cli-
mate of the 1975 to 2007 period. It was assumed that
the subsequent 33 yr would have the same climate. For
reporting groundwater conditions in 2030 the historical
climate data of 23 yr duration (2008–2030) was selected
from 33 yr of observed climate data between 1975 and
2007. Using a sequence approach 11 sequences of 23
consecutive years were derived. The first sequence in-
cluded 23 yr of observed climate data from 1975 to
1997, the second sequence included 1976 to 1998, and
the last sequence was 23 yr of observed climate data
from 1985 to 2007. The climate data in these 11 se-
quences were then used in the WAVES model to esti-
mate recharge rates. The average recharge rates were
ranked from lowest to highest for 11 sequences and the
sequence that represented 50th percentile recharge was
selected. In the selected 50th percentile sequence the re-
maining 10 yr of the climate data were added to make
33 yr and this constituted the historical climate. The re-
maining 10 yr of climate data were added to extend the
historical climate to 2040 for simulation with ground-
water conditions in 2030 being reported. This historical
climate scenario was used as the baseline against which
other scenarios were compared.

2. The recent climate scenario was used to assess the im-
pacts on water balance should the climate between 2008
and 2030 prove to be similar to that of the recent past.
Climate data for 11 yr (1997 to 2007 inclusive) were
repeated three times until 2040 with the conditions in
2030 being reported.

3.–5. The daily downscaling approach outlined by Chiew et
al. (2009) was used to derive fine resolution climate data
from coarse resolution GCM projections. This approach
is based on pattern scaling (Mitchell, 2003) with addi-
tional scaling to account for the projected changes in
daily rainfall intensity (Mpelasoka and Chiew, 2009).
The scenarios were developed on a “per degree of global
warming” basis. Firstly, monthly rainfall and other cli-
mate variables for 1870–2100 were obtained for 15

GCMs, selected based on availability of daily rainfall
data, from those used in the Intergovernmental Panel on
Climate Change 4th Assessment Report (IPCC, 2007).
For each GCM, season, and GCM grid point these out-
puts were linearly regressed against simulated global
average surface air temperature to give percent change
in each variable per degree of global warming. Sec-
ondly, daily scaling factors for rainfall intensity were
obtained based on GCM simulated changes to daily
rainfall percentiles (also by GCM, season and GCM
grid point) and expressed as percent change per de-
gree of global warming (Chiew et al., 2009). These
seasonal and daily scaling factors were multiplied by
the low, medium and high global warming scenarios,
0.7◦C, 1.0◦C and 1.3◦C, to account for the full range
of the IPCC AR4 projections for 2030. The historical
time series for all 0.05◦ grid cells within the study area
were modified by the 45 sets of seasonal and daily scal-
ing factors (15 GCMs× 3 global warming scenarios) to
produce an ensemble of daily rainfall and PET scenar-
ios encompassing the projected range of climate change
for the region. Results and discussion of this approach
can be found in detail in Charles et al. (2010).

For each of the low, medium and high global warming
scenarios and each of the 15 climate series, the mean
annual recharge over the study area was estimated using
the WAVES model in de-coupled mode. The estimated
recharge rates from each of the 15 climates were ranked
separately for the low, medium and high global warm-
ing. GCMs considered unreliable in terms of reproduc-
ing southern hemisphere weather phenomena and his-
torical rainfall patterns over south-west Western Aus-
tralia were discarded and the dry, median and wet se-
lected from those remaining. The selected GCMs were
GFDL+ 1.3◦ for the dry future climate, MIROC+ 1◦C
for the median future climate, and INMCM+ 1.3◦C for
the wet future climate. The GFDL was developed by
the Geophysical Fluid Dynamics Laboratory located at
Princeton University. The MIROC (model for interdis-
ciplinary research on climate) was jointly developed by
the Center for Climate Systems Research at University
of Tokyo (CCSR), National Institute of Environmental
Studies (NIES) and Frontier Research Center for Global
Change (FGCGC). The INMCM was developed at the
Institute of Numerical Mathematics (INM) of the Rus-
sian Academy of Sciences and at the main Geophysical
Observatory (MGO).

