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Abstract. Predictions of hydrological responses in ungauged
catchments can benefit from a classification scheme that can
organize and pool together catchments that exhibit a level
of hydrologic similarity, especially similarity in some key
variable or signature of interest. Since catchments are com-
plex systems with a level of self-organization arising from
co-evolution of climate and landscape properties, including
vegetation, there is much to be gained from developing a
classification system based on a comparative study of a popu-
lation of catchments across climatic and landscape gradients.
The focus of this paper is on climate seasonality and sea-
sonal runoff regime, as characterized by the ensemble mean
of within-year variation of climate and runoff. The work on
regime behavior is part of an overall study of the physical
controls on regional patterns of flow duration curves (FDCs),
motivated by the fact that regime behavior leaves a major
imprint upon the shape of FDCs, especially the slope of
the FDCs. As an exercise in comparative hydrology, the pa-
per seeks to assess the regime behavior of 428 catchments
from the MOPEX database simultaneously, classifying and
regionalizing them into homogeneous or hydrologically sim-
ilar groups. A decision tree is developed on the basis of a
metric chosen to characterize similarity of regime behavior,
using a variant of the Iterative Dichotomiser 3 (ID3) algo-
rithm to form a classification tree and associated catchment
classes. In this way, several classes of catchments are dis-
tinguished, in which the connection between the five catch-
ments’ regime behavior and climate and catchment proper-
ties becomes clearer. Only four similarity indices are entered

into the algorithm, all of which are obtained from smoothed
daily regime curves of climatic variables and runoff. Results
demonstrate that climate seasonality plays the most signifi-
cant role in the classification of US catchments, with rain-
fall timing and climatic aridity index playing somewhat sec-
ondary roles in the organization of the catchments. In spite
of the tremendous heterogeneity of climate, topography, and
runoff behavior across the continental United States, 331 of
the 428 catchments studied are seen to fall into only six dom-
inant classes.

1 Introduction

This work is aimed at developing a catchment classification
system that will help organize a large and diverse population
of catchments within the continental United States into ho-
mogeneous groups on the basis of climate seasonality and
runoff regime. The work is part of a broader study aimed
at better understanding of the physical controls of the flow
duration curve (FDC). It has been motivated by the observa-
tion that a catchment’s regime curve (ensemble mean of the
within-year variation of runoff) has a major impact on the
shape of the FDC (Yokoo and Sivapalan, 2011), thus serv-
ing as the connective tissue between high and low flows that
appear at the extreme ends of the FDC. This connection is
formalized by developing a climatic classification system,
based upon regime curves, that incorporates hydrologic in-
formation.
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Through numerical simulations with a physically based
rainfall-runoff model applied to hypothetical catchments,
Yokoo and Sivapalan (2011) showed that the FDC of total
runoff can be partitioned into two components: the FDC of
the surface (or fast) flow and that of subsurface (or slow)
flow. This result has been further confirmed by the compre-
hensive analysis of the FDCs of some 200 catchments located
within the continental United States by Cheng et al. (2012).
Yokoo and Sivapalan (2011) further argued that while both
the fast and slow flow components are driven by different
climate and landscape properties, the FDC of the slow, sub-
surface flow component closely resembles and could be more
easily reproduced from the catchment’s regime curve. If this
is true, then spatial variations of the regime curve, and asso-
ciated climatic and landscape controls that result from their
interactions, could help explain the regional patterns of the
FDCs within the continental United States. So while under-
standing of the process controls of the regime behavior is im-
portant in its own right, it is also valuable for understanding
the controls of the FDC.

Catchments everywhere are highly variable, displaying
enormous complexity, with a large number of degrees of free-
dom, which makes it very difficult to make general state-
ments about their responses. Yet, despite substantial hetero-
geneity and the complexity of their responses exhibited by
observations, experience with modeling studies and predic-
tions indicates that, at the catchment scale, simple models
with a small number of parameters can describe the major-
ity of catchment responses (Sivapalan et al., 2003). This has
encouraged hydrologists to organize and classify catchments
into homogeneous or similar groups on the basis of a small
number of explanatory variables, as a vehicle towards gener-
ating improved understanding and predictions (Dooge, 1986;
Blöschl and Sivapalan, 1995; McDonnell and Woods, 2004;
Olden et al., 2011). Due to the self-organization of climatic
and landscape features arising from their co-evolution, and
their impact on multi-scale process interactions and feed-
backs, any catchment classification system must be neces-
sarily holistic.

One of the pivotal differences between our work and its
predecessors is the scope of our classification attempts. For
instance, a finely detailed study by Mosley (1981) classi-
fied hydrologic responses in 175 small catchments in New
Zealand, resulting in narrowly defined characteristics and
finely split classes. Ogunkoya (1988) classified 15 catch-
ments in Nigeria, but considered lithographic details and
other features that may be less appropriate if a classifica-
tion scheme is to be broadly applied and minimalist in its
information requirements, as is the objective of this work.
Burn (1997) applied seasonality metrics to help understand
flood frequencies in 59 prairie catchments in central/western
Canada chosen specifically because they experience compa-
rable climates, and thus all present hydrologic regimes driven
by flood events from spring snowmelt. Their results, while
useful, do not address the tremendous climatic diversity that

can occur at the continental scale. Recognizing this, Burn
and Goel (2000) chose a more diverse assortment of catch-
ments in India, using ak-means technique to effectively ex-
tract groups of similar catchments. While these catchments
exhibited more geographic complexity than the previously
discussed studies, this location is still somewhat hydrologi-
cally limited. In addition, clustering algorithms of this kind
present groups that are similar without specifying the physi-
cal drivers that contribute to such similarity – an imperative
for deeper understanding of process controls.

Rather than simply examine how quantitative character-
istics of catchments in various regions are optimally orga-
nized, this analysis also focuses uponwhy these catchments
present the observed climatic and hydrologic characteristics
that they do. As mentioned earlier, to understand the physical
controls on the FDC, one can classify runoff regimes using
empirical runoff regime data, as seen in Haines et al. (1988),
where clusters of catchments with similar flow regimes were
obtained by minimizing within-group variance of clusters of
monthly streamflows. While this procedure does yield quali-
tative explanations, they were generated after the fact, rather
than as part of the analysis itself. Qualitative insights are
strongest as the result of objective, rather than reflective anal-
ysis. One way of gaining qualitative insights from an objec-
tive process is the use of hydrologic signatures. Wagener et
al. (2007) proposed a classification system that is based on
similarity of key signatures of catchment runoff response, in-
cluding, with decreasing timescale, inter-annual variability,
regime curve (i.e., mean within-year variability of runoff),
and the flow duration curve (FDC). Taking this idea further,
Sawicz et al. (2011) classified catchments located in the east-
ern half of the United States, using several catchment-based
signatures including the runoff ratio, the slope of a flow du-
ration curve, and other streamflow properties. This was fol-
lowed by a comparative study of several catchments based
on detailed physically based modeling that can account for
differences in topography, soil types, geomorphology, and
vegetation (Carillo et al., 2011). These studies began investi-
gating the physical underpinnings of the groups that emerge
from classification – we intend to continue in a similar vein,
using simple regime-curve-based features.

