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Abstract. The flow duration curve (FDC) is a classical
method used to graphically represent the relationship be-
tween the frequency and magnitude of streamflow. In this
sense it represents a compact signature of temporal runoff
variability that can also be used to diagnose catchment
rainfall-runoff responses, including similarity and differ-
ences between catchments. This paper is aimed at extract-
ing regional patterns of the FDCs from observed daily flow
data and elucidating the physical controls underlying these
patterns, as a way to aid towards their regionalization and
predictions in ungauged basins. The FDCs of total runoff
(TFDC) using multi-decadal streamflow records for 197
catchments across the continental United States are sepa-
rated into the FDCs of two runoff components, i.e., fast flow
(FFDC) and slow flow (SFDC). In order to compactly dis-
play these regional patterns, the 3-parameter mixed gamma
distribution is employed to characterize the shapes of the nor-
malized FDCs (i.e., TFDC, FFDC and SFDC) over the entire
data record. This is repeated to also characterize the between-
year variability of “annual” FDCs for 8 representative catch-
ments chosen across a climate gradient. Results show that the
mixed gamma distribution can adequately capture the shapes
of the FDCs and their variation between catchments and also
between years. Comparison between the between-catchment
and between-year variability of the FDCs revealed significant
space-time symmetry. Possible relationships between the pa-
rameters of the fitted mixed gamma distribution and catch-
ment climatic and physiographic characteristics are explored
in order to decipher and point to the underlying physical
controls. The baseflow index (a surrogate for the collective

impact of geology, soils, topography and vegetation, as well
as climate) is found to be the dominant control on the shapes
of the normalized TFDC and SFDC, whereas the product of
maximum daily precipitation and the fraction of non-rainy
days was found to control the shape of the FFDC. These re-
lationships, arising from the separation of total runoff into
its two components, provide a potential physical basis for
regionalization of FDCs, as well as providing a conceptual
framework for developing deeper process-based understand-
ing of the FDCs.

1 Introduction

The flow duration curve (FDC) is one of the most impor-
tant and widely used signatures of catchment runoff re-
sponse (Vogel and Fennessey, 1994). It has been used in
numerous hydrological applications as a part of water re-
sources planning and environmental studies, flood and low-
flow frequency analyses (Smakhtin, 2001), reservoir and sed-
imentation studies (Vogel and Fennessey, 1995), in-stream
flow assessment (Tharme, 2003), water quality management
(Searcy, 1959), and impacts of land use changes (Zhao et al.,
2012). The FDC is a graphical representation of the relation-
ship between the frequency and magnitude of streamflows,
making it a compact signature of a catchment’s functioning;
it can be used to diagnose the rainfall-runoff responses in
gauged catchments at a holistic functional level, as well as
to regionalize them to ungauged catchments. For these rea-
sons, in the past few decades, considerable effort has been
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expended towards detailed studies of FDCs, especially in
the context of predictions in ungauged basins (Sivapalan et
al., 2003a; Booker and Snelder, 2012). However, most re-
cent studies on the FDCs have been empirically based, which
generally fall into two categories: graphical (i.e., nonpara-
metric) and statistical (i.e., parametric). The graphical ap-
proach focuses on exploring the controls of catchment cli-
matic and physiographic characteristics on the shape of the
FDC (Mimikou and Kaemaki, 1985; Smakhtin et al., 1997;
Mohamoud, 2008), while the statistical approach employs
statistical distributions to fit the FDC and then relates the pa-
rameters of the distribution to the catchment’s physical char-
acteristics (LeBoutillier and Waylen, 1993; Castellarin et al.,
2004a; Li et al., 2010).

The graphical (nonparametric) methods have shown that
several catchment climatic and physiographic features im-
pact the shape of the FDC. Singh (1971) pointed out that
physiographical factors, including catchment size, affect the
shape of different FDCs in Illinois, USA. Ward and Robin-
son (1990) highlighted the role of soil types and geology on
the shapes of the FDCs in the UK. Castellarin et al. (2004b)
reviewed the regionalization approaches proposed in the lit-
erature and compared their performance in the context of
predictions in ungauged basins for a large region in cen-
tral Italy. Mohamoud (2008) developed a multiple regres-
sion model for various percentiles of the FDCs against more
than 40 climatic and landscape descriptors in the northeast-
ern US. Zheng et al. (2007) showed that land use and land
cover changes could cause changes in the streamflow regime
and in the FDCs in the Yellow River Basin in China. Lane
et al. (2005) demonstrated the role of vegetation changes
in altering the shape of FDCs in Australia. Later, Zhao et
al. (2012) carefully evaluated the effects of vegetation change
on the shapes of the FDCs using data from paired experimen-
tal catchments in Australia.

In the realm of statistical (parametric) methods, several
probability distributions have been employed to capture the
shape of the FDCs. The focus of the statistical studies has
been finding the best fit to empirically derived estimates
of the FDCs for the purpose of regionalization. The prob-
ability distributions used include the log-normal distribu-
tion (LeBoutillier and Waylen, 1993; Vogel and Fennessey,
1994; Li et al., 2010); gamma distribution (LeBoutillier and
Waylen, 1993; Muneepeerakul et al., 2010); beta distribution
(Iacobellis, 2008); and the 2-parameter logistic distribution
(Castellarin et al., 2004a, 2007).