To select the historical climate sequence, from which
future climates were to be derived by applying scaling
factors of the above selected GCMs, the average an-
nual recharge from 23-yr sequences were ranked. The
climate sequence from 1984 to 2006 was selected as
the representative period for simulation of the 2008
to 2030. This climate sequence was modified by the
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scaling factors of the above GCMs to derive (3) the dry
future climate, (4) the median future climate, and (5) the
wet future climate.

6. The development scenario was based on the median fu-
ture climate and future land development. The ground-
water abstraction was increased to full allocation levels
from the start of 2008 where this was below 2009 allo-
cation limits. In the Gnangara Mound area of the Central
Perth Basin the scheduled legislated removal of the pine
plantations and expansion of the urban area was allowed
to take place between 2008 and 2030.

3.4 Water balance components

The groundwater models estimate various components of
aquifer water balance. These water balance components can
be expressed as

R = Ssc+ Ddisch+ Odisch+ Aabs+ Fconf+ E (3)

whereR is net recharge, i.e. the amount of water that is added
to the aquifer less losses through evapotranspiration;Ssc is
storage change in an aquifer;Ddisch is the groundwater dis-
charge to natural and engineered drainage systems;Odisch
represents discharge to the ocean;Aabs is total groundwa-
ter abstraction by pumping;Fconf is net leakage to confined
aquifer systems; andE represents error in water balance. All
terms have units of mm per unit time, or volume per unit
aquifer area.

4 Results

4.1 Climate change impacts on rainfall

Since 1975 the mean annual rainfall in south-western Aus-
tralia has decreased by about 15 percent from the long-term
average. The projected mean annual rainfall between 2008
and 2030 under the climate scenarios is shown in Fig. 10 for
three regions in south-western Australia. The projected rain-
fall is highest in the Peel-Harvey Area and lowest in the Cen-
tral Perth Basin under all scenarios. Relative to the historical
climate the mean annual rainfall under all future climate sce-
narios is projected to reduce in all three regions except under
the wet future climate in the Central Perth Basin. Relative to
the historical climate the largest reduction of between 15 and
18 percent is expected under the dry future climate (Fig. 10).

4.2 Overall water balance

The overall Superficial Aquifer water balance between 2008
and 2030 in Appendix A shows the distribution of net
recharge into storage change and various discharges in the
three regions. Positive numbers in this table indicate ad-
ditions to storage and negative numbers indicate losses.
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Fig. 10. Mean annual rainfall in the Central Perth Basin, Peel-
Harvey Area and Southern Perth Basin under various future climate
scenarios.

Pumped abstraction is constant under all except the devel-
opment scenario. Net leakage to the confined aquifers occurs
in the Central and Southern Perth basins where the uncon-
fined and confined aquifers are inter-connected. The 23-yr
mean annual value of each water balance component in me-
galitres (ML, 106 L) is divided by total surface area of the
Superficial Aquifer (km2) in each region to convert into mm
per year for a meaningful comparison between the regions.
The overall water balance error was small with its value less
than the significant digits (Appendix A). The changes in rain-
fall, recharge and other components of the water balance are
reported relative to a continuation of the historical climate of
1975–2007 to 2030.

4.3 Climate change impacts on groundwater recharge

The water levels are projected to rise in the north-east of the
region due to clearing of native vegetation for dryland agri-
culture, sandy soils and low groundwater abstraction and to
fall in the south under the Blackwood Plateau due to native
vegetation and clayey soils under a median future climate
(Fig. 11) and under most other scenarios. They are projected
to remain relatively unchanged in the Peel-Harvey Area. The
highest recharge is expected in the Central Perth Basin and
lowest in the Peel-Harvey Area despite the rainfall being
higher in the latter (Fig. 12; Appendix A). It is highest in
the Central Perth Basin due to several factors: a deeper wa-
ter table (less evaporative losses), greater urban areas where
stormwater is directed into the aquifer, and the presence of
cleared sandy soils used for dryland agriculture. It is lowest
in the Peel-Harvey Area due to widespread occurrence of the
swampy areas that result in large evapotranspiration losses
due to potential evaporation rates being two to three times
greater than rainfall, and shallow water tables in many ar-
eas which reject rainfall due to saturation. The recharge rates
are lower in the Southern Perth Basin than in the Central
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levels have been declining in the past and are projected to decline further under the median and dry 548 

future climates. A net loss in groundwater storage is likely to occur under the dry future climate.   549 

