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Abstract. Aerodynamic roughness height (Zom) is a key pa-
rameter required in several land surface hydrological mod-
els, since errors in heat flux estimation are largely depen-
dent on optimization of this input. Despite its significance,
it remains an uncertain parameter which is not readily deter-
mined. This is mostly because of non-linear relationship in
Monin-Obukhov similarity (MOS) equations and uncertainty
of vertical characteristic of vegetation in a large scale. Previ-
ous studies often determined aerodynamic roughness using
a minimization of cost function over MOS relationship or
linear regression over it, traditional wind profile method, or
remotely sensed vegetation index. However, these are com-
plicated procedures that require a high accuracy for several
other related parameters embedded in serveral equations in-
cluding MOS. In order to simplify this procedure and reduce
the number of parameters in need, this study suggests a new
approach to extract aerodynamic roughness parameter from
single or two heat flux measurements analyzed via Ensemble
Kalman Filter (EnKF) that affords non-linearity. So far, to
our knowledge, no previous study has applied EnKF to aero-
dynamic roughness estimation, while the majority of data as-
similation study have paid attention to updates of other land
surface state variables such as soil moisture or land surface
temperature. The approach of this study was applied to grass-
land in semi-arid Tibetan Plateau and maize on moderately
wet condition in Italy. It was demonstrated that aerodynamic
roughness parameter can be inversely tracked from heat flux
EnKF final analysis. The aerodynamic roughness height esti-
mated in this approach was consistent with eddy covariance
method and literature value. Through a calibration of this pa-
rameter, this adjusted the sensible heat previously overesti-
mated and latent heat flux previously underestimated by the

original Surface Energy Balance System (SEBS) model. It
was considered that this improved heat flux estimation es-
pecially during the summer Monsoon period, based upon a
comparison with precipitation and soil moisture field mea-
surement. For an advantage of this approach over other pre-
vious methodologies, this approach is useful even when eddy
covariance data are absent at a large scale and is time-variant
over vegetation growth, as well as is not directly affected by
saturation problem of remotely sensed vegetation index.

1 Introduction

1.1 The Tibetan plateau

The Tibetan Plateau plays a major role on land surface circu-
lation all over the Asian continents (Ma et al., 2009). Hence,
this region is also called the “Third Pole” (along with the
North and South Pole) and has been paid much attention
from a broad range of scientific community. This study is
based upon turbulent meteorological data measured at the BJ
station located in the Naqu site, one of Tibetan Observation
and Research Platform (TORP) under the frame of GEWEX
(Global Energy and Water Cycle Experiment) of World Me-
teorological Organization(WMO), consisting of 21 research
and 16 observation stations (Ma et al., 2009). In this Naqu re-
gion, vertical gradients of temperature and humidity in the at-
mospheric boundary layer (ABL) exhibits a dramatic change
around onsets of Monsoon period (Sun et al., 2006, 2007).
As ground surface temperature increases with a decrease in
air temperature, convective activity and sensible heating is
accelerated, resulting in Monsoon climate (Wen et al., 2010).
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Around this time, local grass proliferates and leaf area in-
dex (LAI) starts increasing at the onsets of Monsoon, and
decreases in winter, while albedo conversely alters. Accord-
ingly, aerodynamic roughness parameters in this site make
a seasonal change, being governed by various aerodynamic
and thermodynamic characteristics. Aerodynamic roughness
over the Tibetan plateau was previously explored by vari-
ous approaches such as traditional wind profile method using
eddy covariance instruments, flux-variance method, and veg-
etation index (Choi et al., 2004; Ma et al., 2002, 2005, 2008;
Su, 2002, 2005; Yang et al., 2003, 2008).

1.2 Uncertainty associated with determination of
aerodynamic roughness

Aerodynamic roughness height is a significant parameter
to a variety of models such as weather prediction model
(e.g. AROME), land surface model (e.g. NOAH, CLM), or
other hydrological models. Consequently, errors in these pa-
rameters can be propagated through models and become a
major error source in the output of those models (Chen et al.,
2010; Zeng et al., 2007).