Although both graphical and statistical approaches
demonstrated that different climatic and landscape charac-
teristics impact the shape of the FDCs in different regions
of the world (Castellarin et al., 2004b, 2007; Ganora et al.,
2009; Li et al., 2010), it has been difficult to generalize the
results from these rather diverse place-based studies because
of the inadequacy of conceptual or process understanding of
the FDCs to help synthesize these outcomes (Botter et al.,
2009; Yokoo and Sivapalan, 2011). Recently, a number of

studies have made progress towards investigating the FDCs
from a process perspective. Some of these studies have at-
tempted to model the FDCs via a stochastic characteriza-
tion of streamflow time series, while others have sought to
reconstruct the FDCs through the application of physically
based hydrological models. Botter et al. (2007a) presented
the mathematical formalisms for the derivation of the prob-
ability density function associated with within-year variabil-
ity of daily streamflows. They adopted a stochastic-dynamic
model that consists of a simple lumped model of subsurface
drainage, governed by a field capacity threshold and a char-
acteristic residence time, and driven by stationary sequences
of precipitation events, thus enabling them to analytically
derive the functional form of theslow flow componentof
the FDC. This also enabled them to relate the flow variabil-
ity to the underlying landscape properties and key rainfall
properties. Subsequently, the stochastic-dynamic model of
Botter et al. (2007a, b) has been extended by Muneepeer-
akul et al. (2010) to include afast flow componentas well
and by Botter et al. (2009) to include non-linearities in the
subsurface storage-discharge relationship. The ability of the
stochastic dynamic model to reproduce observed FDCs has
been tested in a number of US and European catchments
(Botter et al., 2007b; Ceola et al., 2010; Botter, 2010). Also
in the area of process based studies, Yilmaz et al. (2008) pre-
sented a way to diagnose hydrological model performance
using the FDCs and examined the sensitivities of the various
segments of the FDC to different catchment physical param-
eters. Zhang et al. (2008) and Westerberg et al. (2011) em-
ployed the FDC to calibrate conceptual hydrological models.

Although the stochastic-dynamic framework reviewed
above (e.g., Botter et al., 2007a, 2008, 2009) revealed the
climatic and landscape controls of the FDCs, it was un-
derpinned by strong assumptions (e.g., Poisson rainfall ar-
rivals), and could only be applied seasonally, with constant
parameter values for each season. In particular, the carryover
of soil moisture storage between seasons is ignored, which
presents difficulties for deriving annual FDCs in catchments
exhibiting strong seasonality. This highlights the need for a
more general framework, one for the entire year that captures
within-year variations in climate and soil moisture storage.
Yokoo and Sivapalan (2011) proposed a conceptual (func-
tional) framework to reconstruct FDCs by disaggregating
flow duration curves of total runoff (TFDCs) into two com-
ponents, i.e., fast flow duration curves (FFDCs) and slow
flow duration curves (SFDCs). Their approach was formu-
lated on the basis of numerical simulations of the water bal-
ance of hypothetical catchments with the use of a physically
based rainfall-runoff model based on the representative ele-
mentary watershed (REW) approach, and driven by artificial
rainfall inputs generated by a stochastic rainfall model. The
simulations by Yokoo and Sivapalan (2011) revealed a clear
relationship between the FFDC and the precipitation dura-
tion curve (PDC) and between the SFDC and the catchment’s
regime curve (mean within-year variation of runoff). In doing
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so Yokoo and Sivapalan (2011) proposed a new conceptual
framework for reconstruction of FDCs in ungauged basins,
both through building bridges between the fast and slow flow
parts of total streamflow as precipitation variability cascades
through the catchment system, and through recourse to un-
derstanding the respective process controls.

Although Yokoo and Sivapalan (2011) carried out prelimi-
nary analyses on a few selected catchments within the United
States to demonstrate the feasibility of their approach, their
results need further validation and advancement. This is the
motivation behind this study. Therefore, the goal of the study
is to explore, by following a top-down approach (Sivapalan
et al., 2003b), the physical controls on the shape of the FDCs
by taking advantage of empirical (both statistical and graph-
ical) studies. The approach presented here has many simi-
larities to the functional approach (L’Vovich, 1979) that was
adopted by Sivapalan et al. (2011) and Harman et al. (2011)
to analyze inter-annual variability of annual runoff. We fit
simple probability distribution functions to the various dura-
tion curves, i.e., PDC, TFDC, FFDC, and SFDC, and use the
fitted parameters of these distributions to quantify the vari-
ability of the FDCs between catchments and between years,
and to express their relationship to catchment climatic and
physiographical parameters. In this way, the work presented
in this paper represents a major step in efforts undertaken to
understand the physical controls of the FDCs: (1) it provides
empirical validation of the findings of the work by Yokoo
and Sivapalan (2011) in actual catchments; (2) it generates
regional patterns of the spatial variations of the FDCs across
the United States and temporal (inter-annual) variations of
annual FDCs in several selected catchments; (3) it helps to
identify climatic and landscape controls on both fast flow and
slow flow duration curves. These patterns and relationships
can help advance the research on developing more process-
based understanding of the physical basis of the FDCs for use
in regionalization studies. This is the first paper in a 4-part se-
ries that explores the controls of regional patterns of FDCs.
The next paper by Ye et al. (2012) explores the process con-
trols of the seasonal variability of streamflows (i.e., regime
curve), and the connection between the regime curve and the
FDCs, while the paper by Coopersmith et al. (2012) presents
a classification system for a catchment’s seasonal runoff be-
havior (i.e., regime curve). Finally, the paper by Yaeger et
al. (2012) represents a synthesis of these studies, providing
deeper insights into the physical controls of the regional pat-
terns of the FDCs but with a process perspective.