With respect to hydrologic, signature-based classification,
there has been considerable success in developing similarity
measures and catchment classification on the basis of mean
annual runoff, expressed in terms of the Budyko curve and
the aridity index (Budyko, 1974; Zhang et al., 2001). The fo-
cus on the regime curve in this paper is a natural extension
to establish the basis for similarity of catchment responses.
Whereas the competition between water available and en-
ergy available governs similarity at the annual timescale, the
shape of the regime curve is governed additionally by the rel-
ative timing of precipitation and potential evaporation, and
the ability of the landscape to store and release water.

Frameworks for climate classification were first applied
broadly via the K̈oppen-Geiger system – identifying similar
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climates using basic information on the variability of precip-
itation and temperature (K̈oppen, 1936), and later updated
by Peel et al. (2007). The classification of regime behavior
presented in this paper can be seen as a precursor to a pos-
sible hydrological extension of the Köppen-Geiger system
towards classification of catchment responses. The Köppen-
Geiger system is based on the number of months in which
average precipitation or average temperature exceeds a given
threshold. However, by excluding hydrology from the sys-
tem, it fails to distinguish certain catchments that display dif-
ferent filtering behaviors. Consider that Köppen-Geiger clas-
sifies the entire southeastern United States identically. Un-
derstanding the distinctions in rainfall/runoff timing allows
for more nuanced analysis of the FDC – this was the hypoth-
esis raised by Yokoo and Sivapalan (2011) upon which this
paper builds.

This paper is the third of a four-part series whose aim is
to better understand the physical drivers of observed regional
patterns of the FDCs. The first paper, by Cheng et al. (2012),
focuses directly on the FDC and approaches the problem em-
pirically, while the second (Ye et al., 2012) adopts a top-down
modeling approach to explore the process controls of the
regime curve and their subsequent relationship to the FDC.
The final paper (Yaeger et al., 2012) synthesizes the insights
from the different perspectives of the first three papers. The
present paper begins with a discussion of hydrologic simi-
larity, specifically that of regime behavior. Four key indices
that will be used to quantify hydrologic similarity and the
reasons for their selection are then presented in Sect. 2. This
is followed in Sect. 3 by details of the methodology used to
construct the decision tree. Section 4 presents the results of
the implementation of the decision tree, while the robustness
of the classification tree is verified in Sect. 5. The paper con-
cludes with a hydrologic assessment of the catchment clas-
sification achieved, including lessons learned and questions
left for future work.

2 Similarity of regime behavior

Since the focus of this paper is on catchment regime behav-
ior, two catchments will be considered hydrologically sim-
ilar if their regime behavior can be deemed similar. In this
paper, four key similarity indices will be used to characterize
the similarity of regime behavior, and are defined and dis-
cussed in detail later in this section. These include (i) arid-
ity index, a measure of aridity that, to first order, determines
the annual water balance, (ii) a seasonality index that quanti-
fies the strength of seasonal variability of precipitation within
the year, (iii) the timing (mean date) of precipitation peak
within the year, and (iv) the timing (mean date) of runoff
peak within the year. Since the climate of the continental
United States is such that the seasonal variation of energy
(and temperature) is relatively uniform across the country,
the timing of precipitation is effectively a measure of the

phase difference between the seasonality of precipitation and
potential evaporation. On the other hand, the timing of the
runoff peak (especially in relation to precipitation and poten-
tial evaporation) captures the mechanisms of storage (in soil
water or snow storage) and release (in terms of subsurface
drainage or snowmelt). In this sense the similarity indices
provide a first-order mapping towards the regional variations
in dominant processes highlighted in the parallel study of Ye
et al. (2012).

2.1 An example of regime behavior

Figure 1 presents the daily regime curves of precipitation,
potential evaporation, and total runoff for a Midwestern-
American catchment, located in Kansas. The left image
(Fig. 1a) is obtained, using MOPEX daily data from 1948
to 2001 (Sivapalan et al., 2011; Cheng et al., 2012)1, using
ensemble averaging by calendar day. While Fig. 1a does pro-
vide useful information about the within-year (daily) vari-
ability of the chosen variables, for the purpose of catchment
classification in this paper, a sliding, 30-day moving average
is generated, as shown in Fig. 1b. Equation (1) captures this
smoothing:

Pi =

i+15∑
i−15

Pi

i+15∑
i−15

(1)

wherePi represents the average precipitation for dayi of the
year; as a point of clarification, this calculation is circular.
Many hydrological analyses (K̈oppen, 1936; Haines et al.,
1988, and others) deploy monthly regime data to depict sea-
sonal patterns of rainfall and runoff. A 30-day moving aver-
age achieves this idea of a 30-day window without creating
arbitrary monthly boundaries. In classifying catchments on
the basis of the daily regime curves of climatic and runoff
data, in this paper we will focus upon images like this one
(Fig. 1b) for all 428 catchments within the MOPEX database
(Duan et al., 2006). The proposed classification scheme will
be built around four key indices, each extracted from the
smoothed regime curves of the type presented in Fig. 1b.

2.2 Similarity indices used

In the spirit of Köppen-Geiger, a key objective of this re-
search is the classification of regime behavior using an abso-
lute minimum quantity of data, on the basis of four very sim-
ple and widely available similarity indices. To estimate these
four indicators, three daily time series are required: precipita-
tion, potential evaporation, and total runoff. The first index is
the aridity index (Ep/P ), the ratio of annual potential evap-
oration to annual precipitation; it measures the competition

1MOPEX data obtained fromhttp://voda.hwr.arizona.edu/
mopex/.
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(a)

(b)

Fig. 1. (a) Daily regime curve, and(b) 30-day moving average,
Marais des Cygnes River, near Ottawa, Kansas, USA.

between energy available and water available, and is seen as
a good first-order indicator of runoff ratio (ratio of annual
runoff to annual precipitation). Note that the phase ofEp/P

is not addressed because, within the continental US, every
catchment’sEp curve peaks within a couple of weeks dur-
ing the summer, andEp is very low during winter months;
thus the curve’s amplitude is subsumed by the valueEp/P .
The seasonality index and maximum day of precipitation are
both estimated from the daily precipitation time series. The
seasonality index measures the strength of within-year (sea-
sonal) variability of precipitation, and is zero if the precipi-
tation is uniform throughout the year. The timing of rainfall
peaks is a reflection of the phase difference between the tim-
ing of the precipitation peak and that of potential evaporation
(Milly, 1994), given that, in the continental United States, the
timing of potential evaporation’s peak is uniform spatially.
Finally, the timing of maximum runoff accounts for the re-
sponse of the catchment to the interactions between precipi-
tation and potential evaporation. The timing of runoff allows
for differences in storage and release processes between dif-
ferent regions, owing to distinctions in topography, snowfall,
snow storage and melt processes, and also differences in the
physiological responses of vegetation. The decisions with re-
spect to the four indices are justified in terms of understand-
ing the interplay between wetting and drying, and the timing
separating rainfall from runoff, as discussed in Cheng et al
and Ye et al. (2012). Within the United States, any three in-
dices are insufficient to understand the nuanced behavior of

the catchments we examined, but the addition of a fourth (at
least for the vast majority of MOPEX catchments) resolves
the discrepancies.

