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Abstract. Successful river flow forecasting is a major goal
and an essential procedure that is necessary in water resource
planning and management. There are many forecasting tech-
niques used for river flow forecasting. This study proposed a
hybrid model based on a combination of two methods: Self
Organizing Map (SOM) and Least Squares Support Vector
Machine (LSSVM) model, referred to as the SOM-LSSVM
model for river flow forecasting. The hybrid model uses the
SOM algorithm to cluster the entire dataset into several dis-
jointed clusters, where the monthly river flows data with
similar input pattern are grouped together from a high di-
mensional input space onto a low dimensional output layer.
By doing this, the data with similar input patterns will be
mapped to neighbouring neurons in the SOM’s output layer.
After the dataset has been decomposed into several disjointed
clusters, an individual LSSVM is applied to forecast the river
flow. The feasibility of this proposed model is evaluated
with respect to the actual river flow data from the Bernam
River located in Selangor, Malaysia. The performance of the
SOM-LSSVM was compared with other single models such
as ARIMA, ANN and LSSVM. The performance of these
models was then evaluated using various performance indi-
cators. The experimental results show that the SOM-LSSVM
model outperforms the other models and performs better than
ANN, LSSVM as well as ARIMA for river flow forecasting.
It also indicates that the proposed model can forecast more
precisely, and provides a promising alternative technique for
river flow forecasting.

1 Introduction

Hydrological data such as flows and rainfall are the basic
information used in the design of water resource systems.
Knowledge about the characteristics and volume of river flow
is very important, especially for predicting the future river
flow in the monsoon season where the heavy rainfall may
cause heavy river flow, potentially causing problems such as
flooding and erosion. Reduced river flow is likely to restrict
the supply of water for domestic use and industrial and hy-
droelectric power generation. Therefore, the ability to fore-
cast future river flow would be beneficial in the field of water
management and help in the design of flood protection works
in urban areas and for agricultural land.

In hydrology, different types of models are used such as
lumped conceptual models, physically-based models, also
known as knowledge-driven modelling, and empirical mod-
els, also known as data-driven modelling. By using knowl-
edge driven modelling, the other catchment variables such
as catchment characteristics (size, shape, slope and storage
characteristics of the catchment), and geomorphologic char-
acteristics of a catchment (topography, land use patterns,
vegetation and soil types that affect the infiltration) must be
considered because it is hypothesized that forecasts could be
improved if catchment characteristic variables which affect
flow were to be included (Jain and Kumar, 2007; Dibike and
Solomatine, 2001).

River flow forecast can be generated using two types
of mathematical models: rainfall-runoff models and river
flow models. The rainfall-runoff models use both climatic
and hydrologic data, while river flow models only use the
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hydrologic data. The river flow process in a catchment area
is a complex process that can be affected by many inter re-
lated physical factors. The factors affecting the river flow
response of a catchment subjected to rainfall input include
storm characteristics, such as intensity and duration of rain-
fall events, and so on. Moreover, the conceptual rainfall-
runoff models need a large amount of data for calibration and
validation purposes and are usually computationally expen-
sive and very time consuming (Grayson et al., 1992; Jain and
Kumar, 2007). Although combining other variables may im-
prove their prediction accuracy, but in practice, especially in
developing countries like Malaysia, such information is often
either not available or difficult to obtain. Moreover, the influ-
ence of these variables and many of their combinations in
generating river flow is an extremely complex physical pro-
cess, especially due to the data collection of multiple inputs
and parameters, which vary in space and time and which are
not clearly understood (Zhang and Govindaraju, 2000; Jain
and Kumar, 2007).

Owing to the complexity of this process, many researchers
are focusing on river flow forecasting, which only consid-
ers the past river flow data, because it offers a rapid devel-
opment and minimum information requirement (Adamowski
and Sun, 2010; Kisi, 2004, 2008; Wang et al., 2009). This
data-driven modelling by using historical data which are
based on extracting and re-using the information that is im-
plicitly contained in the hydrological data without taking
directly into account any physical load that underlies the
rainfall-runoff process provides accurate and rapid develop-
ment time with minimum data information.

River flow forecasting is an important yet difficult task in
the field of hydrology because predicting future events in-
volves a decision-making process where the ability to pre-
dict future river flow will provide the right edge and assist
the engineers in terms of flood control management, and pro-
vide some benefits in the areas of water supply management
(Viessman et al., 1989). Accurate continuous data collections
on the catchment area are needed to produce a good river flow
forecast. There are many forecasting techniques that have
been proposed in the literature for river flow forecasting. The
most comprehensive of all popular and widely-known statis-
tical methods used in time series forecasting is the Autore-
gressive Integrated Moving Average (ARIMA) model, also
known as the Box Jenkins model. Several studies have shown
that ARIMA can be trusted as a reliable model in water re-
sources time series analysis (Muhamad and Hassan, 2005;
Huang et al., 2004; Modarres, 2007; Fernandez and Vega,
2009; Wang et al., 2009) ).

Among the non-linear approaches, the Artificial Neural
Network (ANN) is the most widely used for time series fore-
casting and has been successfully employed in the modelling
of a wide range of hydrologic contexts (Maier and Dandy,
2000; Dibike and Solomatine, 2001; Bowden et al., 2005;
Dolling and Varas, 2003; Muhamad and Hassan, 2005; Kisi,
2008; Wang et al., 2009; Keskin and Taylan, 2009; Luk et

al., 2000; Hung et al., 2009; Affandi and Watanabe, 2007;
Birkinshaw et al., 2008; Corzo et al., 2009). ANN provides
an attractive alternative tool for forecasting and has shown its
nonlinear modelling capabilities in data time series forecast-
ing. However, the selection of an optimal network structure
(layers and nodes) and training algorithms always needs the
attention of modellers (Maier and Dandy, 2000). The net-
work structure is usually determined by using a trial-and-
error approach (Kisi, 2004).

Recently, the support vector machine (SVM) method,
which was suggested by Vapnik (1995), has been used in hy-
drological modelling such as stream flow forecasting (Asefa,
et al., 2006), flood stage forecasting (Yu et al., 2006), rain-
fall runoff modelling (Dibike et al., 2001; Elshorbagy et al.,
2010a, b), etc. However, the standard SVM is based on the
structural risk minimal principal and involves complicated
quadratic programming methods, which are often time con-
suming and have a higher computational burden because of
the required constrained optimization programming.