This paper is organized as follows: Sect. 2 contains de-
scriptions of data sources for the analyses presented and the
methodology adopted. Section 3 presents the results of the
statistical analyses, including fitting of the empirical FDCs
to statistical distributions, and the estimation of parameters.
Section 4 presents the regional patterns of the FDCs, i.e., re-
gional patterns of the parameters of the mixed gamma distri-
bution fitted to the empirical FDCs. Section 5 discusses the
similarities among different duration curves and the spatial

(between catchments) and temporal (between years) relation-
ship between the shape parameters and climate and catch-
ment characteristics. Finally, Sect. 6 presents the conclu-
sions drawn from the analyses, with respect to what has been
learned regarding the physical controls of the FDCs, and out-
lines the future research needed to generate a more process-
based understanding of these controls.

2 Data and methodology

2.1 Datasets used

This investigation was carried out using data from the
MOPEX dataset previously used by Sivapalan et al. (2011)
and Harman et al. (2011). In addition, the time series of the
fast flow and slow flow components of total runoff used here
are the same as those produced by Sivapalan et al. (2011),
through the use of a simple but very robust baseflow sep-
aration algorithm proposed by Lyne and Hollick (1979).
The MOPEX dataset (Duan et al., 2006) includes more than
400 catchments across the US, most containing up to 54 yr
of continuous daily precipitation and streamflow data that
can be freely accessed fromhttp://www.nws.noaa.gov/oh/
mopex/index.html. A subset of 197 catchments, which have
continuous daily records spanning from 1948 to 2001, was
chosen for our analysis. These catchments range in size from
198 km2 to more than 3000 km2, and range in mean an-
nual precipitation from 384 mm to more than 2500 mm. The
selected 197 catchments, locations of which are shown in
Fig. 1, cover a wide range of climate, eco-regions, and land-
scapes across the contiguous US, although more than half of
them are found in the Appalachian Mountain and the Interior
Lowland regions.

In this paper, in order to discover the physical controls of
the FDC, some climatic and landscape indices are regressed
against statistical parameters of the fitted FDCs. In addition,
we also selected 8 representative catchments from the set of
197 catchments to explore how the annual FDCs vary be-
tween years. These 8 catchments are chosen considering not
only representativeness according to climatic and geologic
conditions (i.e., aridity index, baseflow index, and seasonal-
ity index) but also their geographical spread across the con-
tinent. The aridity index, baseflow index, and seasonality in-
dex of the 8 catchments for annual duration analysis as well
as all 197 catchments studied are compared in Fig. S1 in the
Supplement; the regional spread of these 8 catchments is il-
lustrated in Fig. 3. The climatic variables selected include the
aridity index (AI, ratio of annual potential evapotranspiration
to annual precipitation, as in Brooks et al., 2011), seasonal-
ity index (SI, defined by Walsh and Lawler, 1981), maximum
daily precipitation (Pmax) and the probability of non-rainy
days (αP, ratio of zero precipitation days to total number of
days). The effect of the landscape on the FDC is captured
through the baseflow index, BI, which is defined as the ratio
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Fig. 1.Distribution of 197 MOPEX catchments and spatial variabil-
ity of (a) aridity index (AI) and(b) baseflow index (BI).

of total slow flow to the total streamflow of each catchment
over the entire study period. BI is a property of the stream-
flow regime, and as such it can reflect the collective impact
of landscape properties such as geology, soil properties, to-
pography, and vegetation on the streamflow regime (in addi-
tion to climate) (Harman et al., 2009; Kirchner, 2009). In this
study, BI is used as a surrogate for these catchment or land-
scape properties. The regional patterns of AI and BI of the
study catchments are shown in Fig. 1. The equation to esti-
mate SI and its spatial pattern are provided in the Supplement
and Fig. S2.

2.2 The mixed gamma distribution

As mentioned before, several probability distribution func-
tions have been used in the past to model the FDC statis-
tically. The choice of distributions is mostly determined by
the objectives of the study and the flow regimes of the study
catchments. In general, if the FDCs are represented by overly
complex distributions with several parameters, more accurate
fits could be achieved, yet one might also expect to find some
correlation between different parameters and consequent un-
certainty in the parameter estimates, which may confound
efforts to distinguish the physical controls on the statistical
parameters. Therefore, in order to achieve the goals of this
paper, a simple statistical distribution is chosen, considering
the need for parameter parsimony and the need to connect
these parameters to climatic and landscape properties.