The dry future climate causes the largest reduction in groundwater storage across all three regions. It 550 

means if climate similar to the dry future eventuates in south-western Australia, the groundwater 551 

resource is likely to reduce over time in the Peel-Harvey Area and Southern Perth Basin and remain 552 

stable in the Central Perth Basin provided the current groundwater abstraction and land development 553 

conditions are maintained. This stability however masks substantial decreases in storage in important 554 

drinking water supply areas while areas under dryland agriculture may continue to have rising 555 

groundwater levels.   556 

 557 
Fig. 11 Spatial distribution of change in groundwater levels over the period 2008 to 2030 in the study 558 

area under a median future climate 559 

 560 

Fig. 11. Spatial distribution of change in groundwater levels over
the period 2008 to 2030 in the study area under a median future
climate.

Perth Basin despite its higher rainfall. This is due to native
vegetation on most of the Blackwood Plateau together with
widespread clayey soils both of which reduce net recharge.

The highest recharge is projected to occur under the his-
torical and wet future climates and lowest under the dry fu-
ture climate across all three regions (Fig. 12; Appendix A).
Recharge under the median future climate may reduce by 1.5
to 4 times the rainfall reduction in relative terms, and by two
to three times under a dry future climate.

4.4 Impacts on Superficial Aquifer storage change

The groundwater storage change is projected to be posi-
tive, i.e. gaining, and highest in the Central Perth Basin cor-
responding with larger net recharge rates, and lowest and
mostly negative, i.e. losing, in the Peel-Harvey Area due to
low net recharge rates (Fig. 12; Appendix A). The storage
change of 39 mm per year increase under the historical cli-
mate is projected to reduce by 88 percent under the dry fu-
ture climate in the Central Perth Basin. Based on regional
averages no groundwater storage loss is expected under any
scenario in the Central Perth Basin due to high recharge
rates, especially in the north east of this region. Some ar-
eas will however experience significant declines in storage,
especially under the dry future climate.

The storage is likely to remain stable if the historical
climate continues into the future in the Peel-Harvey Area.
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Fig. 12 Water balance components in the Superficial Aquifer of the Central Perth Basin over 2008 to 562 

2030 period under various scenarios. The values are 23-year annual means under various scenarios 563 

 564 
4.5 Impacts on ocean groundwater discharge 565 

Climate change impacts groundwater levels which affect hydraulic gradients and groundwater 566 

discharge to the ocean. The mean annual groundwater discharge to the ocean is similar in the Central 567 

and Southern Perth basins and lower in the Peel-Harvey Area (Fig. 12; Appendix A). As expected, 568 

larger ocean discharges are expected under the wetter climate (historical and wet) and smaller under 569 

the drier climates (median and dry) in all three regions. Groundwater discharge to the ocean under the 570 

dry future climate is expected to reduce by 27 percent in the Central Perth Basin and by 38 percent in 571 

the Southern Perth Basin. Instead of groundwater discharge, seawater intrusion is likely in the 572 

Peel-Harvey Area under the dry future climate due to lower groundwater levels in coastal areas.  573 

Relatively large reductions in ocean discharge are expected under the median and dry future climates 574 

in the Central and Southern Perth basins due to lower groundwater levels, which increase the risk of 575 

seawater intrusion especially in conjunction with sea level rise projected due to climate change. 576 

4.6 Impacts on groundwater discharge to drains and rivers 577 

The mean annual groundwater discharge to drains and rivers is highest in the heavily drained 578 

Peel-Harvey Area and lowest in the relatively undeveloped Southern Perth Basin (Fig. 12; Appendix 579 

A). Substantial discharge is expected to occur to the drainage systems annually due to shallow 580 

watertables and an extensive network of natural and engineered drainage systems in the Peel-Harvey 581 

Area. Winter rainfall causes watertables to rise above the invert level of drainage systems in most of 582 

Fig. 12.Water balance components in the Superficial Aquifer of the
Central Perth Basin from the 2008 to 2030 period under various sce-
narios. The values are 23-yr annual means under various scenarios.

Under the dry future climate an average loss in groundwa-
ter storage is expected in this area. The groundwater stor-
age loss is highest under the development scenario due to
increased pumping. However increased groundwater pump-
ing also creates extra storage space to accommodate more
recharge (Fig. 12; Appendix A).