In essence, the four indices represent answers to the fol-
lowing four questions:

– “Is this catchment very humid, somewhat humid, tem-
perate, somewhat arid, or very arid?”

– “Is rainfall relatively consistent year-round, somewhat
seasonally dependent, or highly seasonally dependent?”

– “When, during the year, is rainfall greatest?”

– “When, during the year, is streamflow greatest?”

Other variables, such as runoff ratio (Q/P ) were consid-
ered, but ultimately not adopted because they were correlated
with other variables (Ep/P ) and failed to improve the quality
of classification. Our classification system was reconstructed
after the omission of each of the four features to verify that,
in fact, all four features are necessary. Further justification of
the four features selected is available within the Supplement.

With respect to the independence of the four features, sea-
sonality and aridity index are almost entirely independent
(r2

∼ 0.14). Seasonality and date of max precipitation are
fully independent (r2 < 0.01). Seasonality and date of max
runoff are almost entirely independent (r2

∼ 0.14). Aridity
index and date of max precipitation are independent (r2

∼

0.05). The same is true for aridity index and date of max
runoff (r2

∼ 0.06). Though one might suspect the date of
peak precipitation and peak runoff to be related, the r2-value
connecting the date of maximum precipitation and the date
of maximum runoff is only 0.21. Though there are clusters
where the maximum runoff follows the maximum rainfall by
a few days or weeks, there are also numerous catchments
with virtually constant annual rainfall, yet still characterized
by a defined runoff peak. Finally, there are catchments that
receive their highest rates of precipitation during fall/winter,
then store that water in snowpacks, yielding peak runoff in
April, May, or June.

While there are other features that are relevant in under-
standing the behavior of a given catchment (proportion of
precipitation as snow, etc.), these concepts are included, at
least in large part, in the four features chosen. While these
four features are sufficient for our purposes, future research
may consider adding further indicators to improve specifica-
tion within certain regions.

2.2.1 Aridity index: dry or wet?

Figure 1 shows that, in this catchment in Kansas, the daily
potential evaporation rate is almost uniformly in excess of
the daily precipitation rate throughout the year. The aridity
index (Ep/P ) is estimated by summing the mean daily rates
of potential evaporation (PE) over the 365-day time series
and dividing it by the sum of the mean daily precipitation
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rates over the same 365-day period. The aridity index thus
measures the competition between energy available and wa-
ter available annually:Ep/P > 1 for arid (dry) catchments
whereasEp/P < 1 for humid (wet) catchments.

Figure 2 presents regional patterns of the aridity index
for 428 catchments belonging to the MOPEX database. It
shows that eastern catchments tend to be largely humid (ex-
cept in the south), whereas Midwestern catchments tend to be
mostly semi-arid, becoming more arid as they approach the
Rocky Mountains and the desert south-west, and becoming
humid again in the Pacific Northwest. Essentially one finds
systematic east–west (and north–south) trends in the aridity
index, contradicted by some outliers in the south-east and
north-west.

2.2.2 Seasonality index: is precipitation uniform
or periodic?

Figure 1 presented a catchment whose precipitation and also
runoff response exhibited significant seasonality, with rain-
fall being much higher during the summer than during win-
ter months. This is a feature exhibited by a significant num-
ber of catchments belonging to the MOPEX database. Poten-
tial evaporation is also highly seasonal, although in this case
there is very little phase difference between precipitation and
potential evaporation. The relative magnitudes of precipita-
tion and potential evaporation are likely to have an impact on
runoff regime, and must be accounted for in the classification
scheme. Walsh and Lawler (1981) defined a seasonality in-
dex for precipitation on the basis of average monthly rainfall
values, which in essence is a measure of within-year vari-
ance. In this paper we use an adaptation of Walsh and Lawler
to accommodate the 365-day smoothed precipitation regime
curve as follows:

365∑
i=1

∣∣∣∣∣∣∣Pi −

365∑
i=1

Pi

365

∣∣∣∣∣∣∣
365∑
i=1

Pi

, (2)

wherePi represents the value obtained from Eq. (1) The sea-
sonality index helps to distinguish those regions in which
precipitation is highly variable seasonally from those in
which rainfall is comparatively uniform throughout the year.

Figure 3 presents the spatial distribution of the esti-
mated seasonality index across the USA. In the eastern part
of the country, precipitation is fairly uniform year-round
with the exception of three catchments located in southern
Florida. Moving westward, the seasonality index tends to in-
crease displaying moderate seasonality in the Midwest (mid-
continent) and peaking in those catchments near the Pacific.
While there are a few catchments that do not follow this trend
in the northern Rocky Mountains, the general trend remains
consistent.

Fig. 2.Spatial distribution of the aridity index (Ep/P ).

2.2.3 Day of peak precipitation: in-phase or
out-of-phase with respect to PE?

With the seasonality index defining the strength of seasonal
variability of precipitation, another key feature is the timing
of the maximum precipitation within the year. In this case,
the metric we use is the date (from 1 to 365) on which the
smoothed precipitation regime curve has its peak. Given that
the timing of the peak of potential evaporation is uniform
throughout continental United States, the timing of the pre-
cipitation peak serves to focus attention to the phase differ-
ence between these climate variables, i.e., whether precipita-
tion seasonality is in phase with that of potential evaporation
(e.g., precipitation peaks during June or July), is out-of-phase
(precipitation peaks during December or January), leading
PE somewhat (precipitation peaks during spring months)
or lagging PE somewhat (precipitation peaks during fall
months). As a side note, it is important that this similar-
ity index be estimated from a regime curve obtained with
a suitably long moving window to avoid mischaracterizing a
catchment. These distinctions are important, since the phase
differences between the seasonality of water input and en-
ergy input impact storage and release mechanisms, and can
thus impact the magnitude and timing of runoff as well.

Figure 4 presents the distribution of the day of maximum
precipitation using a circular color coding; i.e., if the day of
maximum precipitation happens to fall on 31 December for
a catchment, then the similarity index is quite similar to an-
other catchment with its precipitation peak falling on 2 Jan-
uary, even though the timing index will be “365” for the first
catchment and “2” for the second catchment. Although nu-
merical values are different, they are actually similar with re-
spect to the timing of the precipitation peak. The color coding
reflects this similarity.