The gamma distribution is a two-parameter, continuous
probability distribution. It is defined by a shape parameter,
κ, and a scale parameter,θ . Note that the FDC is the com-
plementary cumulative distribution function (CCDF) of the

daily streamflow (Vogel and Fennessey, 1994). The FDC has
to accommodate the presence of zero flows, especially in arid
regions. For this reason, in this study, we employ the follow-
ing mixed gamma distribution to represent the FDCs:

f (q, κ,θ, α )=

{
α, q = 0
(1− α) · g (q,κ,θ) , q > 0

(1)

whereα is the probability of zero flows, i.e., the number of
zero flow days divided by the total number of days within
the record, andg (q,κ,θ) is the probability density function
of the gamma distribution, defined as

g (q,κ,θ) =
1

|θ |0(κ)

(q

θ

)κ−1
exp

(
−

q

θ

)
(2)

whereκ andθ are the shape and scale parameters, respec-
tively. To estimate the flow given a probability of exceedance,
p, we use the following formulation:

q (p, κ,θ, α ) =

{
G−1

(
1−

p
1−α

,κ, θ
)
, 0 ≤ p ≤ 1− α

0, 1− α < p ≤ 1
(3)

whereG−1 is the inverse of the CCDF of the mixed gamma
distribution (Eq. 1).

According to Eq. (3), the parameterα controls the zero-
flow portion of the duration curve while both theκ and θ

parameters control the shape of the non-zero part of the flow
duration curve. The scale parameterθ largely affects the ver-
tical shift of the FDCs. The larger the mean observed stream-
flow is, the higher theθ -value. On the other hand, the shape
parameterκ essentially controls the slope of FDCs, and a
smallerκ-value implies a steeper slope of the FDC. The pa-
rameterα is estimated directly from the observations, as the
fraction of days in the data record with zero flows, i.e., the
number of days with zero flows divided by the total number
of days in the flow record. The parametersκ and θ of the
gamma function are estimated by the method of moments
based on their relationship with mean (µ) and variance (v) of
the gamma distribution.

µ = κ · θ (4)

v = κ · θ2 (5)

Here,µ andv are estimated from theq > 0 time series (the
non-zero portion of the FDC).

Furthermore, a goodness of fit (i.e., coefficient of determi-
nation,R2) and the Nash-Sutcliffe coefficient of efficiency
(denoted as Ens) (Nash and Sutcliffe, 1970) are chosen to as-
sess the performance of the mixed gamma distribution in pro-
viding good fits to the non-zero segment of different duration
curves for each catchment. BothR2 and Ens are employed
sinceR2 measures the degree of linear association only while
Ens measures the match between observations and estimates
and also accounts for the bias. The equations forR2 and Ens
are as follows:
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R2
=


n∑

i=1

(
qobs,i − qobs

)(
qsim,i − qsim

)
√

n∑
i=1

(
qobs,i − qobs

)2

√
n∑

i=1

(
qsim,i − qsim

)2


2

(6)

Ens= 1−

n∑
i=1

(
qsim,i − qobs,i

)2

n∑
i=1

(
qobs,i − qobs

)2
(7)

whereqsim,i is predicted value using Eq. (3);qobs,i is the
observed value;i varies from 1 ton, wheren is the length
of the flow record in days (n equals the number of days
contained within 54 yr when constructing long-term duration
curves, whereasn equals the number of days within one year
when constructing annual duration curves);qobs andqsim are
the mean of the observed and predicted values respectively.
In essence, the more theR2 and Ens approach unity, the
closer is the predicted duration curve to the observed dura-
tion curve.

In this study, mean daily total flow, mean daily fast flow
and mean daily slow flow are used to normalize the total flow,
fast flow and slow flow series, respectively. Additionally, the
normalized times series (i.e., daily streamflow divided by the
long-term mean daily streamflow) are used to construct em-
pirical duration curves and to estimate the parameters of the
mixed gamma distribution, since the mean daily streamflow
is strongly related to the aridity index, as shown in Fig. 2.
The competition between water and energy availability, as
reflected in the aridity index, is a first-order control on an-
nual catchment water balance (Cheng et al., 2011; Harman
et al., 2011; Sivapalan et al., 2011). Hence, as suggested by
Fig. 2, one can expect that the tendency of parameters of the
FDC to change with AI will be significantly reduced or elim-
inated by normalizing the streamflows by mean daily flows,
thus allowing for the identification of the secondary physical
controls on the shapes of the FDCs.