As a simplification of SVM, Suykens et al. (2002) pro-
posed the use of the least squares support vector machines
(LSSVM). LSSVM has been used successfully in various
areas of pattern recognition and regression problems (Han-
bay, 2009; Kang et al., 2008). LSSVM encompasses simi-
lar advantages to SVM, but its additional advantage is that it
only requires the solving of a set of linear equations, which
is much easier and computationally simpler. The method
uses equality constraints instead of inequality constraints and
adopts the least squares linear system as its loss function,
which is computationally attractive. LSSVM also has good
convergence and high precision. Hence, this method is eas-
ier to use than quadratic programming solvers in the SVM
method. Extensive empirical studies (Wang and Hu, 2005)
have shown that LSSVM is comparable to SVM in terms
of general performance. In the area of water resources, the
LSSVM method has received very little attention in the liter-
ature and there are only a few applications of LSSVM in the
modelling of environmental and ecological systems such as
water quality prediction (Yunrong and Liangzhong, 2009).

Clustering analysis, which is the subject of active research
in several fields such as statistics, pattern recognition, ma-
chine learning, and data mining, is to partition a given set of
data or objects into clusters or groups or classes. It also has
been applied in a large variety of applications, for example
character recognition, document retrieval, etc. The goal of
clustering analysis is to group similar objects together. Clus-
ter analysis is a standard method of statistical multivariate
analysis, and it can reduce large and complex datasets to a
small number of data groups where members of the group
share similar characteristics (Lin et al., 2006). The clustering
algorithms attempt to partition data into clusters or natural
groups such that the data within a cluster are as similar as
possible, and data belonging to different clusters are as dis-
similar as possible. Therefore, SOM pursues a goal that is
conceptually different from that of clustering (Wu and Chow,
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2004). However, SOM has been successfully utilized as a
first step in clustering algorithms.

The Self Organizing Map (SOM), proposed by Koho-
nen (2001), is one category of ANN that was first used as an
information-processing tool in the fields of speech and im-
age recognition. SOM has been successfully applied in clus-
tering, classification, estimation, prediction and data min-
ing (Vesanto and Alhoniemi, 2000; Kohonen, 2001). SOM
can be used as a clustering tool since it converts the non
linear statistical relationship between high dimensional data
into simple geometric relationships of their image points
on a low-dimensional display. From that, the data points
which show similar properties are placed close to each other
within the output of the SOM algorithm (Budayan et al.,
2009). After the SOM training is finished, one can figure
out the number of clusters directly by eye according to the
two-dimensional map (Lin and Chen, 2005). Clustering the
dataset may seem unnecessary; however, it is an important
task especially when dividing a complex problem into sev-
eral smaller and simpler problems can more easily be solved
compared with the original problem (Jacobs et al., 1991; Lin
and Chen, 2006; Lin and Wu, 2007; Wu and Chau, 2009; Wu
et al, 2009).

SOM has attracted increasing interest for water resources
application, such as the classification of satellite imagery
data and rainfall estimation (Murao et al., 1993), rainfall-
rounoff modelling (Hsu et al., 2002), typhoon-rainfall fore-
casting (Lin and Wu, 2009), river flood forecasting (Chang
et al., 2007), water resource problems (Kalteh et al., 2008),
and model evaluation (Herbst and Casper, 2008; Herbst et
al., 2009). The advantages of SOM compared with the other
clustering methods have been extensively discussed in the
literature (Chen et al., 1995; Mangiameli et al., 1996; Lin
and Chen, 2006). Mangiameli et al. (1996) showed that the
SOM performed the best when compared to seven other hi-
erarchical clustering methods. Lin and Chen (2006) recom-
mend SOM as an alternative to the identification of homo-
geneous regions for regional frequency analysis where the
results showed that the SOM determines the cluster member-
ship more accurately than the K-means method and Ward’s
method. In addition, the SOM is more robust than the tra-
ditional clustering methods. Lin and Chen (2005) apply the
SOM clustering for predicting the groundwater head at Hsiu-
Lin Station, Taiwan. Among 240 datasets, the first 192 sam-
ples are used for training and the remaining 48 samples are
used for testing. The entire datasets are then mapped into
14× 14 map sizes. The map is then divided into 15 regions or
clusters to continue with the prediction model using RBFN.

Improving forecasting accuracy, especially in time series
forecasting, is an important yet often difficult task facing
decision-makers in many areas. Using hybrid models has
become common practice to improve forecasting accuracy.
There are several studies that show that hybrid models can
be an effective way to improved the accuracy of forecasting,
compared to using single models separately (Zhang, 2003;

Jain and Kumar, 2007; Chen and Wang, 2007; Pai and Lin,
2005; Hsu et al., 2009). For instance, Lin and Wu (2009)
proposed a combination of SOM and MLP in order to fore-
cast the typhoon rainfall at Tanshui River Basin. SOM was
used to analyze and divide the input data into distinct clus-
ters. The second step involved an individual relationship be-
tween the input and output data constructed by a specific
MLP. For evaluating the forecasting performance of the pro-
posed model, an application was conducted. The results show
that the proposed model can forecast more precisely than
the model developed by the conventional neural network ap-
proach. Srinivas et al. (2009) combined a SOM and fuzzy
clustering for regional flood frequency analysis for water-
sheds data from Indiana, USA. Results show that the pro-
posed approach performs better in estimating flood quantiles
at ungauged sites.

In recent years more hybrid models have been proposed,
which combine a clustering technique with local forecast-
ing models that are more accurate since these models are
more specialised and have successfully solved many predic-
tions problems, such as a combination of SOM with ANN
(Pal et al., 2003; Lin and Wu, 2009; Wang and Yan, 2004),
SOM with SVM (Cao, 2003; Fan and Chen, 2006; Fan et
al., 2007; Huang and Tsai, 2009), SOM with Radial Basis
Function (Lin and Chen, 2005), ANN with K-means (Corzo
and Solomantine, 2007) and other models (Chang and Liao,
2006; Chang et al., 2007, 2008). Although the idea of these
hybrid models is interesting and promising, it still need to be
tested using a river flow time series.

Based on the same idea by Tay and Cao (2001) and Hsu
et al. (2009), this study aims to explore the application of
hybrid technique and to test the capability and effectiveness
of the idea of hybrid modelling which combines the SOM
with the LSSVM (SOM-LSSVM). The hybrid model SOM-
LSSVM is then proposed for river flow forecasting in order
to improve the accuracy of prediction. With the advantages of
the data analysis technique developed by SOM and the capa-
bility of LSSVM, the proposed hybrid model is expected to
be useful for river flow forecasting. The results of the predic-
tions by the SOM-LSSVM model are compared with a fore-
casting model developed by conventional ARIMA, ANN and
LSSVM models. To verify the application of this approach,
the monthly river flow for Bernam River located in Selangor,
Malaysia was analyzed as a case study in this research.