The storage, when averaged at basin scale level, is pro-
jected to increase under all scenarios except the dry future
climate in the Southern Perth Basin. There are areas within
the basin, such as the Blackwood Plateau, where a groundwa-
ter storage loss is occurring. In these areas the groundwater
levels have been declining in the past and are projected to
decline further under the median and dry future climates. A
net loss in groundwater storage is likely to occur under the
dry future climate.

The dry future climate causes the largest reduction in
groundwater storage across all three regions. It means if cli-
mate similar to the dry future eventuates in south-western
Australia, the groundwater resource is likely to reduce over
time in the Peel-Harvey Area and Southern Perth Basin and
remain stable in the Central Perth Basin provided the cur-
rent groundwater abstraction and land development condi-
tions are maintained. This stability however masks substan-
tial decreases in storage in important drinking water supply
areas while areas under dryland agriculture may continue to
have rising groundwater levels.

4.5 Impacts on ocean groundwater discharge

Climate change impacts groundwater levels which affect hy-
draulic gradients and groundwater discharge to the ocean.
The mean annual groundwater discharge to the ocean is
similar in the Central and Southern Perth basins and lower
in the Peel-Harvey Area (Fig. 12; Appendix A). As expected,
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larger ocean discharges are expected under the wetter climate
(historical and wet) and smaller under the drier climates (me-
dian and dry) in all three regions. Groundwater discharge to
the ocean under the dry future climate is expected to reduce
by 27 percent in the Central Perth Basin and by 38 percent in
the Southern Perth Basin. Instead of groundwater discharge,
seawater intrusion is likely in the Peel-Harvey Area under the
dry future climate due to lower groundwater levels in coastal
areas. Relatively large reductions in ocean discharge are ex-
pected under the median and dry future climates in the Cen-
tral and Southern Perth basins due to lower groundwater lev-
els, which increase the risk of seawater intrusion especially
in conjunction with sea level rise projected due to climate
change.

4.6 Impacts on groundwater discharge to drains and
rivers

The mean annual groundwater discharge to drains and rivers
is highest in the heavily drained Peel-Harvey Area and
lowest in the relatively undeveloped Southern Perth Basin
(Fig. 12; Appendix A). Substantial discharge is expected to
occur to the drainage systems annually due to shallow water
tables and an extensive network of natural and engineered
drainage systems in the Peel-Harvey Area. Winter rainfall
causes water tables to rise above the invert level of drainage
systems in most of this area causing substantial groundwa-
ter discharges. Due to fewer river systems, lower groundwa-
ter levels and extensive native vegetation, groundwater dis-
charge to river and drainage systems is relatively small in
the Southern Perth Basin. Substantial reductions in ground-
water discharge to drains are expected under the median and
dry future climate, and the development scenario in all three
regions. The reductions expected under the median and dry
future climates are due to projected decline in water tables.

4.7 Impacts on net leakage to confined aquifers

The mean annual net leakage from superficial to confined
aquifer systems is highest in the Central Perth Basin, low-
est in the Southern Perth Basin, and zero in the Peel-Harvey
Area due to the relative paucity of inter-connections with
lower aquifers in this area. The net leakage to the confined
systems is expected to reduce by 16 to 34 percent under the
dry future climate in the Central and Southern Perth basins
(Fig. 12; Appendix A). Reduction in leakage to confined sys-
tems will result in larger drawdowns if groundwater abstrac-
tion from the confined systems continues at current levels.

4.8 Climate change impacts on the distribution of net
recharge

The distribution of net annual recharge into the water balance
components is different under various scenarios in three re-

gions (Fig. 13). In the Central Perth Basin over 23 percent of
the mean annual recharge, projected to be added to ground-
water storage under the wetter climates (historical and wet),
is expected to reduce to only 4 percent of net annual recharge
under the dry future climate. In the Southern Perth Basin
and Peel-Harvey Area the increase in groundwater storage
of about 13 percent and zero percent, respectively, of net an-
nual recharge is likely under the historical climate. This is
expected to change to loss in groundwater storage equivalent
to about 10 to 12 percent of the net annual recharge under the
dry future climate.