3 Results: performance of the mixed gamma
distribution

Normalized series are used to construct the PDC, TFDC,
FFDC and SFDC for each of the 197 catchments, and in the
case of the inter-annual variability, separately for each of the
54 yr of record. The mixed gamma distribution is fitted to
each of these duration curves based on the respective nor-
malized series, and the model parametersκ andθ are deter-
mined using the method of moments. The resulting estimates
of the three statistical parameters, i.e.,α, κ and θ , in each
catchment are used to predict the flow duration curves us-
ing Eq. (3), i.e., to reconstruct the PDC, TFDC, FFDC and
SFDC. As an illustration, Fig. 3 presents the empirical FDCs

Fig. 2. Nature of the relationship between mean daily streamflow
and aridity index (AI)(a) across 197 catchments (between catch-
ment variability), and(b) across many years (inter-annual variabil-
ity) for 8 selected catchments. The Spearman’s rank correlation co-
efficients (i.e., Spearman’sρ) are−0.95 and−0.97, respectively.

and the mixed gamma distribution fits for 8 of the 197 catch-
ments selected across a climate gradient (N. B., these are the
same catchments chosen for evaluating inter-year variability
of FDCs). Note that only the TFDCs and FFDCs are plotted
in Fig. 3 since the PDCs are reflective of the FFDC and the
SFDC is closely related to the TFDC.

The results presented in Fig. 3 show that the mixed gamma
distribution provides an adequate visual fit to the shapes of
the FFDCs and TFDCs with the horizontal axis in normal
probabilistic scale, except for the lower tail (low flow seg-
ment of the FDCs), although the logarithmic scale employed
for the vertical axis tends to exaggerate the poor fits of the
low tail. The mixed gamma distribution also slightly under-
estimates the upper tail (high flow segment) of the FDCs for
most of the 197 catchments. The ability of the mixed gamma
distribution to mimic the flow duration curves is assessed
using the Nash-Sutcliffe coefficient of efficiency (Ens) and
the goodness of fit (R2) estimated for the non-zero flow seg-
ment of the normalized duration curves. Summary statistics
for both Ens andR2 for the 197 catchments, for each of the
duration curves, are presented in Fig. 4.

From Fig. 4, we can see that, in spite of the visual dis-
crepancies found in Fig. 3, the mixed gamma distribution is
found to perform well in fitting the empirical duration curves:
PDC, TFDC, FFDC and SFDC. As can be seen in Fig. 4a, the
mean values of both Ens andR2 for the TFDCs, FFDCs, and
SFDCs are all larger than 0.9 in the 197 catchments. Simi-
larly, as shown in Fig. 4b, the same is true in the case of inter-
year variability of annual FDCs in the 8 selected catchments.
In all cases, 75 % of the estimates of Ens andR2 exceed 0.86.
These results provide support to the use of the mixed gamma
distribution to capture the shape of the FDCs, at least to first
order. From the distribution of estimates of the Ens andR2

for the different duration curves, the range of the lower 25 %
of the estimates of Ens andR2 is almost 3 times larger than
that of the remaining 75 %. This implies that the shape of
the FDCs in some catchments or in some years may be very
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Fig. 3.Normalized empirical FDCs (solid lines) and gamma distribution fits (dash lines) for 8 catchments: TFDC (blue lines) and FFDC (red
lines).

different from the typical shape of the FDCs, which is diffi-
cult to characterize by the simple mixed gamma distribution.
On the other hand, the fits of the long-term and annual PDCs
and SFDCs are better than those of the TFDCs and FFDCs.
This may be due to the nature of variability represented in
these different duration curves. The PDCs and SFDCs embed
within them the system input and most stable components,
respectively, and therefore it is easier for the mixed gamma
distribution to capture their shapes. The TFDCs and FFDCs,
on the other hand, include more complex runoff processes,
which explain the difficulty of the mixed gamma distribution
to capture them accurately.

4 Regional patterns in spatial variation of FDCs

Regional patterns in the estimated parametersα and κ of
Eq. (3) for the PDC, TFDC, FFDC and SFDC, across the
continental United States, are presented in Figs. 5 and 6. The
estimates ofθ (not shown) are found to be approximately in-
versely related to the estimates ofκ owing to the fact that, for
normalized flows, the scale parameterθ of the mixed gamma
distribution has an inverse relationship with the shape param-
eterκ, i.e.,κ · θ = 1/(1− α). Therefore, from now on, only
the spatial patterns ofα andκ are presented and discussed.

From Figs. 5 and 6, we can see that the estimates ofα andκ

for the different duration curves exhibit interesting regional
patterns of variability.

As can be seen by comparing Fig. 5 to Fig. 1, the higher
α-values for the PDC and FFDC appear in arid climate re-
gions, whereas smaller values are found in humid regions. In
the case of the TFDCs and SFDCs, non-zero values ofα are
also found in the arid regions, with the largest values seen
in the most arid catchments, such as those in southern Cal-
ifornia, Texas, Kansas, and the Dakotas. Furthermore, con-
firming the predictions by computer simulations of Yokoo
and Sivapalan (2011), the spatial distributions ofα of PDCs
and FFDCs share similar regional patterns, and those of the
TFDCs and SFDCs also share similar regional patterns. Ad-
ditionally, while their spatial patterns are similar, theα of
FFDCs is generally larger than that of PDCs. Even then, sig-
nificant differences can also be seen within the same climate
zones, which might be caused by differences in geomorpho-
logic or landscape features. Overall, the regional patterns of
α over the 197 catchments presented in Fig. 5 suggest that
they are primarily governed by differences in climate, with
secondary effects caused by differences in local landscape or
geomorphologic features.