In general, aerodynamic roughness height is referred to as
the height where the logarithmic wind profile reaches zero.
If eddy covariance data are available at local scale, an inde-
pendent wind profile method can be employed to estimate

this height using following formulation:Zom =Z · e−
ku
u∗

−9m.
Here, k is von Karman constant;u is horizontal velocity;
u∗ is friction velocity; Z is measurement height; and9m
is atmospheric stability correction as a function of Obukhov
length (Ma et al., 2008). Estimation of aerodynamic rough-
ness is usually performed under neutral (i.e.9m = 0) or near-
neutral condition when turbulent transfer coefficient for hu-
midity and temperature is considered to be equivalent, while
other researchers suggest to include all the atmospheric sta-
bility conditions or to use turbulent data under unstable and
highly convective condition only (Kohsiek et al., 1993; Ma
and Daggupaty, 1999; Scanlon et al., 2001; Yang et al.,
2003). However, in some cases, atmospheric stability is not
readily adjusted by Monin-Obukhov similarity (MOS), on
account of some measurement error or inapplicable assump-
tion of horizontal surface homogeneity – for example, in case
of sparsely vegetated area, less equilibrated boundary layer
can be developed above the surface (Foken and Wichura,
1996; Prueger et al., 2004). This produces high standard de-
viation and scatteredness in aerodynamic roughness height
estimates (Yang et al., 2008).

To circumvent these uncertainties in momentum flux at-
tributes and to infer aerodynamic roughness height at large
scale from geometric characteristics, several previous studies
employed remotely sensed Vegetation Index (VI) (e.g. LAI
or NDVI) (Olioso et al., 2002; Richter and Timmermans,
2009;Su et al., 2001; Timmermans et al.,2011). However,
VIs also have a degree of uncertainty in determination of the
aerodynamic roughness. First, VI tends to saturate at high
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Fig. 1. Bias in aerodynamic roughness height estimation over short grassland: from AROME (MODIS LAI/6),

original SEBS and literature value (Beljaars et al., 1983).
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Fig. 1. Bias in aerodynamic roughness height estimation over short
grassland around BJ station during experimental period of this
study: original SEBS model, literature (Beljaars et al., 1983) and
AROME model (MODIS LAI/6).

LAI values above 3 to 4. Due to reflection, cloud effect and
landscape misclassification, remotely sensed LAI is some-
times attenuated by 41 %, losing vertical characteristics of
vegetation (Yang et al., 2006; Yao et al.,2008). Addition-
ally, according to nutrient nourishment or vegetation species,
vegetation has different sensitivities to VI so that each dif-
ferent vegetation species presents different ranges of maxi-
mum and minimum VI over similar aerodynamic roughness
height. For instance, some tall coniferous trees have a simi-
lar LAI level to low crops, while some low crops such as rice
indicate 5 to 6 high LAI values over 1 to 2 m high canopy
(Chen and Yang, 2005). In case of deciduous forest whose
chlorophyll contents diminish in the fall, LAI decreases such
that aerodynamic roughness can be underestimated unlike
tropical evergreen forest. Therefore, parameterization relying
on remotely sensed Vegetation Index only is sometimes not
agreeable with field observed aerodynamic roughness, espe-
cially as it is very difficult to retrieve a canopy height with
remote sensing measurements alone. This uncertainty stem-
ming from the use of VI can be propagated into the roughness
height estimation, which can lead to a large error in heat flux
estimation.