About 19 to 22 percent and 41 to 58 percent of annual net
recharge is projected to discharge to the ocean in the Central
and Southern Perth basins, respectively, every year under var-
ious scenarios (Fig. 13). In the Peel-Harvey Area discharge
is estimated to be less than 5 percent of net annual recharge.

Groundwater discharge to drains is more than 60 percent
of net annual recharge in the Peel-Harvey Area because of
shallow water tables, and is less likely to change under drier
scenarios except under the development scenario where it is
expected to reduce to about 37 percent of net annual recharge
due to lower water tables caused by additional groundwater
pumping. The groundwater discharge to drains is a small por-
tion of the net recharge in the Central Perth Basin (8 percent)
and Southern Perth Basin (5 percent) and is expected to re-
duce under the drier future climates. This is due to smaller
areas of shallow water tables compared with the Peel-Harvey
Area where most recharge is drained.

The proportion of net annual recharge extracted by pump-
ing is 21 to 34 percent in the Central Perth Basin, larger at 32
to 73 percent in the Peel-Harvey Area, and only 1 to 8 percent
in the Southern Perth Basin. Recharge removed by pumping
also depends upon annual pumping volumes and sustainable
yields which are largest in the Central Perth Basin and low-
est in the Peel-Harvey Area. When recharge reduces under
the drier climates a greater portion of recharge is consumed
by pumping which remains constant between 2008 and 2030.
Net leakage to confined aquifers is a major component of the
water balance in both Central (26 to 34 percent) and South-
ern Perth Basins (33 to 45 percent). Under the drier future
climate the percentage of net annual recharge that becomes
leakage to confined systems increases due to higher hydraulic
gradients as a result of the drawdowns from pumping in the
unconfined and confined systems. This does not mean that
net leakage volumetrically increases but a greater portion of
the reduced recharge leaks to the confined systems.

4.9 Sensitivity of water balance components to climate
change

The percent change in each water balance component was
plotted against percent change in rainfall for three regions of
the study area (Fig. 14) to assess the sensitivity of water bal-
ance components to climate change. The percent changes are
relative to their values under the historical climate. Linear
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 626 

Fig. 13 Water balance components under various scenarios shown as percent of net annual recharge 627 

in the Central Perth Basin, Peel-Harvey Area and Southern Perth Basin 628 

4.9 Sensitivity of water balance components to climate change 629 

The percent change in each water balance component was plotted against percent change in rainfall 630 

for three regions of the study area (Fig. 14) to assess the sensitivity of water balance components to 631 

Fig. 13.Water balance components under various scenarios shown
as percent of net annual recharge in the Central Perth Basin, Peel-
Harvey Area and Southern Perth Basin.

trend lines were fitted to show the rate of percent change
in each water balance component as a function of percent
change in rainfall. An overall average value for percent
change in rainfall and water balance components was esti-
mated which was an average of the rates of percent change
under four climate scenarios. The rate of percent change indi-
cated by the trend lines may be different to the average of all
four scenarios because the trends are indicators and should
not be used to estimate the percent change of water balance
components.

Figure 14 shows varying sensitivities of water balance
components to climate change. Storage is most sensitive to
climate and net leakage to confined systems is least sen-
sitive. For every one percent reduction in rainfall the stor-
age reduces by 5 and 8 percent in the Southern and Central
Perth basins, respectively. In the Peel-Harvey Area the stor-
age change under the historical climate was zero and percent
change under various scenarios relative to that under the his-
torical climate was not estimated but its sensitivity to climate
change is similar to the other two regions. The net leakage to
confined aquifers is expected to reduce by 1.5 times the per-
cent reduction in rainfall in the Central Perth Basin and 2.5
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Fig. 14 Relationship between percent change in rainfall and percent change in water balance 685 
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Fig. 14 Relationship between percent change in rainfall and percent change in water balance 685 

components relative to the historical climate in the Central Perth Basin, Peel-Harvey Area and 686 

Southern Perth Basin 687 

Central Perth Basin

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30

-20 -15 -10 -5 0 5 10

Percent change in rainfall

Pe
rc

en
t c

ha
ng

e 
in

 w
at

er
 b

al
an

ce
 

co
m

po
ne

nt

Recharge
Discharge to Ocean
Discharge to drains
Net flow to confined
Storage change

 