From Fig. 6, we find that smaller values ofκ for the dif-
ferent duration curves appear in arid regions while larger
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Fig. 4.Values ofR2 and Ens of the mixed gamma distribution fitting
to (a) normalized duration curves of 197 catchments and(b) 54
annual duration curves of 8 catchments. The plus signs (+) are the
mean of all the fitted duration curves; the upper and lower whiskers
represent the maximum and minimum values; the upper and lower
lines of the box represent the third and first quartiles, and the line
within the box indicates the median value.

values are found in relatively more humid regions. This spa-
tial pattern is likely caused by shorter duration of the dif-
ferent curves in arid regions. Basically, the value ofκ of
fast flow duration curves is smaller than that of other du-
ration curves. Theκ of slow flow duration curves is rela-
tively larger among the four duration curves. This is due to
fast flow having shorter duration and slow flow having longer
duration among the different duration curves; steeper slopes
and shorter spreads of the duration curves are associated with
smaller values ofκ. Comparatively, the spatial distributions
of κ of PDCs and FFDCs share similar regional patterns, and
those of the TFDCs and SFDCs also share similar regional
patterns. However, theκ-value of PDCs is generally larger
than that of FFDCs and theκ of SFDCs is generally larger
than that of TFDCs. Interestingly, the ranges of theκ-value of
PDCs and FFDCs are much narrower than those of TFDCs
and SFDCs. Furthermore, although the mixed gamma dis-
tribution is fitted to the normalized FDCs and the tendency
of mean daily flows to be determined by climate (namely,

Fig. 5. Regional patterns of variation ofα for the different duration
curves.

Fig. 6.Regional patterns of variation of parameterκ for the different
duration curves.

aridity index) is already removed, the spatial patterns relating
to climate zones and the discrepancies within the same cli-
mate zones are also significant. This may suggest that other
secondary climatic and physiographic features (i.e., other
than aridity index) are possibly responsible for the differ-
ences in the shapes of the FDCs. Likely candidates are cli-
mate seasonality, within-storm variability of rainfall, ground-
water contributions, vegetation, slope and shape of the catch-
ments. The following analysis aims to identify which of these
controls is perhaps dominant.

5 Discussion: similarity of FDCs and underlying
physical controls

5.1 Similarity among different duration curves.

Results presented in Fig. 5 show that theα parameters relat-
ing to the PDC and FFDC share similar spatial pattern. TFDC
and SFDC also show similar spatial pattern ofα parameters.
Also, the α parameters of PDC and FFDC are, generally,
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linearly correlated but with much larger deviations than the
TFDC and SFDC, as shown in Fig. 7a and b. That is to say,
the fraction of zero flow days (α) of FFDCs can be trans-
formed from that of PDC at the daily time scale but it is
potentially a non-linear relationship, as indicated by Yokoo
and Sivapalan (2011). The shape parametersκ relating to the
PDC and FFDC are related to each other, and a similar re-
lationship can also be found between the TFDC and SFDC,
as shown in Fig. 7c and d. Spearman’s rank correlation coef-
ficients (i.e., Spearman’sρ) are 0.43 and 0.83 for these two
correlations, respectively. The parameterθ is correlated with
the mean values of the time series and the parameterκ. Anal-
ogously, strong correlations of the parameterθ between the
PDC and FFDC and between the TFDC and SFDC are also
found (not shown here for brevity).

Regarding similarity between PDC and FFDC, a much
higher degree of similarity can be found in the upper tail
of the PDC and FFDC than in the lower tail (Fig. 3). Ba-
sically, the parameterα of the FFDC is strongly related to
the absence of precipitation, i.e.,α parameter of the precip-
itation duration curve. However, fast flow occurs only after
precipitation satisfies the initial losses, field capacity of soil,
and/or exceeds the infiltration capacity of the surface soil
layer. Moreover, the slope, shape, stream network, and other
catchment characteristics can exert additional influences af-
ter fast flow is generated. Therefore, correlation can be found
between the parameters of the PDC and FFDC, but with some
expected dispersion. This correlation allows us to reconstruct
the FFDC from rainfall data. The dispersion between the re-
lationship betweenα parameter of PDC and FFDC implies
that some other factors likely also play an important role on
the FFDC with PDC, including topographic influences. The
response of the fast flow to precipitation is controlled by sev-
eral “threshold” catchment characteristics, including vegeta-
tion cover, topographic slope, and soil properties. Small pre-
cipitation events would therefore not yield fast flow. Hence,
the similarity of the lower tail between the PDC and FFDC
is weak, the FFDC is steeper, and theκ-value of the FFDC
is smaller than that of the PDC. Regarding the similarity be-
tween the TFDC and SFDC, theκ parameter of the SFDC
is larger than that of the TFDC, since higher flows are sepa-
rated out during fast flow. As a result, the SFDC is flatter and
its κ is larger. The difference in shape between the TFDC
and SFDC appears in the upper tail of the duration curves.
Comparatively, the similarity in shape between the TFDC
and SFDC is more pronounced than the similarity between
the PDC and FFDC. Finally, both of these similarities de-
crease asκ increases, as shown in Fig. 7. These empirical
correlations arising from the similarities in the spatial pat-
terns of shape parameters of different duration curves may
not be good enough for practical application as yet, but can
help advance the research on developing more process-based
understanding of the physical basis of the FDCs for use in
regionalization studies.