2 Data-driven modelling

Data-driven modelling is considered as a tool in building a
model that will replace the knowledge-driven modelling in
describing a physical behaviour (Solomatine et al., 2008).
However, the data-driven models may not correctly represent
the input–output mapping if the modelled system changed
during the time when the data are collected. Therefore, it
is necessary for the entire dataset to go through a statistical
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analysis test to prove whether there are some other trends
in the dataset. Trend analysis on time series data has been
proven to be a useful tool for effective water resources plan-
ning, design, and management (Douglas et al., 2000; Hamil-
ton et al., 2001), since trend detection of hydrological vari-
ables such as river flow provide useful information on the
possibility of change tendency of the variables in the future
(Yue and Wang, 2004).

Another issue that still remains a question is the num-
ber of the appropriate data that can be used to predict fu-
ture river flows by using data-driven modelling. Number of
data also plays an important role in predicting future river
flows. For example, Kisi and Cimen (2010) used the monthly
river flow data of Canakdere River and Goksudere River in
their research. The observed data are 40 yr (480 months)
along with an observation period between 1960 and 1999 for
both stations. Jain and Kumar (2007) applied their proposed
model using monthly river flow data for a period of 62 yr
(1911–1972) derived from the Colorado River at Lees Ferry,
CO, USA, for modelling a hydrologic time series forecast-
ing. Usually, the monthly data are used to estimate the wa-
ter demand and the water supply (Srikanthan and McMahon,
2001). Although river flow forecasting models using histor-
ical river flow time series data may lack the ability to pro-
vide physical interpretation and insight into catchment pro-
cesses, they are nevertheless able to provide relatively accu-
rate flow forecasts and become more and more popular in
hydrological modelling due to their rapid development times
and minimum information requirements.

3 Forecasting models

This section presents the ARIMA, ANN, LSSVM and SOM-
LSSVM models used for river flow forecasting. The choice
of these models in this study was due to the fact that these
methods have been widely and successfully used in time
series forecasting.

3.1 The Autoregressive Integrated Moving Average
Model

The Box-Jenkins model, also know as Autoregressive Inte-
grated Moving Average (ARIMA), was introduced by Box
and Jenkins (1970) and has been one of the most popular ap-
proaches in the area of forecasting. The order of an ARIMA
model is represented by ARIMA (p, d, q) and the order of
the seasonal ARIMA or SARIMA model is represented by
ARIMA ( p, d, q) × (P ,D,Q)s, where the term (p, d, q) is
the order of the non-seasonal and (P ,D,Q)s is the order of
the seasonal. The general ARIMA models are a compound
of a seasonal and non-seasonal part and are represented in
the following manner:

φp(B)8P (Bs)(1−B)d(1−Bs)Dxt = θq(B)2Q(Bs)at , (1)

whereφ(B) andθ(B) are polynomials of orderp andq, re-
spectively;8(Bs) and2(Bs) are polynomials inBs of de-
greesP andQ, respectively;p is the order of non-seasonal
auto regression;d is the number of regular differencing;q is
the order of the non-seasonal moving average;P is the or-
der of seasonal autoregression;D is the number of seasonal
differencing;Q is the order of seasonal moving average;B

is the backward shift operator, ands is the length of the sea-
son. Random errorsat are assumed to be independently and
identically distributed with a mean of zero and a constant
variance ofσ 2.

The ARIMA model involves four steps, which are the
identification step, estimation step, diagnostic checking step
and forecasting step. In the identification step, the sample au-
tocorrelation function (ACF) and sample partial autocorrela-
tion function (PACF) are used to determine whether or not
the series is stationary and if it is seasonal or non-seasonal.
If the series is not stationary, then a transformation called
differencing is needed until the series reaches the stationary
level. ACF as well as PACF are used to choose a tentative
model. Once a tentative model is identified, the parameters of
the model are estimated. Diagnostic checking using the ACF
and PACF of the residuals is carried out, basically to check
whether the model’s assumptions about the errorat are sat-
isfied. If the model is not adequate, a new tentative model
should be identified followed by the steps of parameter esti-
mation and model verification. The process is repeated sev-
eral times until finally a satisfactory model is selected. The
forecasting model is then used to compute the fitted values
and forecasts values.

3.2 Artificial neural network

The ANN is flexible computing, which has been extensively
studied and used for time series forecasting in many areas
of science and engineering since early 1990. The most com-
monly used ANN in the field of water resources and hydrol-
ogy is the feed forward multi layer perceptron (MLP), which
consists of three layers: the first is the input layer where
the data are introduced to the network, the second layer is
the hidden layer where the data are processed, and the final
layer is the output layer where the results of the given in-
put are produced. The structure of a feed-forward ANN is
shown in Fig. 1.

Mathematically, a three-layer MLP withp input nodes,q
hidden nodes and one output node can be expressed as

yt = g

(
q∑

j=1

wjf

(
p∑

i=1

wixt−i

))
, (2)

whereyt is the output layer,xt−i is the input of the network,
wi is the connection weights between the input and hidden
layer nodes,wi is the connection weights between hidden
and output layer nodes, andg(.) andf (.) are activation func-
tions. The most commong(.) as the sigmoid function and
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Fig 1. The Architecture Of Three Layers Feed-Forward Back-Propagation ANN 2 

 3 

 4 

 5 

 6 

Fig 2. The SOM architecture 7 

 8 

 9 

 10 

 11 

 12 

 13 

Linear transfer  
function 

 
Log-Sigmoid 
Transfer function   

 

Input Layer Hidden Layer Output Layer 

Fig. 1. The architecture Of three layers feed-forward backpropaga-
tion ANN.

f (.) as the linear function are adopted here. The equations
for linear function and sigmoid function are as follows:

Linear: f (x) = purelin(x)=xi (3)

,
Log-Sigmoid: f (x) = logsig(x)=

1

1+ exp(−x)
. (4)

Training a network is an essential factor for the success
of neural networks. Among the several learning algorithms
available, backpropagation has been the most popular and
most widely implemented learning algorithm for all neural
network paradigms (Zou et al., 2007). In a backpropagation
network, the weighted connections only feed activations in
the forward direction from an input layer to the output layer.
These interconnections are adjusted using an error conver-
gence technique where the best match for the network’s re-
sponse is the desired response. Backpropagation is the most
popular algorithm for training feed-forward MLP. For de-
tailed reviews of ANN, along with their application in water
resources and hydrology, the reader can be referred to Maier
and Dandy (2000).