Peel Harvey Area

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30

-20 -15 -10 -5 0 5 10

Percent change in rainfall

Pe
rc

en
t c

ha
ng

e 
in

 w
at

er
 b

al
an

ce
 

co
m

po
ne

nt

Recharge
Discharge to Ocean
Discharge to drains

 

Souhern Perth Basin

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30

-20 -15 -10 -5 0 5 10

Percent change in rainfall

Pe
rc

en
t c

ha
ng

e 
in

 w
at

er
 b

al
an

ce
 

co
m

po
ne

nt

Recharge
Discharge to Ocean
Discharge to drains
Net flow to confined
Storage change

 

 33 

Fig. 14 Relationship between percent change in rainfall and percent change in water balance 685 

components relative to the historical climate in the Central Perth Basin, Peel-Harvey Area and 686 

Southern Perth Basin 687 

Central Perth Basin

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30

-20 -15 -10 -5 0 5 10

Percent change in rainfall

Pe
rc

en
t c

ha
ng

e 
in

 w
at

er
 b

al
an

ce
 

co
m

po
ne

nt

Recharge
Discharge to Ocean
Discharge to drains
Net flow to confined
Storage change

 

Peel Harvey Area

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30

-20 -15 -10 -5 0 5 10

Percent change in rainfall

Pe
rc

en
t c

ha
ng

e 
in

 w
at

er
 b

al
an

ce
 

co
m

po
ne

nt

Recharge
Discharge to Ocean
Discharge to drains

 

Souhern Perth Basin

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30

-20 -15 -10 -5 0 5 10

Percent change in rainfall

Pe
rc

en
t c

ha
ng

e 
in

 w
at

er
 b

al
an

ce
 

co
m

po
ne

nt

Recharge
Discharge to Ocean
Discharge to drains
Net flow to confined
Storage change

 
Fig. 14. Relationship between percent change in rainfall and per-
cent change in water balance components relative to the historical
climate in the Central Perth Basin, Peel-Harvey Area and Southern
Perth Basin.

times the percent decrease in rainfall in the Southern Perth
Basin. Low sensitivity of net leakage to confined aquifers is
likely due to the hydraulic gradients remaining similar and
leakage being controlled by hydraulic conductivities rather
than overlying storage.

Recharge is highly sensitive to climate change in the Cen-
tral and Southern Perth basins where it is projected to re-
duce by 3.6 percent for every one percent reduction in rain-
fall. In the Central Perth Basin the rainfall is lower than
the Southern Perth Basin but a greater proportion of rain-
fall becomes recharge due to extensive built-up areas the
rainfall from roads and roofs being directed to the under-
lying aquifers, the predominantly sandy soils and land be-
ing used for dryland agriculture. In the Southern Perth Basin
a lower portion of annual rainfall becomes recharge due to
perennial vegetation and clayey soils. Therefore, reductions
in recharge in response to a reduction in rainfall may be sim-
ilar but due to different processes. Recharge is less sensitive
to climate change in the Peel-Harvey Area due to its shallow
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water tables. Decline in water levels is buffered by increases
in recharge which would otherwise have been lost through
evaporation and drainage.

Groundwater discharge to the ocean is relatively less sen-
sitive to climate change in the Central and Southern Perth
basins but very sensitive in the Peel-Harvey Area (Fig. 14).
For every one percent reduction in rainfall the ocean dis-
charge reduces by about 3 percent in the Central and South-
ern Perth basins but by over 6 percent in the Peel-Harvey
Area. A change from ocean discharge under the wetter cli-
mates (historical and wet) to seawater intrusion under the
dry future climate is due to lower water tables. Groundwa-
ter discharge to drains is very sensitive to climate change in
the Central Perth Basin but less sensitive in the Peel-Harvey
Area. For every one percent reduction in rainfall the ground-
water discharge to drains reduces by 5.4 percent in the Cen-
tral Perth Basin, by 3.2 percent in the Southern Perth Basin
and by 1.3 percent in the Peel-Harvey Area. There are ex-
tensive natural and engineered drainage systems in both the
Central Perth Basin and Peel Harvey Area. Those in the Peel-
Harvey Area are less affected due to shallow water tables
over large areas. When shallow water tables decline they ac-
cept recharge that would otherwise be rejected and as a re-
sult are less sensitive to climate change. In the Central Perth
Basin the water tables are relatively deeper and as a result any
reduction in recharge results in the water table falling below
drain invert levels making them sensitive to climate change.
Drainage systems are relatively small in the Southern Perth
Basin but are sensitive to climate change due to projected
large declines in water tables.