In this case, the east-to-west trends seen in the case of arid-
ity index and seasonality index no longer hold. Although the
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Fig. 3.Spatial distribution of the seasonality index.

Midwestern regions see precipitation peak in the late spring
to early summer, there is much more variability across the
continent, creating smaller clusters that are less defined by
longitude and latitude alone. The southern Appalachians are
quite different from their northern, snowy counterparts; the
Pacific coast displays a notable gradient north to south, and
several catchments in the monsoon-influenced southwest dis-
tinguish themselves from their snowmelt-driven neighbors
to the north, and their hurricane-influenced neighbors to the
east.

2.2.4 Day of peak runoff: role of catchment storage and
release processes

Analogous to the day of peak precipitation, the day of peak
runoff (1–365) is the final piece to the classification puz-
zle. In this case, the differences between the catchments re-
flect not only the magnitude and phase differences between
precipitation and potential evaporation, but also the transfor-
mations that happen at the land surface (storage and release
processes, including below-ground soil and groundwater pro-
cesses and above-ground snow storage and snowmelt), as il-
lustrated by Milly (1994).

The results are presented in Fig. 5, once again using a
color coding scheme that is circular (1–365). As with the
day of peak precipitation, we observe clusters that are not
solely longitude- or latitude-driven, including considerable
local variations that may reflect landscape heterogeneity. The
Pacific Northwest distinguishes itself due to the out-of-phase
relationship between precipitation (peaks during winter) and
potential evaporation (peaks during summer). In the Midwest
and along the east coast, there is considerable heterogene-
ity, and in some cases even adjacent catchments show dif-
ferences in runoff timing. Along the Appalachian Mountains
in the eastern half of the continent, runoff peaks appear in
early spring, presumably driven by melting snow and spring
rainfall.

Fig. 4.Spatial patterns of the day of peak precipitation day (1–365).

3 Developing a catchment classification system:
decision trees, similarity metrics, and clustering
algorithms

3.1 Decision trees for grouping catchments

The goal of this section is to describe the methodology
adopted in this paper to “group” catchments exhibiting sim-
ilar regime behavior, and separate them from those that are
different. Figures 2 through 5 also exhibited certain regional
trends across the continental USA with respect to each of the
four similarity indices we had considered, and some level of
clustering. In the same way, if the regime curves of the type
presented in Fig. 1, generated for each of the 428 catchments
in the MOPEX database, are superimposed upon a large map
of the USA, one could see regional trends, including the
emergence of distinct clusters of similar regime behaviors (at
least qualitatively). Is there a connection or possible mapping
between the former and the latter? Our hypothesis in this pa-
per is that a combination of the 4 similarity indices governs
the regime behavior and can be the basis of their classifica-
tion.

Considering that ultimately we want to develop a catch-
ment classification system on the basis of regime behav-
ior, and the fact that we have 4 different similarity indices
that might collectively determine similarity of regime behav-
ior, how can we develop a robust classification system? One
way to develop such a classification system is via “decision
trees” that can recursively divide the 428 catchments into
self-similar groups in such a way that, at each step in the
decision tree, the variability of a catchment attribute within
each group is less than the variability between groups. The
reason for a classification tree rather than another cluster-
ing algorithm, of which there are several in the literature
(neural networks, nearest-neighbor algorithms, genetic algo-
rithms, etc.), was that this structure allows for qualitative in-
sights to emerge along the way rather than a black box that

Hydrol. Earth Syst. Sci., 16, 4467–4482, 2012 www.hydrol-earth-syst-sci.net/16/4467/2012/



E. Coopersmith et al.: Controls of regional patterns of flow duration curves – Part 3: Catchment classification 4473

Fig. 5.Day of peak runoff (1–365).

delivers groups without explanation. With this method, as
“observers” of the algorithm, we can see what splits occur
on what values at what point in the process, allowing us to
ask the following: What is the most important, most distin-
guishing characteristic for all US catchments? What if we
only consider the non-seasonal half? Constructing such trees
requires a suitable metric – a mathematical definition of simi-
larity (of regime behavior) that can be deployed for any group
of catchments – a metric that encompasses the four key in-
dices.

3.2 Metric of regime similarity

Each of the four similarity indices, seasonality index (S), the
aridity index (A), day of peak precipitation (τp) and maxi-
mum runoff day (τq), shows considerable variability across
the catchments, which can be expressed in terms of a vari-
ance measure. ForS this is straightforward, with the estima-
tion of the standard deviation obtained from

σS =

√√√√√ n∑
i=1

(Si − µS)2

n − 1
(3)

whereSi is the seasonality index for catchmenti, µS is the
its mean over all catchments, andn = 428 is the number of
catchments. An analogous estimate can be obtained for the
standard deviation of the aridity index,σA.

In contrast, forτp andτq , this estimation is not as straight-
forward. This is due to the circularity of the timing of the two
peaks (i.e., 1–365), as in the case of four catchments whose
values forτp are 361, 364, 359, and 3. To overcome this, we
transformτp andτq into new variablesC1 andC2, both of
which naturally fall between−1 and+1, and overcome the
circularity problem.

C1 = sin
( τp

365
· 2π

)
,C2 = cos

( τp

365
· 2π

)
(4)

By estimatingσC1 andσC2, the standard deviations ofC1,
andC2, respectively, we can then estimate the standard devi-
ation ofτp, στP

, as follows:

στP
=

√
σ 2

C1
+ σ 2

C2
. (5)

The standard deviation ofτq , expressed asστQ
, can be esti-

mated in an analogous manner.
In summary, for the four similarity indices outlined, their

between-catchment variabilities across the entire MOPEX
database of 428 catchments are characterized byσS , σA,στP

,
and στQ

respectively. To ensure that no one index over-
whelms the others by virtue of its numerical scales, the vari-
ance of each index, whether it contains all 428 catchments
or a smaller subset of them, is normalized by the four con-
stants listed above. For any group ofm catchments, we define
a new quantity,E, the metric of regime similarity associated
with that group, as follows:

E =

√√√√(σS,m

σS

)2

+

(
σA,m

σA

)2

+

(
στP ,m

στP

)2

+

(
στq ,m

στq

)2

. (6)

Essentially, the regime similarity metric,E, is a representa-
tive measure of the combined within-group variance of the
four similarity indices for any group ofm catchments, with
equal weights attached to each of the similarity indices.

3.3 Clustering algorithm: Iterative Dichotomiser 3
algorithm (ID3)

Classification trees offer a straightforward approach for
grouping objects on the basis of similarity or variance mea-
sures (Breiman et al., 1984). Such tools are routinely in-
cluded in many statistical programming packages (Breiman
et al., 1993). The clustering or grouping algorithm used in
this paper is the Iterative Dichotomiser 3 (ID3) algorithm de-
veloped by Quinlan (1986), which was re-coded as part of
this research. This algorithm has found classification appli-
cations in forest resource management (Aertsen et al., 2011),
crop identification for soil management (Pena-Barragan et
al., 2011), mapping of arid rangeland vegetation (Brodley
and Freidl, 1997; Lailiberte et al., 2007), and prediction of
the failure of business ventures (Li et al., 2010).