3.3 Least Squares Support Vector Machine

The Least Squares Support Vector Machine (LSSVM) is
a modification of the standard Support Vector Machine
(SVM), and was developed by Suykens and Vandewalle
(Suykens, 2002). The basic LSSVM is used for the opti-
mal control of non-linear Karush-Kuhn-Tucker systems for
classification as well as regression. The LSSVM predictor is
trained using a set of time series historic values as inputs and
a single output as the target value. In the following, we briefly
introduce LSSVM and its use in time series forecasting.

Consider a set of dataD={(x1, y1), (x2, y2),...,(xn, yn)},
xi ∈ <

p, yi ∈ <, x is the input vector,y is the expected output
andn is the number of data. The LSSVM approximate the
function in the following form:

y(x) = wT ϕ(x) + b, (5)

whereφ(x) represents the high dimensional feature spaces,
which is non-linearly mapped from the input spacex. By

combining the functional complexity and fitting error, the op-
timization problem of LSSVM is given as

min:

J (w,ξ)=
1

2
wT w +

γ

2

n∑
i=1

ξ ;
2
i (6)

subject to:

y(x) = wT ϕ(xi) + b + ξi i = 1,2,3, ...,n. (7)

This formulation consists of equality instead of inequality
constraints. To solve this optimization problem, the Lagrange
function is constructed as

L(w,b,ξ ;α) = J (w,b,ξ)

−

n∑
i=1

αi{w
T ϕ(xi) + b − yi + ξi}, (8)

whereαi are the Lagrange multipliers, which can be posi-
tive or negative. The solution of Eq. (8) can be obtained by
partially differentiating with respect tow, b, ξi andαi

∂L
∂w

= 0 → w =

n∑
i=1

αiϕ(xi)

∂L
∂b

= 0 →

n∑
i=1

αi = 0

∂L
∂ξi

= 0 → αi = γ ξi

∂L
∂αi

= 0 → wT ϕ(xi) + b − yi + ξi = 0

for i = 1,2,3, ...n.

(9)

After elimination of the variablesw andξi , one obtains the
following matrix solution:[

0 1T

1 φ(xi)
T φ(xl) + γ −1I

] [
b

α

]
=

[
0
y

]
, (10)

with y = [y1,y2, ...,yl], 1T
v = [1, 1, ..., 1],α = [α1, α2, ...,

αl]. The kernel function can be defined as

K(xi,xj ) = φ(xi)
T φ(xj ), i, j = 1, 2, ..., n. (11)

This finally leads to the following LSSVM model for
regression:

y(x) =

n∑
i=1

αiK(xi,xj ) + b, (12)

where αi, b are the solutions to the linear system and
K(xi,xj ) is a kernel function. The most popular kernel func-
tion is the Radial Basis Function (RBF), as shown in Eq. (13)
(Liu and Wang, 2008; Gencoglu and Ulyar, 2009).

K(xi,xj ) = exp

(
−

‖x − xi‖
2

δ2

)
. (13)
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Fig. 2.The SOM architecture.

3.4 Self organizing map

SOM, also known as the Self Organizing Feature Map
(SOFM), was proposed by Professor Teuvo Kohonen and
therefore sometimes called the Kohonen Map (Kohonen,
2001), is an unsupervised and competitive learning algo-
rithm. SOM has been used widely for data analysis in some
areas such as economics, physics, chemistry as well as
medical applications.

The objectives of SOM are to maximize the degree of sim-
ilarity of patterns within a cluster, minimize the similarity of
patterns belonging to different clusters, and then present the
results in a lower-dimensional space. Basically, SOM con-
sists of two layers of artificial neurons: the input layer, which
accepts the external input signals; and the output layer, also
called the output map, which is usually arranged in a two-
dimensional structure. Every input neuron is connected to ev-
ery output neuron, and each connection has a weighting value
attached to it. The architecture of SOM is shown in Fig. 2.

Output neurons will self organize to an ordered map, and
neurons with similar weights are placed together. They are
connected to adjacent neurons by a neighbourhood relation,
dictating the topology of the map (Moreno et al., 2006). The
concept of the learning algorithm for SOM is unsupervised
and competitive. The training process of SOM is described
below:

For simplicity, we assume that the input vectorX

of SOM is:

X = [x1, x2, ..., xn], (14)

wheren is the dimension of the input vector. The weight vec-
tor connecting the input vector to the hidden neuroni is de-
noted by

Wi = [wi1, wi2, ..., win] i = 1, 2, ..., m. (15)

The weights are initialised as small random numbers at the
start of the training process. In competitive learning net-
works, the neurons compete among themselves to determine
the winner by calculating the distance between the input vec-
tor and the weight vectors of all the neurons in the hidden
layer. The winnerI is defined as the one whose weight vector
is the closet to the input vectorX:

I (X) = min
∀i

‖X − Wi‖ i = 1, 2, ..., m. (16)

The Euclidean distance is often used as the similarity mea-
sure for SOM. The output neuron whose weight vector has
the smallest distance from the input vector is called the
winning neuron.

After determining the winning neuron, the lateral inter-
sections between the winning neuron and its neighbourhood
are calculated using the topological neighbourhood function.
The neighbourhood function takes the form of a radial ba-
sis function that is appropriate for representing the biological
lateral interaction (Kohonen, 2001; Rui Xu, 2009):

hji(t) = η(t)exp

(
−||rj − ri ||

2

2σ 2(t)

)
, (17)

where||rj − ri || represents the Euclidean distance between
the winning neuroni and the neighbouring neuronj , and
σ(t) is the bandwidth of the radial basis kernel function.

Next, the weights of this winning neuron are adjusted ac-
cording to the input patterns using the algorithm

Wi(t + 1) = Wi(t) + hji(t)(X − Wi(t)), (18)

whereη(t) is the learning rate at timet andWi(t + 1) is the
adjusted weight vector at time(t + 1).

After the weights have been updated, the winning neu-
ron and the neighbourhood neurons become more simi-
lar to the corresponding input pattern. The process contin-
ues until convergence has been reached. Finally, the trained
SOM is obtained.

3.5 Integrating the SOM-LSSVM model

Time series is a chronological sequence of observations of
data points recorded sequentially in time. Time series fore-
casting is used to predict future values based on past val-
ues and other variables. However, the datasets are full with
non-linearity. To address these issues, this study employs a
hybrid model to better predict the future river flow. In this
study, a hybrid model was implemented which combines the
SOM clustering algorithm with the LSSVM model, as illus-
trated in Fig. 3. In the first stage, the datasets are divided
into several groups or clusters. In order to do this, SOM
is used to cluster the whole input space into regions where
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Fig. 4.The study area.

data points with similar statistical distribution are grouped to-
gether. Each group or cluster contains similar objects (Huang
and Tsai, 2009). After the clustering of the data into several
groups, LSSVMs are constructed for each cluster. LSSVM
can conduct a better forecast for each group or cluster. As
demonstrated by Tay and Cao (2001) and Hsu et al. (2009),
this hybrid model can capture better results in the prediction
of future river flow.