5 Discussion

Climate change has already caused a substantial reduction in
mean annual rainfall in south-western Australia and a num-
ber of other regions during the second half of the 20th century
(Ducci and Tranfaglia, 2008; Piao et al., 2010; PMSEIC In-
dependent Working Group, 2007). Almost all GCMs project
a further reduction in rainfall in south-western Australia by
2030. Reductions in mean annual rainfall have major impli-
cations for groundwater management as it reduces recharge
and affects other components of the water balance (Zagonari,
2010). This study and others (Candela et al., 2009; Sand-
storm, 1995) show that the projected reduction in recharge
is 2 to 4 times the reduction in rainfall. The climate change
effect on recharge is likely to impact many regions around the
globe and about 18 percent of global population would be af-
fected by a 10 percent reduction in recharge (Döll, 2009). It is
likely to impact groundwater storages in many regions even
if current pumping rates continues into the future (Green et
al., 2011; Loaiciga et al., 2000; Yusoff et al., 2002).

In addition to rainfall the sensitivity of recharge and stor-
age to climate change also depends, on land cover, soil types,
water table depth as reported by Crosbie et al. (2010), Mc-

Callum et al. (2010) and Dawes et al. (2012) for Australia
and by Jyrkama and Sykes (2007), Liu (2011) and Green et
al. (2011) for other regions. Due to clearing in the north-east
areas of the Central Perth Basin water tables are projected
to rise substantially while they are projected to decline in
most other areas. These rising water tables raise mean an-
nual storage over the whole basin. Since most of the natural
and engineered drainage exists in areas where water tables
are projected to decline, drain discharge is projected to re-
duce under most future climates. Due to the sandy nature of
soils in the Scott Coastal Plain (Southern Perth Basin) and
water ponding in areas near the Swan Coastal Plain, water
tables in these areas are projected to rise which makes the
overall storage change positive although under most of the
Blackwood Plateau water tables are projected to decline due
to native vegetation and clayey soils.

The depth of the water table also affects groundwater stor-
age and various discharges. Due to shallow water tables
under the Peel-Harvey Area some winter recharge was re-
jected. When water tables decline due to low rainfall more
recharge is accommodated and as a result the impact on stor-
age change is low. If water tables decline below the depth that
winter rainfall can fill, then groundwater storage will decline,
as is the case under most future climate scenarios in other
areas. The declining levels in turn reduce drain discharge.
In a similar study Goderniaux et al. (2009) projected sig-
nificant decline in groundwater levels and reduction in river
flow rates in the Geer sub-catchment in eastern Belgium due
to climate change. The Peel-Harvey Area is topographically
flat with low hydraulic gradients towards the ocean. A small
decline in water tables is projected to change groundwater
flow direction and increase the risk of seawater intrusion un-
der a dry future climate. Giambastiani et al. (2007) similarly
reports an increased risk of seawater intrusion, due to climate
change, in the unconfined coastal aquifer of Ravenna, Italy.

All climate change studies have some uncertainty in pro-
jections (Scibek and Allen, 2006; Weare and Du, 2008; Cros-
bie et al., 2011) due to uncertainty in GCM predictions,
downscaling methods, input parameters and aquifer hetero-
geneity. Modelling of groundwater systems involves many
steps and each introduces some uncertainty. For this study, 15
GCMs were used to derive future climates for south-western
Australia and 14 of the 15 project a drier future climate for
this region. Therefore, there is less uncertainty in the direc-
tion of GCM projections in south-western Australia com-
pared to those regions where GCMs project either a wetter
or drier future climate. Daily downscaling techniques used
to derive the scaling factors for modification of the histori-
cal climate, introduced some uncertainty in the derived fu-
ture climates. A relatively sophisticated vertical flux model
(VFM) used to estimate recharge (instead of its direct input
in the groundwater models) was similar to that of Goderniaux
et al. (2009) which fully integrates surface- and subsurface-
flows in the saturated and partially saturated zones. The un-
certainty in input parameters (land cover, soil and climate) to
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Table A1. Water balance components in the Superficial Aquifer in the Central Perth Basin, Peel-Harvey Area and Southern Perth Basin
over the 2008 to 2030 period under various scenarios. The numbers show 23-yr annual means (mm) under various scenarios.