The algorithm’s implementation is explained next. Given
all 428 catchments, choose a value of any one of the four
indices (e.g., seasonality index) with which to partition all
catchments. This will yield two clusters – those with a statis-
tic (i.e., seasonality index) above that value and those with a
statistic below that value. Iterate over four possible similar-
ity indices to choose the value of one of these indices that
minimizes the regime similarity metric,E, and weighted by
the number of constituents in each subsequent class (as ex-
plained next). Repeat recursively until either value ofE can
no longer decrease significantly or these clusters become too
small. The first split, atop the decision tree, is offered in de-
tail in the following paragraphs.
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By definition, the normalized value of the variance of the
entire distribution of any independent variable is equal to
unity. Substituting into Eq. (6) to obtain the value ofE of
the initial data belonging to 428 catchments yields

E =

√
(1)2

+ (1)2
+ (1)2

+ (1)2
=

√
4 = 2. (7)

When all 428 catchments were assessed, although each of the
four similarity indices was considered, the best-performing
splitting criterion turned out to be a seasonality index of
0.2564. There are 266 catchments with seasonality index val-
ues less than 0.2564 and 162 with seasonality indices that ex-
ceed 0.2564. The new value of the regime similarity index,
E, is now calculated as follows:

E′
= 266

(
ES≤0.2564

)
+ 162(ES>0.2564) . (8)

In this case,ES≤0.2564 denotes the regime similarity metric
of the set of catchments, for whichS ≤ 0.2564 (266 in all)
andES>0...2564 represents the similarity metric of the set of
catchments for whichS > 0. 2564 (162 in all). In each term
of Eq. (8), Eq. (6) is now used to estimateE for only the sub-
groups of 266 and 162 respectively. Substituting into Eq. (8)
this gives, after the first split,

E′
= [266(1.1838) + 162(2.1992)] /428= 1.5681. (9)

This represents the minimum possible value ofE after one
single split. Thus what began with an E-value of 2 has now
improved to 1.5681. It is worth noting that one branch, the
one with more seasonal catchments, actually displays greater
“disorder” than the entire dataset. However, given that 266
of the 428 catchments begin to cluster significantly (i.e.,E =

1.1838), the small increase in the disorder of the remaining
162 is justified.

At this point, the algorithm as described above can be re-
peated recursively, locating an optimal split criterion at each
node by choosing from one of the four similarity indices, thus
branching outward down the tree. Splitting ceases when it is
determined that the catchments within a given terminal node
are maximally similar – no further splitting will decrease the
regime similarity metric significantly, or there is only a sin-
gle catchment left at that node (and thusE is zero). In some
cases, there are very few catchments left in a given node to be
split with an obvious pair of clusters. In such cases, adopting
different splitting criteria might yield the same two groups.
In these rare cases, a manual choice of splitting is invoked to
choose the most appropriate class delineator.

4 Results: what patterns emerge, and where are
the largest clusters?

We now present the results of the application of the clus-
tering algorithm presented above, describing the breakdown
developing at each level of the decision tree. For presenta-
tion purposes, depending on the magnitudes of the similarity

indices at which the splits occur, we divide each similarity in-
dex into several (3 to 5) distinct and meaningful classes. The
combination of these classes then produces the nomenclature
we need to describe the catchment classes at each level.

4.1 Nomenclature for catchment classes

The nomenclature we have adopted is letter-based, using up
to five letters of the alphabet to characterize the range of val-
ues of each of the four similarity indices; these are presented
below.

4.1.1 Codes for aridity index

– V = “Very Humid”, Ep/P <∼ 0.5;

– H = “Humid”, ∼ 0.5< Ep/P <∼ 0.75;

– T = “Temperate”,∼ 0.75< Ep/P <∼ 1.2;

– S = “Somewhat Arid”,∼ 1.2< Ep/P <∼ 2;

– A = “Arid”, ∼ 2< Ep/P .

4.1.2 Codes for seasonality index

– L = “Low Seasonality”,S <∼ 0.25;

– I = “Intermediate Seasonality”,∼ 0.25< S < ∼ 0.5;

– X = “eXtreme Seasonality”,∼ 0.5< S.

4.1.3 Codes for day of precipitation peak

– J = “June”, max rainfall occurs in early or mid-summer
(not necessarily in June);

– W = “Winter”, max rainfall occurs in winter (mid-
February or March);

– B = “Blizzard”, max rainfall in late November to mid-
February;

– P = “Printemps”, max rainfall during spring.

4.1.4 Codes for day of runoff peak

– Q = max runoff during summer months, early June
through August;

– F = “Fall/hurricane season”, generally in Septem-
ber/October, uncommon (TX & FL);

– M = “Melt”, spring melt usually at a peak in April, May,
or early June;

– C = “Cold runoff”, max runoff occurring from early
February to before April;

– D = “December”, max runoff during December/January
or early February.
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Fig. 6.The top two layers of the classification tree (terminal node shown in blue).

The classes described above can theoretically describe
3×5×4×5 = 300 different combinations of the similarity in-
dices (and associated catchment groupings), although, as will
become apparent soon, an overwhelming majority of those
combinations will never occur. The nomenclature for these
classes was developed after seeing the clusters that emerged.
For instance, with respect to the aridity index, there were
a few classes whereEp/P was much lower than 0.5, some
classes withEp/P greater than 2.5, and three notable group-
ings in between. For this reason, five classes were selected.
However, with respect to seasonality, in examining groups it
became evident that there were catchments with very little
seasonality, catchments with extremely high rates of season-
ality, and intermediate catchments. Thus, three were chosen.
The intention had been to generate as few classes as possible.
Indeed we will show that the first six most dominant classes
will encompass 331 of the 428 catchments.

4.2 Initial split: top of the classification tree

The classification tree begins with the complete database of
428 MOPEX catchments. As mentioned before, the popula-
tion of 428 catchments is split recursively into smaller, more
homogeneous groups, being named along the way depending
on the value(s) of the similarity indices at play at each split.
After the very first split, the dataset is divided into two large
clusters, which are not terminal nodes, but rather are inter-
mediate nodes, and these are further split into four clusters,
and so on. After each split, the resulting pair of clusters be-
gins to receive a more detailed code using the letters above,
depending on the value of the similarity index that is in play
at each split.

Seasonality turned out to be the single most important fac-
tor in creating order in the 428 catchments in the MOPEX
database at the first level. Two clusters emerged: one charac-
terized by catchments with a low seasonality index (L) and
the other characterized by catchments with a “not low” sea-
sonality index. This is shown in Fig. 6, with the left branch
labeled “L” and the right branch labeled “*” because it could
be either an “I” or an “X” type of seasonality. The transfer
of the first level split onto a map of the United States makes
the classes resulting from the first split easy to understand
hydrologically, as seen in Fig. 7.