4 The study area and data

In this research, we examined the data obtained from the
monthly river flow of the Bernam River located in Selan-
gor, Penisular Malaysia. Bernam River is located between
the states of Perak and Selangor, demarcating the border be-
tween the two states. The upper Bernam River basin has been
identified as the ultimate and largest source of water supply
from the Bernam River, especially for irrigation and the sup-
ply of drinking water. The study area is about 1090 km2 with
a mean elevation of 19 m, and the Bernam River monitoring
station is the downstream outlet. The location of the Bernam
River catchment is shown in Fig. 4.

The monthly river flow data of the Bernam River, con-
sisting of 516 monthly records (January 1966 to December
2008), are used in this study. The data were first tested using
Mann-Kendall test in order to detect any other trends in river
flow data. After that, the dataset was then split up into two
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Fig. 5. Time series of monthly river flow of Bernam River (Jan-
uary 1966–Dezember 2008).

parts: training and testing, where the first dataset consisting
of 456 monthly records (January 1966 to December 2003)
was used for training, while the final dataset containing 60
mean monthly river flows (January 2004 to December 2008)
was used for testing. Training data were used exclusively
for model development and testing data were used to mea-
sure the performance of the model on untrained data. The
testing set was also used to evaluate the forecasting ability
of the model and to compare the proposed model with oth-
ers. The recorded time series data for the Bernam River are
shown in Fig. 5.

Solomatine et al. (2008) suggested that when splitting data
into training and testing datasets, these sets should have sim-
ilar distributions of low and high flow or similar properties
of the input and output variables. However, it has been found
that to generalise the training and testing sets with similar
properties is not an easy task. Most studies suggest that the
ratio of splitting for training and testing should be [70:30,
80:20, or 90:10]. The selection of the ratio could be based
on the particular problem under consideration (Zhang et al.,
1998; Firat, 2007; Kisi, 2008; Wang et al., 2009). Before
the training process begins, data normalisation is often per-
formed. The river flow was normalised in the range [0.1, 0.9]
by the following equation:

yt = 0.1+
xt

1.2(xmax)
, (19)

whereyt represents the normalised data, whilext is the actual
observation value andxmax represents the maximum value
among the actual observation values.

5 Input determination

As with any data-driven model such as ANN and LSSVM,
the selection of appropriate model inputs plays an extremely
important role in their successful implementation since it
provides the basic information about the system being mod-
elled. In time series forecasting, usually insufficient attention
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Table 1.Model of input data.

Model Input Data

M1 yt = f (xt−1,xt−2)

M2 yt = f (xt−1,xt−2,xt−3,xt−4)

M3 yt = f (xt−1,xt−2,xt−3,xt−4,xt−5,xt−6)

M4 yt = f (xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8)

M5 yt = f (xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8,xt−9,xt−10)

M6 yt = f (xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8,xt−9,xt−10,xt−11,xt−12)

M7 yt = f (xt−1,xt−2,xt−4,xt−5,xt−7,xt−10,xt−12) (Stepwise)
M8 yt = f (xt−1,xt−2,xt−12,xt−13,xt−14,xt−24,xt−25,xt−26,at−12,at−24)(ARIMA)

Table 2.The result for the training and testing using ANN model.

Data Hidden Neurons
Training Testing

MAE RMSE R MAE RMSE R

M1 (I =2)

I/2 0.0967 0.1259 0.5377 0.0877 0.1096 0.5084
I 0.0961 0.1257 0.5392 0.0883 0.1105 0.4993

2I 0.0969 0.1257 0.5398 0.0899 0.1113 0.4939
2I+1 0.0971 0.1263 0.5333 0.0877 0.1110 0.4928

M2 (I =4)

I/2 0.1150 0.1506 0.5426 0.1004 0.1316 0.5085
I 0.1135 0.1500 0.5478 0.1089 0.1372 0.4547

2I 0.1135 0.1489 0.5571 0.1006 0.1295 0.5307
2I+1 0.1126 0.1482 0.5628 0.1073 0.1339 0.4895

M3 (I =6)

I/2 0.1098 0.1411 0.3363 0.0974 0.1200 0.3306
I 0.0940 0.1258 0.5426 0.0889 0.1126 0.4727

2I 0.0909 0.1197 0.6013 0.0871 0.1087 0.5368
2I+1 0.0936 0.1232 0.5684 0.0870 0.1112 0.4850

M4 (I=8)

I/2 0.1125 0.1473 0.5756 0.1027 0.1255 0.5742
I 0.1100 0.1449 0.5937 0.0988 0.1284 0.5546

2I 0.1075 0.1404 0.6263 0.1013 0.1237 0.5991
2I+1 0.1067 0.1417 0.6176 0.1059 0.1321 0.5428

M5 (I =10)

I/2 0.1245 0.1602 0.4584 0.1153 0.1466 0.3245
I 0.1025 0.1359 0.6565 0.101 0.1279 0.5749

2I 0.1059 0.1402 0.6279 0.0955 0.1204 0.6284
2I+1 0.1056 0.1396 0.6315 0.1121 0.1391 0.4912

M6 (I =12)

I/2 0.0868 0.1143 0.6410 0.0750 0.1050 0.5738
I 0.0870 0.1154 0.6318 0.0812 0.1057 0.5632

2I 0.0828 0.1105 0.6705 0.0873 0.1088 0.5543
2I+1 0.0838 0.1107 0.6686 0.0790 0.1039 0.5780

M7 (I =7)

I/2 0.0863 0.1150 0.6352 0.0755 0.1034 0.5863
I 0.0879 0.1155 0.6309 0.0775 0.1078 0.5447

2I 0.0852 0.1134 0.6476 0.0791 0.1086 0.5397
2I+1 0.0850 0.1127 0.6533 0.0766 0.1048 0.5736

M8 (I =10)

I/2 0.0567 0.0749 0.908 0.0697 0.0968 0.8256
I 0.0595 0.0756 0.9063 0.0758 0.1010 0.7937

2I 0.0553 0.0716 0.9165 0.0605 0.0837 0.8610
2I+1 0.0653 0.0834 0.8846 0.0785 0.0997 0.7755

The bold formated line represent the best result for ANN technique.
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Fig. 6.ACF and PACF for monthly river flow of Bernam River.