Fig. 7.Cross-correlation of parametersκ andα of the mixed gamma
distribution between PDC and FFDC (a andc), and between TFDC
and SFDC (b andd).

5.2 Correlating parameter κ with catchment physical
characteristics

To assist towards the reconstruction of the FDCs, the shape
parametersκ of the TFDC, FFDC and SFDC are regressed
against several climatic and physiographic features. We find
that both the between-catchment (Fig. 8) and between-year
(Fig. 9) variability of theκ parameter of the TFDC and SFDC
are closely correlated to the baseflow index (Figs. 8a, c, 9a,
and c), while theκ-values of the FFDC are closely correlated
to the product of the maximum daily precipitation (Pmax)

andαP (Figs. 8b and 9b). Since precipitation is the prereq-
uisite for fast flow, for a specific catchment, the maximum
fast flow generally appears at the maximum daily precipi-
tation, and the maximum probability of exceedance of the
FFDC is determined by the occurrences of the precipita-
tion. Therefore, the product ofPmax · αP is selected as the
climate control on the shape of the FFDC. Between catch-
ments, Spearman’s rank correlation coefficients (ρ) are 0.73,
−0.49 and 0.55 for correlations between theκ-values of the
TFDC and BI, betweenκ-values of the FFDC andPmax · αP,
and between theκ-values of the SFDC and BI, respectively,
as shown in Fig. 8. Between years, for the 8 chosen catch-
ments, Spearman’s rank correlation coefficients (ρ) are 0.87,
−0.37 and 0.79 for correlations between theκ-values of the
annual TFDCs and BI, theκ-values of the annual FFDC and
Pmax·αP, and between theκ-values of the annual SFDC and
BI, respectively, as seen in Fig. 9.

The baseflow index, which is a very common indica-
tor of the nature of catchment runoff response, reflects a
combination of the effects of both landscape characteristics
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Fig. 8. Correlation of parameterκ of TFDC, FFDC and SFDC
of 197 catchments (between catchment variability) with catchment
physical characteristics.

and climate. As can be seen from Fig. 8a and c, between-
catchment variability of the shapes of both the TFDCs and
SFDCs of the 197 catchments increases monotonically with
BI. This implies that the spatial variations of both TFDCs and
SFDCs are governed by those climate factors and catchment
characteristics that impact the partitioning of runoff into fast
and slow components. The catchments with larger BI should
have larger proportions of slow flow, and the TFDC or SFDC
will therefore be flatter. Thus, the BI can be used to esti-
mate theκ-value of the TFDC and SFDC. Meanwhile, the
between-year variability of the shape of the TFDC and SFDC
is also governed by the same climate and landscape charac-
teristics, as suggested by Fig. 9a and c. Further investiga-
tions showed that both the between-catchment and between-
year variability ofκ-values of the TFDC and SFDC show
noticeable correlation with the seasonality index, SI, but not
as strongly as with respect to BI.

In the case of the FFDC, the between-catchment and
between-year variability of the shape parameterκ display

Fig. 9. Correlation of parameterκ of annual TFDC (ATFDC), an-
nual FFDC (AFFDC) and annual SFDC (ASFDC) of 8 selected
catchments (inter-annual variability) with catchment physical char-
acteristics.

a strong correlation withPmax · αP. From Fig. 8b, we can
see that between-year variability of the shape parameterκ

of the FFDC decreases withPmax · αP. One can then infer
that the spatial variation of the shape of the FFDC is sig-
nificantly influenced by daily precipitation patterns, as is the
between-year variability, as shown in Fig. 9b. Basically,Pmax
can represent the maximum intensity of daily precipitation
and it can possibly generate the maximum fast flow, which
is at the high end of the FFDC. Conversely,αP is the com-
plementary possibility of the occurrence of precipitation, re-
lated to the spreading out of the FFDC, because the presence
of intense precipitation is a pre-requisite for fast flow. Con-
sequently, the productPmax · αP result can be used to predict
both the between-catchment and between-year variability of
the FFDC.