The results presented in Fig. 7 indicate that the season-
ality index, after only one binary split, effectively partitions
the continental United States geographically in a meaning-
ful way. In the eastern part of the country, rainfall is rela-
tively uniform throughout the year, from New England in the
northeast, down the Appalachian Mountains to the Ozarks,
stretching into the Midwest. Only three eastern catchments
in this database, those in Florida, deviate from this pattern,
as they see large amounts of rainfall during a warm, hu-
mid, hurricane-influenced summer/fall and considerably less
during the winter. In the western United States, excluding a
handful of catchments in the northern Rocky Mountains, ev-
ery catchment displays considerable seasonal variability of
precipitation, from the Midwestern catchments characterized
by a precipitation that is in phase with potential evapora-
tion to the Pacific coast catchments in which the precipita-
tion regime is out-of-phase with respect to that of potential
evaporation.

The second split criterion, for the lower seasonality, east-
ern catchments (colored blue in Fig. 7), is the timing (day)
of precipitation peak while for the more seasonal, western
catchments, the split criterion becomes the aridity index (see
Fig. 3). For less seasonal catchments, the dividing date falls
on 1 June; for the more seasonal catchments, the dividing
aridity index is roughly 1.9. This leads to four classes, as
shown in Fig. 6, one of which (LJ) is a terminal node. The
transfer of these four clusters, after two consecutive splits
of the original dataset, onto the map of the United States is
presented in Fig. 8. The results presented in Fig. 8 show an
east-west division based on the seasonality index at the first
level; a northeast-southwest split occurs in the eastern (non-
seasonal) region via the timing of rainfall, while in the west
a split based on aridity index distinguishes the Pacific North-
west and the northern Midwest catchments from the remain-
ing western catchments.

4.3 Four quadrants of the classification tree

The four main clusters of similar climatic regions obtained
in the second level will be further split by the recursive algo-
rithm outlined above until smaller, very similar climate clus-
ters remain. The details of this are not presented here for rea-
sons of brevity; only the resulting final classification tree is
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Fig. 7.First split, low seasonality (blue) and higher seasonality (or-
ange).

presented. Even here, because of the size of the resulting tree,
it is most easily viewed in portions, which we call quadrants,
relating to the major clusters formed at the end of the level
two splits. In what follows, each quadrant of the classifica-
tion tree is presented and discussed in detail.

4.3.1 First quadrant: low seasonality, max
precipitation before 1 June

Figure 9 presents the expansion of the first quadrant. Six cli-
mate regions describe the 119 catchments that comprise this
group. The most populous group, “LWC” contains 52 catch-
ments, 50 of which are located in the southeastern states.
While this terminal grouping has been obtained without the
use of the aridity index, using only seasonality and the tim-
ings of precipitation and runoff, the 52 catchments all dis-
playEp/P < 0.87, displaying a tight cluster of humid catch-
ments where rainfall and runoff peak in February or March.
The second-most populated group is “LPC”, containing 29
catchments from the eastern Midwest. Once again, although
the aridity index has not been used as a split criterion to ob-
tain this cluster, the 29 catchments have similar Ep/P-values,
near or slightly below one. This class is distinguished from
LWC by virtue of maximum rainfall occurring later in the
spring. A third, well-populated cluster is found in 28 “LPM”
catchments located in the southeastern regions of the Mid-
west where rainfall and runoff both peak during springtime.
The “LBMH” catchment in Montana, which seems unusual
for its geography given its low seasonality, and humidity
(Ep/P ∼ 0.67), 3 “LBMS” catchments from Colorado and
Montana, which are similar to the LBMH oddity, only con-
siderably drier (1.17< Ep/P < 1.66), and 6 “LPQ” catch-
ments, also from the mountain west (Wyoming) where rain-
fall peaks in the spring instead of the winter, round out this
quadrant.

Fig. 8. Second split: low seasonality and earlier precipitation peak
(dark blue), low seasonality and later precipitation peak (light blue),
higher seasonality and non-arid (yellow), higher seasonality and
arid (red).

4.3.2 Second quadrant: low seasonality, max
precipitation after 1 June

This quadrant becomes fully organized with only two cri-
teria for splitting, leaving 147 catchments which all carry
the “LJ” designation. Although the maximum date on which
runoff occurs is not used to create this class, 145 of the 147
catchments observe maximum runoff between mid-February
and late April (the remaining two peaks occur in the first
week of May). In fact, 124 of the 147 catchments peak be-
tween the second week of March and the first week of April.
Furthermore, although once again the aridity index is not
used to generate this cluster, all 65 catchments fall between
Ep/P ∼ 0.5 andEp/P ∼ 1.05. This class of catchments de-
fines the mid-Atlantic and Appalachian regions of the United
States, extending into the eastern Midwest. This quadrant of
the tree, albeit expressed as a single node, is illustrated in
Fig. 10.

4.3.3 Third quadrant: higher seasonality, non-arid

This quadrant of the tree is the most diverse by a consider-
able margin. The criteria for this quadrant are, to reiterate, the
seasonality index> 0.2564 and an aridity index (Ep/P ) be-
low 1.9. Some 128 catchments meet these conditions and are
further segmented into 12 terminal nodes as shown in Fig. 11
(note that two terminal nodes classify to the common Mid-
western climate of “ITC”). However, despite the apparent
complexity, two climates describe 75 of the 128 catchments.
The first, and most common, “ISQJ” contains 39 catchments
in the Midwest and southern Midwest. The second most com-
mon, ITC is quite similar to the previous grouping geograph-
ically, although it is more humid and maximum runoff arrives
sooner. This class contains 36 catchments from the Midwest
and northern Midwest. The remaining clusters, partitioning
the Pacific Northwest, consist of 6 humid catchments from
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Fig. 9.Low seasonality, early precipitation peak: expanded (terminal nodes in blue).

northern California and Oregon (“XHD”), 7 catchments in
Idaho (“IHM”), 6 extremely humid catchments in Washing-
ton (“XVM”), 10 more temperate catchments in the Pacific
Northwest from Washington, (“XTM”), 3 extremely humid
catchments in Washington (“IVD”), which differ from their
XVM counterparts by virtue of their lower seasonality in-
dex, and winter runoff peak, 3 Floridian catchments (“ITF”),
which are truly unlike any others in the United States, 7 drier
Midwestern catchments with early runoff peaks (“ISCJ”), 2
drier Pacific northwestern catchments (“ISCB”), and 3 drier
southern Californian catchments (“XSC”), and 6 drier south-
ern Californian/Nevadan catchments with later runoff peaks
(“XSMB”).

The terminal nodes in the third quadrant contain 10
or fewer catchments, describing certain niche climates of
United States. These mini-clusters often describe several
catchments that are very similar to each other, but quite dif-
ferent from their neighbors.