is given to the task of selecting appropriate model inputs.
Many papers reviewed failed to describe the input determi-
nation methodology used, and consequently raised doubts
about the optimality of the output obtained (Bowden et al.,
2005). Most researchers design experiments to help select
the model inputs, while others adopt some empirical ideas.
For example, Patil (1992) proposed model inputs based on
12 inputs for monthly data and four for quarterly data heuris-
tically. Cheung et al. (1996) suggested maximum entropy
principles to identify the time series lag structure. Tang and
Fishwick claimed that the number of model inputs is sim-
ply the number of the autoregressive (AR) moving average
components in the Box-Jenkins models. Refenes et al. (2003)
suggested a stepwise method for determining the input for
ANN models. Roadknight et al. (1997) used cross correla-
tion analysis or principal component analysis as a guide for
determining the input. Aqil et al. (2006) employed two sta-
tistical methods, i.e. autocorrelation (ACF) and partial au-
tocorrelation (PACF), to identify the appropriate input vari-
ables. Behzad et al. (2009) selected the best model inputs by
trial and error according to minimum test errors in the ANN
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Fig. 7. The ACF And PACF of residuals for monthly river flow of
Bernam River for ARIMA (2, 0, 0) x (2, 0, 2)12 model.

and SVM modelling. Corzo et al. (2009) used correlation and
average mutual information analysis involving different sub-
basin values using precipitation and river flow to determine
the best input variables. Khashei and Bijari (2010) proposed
an ARIMA model to determine the input variables in order to
yield a more accurate forecasting model than ANN. The em-
pirical results from three well-known real datasets showed
that the proposed input variables can be an effective way to
improve the forecasting accuracy achieved by ANN. The use
of input variables from the data values of previous time se-
ries and the optimum number of input variables determined
by trial and error has been reported by Firat (2007, 2008),
Firat and Gungor (2007), Sivapragasam and Liong (2005),
Juhos et al. (2008), Partal and Kisi (2007), among others.

Three approaches were used in this study to deter-
mine the models of input data. The first six approaches
for the input data were chosen based on past river flow.
The appropriate lags were chosen using a trial-and-error
approach (xt−1, xt−2,. . . , xt−p, where p is 2, 4, . . . ,
12). It gives the number of inputs (I ) as 2, 4, 6, 8,
10, 12. The second and third approaches set the input
vector nodes equal to the number of lagged variables from
two statistical methods (i.e. stepwise multiple regression
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Table 3.The result for the training and testing using LSSVM model.

Data
Training Testing

MAE RMSE R MAE RMSE R

M1 0.0955 0.1248 0.5494 0.0858 0.1080 0.5191
M2 0.0850 0.1120 0.6757 0.0860 0.1084 0.5207
M3 0.0829 0.1120 0.6647 0.0797 0.1000 0.6092
M4 0.0853 0.1134 0.6564 0.0812 0.1021 0.6037
M5 0.0773 0.1035 0.7767 0.0800 0.1084 0.5232
M6 0.0744 0.1018 0.7308 0.0744 0.0995 0.6191
M7 0.0720 0.0970 0.7598 0.0771 0.1019 0.6756

M8 0.0486 0.0633 0.9259 0.0457 0.0611 0.8769

analysis and the ARIMA model). Stepwise multiple re-
gression analysis led to the selection of 7 input attributes
(xt−1,xt−2,xt−4,xt−5,xt−7,xt−10,xt−12).

In ARIMA, the future value of a variable is assumed to
be a linear function of several past observations and random
errors (Zhang, 2003; Khashei and Bijari, 2010). In this study,
ARIMA (2, 0, 0)× (2, 0, 2)12 is selected as the best model,
as described in Sect. 6.1. Therefore, the functional form of
the model input data using ARIMA is

yt = f (xt−1,xt−2,xt−12,xt−13,xt−14,xt−24,xt−25,

xt−26,at−12,at−24), (20)

whereyt is the future value,xt is the past value at timet and
at is the residual at timet , where ARIMA is used in order to
generate the residuals.

6 Evaluation of performance

There are different types of performance evaluation that have
been documented in the literature (Luchetta and Manetti,
2003; Goswami et al., 2005). The performance evaluation for
each model should have at least a measure of absolute error,
such as mean absolute error (MAE) or root mean square er-
ror (RMSE) (Legates and McCabe, 1999). Wang et al. (2006)
stated that RMSE is a good performance evaluation mea-
surement because it is very sensitive to even small errors,
in which case it is better to compare the small differences in
the model’s performance.

The MAE and RMSE are defined as follows:

MAE = 1
n

n∑
t=1

∣∣yt − ôt

∣∣ (20)

RMSE=

√√√√1

n

n∑
t=1

(
yt−ôt

)2 (21)

whereyt and ôt are the observed/actual and the predicted
at the timet . The criteria to judge the best model are rela-
tively small for MAE and RMSE in modelling and forecast-
ing. Other than these, the correlation coefficient (R) was also
used as a performance measurement.R was also used to test

the ability of the model to capture the complex nature of the
process that was being modelled (Jain and Kumar, 2007; Lin
and Wu, 2009). It is a measure of how well the future out-
comes are likely to be predicted by the model, where the pre-
dicted flows correlate with the observed flows.R is defined as

R =

1
n

n∑
t=1

(yt − ȳ)
(
ôt − ¯̂o

)
√

1
n

n∑
t=1

(yt − ȳ)2

√
1
n

n∑
t=1

(
ot − ¯̂o

)2
, (22)

where ȳ and ¯̂o are the mean observed and mean predicted
river flow series, respectively, andn is the number of data
points. TheR value is used to evaluate the linear correlation
between the observed and the predicted flow. Clearly, anR

value close to unity indicates a satisfactory result, while a
low value or one close to zero implies an inadequate result.

7 Experiment and results

7.1 Application of the ARIMA model

Figure 5 shows the plots of the river flow time series, indicat-
ing that the time series are non-stationary and require a trans-
formation. Samples of the autocorrelation function (ACF)
and the partial autocorrelation function (PACF) for the se-
ries are plotted in Fig. 6. The ACFs curves for the monthly
stream flow data decayed with mixture of sine wave pattern
and exponential curves, which reflect the random periodicity
of the data and indicate the need for seasonal MA terms in
the model. In the PACF there were significant spikes present
near lag 12 and 24, therefore indicating the series need for
a seasonal AR process. The criteria used to judge the best
model based on MSE show that ARIMA (2, 0, 0)× (2, 0,
2)12 is the best model. The model can be written as

(1− 0.352B − 0.132B2)(1− 0.603B12
− 0.395B24)

xt = (1− 0.477B12
− 0.460B24)at , (23)

and can be rewritten as

xt = 0.352xt−1 + 0.132xt−2 + 0.603xt−12− 0.212xt−13

+0.079xt−14+ 0.395xt−24− 0.136xt−25− 0.052xt−26

−0.477at−12− 0.460at−24+ at . (24)

The ACF and PACF plots of the residuals of ARIMA (2, 0,
0)× (2, 0, 2)12 for the river flow series are shown in Fig. 7.
From the residual plot of the best ARIMA model, it was ob-
served that the selected ARIMA (2, 0, 0)× (2, 0, 2)12model
passed the diagnostic checks and they were all white noise.
For further analysis, we decided that the ARIMA model (2,
0, 0)× (2, 0, 2)12 is the best to use for comparison with
the others.