Figure 9 presents corresponding results, this time in rela-
tion to the between-year variability of annual FDCs, using
the data from 8 selected catchments across both a climatic
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(AI and SI) and a geologic (BI) gradient. In this case the pa-
rameter estimates and catchment characteristics for each of
54 yr, and the results from all 8 catchments are presented in
the same plot, using different colors to distinguish between
the catchments. The results show evidence of considerable
space-time symmetry, with the nature of the relationship be-
tween the statistical parameters of the FDCs and the catch-
ment physical characteristics exhibiting similar relationships,
i.e., between 54 yr (for 8 catchments) and between 197 catch-
ments (as shown in Fig. 8). This is somewhat tempered by
the fact that the relationships in Figs. 8 and 9 include con-
siderable scatter, especially in the case of Fig. 8b. Indeed,
the relationships are stronger in the case of the between-year
variability than in the case of between-catchment variability.
This suggests that other factors may be controlling as well
(Lane et al., 2005; Zheng et al., 2007; Zhao et al., 2012). For
the TFDC and SFDC, the baseflow index, BI, can be con-
sidered as the primary (but not sole) control on the shapes
of normalized FDCs. For the FFDC, the productPmax · αP
does not fully capture the filtering of precipitation variability
at event scale to fast flow duration curves, and other factors
must be explored to explain the lack of fits of the lower tail
(i.e., low flow segments) of the PDC and SFDC, as discussed
in previous sections. These physical controls on the differ-
ent duration curves as shown in Figs. 8 and 9 can benefit
future work aimed at reconstructing and/or regionalizing du-
ration curves in ungauged basins, although the correlations
may not be good enough to be applied directly to construct
the duration curve for a specific catchment or for one specific
year. With respect to the practical application in predicting in
ungauged basins (i.e., PUB), daily rainfall data and the base-
flow index data are not available. Convolution of the fast and
slow FDCs to reconstruct FDCs also cannot be easily carried
out. However, while overcoming these prediction challenges
is beyond the scope of this study, the results presented here
can provide a basis for further research into this problem.

6 Conclusions

Guided by the conceptual framework proposed by Yokoo and
Sivapalan (2011), this study has explored the physical con-
trols on the variability of FDCs both between catchments
(for 197 catchments within the continental United States)
and between years (using 8 selected catchments with 54 yr
of continuous flow data). The mixed gamma distribution is
employed to capture the shape of the total flow duration
curves, as well as its two components, i.e., fast flow duration
curves and slow flow duration curves, and to decipher the re-
lationship between the parameters of the mixed gamma dis-
tribution and climate properties and catchment physiograph-
ical characteristics. We found that the three-parameter mixed
gamma distribution can capture the shapes of the different
FDCs very well. The mean Nash-Sutcliffe efficiency andR2

of fits of the FDCs predicted by the fitted parameters to the

empirical FDCs are all larger than 0.9. The spatial varia-
tions of the three model parameters exhibit coherent regional
patterns. Further investigation of the relationships between
the statistical model parameters and climatic and landscape
properties showed that the baseflow index (ratio of slow flow
to total flow over the study period) is the dominant control on
the shape of the both normalized total flow duration curves
and slow flow duration curves, andPmax · αP (the product
of maximum daily precipitation and non-precipitation prob-
ability) was shown to be closely related to the shape of fast
flow duration curves. However, based on the scatter in these
relationships, it is apparent that there are other factors that
may be involved in governing the shapes of the FDCs, which
requires further research, perhaps through refinement of the
conceptual framework of Yokoo and Sivapalan (2011).

The work presented in this paper is a significant first step
towards understanding the physical controls of the FDCs, as
a prelude to predictions in ungauged catchments. The results
of this study provided some confirmation for the conceptual
framework proposed by Yokoo and Sivapalan (2011), involv-
ing the separation of total runoff into fast and slow flow com-
ponents. It also confirmed their supposition that the FDCs of
the fast flow component strongly reflect the duration curves
of precipitation, whereas the FDCs of the slow flow compo-
nent show a considerable departure from precipitation due to
the strong filtering by the catchment’s subsurface flow path-
ways. This is also confirmed by the strong climatic control of
the fast flow duration curves (i.e., product of maximum pre-
cipitation intensity and fraction of days of zero precipitation)
and the combined effects of climate and landscape control of
the slow flow duration curve (i.e., baseflow index).

Nevertheless, there are several limitations to this study.
Firstly, although the mixed gamma distribution produced
good fits to the empirical FDCs, based on objective mea-
sures, the visual fits were poor under low flow conditions.
This suggests that more complex distributions may be needed
to capture the full range of variability embedded in the empir-
ical FDCs. Alternatively, nonparametric approaches (such as
those based on quantiles) may be more valuable, even though
this may pose difficulties towards deciphering the underly-
ing physical controls, e.g., different quantiles may be con-
trolled by different combinations of climate and landscape
properties. The relationships between the statistical model
parameters of the FDCs and their underlying physical con-
trols exhibited considerable scatter. This implies that the con-
ceptual framework of Yokoo and Sivapalan (2011) needs to
be refined further. For this to be achieved, we need to make
progress on two fronts. First, the kind of comparative anal-
yses presented here should be extended to cover more geo-
graphical regions, to increase sample size as well as coverage
of wider range of climate and landscape properties. Second,
these empirical explorations need to be supported by more
process-based modeling studies to improve our understand-
ing of the process controls of the FDCs. This includes the
processes and process interactions associated with both fast
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flows and slow flows, including especially the processes that
contribute to the lower tail of the FDCs. Additional insights
into the process controls of the FDCs, especially the slow
flow duration curves, are presented in the companion papers
by Ye et al. (2012) and Coopersmith et al. (2012). A syn-
thesis of these empirical and process studies towards devel-
oping deeper insights into the physical controls on the ob-
served regional patterns of the FDCs is presented in Yaeger
et al. (2012).

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
16/4435/2012/hess-16-4435-2012-supplement.pdf.
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