Discharge Discharge Net flow
Storage to to to confined Balance

Scenario change Recharge ocean drains Pumping aquifers error

Central Perth Basin

mm yr−1

Historical 39.3 166.7 −32.8 −15.5 −35.1 −44.0 0.0
Recent 23.0 137.2 −27.8 −11.1 −35.1 −40.1 0.0
Wet 38.4 163.0 −31.6 −14.8 −35.1 −43.2 0.0
Median 22.9 137.2 −27.8 −11.3 −35.1 −40.0 0.0
Dry 4.5 108.5 −24.0 −8.1 −35.1 −36.8 0.0
Development 17.9 142.6 −26.7 −10.2 −49.2 −38.6 0.0

Peel-Harvey Area

Historical 0.0 54.1 −2.5 −34.4 −17.8 0.0 0.0
Recent 0.6 50.4 −1.2 −30.7 −17.8 0.0 0.0
Wet −0.6 56.0 −3.1 −35.7 −17.8 0.0 0.0
Median −2.5 46.1 −1.2 −29.5 −17.8 0.0 0.0
Dry −4.3 36.3 0.6 −23.4 −17.8 0.0 0.0
Development −6.8 67.6 0.0 −25.2 −49.8 0.0 0.0

Southern Perth Basin

Historical 10.4 82.8 −39.5 −4.1 −1.2 −27.5 0.0
Recent 2.5 63.3 −32.6 −3.5 −1.2 −23.5 0.0
Wet 13.3 80.9 −36.2 −3.8 −1.2 −26.4 0.1
Median 4.4 60.4 −29.9 −3.0 −1.2 −21.9 0.0
Dry −4.2 42.2 −24.4 −2.5 −1.2 −18.3 0.0
Development 1.4 69.9 −28.4 −2.8 −5.9 −31.4 0.1

the VFM was reduced by comparison of VFM based recharge
estimates with those determined through field studies. How-
ever, this could not be done for all land cover types, soils and
climate zones in all regions of the study area due to limited
availability of field data, so there could still be some uncer-
tainty in these estimates. Two of the three groundwater mod-
els used for this assessment have gone through an extensive
refinement and recalibration process over time. As a result
their reliability, as predictive tools, has improved and uncer-
tainty has reduced. However, the Peel Harvey model used
in this study is new and still has to go through the review
process. Thus, uncertainty of projections from this model is
greater than from the other two models.

6 Conclusions

The mean annual rainfall in south-western Australia is pro-
jected to further reduce by 7 to 11 percent by 2030 under the
median future climate and by 15 to 18 percent under the dry
future climate. This will lead to reductions in groundwater
recharge of 33 to 49 percent under the dry future climate rel-
ative to a continuation of the historical climate of 1975–2007.

The reduction in groundwater recharge is expected to impact
all other components of the water balance. The groundwater
discharge to the ocean and natural drainages is expected to
reduce substantially under the dry future climate. In the Peel-
Harvey Area in particular there may be an increased risk of
seawater intrusion under the dry future climate. The leakage
to underlying confined aquifer systems is likely to reduce by
16 to 34 percent in the Central and Southern Perth basins un-
der the dry future climate. The proportion of mean annual
recharge being added to groundwater storage is expected to
reduce from 23 percent under the wetter (historical and wet
future climate) climates to only 4 percent under the dry fu-
ture climate in the Central Perth Basin. In the Southern Perth
Basin and Peel-Harvey Area a loss in groundwater storage is
expected under the dry future climate.

Storage changes are most sensitive to climate change
while net leakage to confined systems is least sensitive.
Recharge is highly sensitive to climate change in the Cen-
tral and Southern Perth basins and less sensitive in the Peel-
Harvey Area. Groundwater discharge to the ocean is very
sensitive to climate change in the Peel-Harvey Area but less
sensitive in the Central and Southern Perth basins. Ground-
water discharge to drains is highly sensitive to climate
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change in the Central Perth Basin and less sensitive in the
Peel-Harvey Area. The model estimates of climate change
impacts on the water balance are important data for future
water resources management in the region.
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