Hydrol. Earth Syst. Sci., 16, 4417–4433, 2012 www.hydrol-earth-syst-sci.net/16/4417/2012/
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Table 4.The result for the training and testing using a hybrid model of SOM-LSSVM for different map sizes.

Map Sizes Data
Training Testing

MAE RMSE R MAE RMSE R

M1 0.0680 0.0903 0.7964 0.0740 0.0872 0.7508
M2 0.0655 0.0860 0.8205 0.0767 0.0963 0.6574
M3 0.0758 0.1031 0.7259 0.0785 0.1020 0.6072

2 x 2 M4 0.0686 0.0931 0.7925 0.0752 0.0975 0.6456
M5 0.0770 0.1045 0.7250 0.0784 0.0988 0.6322
M6 0.0869 0.1135 0.6495 0.0794 0.1022 0.5931
M7 0.0758 0.1051 0.7126 0.0764 0.1011 0.6082

M8 0.0212 0.0333 0.9782 0.0441 0.0620 0.8766

M1 0.0747 0.0997 0.7445 0.0640 0.0860 0.7376
M2 0.0532 0.0681 0.8908 0.0683 0.0879 0.7254

3 x 3 M3 0.0760 0.1029 0.7271 0.0736 0.0917 0.7099
M4 0.0736 0.0995 0.7517 0.0733 0.0908 0.7019
M5 0.0721 0.1008 0.7504 0.0734 0.0951 0.6650
M6 0.0685 0.0914 0.8049 0.0794 0.1067 0.5421
M7 0.0735 0.0974 0.7599 0.0703 0.0971 0.6474

M8 0.0278 0.0378 0.9705 0.0431 0.0622 0.8734

M1 0.0537 0.0751 0.8640 0.0557 0.0691 0.8457
M2 0.0561 0.0756 0.8642 0.0727 0.0884 0.7299
M3 0.0649 0.0885 0.8105 0.0741 0.0937 0.6841

4 x 4 M4 0.0696 0.0921 0.7947 0.0800 0.1010 0.6159
M5 0.0647 0.0920 0.7990 0.0686 0.0916 0.7005
M6 0.0645 0.0879 0.8253 0.0737 0.0992 0.6247
M7 0.0701 0.0933 0.7830 0.0620 0.0894 0.7117

M8 0.0348 0.0507 0.9485 0.0435 0.0647 0.8651

M1 0.0659 0.0950 0.7715 0.0637 0.0876 0.7274
M2 0.0446 0.0612 0.9127 0.0668 0.0838 0.7560
M3 0.0646 0.0920 0.7911 0.0690 0.0865 0.7361

5 x 5 M4 0.0550 0.0762 0.8762 0.0680 0.0870 0.7306
M5 0.0555 0.0782 0.8646 0.0727 0.0931 0.6855
M6 0.0385 0.0605 0.9231 0.0661 0.0850 0.7462
M7 0.0761 0.0982 0.7848 0.0731 0.0969 0.6490

M8 0.0401 0.0567 0.9299 0.0370 0.0492 0.9222

Table 5. Comparative performance between ARIMA, ANN,
LSSVM and SOM-LSSVM during the testing period.

Model MAE RMSE R

ARIMA 0.0767 0.1042 0.5842
ANN 0.0605 0.0837 0.8610
LSSVM 0.0457 0.0611 0.8769

SOM-LSSVM 0.0370 0.0492 0.9222

7.2 Application of ANN model

In this study, a typical three layer ANN model with a log-
sigmoid transfer function from the input layer to the hidden

layer, and a linear function from the hidden layer to an out-
put layer, are used for forecasting monthly river flow time se-
ries. The input and target data were normalised in the range
[0.1, 0.9], because a sigmoid function was employed as the
transfer function. The network was trained for 5000 epochs
using the conjugate gradient descent backpropagation algo-
rithm with a learning rate of 0.001 and a momentum coeffi-
cient of 0.9. The eight models of input data (M1–M8) with
various numbers of input structures are trained and tested by
ANN models, and the optimal number of neuron in the hid-
den layer was identified using several guidelines.

To help avoid the problem of over-fitting, some researchers
have provided empirical rules to restrict the number of
hidden nodes. In order to select an appropriate architec-
ture, the following guidelines were used: “I /2” proposed by
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Kang (1991), “I ” proposed by Tang and Fishwick (1993),
“2I ” proposed by Wong (1991), and “2I + 1” proposed by
Hecht-Nielsen (1990), whereI is the number of inputs.

It is common to use one test set for both validation and
testing purposes, particularly with small datasets (Zhang,
2003). For ANN experiment, the dataset was split into two
sections: training set and test set where the test set was
used for validation and testing purposes, as demonstrated by
Zhang (2003) and Kisi (2004). The networks that yielded
the best results with the lowest MAE and RMSE and largest
R from the testing set were selected as the best ANN for
the corresponding series. The effects of changing the num-
ber of hidden nodes on the RMSE, MAE andR are shown
in Table 2.

Table 2 shows the performance of ANN varying with the
number of nodes in the hidden layer. For the training and test-
ing period, the M8 model with 20 hidden nodes obtained the
best results for MAE, RMSE andR, with statistics of 0.0553,
0.0716 and 0.9163, respectively. While in the testing phase,
the M8 model with 20 hidden neurons was the best MAE,
RMSE andR with statistics of 0.0606, 0.0837 and 0.8610,
respectively. Hence, the ANN (10, 20, 1) has been selected
as the most appropriate ANN model for the Bernam River.

7.3 Application of the LSSVM model

There is no single proven theory that can be used to guide the
selection of the number of inputs. In this study, the same in-
put structures of the datasets M1 to M8 were used. The RBF
was used as the kernel function for this study. In order to bet-
ter evaluate the performance of the proposed approach, we
considered a grid search of(γ, σ 2) within n the range 10 to
1000, andσ 2 in the range 0.01 to 1.0. For each hyper param-
eter pair(γ, σ 2) in the search space, 5-fold cross validation
on the training set was performed to predict the prediction
error. Table 3 shows the performance results obtained in the
training and testing period of the LSSVM approach.