4.3.4 Fourth quadrant: higher seasonality, arid

In this final quadrant, the 34 remaining catchments are fur-
ther divided into five terminal nodes. The most common
classification (“IAQ”) contains 16 catchments, a miscella-
neous assortment of the country’s most arid locations, in-
cluding 10 from the southwest, 5 from the Midwest, and
one remarkably arid catchment in Wyoming (the moun-
tain west). The remaining clusters consist of three Cali-
fornian catchments that represent the driest American Pa-
cific climates (“XADB”), the northern Midwestern “bad-
lands”, six extremely arid catchments in Nebraska and North
and South Dakota (“XACJ”), a cluster of seven arid south-
western catchments, one oddity in the Pacific Northwest,
(“IACJ”), shielded from the Pacific coast by the Cascade
Mountains, and three arid catchments in Texas characterized
by runoff peaks occurring as late as the fourth week of Octo-
ber (“IAF”). Figure 12 presents the final quadrant.

Fig. 10.Low seasonality, late precipitation peak: expanded (termi-
nal node).

4.4 Summary of the resulting catchment classification
and the largest six classes

In total, the classification tree yielded 24 terminal nodes, de-
picting 24 distinct classes according to the criteria we have
used. The geographic representation of these 24 classes on a
map of the continental United States is presented in Fig. 13,
revealing distinct regional associations of many of the major
catchment classes.

However, of the 428 catchments which comprise the
MOPEX dataset, 331 can be described by only six climate
classes: LWC, LPC, LPM, LJ, ITC, and ISQJ. There are only
two other groupings that contain 10 or more catchments.
While admittedly this could be due in part to the makeup
of the MOPEX dataset, which contains more catchments in
certain regions than in others, it still suggests that while 300
different classifications are theoretically possible using the
coding system adopted here, over 77 % of the catchments
are well described by 2 % of the possible classes, and the
entire dataset is captured by 8 % of all possible classes. In
terms of the overall variance of the full dataset, the follow-
ing are the within-group variances for the six most common
classes: LWC – 26.9 %, LPC – 23.9 %, LPM – 29.8 %, LJ
– 43.3 % (with 140+ catchments), ITC – 28.1 %, ISQJ –
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Fig. 11.Higher seasonality, non-arid: expanded (terminal nodes in blue).

46.5 %. Considering that these groups comprise 77 % of the
database, this is quite encouraging, as these clusters contain
much less than half of the variance of the original dataset
using very simple indices.

Three of the largest six classes are found within the first
quadrant (LWC, LPC, and LPM). The catchments belonging
to these three classes are characterized by limited seasonal-
ity, and are essentially catchments with pre-spring maximum
rainfall and runoff (LWC), catchments with pre-spring peak
runoff, but mid-spring maximum rainfall (LPC) and catch-
ments with springtime rainfall and runoff peaks (LPM). The
entire set of catchments in the second quadrant (belonging
to the terminal LJ class) is clearly the fourth member of
the largest six classes. These catchments display limited sea-
sonality, humid climates, peak runoff during the springtime
(likely melt-driven from the Appalachian mountain range),
and peak rainfall during the summertime. The final two mem-
bers of the largest six are found in the third quadrant: ISQJ
and ITC (and none of the classes in the fourth quadrant falls
within the largest six). The two Midwestern classes, ISQJ and
ITC, both contain catchments with rainfall that is in phase
with potential evaporation. However, the ISQJ catchments
are notably more arid, withEp/P averaging roughly 1.5,
as opposed to an average of roughly 1 for ITC. As a result
of the more temperate climate, the ITC group displays peak
runoff during early spring, when stored water from winter
has thawed. On the other hand, ISQJ, characterized by drier
soils, shows its runoff peak in late May or June, at the same
time as its precipitation peak.

4.5 Robustness of classification: recurrent, dominant
clusters

When classification systems are generated using recursive,
splitting algorithms (those that minimize variance at each
stage without concern for future splits), there is a tendency
to over-fit one’s data. Although variance is minimized at ev-
ery stage, ensuring that we do not split a group of catch-
ments without purpose, caution is required to prevent fitting
the noise inherent in the dataset rather than true patterns. To
this end, the same algorithm was applied to a 197-catchment
subset of the larger, 428-catchment dataset. These 197 catch-
ments were chosen due to their comparatively richer datasets
(fewer missing days, more complete years, etc.) and form the
dataset that has been employed by Ye et al. (2012), Cheng et
al. (2012), and Yaeger et al. (2012) in the accompanying pa-
pers that are all focused on exploring the physical controls of
the FDCs from different perspectives.

Although naturally there are subtle differences in the tree
that is formed in the latter case, the important features of the
tree remain unchanged (not presented for reason of brevity).
Using the notion of quadrants, as described in the previous
section, the first quadrant is not only characterized by lower
seasonality and peak rainfall before 1 June (the same date as
the 428-catchment tree), but also contains six total terminal
nodes as well. Furthermore, the three most common classes
from that quadrant of the 428-catchment tree and their num-
ber of constituents (LWC – 52, LPC – 29, and LPM – 28) are
mirrored in the most common classes in the 197-catchment
tree as well (LWC – 21, LPC – 11, and LPMT – 7). The ad-
ditional letter T from the subset tree is the result of slightly
different sequences of the splitting, yielding essentially the
same groups.
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Fig. 12.Higher seasonality, arid: expanded (terminal nodes in blue).

Classes for 428 MOPEX Catchments
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Fig. 13.All classes.

The second quadrant of the 197-catchment tree, like the
428-catchment tree, contains the single class LJ, now com-
posed of 65 catchments rather than 147. The remaining two
quadrants also show some differences, this likely resulting
from the nature of the dataset. Unfortunately, given the chal-
lenges associated with data gathering in more arid catch-
ments, many of the catchments characterized by substantial
missing data are found in the nation’s more arid locations.
As a result, the 428-catchment tree contains a much higher
proportion of arid catchments (thus, the second split criterion
for more seasonal catchments isEp/P ). Conversely, the 197-
catchment tree contains a smaller proportion of arid catch-
ments and, thus, splits on the maximum day of precipitation
to define its third and fourth quadrants. Despite this, the two
most common classes on this side of the 428-catchment tree
(ISQJ – 39 and ITC – 36) still find their parallels in the 197-
catchment tree (ISQJ – 15 and “IJTC” – 20). The remaining,
less common groups do display some overlap, although in
this case differences appear simply because certain groups

Fig. 14.Clusters of runoff regimes.

are not represented at all in the 197-catchment subset, or find
themselves folded into other classes. Despite these minor dis-
tinctions, once again, the nearly identical largest six classes
again define over 70 % of all catchments and the tree’s gen-
eral structure remains intact. This demonstrates that not only
is the classification system intuitively satisfying in its sim-
plicity, but is robust to alterations in the dataset.