By considering these training and testing periods, the
lowest MAE and RMSE and the largestR for the series
of data were calculated from the M8 model, resulting in
statistics of 0.0486, 0.0633, 0.9259 and 0.0457, 0.0611,
0.8769, respectively.

7.4 Application of the hybrid SOM-LSSVM model

Determining the appropriate map sizes of clustering is very
important for cluster validity and efficiency. For a SOM
of large map sizes, input patterns will be grouped into a
large number of clusters, which would cause each neuron
to memorise one of the input patterns, although some clus-
ters may only have one or two members. Such clustering
results are not suitable for the forecasting analysis. On the
other hand, if the map size is too small, then many differ-
ent data groups might be lumped into the same category and
the SOM will fail to show the topological relationships of

the input patterns. Since there is no systematic or standard
method for finding the optimal number of map sizes in the
clustering algorithms, the optimal map size is obtained de-
pending on the requirements of the user. In this paper, four
map sizes are utilized, Kohonen of 2× 2, 3× 3, 4× 4 and
5× 5. When SOM is applied to perform cluster analysis, a
SOM of a small dimension is the first choice. If the cluster-
ing result is reasonable and satisfactory, then the cluster anal-
ysis is accepted. Otherwise, a SOM of a larger dimension is
chosen to analyse the input patterns, and this continues until
a satisfactory result is obtained. In this study, only 4 clusters
were considered to investigate the impacts of the number of
map sizes on the performance. The same parameters were
used as for the LSSVM’s parameters for the single LSSVM
model. Table 4 shows the predicted values of SOM-LSSVM
for the various numbers of map sizes.

7.5 Comparison

In this section, the predictive capabilities of the proposed
SOM-LSSVM model are compared with ARIMA, ANN and
LSSVM for the Bernam monthly river flow. Furthermore, the
MAE, RMSE, andR are used to evaluate the performance of
the ARIMA, ANN, LSSVM and SOM-LSSVM models. The
statistical results of the different models are summarised in
Table 5. From Table 5, it can be noted that the SOM-LSSVM
model has the best performance with the lowest MAE and
RMSE, and the largestR for the testing phase. The single
LSSVM is the second best model, followed by ANN. As can
be seen in Tables 5, ARIMA has the worst performance based
on MAE, RMSE andR.

In the testing phase, the SOM-LSSVM model improved
the ARIMA model with about a 52.78 % and 51.76 % re-
duction in RMSE and MAE values, respectively, and with a
57.86 % improvement of the forecast results for theR value.
SOM-LSSVM also produced some improvement over the
ANN model with about a 45.16 % and 38.84 % reduction
in RMSE and MAE, respectively, and some improvement in
the forecast value of about 7.1 % forR. As with LSSVM,
the SOM-LSSVM model resulted in some improvement over
LSSVM as well, with about a 19.47 % reduction in RMSE,
19.03 % reduction in MAE and improvement of 5.16 % in the
R value.

Figure 8 shows the results obtained from the four models
ARIMA, ANN, LSSVM and SOM-LSSVM compared with
the actual river flow data for the last sixty months for the
testing phase on the Bernam River data. From Fig. 8, all the
models gave a close approximation to the actual observation
data. It indicates that ARIMA, ANN, LSSVM and SOM-
LSSVM fit the monthly mean river flow better, and that these
models are applicable for river flow forecasting. Meanwhile,
Fig. 9 shows the scatter plots for the Bernam River, indi-
cating that the estimates of the LSSVM and SOM-LSSVM
models are closer to the actual river flow data than those of
ARIMA and ANN. However, the value ofR and the fit line
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Fig. 8. Predicted and observed river flow during testing period by
ARIMA, ANN, LSSVM and SOM-LSSVM for Bernam River.
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Fig. 9. The scatter plot of predicted and observed river flow during
testing period using ARIMA, ANN, LSSVM and SOM-LSSVM for
Bernam River.

www.hydrol-earth-syst-sci.net/16/4417/2012/ Hydrol. Earth Syst. Sci., 16, 4417–4433, 2012



4430 S. Ismail et al.: River flow forecasting

equation coefficients of the SOM-LSSVM are superior com-
pared to the other models. The results indicate that the best
performance can be obtained by the SOM-LSSVM model,
followed by the LSSVM, ANN and ARIMA models. SOM-
LSSVM can also give a better prediction performance than
ARIMA, ANN and LSSVM time series approaches. The re-
sults obtained in this study indicate that the SOM-LSSVM
model is a powerful tool, as well as an alternative method for
modelling river flow time series.

8 Conclusions

To improve the performance of river flow forecasting, a hy-
brid model based on a combination of SOM and LSSVM
was proposed to predict monthly river flows. Before apply-
ing these models, the selections of the input data variables
were conducted to determine the capability and suitability
of the models to predict river flows. By using an evaluation
on the performance test, the input data variables based on
the ARIMA model were chosen as the optimal input factors.
Next, SOM clustering technique was used to analyze these
input data variables. The SOM algorithm clustered the entire
input data into several disjointed clusters and after decom-
posing the data, LSSVM was used to predict the river flow.
The result shows that the performance of river flow fore-
casting can be significantly enhanced by using the proposed
hybrid SOM-LSSVM model.

To illustrate the capability of the SOM-LSSVM model,
monthly river flow data from Bernam River were analyze in
this study. The river flow data were varied per the number
of input data used in the experiments. The number of input
data variables were determine using the three approaches of
past observation, stepwise regression analysis and ARIMA
model. The experimental results show that SOM-LSSVM
performs better than other models such as ARIMA, ANN
and LSSVM. Through the comparison of four different mod-
els applied in monthly river flow forecasting, it can be con-
cluded that SOM-LSSVM provides a promising alternative
technique for river flow time series forecasting. It can also
be concluded that the selections of input data variables also
play an important role in the prediction as well as the num-
ber of Kohonen map sizes. In this study, only river flows data
are considered for analysis, so future research can further test
the idea of the hybrid model by employing the rainfall-runoff
data, and using other clustering techniques such as K-Means
or Fuzzy C-Means. Since this is an exploratory analysis of
the hybrid SOM-LSSVM, the model should be further tested
with another type of data with a variety of sample sizes to
test the feasibility and ability of the SOM-LSSVM model.
The idea of the hybrid model can also be tested on other
time series data such as rainfall forecast, weather forecast,
economic and so on to prove its capability and usability.
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