The most effective argument for the success of this classi-
fication system lies in its ability to validate the initial hypoth-
esis – that simple climatic regime indicators lead to clusters
of similar runoff behavior. Each cluster of runoff regimes is
presented in Fig. 14, demonstrating regional self-similarity.
While certain clusters with larger numbers of catchments
(notably LJ) do display some variance among their con-
stituents, the overall pattern of runoff timing associated with
each catchment still remains intact. Moreover, analysis of the
flow duration curves by class confirms our initial specula-
tion, as these flow duration curves are organized by a clas-
sification tree constructed solely with regime curve features.
Table 1 quantifies the decrease in variance with respect to
100 key percentiles of the FDC as one progresses down the
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Table 1.Decreasing FDC variance (layer-by-layer down the tree).

Level 0 100 %
Level 1 86 %
Level 2 68 %
Level 3 63 %
Level 4 54 %
Level 5 47 %
Level 6 47 %
Level 7 46 %

classification tree. In other words, not only are the four key
indices being grouped effectively, but the FDCs of the con-
stituent groups are well-organized as well. More detailed dis-
cussions of this connection and its relationship to other find-
ings from the first two papers of this series can be found in
Yaeger et al. (2012).

5 Conclusions

This paper has presented the application of a clustering al-
gorithm (i.e., Iterative Dichotomiser 3, or ID3 algorithm) for
classifying catchments across the continental United States
with respect to their climatic seasonality and regime behav-
ior (i.e., mean within-year variation of runoff). The classifi-
cation was achieved by assessing the catchments in terms of a
metric of regime similarity,E, which is a composite measure
estimated on the basis of the magnitudes of four similarity
indices: (i) a seasonality index of precipitation, (ii) aridity
index, (iii) timing of maximum precipitation, and (iv) timing
of maximum runoff. The clustering algorithm was applied to
428 catchments across the continental United States belong-
ing to the MOPEX dataset.

The clustering algorithm identified 24 distinct classes.
Even though the classification was achieved with just four
numbers from each catchment (similarity indices), and only
the max date of the runoff regime curve was used, the regime
behavior for each of the classes showed distinct differences
between classes and strong similarity within. This confirms
the power of the simple classification scheme for predicting
regime behavior across the continental United States, subject
to the limitations of the geographical extent of the dataset
and coverage across the country. Considering that three of the
four indices used to construct the classification tree are based
upon climate, it comes as no surprise that climate’s impact is
readily apparent. Just as Köppen-Geiger delineated the na-
tion into clusters of climatic similarity a century ago, climate
still dominates the hydrologic landscape, creating distinct,
hydrologically similar clusters.

The resulting classes also display strong regional asso-
ciations and patterns, which is very valuable to further ex-
plore the climatic and landscape controls underlying the re-
sulting catchment classes. Whether the final group is IHM,

with seven catchments all located in the state of Idaho, or
ITF, with three catchments all located in Florida, or IAF, with
three catchments located in one region of Texas, these groups
are not only numerically similar, but geographically contigu-
ous as well in many cases.

Despite the enormous heterogeneity of catchments rep-
resented in the MOPEX dataset, just six classes accounted
for over 77 % of the catchments. The classification system is
found to be robust, producing the same recurring six clusters
even with a smaller subset of the full dataset. Each of the re-
curring, dominant six classes displays distinct characteristics
that suggest their own set of hydrologic drivers. In the Mid-
west, the aridity index determines whether runoff is driven by
the spring thaw of water frozen in soil storage (ITC) or by the
arrival of summer rains (ISQJ). In the south-east, runoff tim-
ing in late winter (LWC and LPC) or early spring is governed
by the temperatures in and around the Appalachian Moun-
tains. In the north-east, spring runoff is likely the result of
melting of snow (LJ). In the area in which the southeastern
United States merges with the Midwest, seasonality begins
to appear strongly, and runoff is driven by springtime rainfall
(LPM). In addition to these largest six clusters, other smaller,
niche climates display distinct behaviors. From the monsoon-
driven southwest (XACJ), where precipitation occurs mainly
in a narrow band of summer months, to the extremely humid
Pacific Northwest, where runoff peaks are driven by extreme
winter rainfall (IVD) or the melting of snowcaps in the spring
(XVM), the United States exhibits a tremendously heteroge-
neous group of catchments.

The analyses presented in this paper have identified catch-
ment groupings that are similar in terms of their runoff
regime. What makes them similar? Their regime curves cer-
tainly suggest as much, but does that imply similar dominant
processes? The accompanying paper by Ye et al. (2012) ex-
plores their regime behavior from a process perspective, by
adopting a top-down modeling approach. Is there a recogniz-
able mapping between the catchment classification found in
this paper and the classification of dominant processes high-
lighted in Ye et al. (2012)? Furthermore, this paper has been
motivated by our quest to explore the physical controls of the
flow duration curve (FDC), considering that the regime curve
provides a major connective tissue between the high flow and
low flow ends of the FDC. Cheng et al. (2012) presented an
empirical analysis of the regional patterns of FDCs across the
continental United States and their physical controls. Is there
a connection between the regional groupings of catchments
based on the regime curve and regional patterns of variation
of the FDCs? The accompanying synthesis paper by Yaeger
et al. (2012) addresses these questions through cross com-
parisons between the results of each of these three studies to
draw general conclusions about the physical and process con-
trols of the regime curve and the flow duration curve, helping
to discover not only which catchments are similar, but also
whythey are similar.
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Finally, it is important to acknowledge the limitations in-
herent in the classification system presented. Although the
continental United States represents a diverse and rich ar-
ray of climate conditions and landscape features, it is nat-
ural that it does not contain every conceivable combination
of climate and landscapes. It may very well be the case that
such climates exist on other continents. It is to be hoped that
future efforts will integrate global climate data into an en-
hanced tree, duplicating this work on a larger, multi-national
scale. Secondly, while the classification system classified 428
gauged catchments (including information on runoff timing)
into distinct classes, without a further effort to incorporate
catchment or landscape features that impact runoff genera-
tion, especially runoff timing, application to ungauged catch-
ments is not feasible. This calls for further research that will
overcome this major limitation of this study.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
16/4467/2012/hess-16-4467-2012-supplement.pdf.
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Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G.,
Gupta, H., Gusev, Y., Habets, F., Hall, A., Hay, L., Hogue, T.,
Huang, M., Leavesley, G., Liang, X., Nasonova, O., Noilhan, J.,
Oudin, L., Sorooshian, S., Wagener, T., and Wood, E.: Model Pa-
rameter Estimation Experiment (MOPEX): An overview of sci-
ence strategy and major results from the second and third work-
shops, J. Hydrol., 320, 3–17, 2006.

Haines, A. T., Finlayson, B. L., and McMahon, T. A.: A global clas-
sification of river Regimes, Appl. Geogr., 8, 255–272, 1988.
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