To illustrate the bias associated with several aerodynamic
roughness estimations, Fig. 1 was provided. Not only does
remotely sensed VI have uncertainty as noted above but
a literature value also contains a degree of uncertainty
arising from low temporal variation. In detail, although
MODIS NDVI in BJ station has changed from 0.17 to 0.53
and MODIS LAI has evolved from 0.2 to 0.7 for day of
year 140 through 240 during experimental period of this
study, aerodynamic roughness from literature or landscape
map remained time-invariant as shown in Fig. 1, neglect-
ing its vegetation effect by Monsoon climate. In addition,
AROME (as function of LAI) and SEBS model (as a function
of LAI and NDVI) overestimated this parameter by 5 times or
more, because of several reasons such as model structure or
VIs problem. Over or underestimation of fetch size may also

Hydrol. Earth Syst. Sci., 16, 4291–4302, 2012 www.hydrol-earth-syst-sci.net/16/4291/2012/



J. H. Lee et al.: Calibrate aerodynamic roughness 4293

have an influence on aerodynamic roughness estimation er-
ror. From a slightly different perspective, Yang et al. (2003)
argued about the use of VI that heat transfer is affected by
ground surface characteristic such as temperature difference
between land surface and air or momentum flux more than
vegetation effect, according to a dual-source model study
over energy partition. Tsuang et al. (2003) attempted to find
optimal aerodynamic roughness in MOS theory using a linear
regression between momentum velocity or potential temper-
ature and displacement height, while Ma et al. (2000) mini-
mized a cost function over potential temperature, wind veloc-
ity, and heat flux (Yang et al., 2003). However, this approach
is affected by measurement or estimation errors of several
associated parameters (i.e. wind velocity, stability correction
parameter, potential temperature, or Obukhov length etc.) in-
volved in MOS theory. For example, Obukhov length esti-
mated by MOS equation iteration has sometimes a discrep-
ancy from eddy covariance methods.

Thus, as a useful method, this study suggest data as-
similation to deal with various errors. However, there were
few previous studies who have employed data assimilation
for parameter estimation, although several previous stud-
ies applied data assimilation for soil moisture update as a
state variable (Montaldo et al., 2001, 2007). Moradkhani
et al. (2005) demonstrated a dual state-parameter estima-
tion. It first perturbed several input parameters to be con-
sidered time-variant. Out of five parameters to be exam-
ined, quick-flow tank parameter was best converged in data
assimilation. On the contrary, other four parameters were
less identified although it carried out data assimilation with
data collected over three years. After determining input pa-
rameters via EnKF, those inputs were further used to up-
date the state variable. Because state variables were con-
sidered unobservable in this previous study, accuracy was
indirectly assessed by stream flow forecasting. Goegebeur
and Pauwels (2007) compared the performance of extended
Kalman filter with Parameter ESTimation (PEST) method
that minimizes an objective function as briefly introduced
above. The latter is different from the extended Kalman fil-
ter approach minimizing a square error with observation. Af-
ter applying these two algorithms into a conceptual rainfall-
runoff model, this study concluded that the extended Kalman
filter performed better than the objective function minimiza-
tion methods, since it can accommodate high observation er-
ror, a low frequency of observation update, and erroneous
initial parameters. Pauwels et al. (2009) further employed
the extended Kalman filter for parameter estimation by com-
bining a land surface model and remote sensing (i.e. SAR
surface soil moisture). This study estimated three soil hy-
draulic model parameters using TOPLATS (TOPMODEL
based Land Atmosphere Transfer Scheme) – i.e. saturated
hydraulic conductivity, pore size distribution index, and bub-
bling pressure. After a calibration of these parameters, model
output reached an agreement with SAR retrieved surface soil
moisture. However, one of the well-known drawbacks in the

extended Kalman filter is that when a system is highly non-
linear, as in hydrological applications, the extended Kalman
filter tends to be unstable (Moradkhani et al., 2005). This in-
stability or divergence of the extended Kalman filter origi-
nates from demands of high computational cost due to error
covariance propagation or from insufficient approximation
simplified by ignoring the higher order of derivatives and just
using the first order Taylor series of a linear model. On the
other hand, the ensemble Kalman filter can deal with a non-
linear system with better stability (Evensen, 2004; Margulis
et al., 2002; Moradkhani et al., 2005; Reichle et al., 2002; Re-
ichle, 2008). Another advantage of ensemble Kalman filter is
that it is not required to estimate a priori model covariance
for updating, since it uses model ensemble (Moradkhani et
al., 2005). In theory, it requires the joint Gaussian probabil-
ity distribution between measurements and propagated states
based upon Bayes theorem. However, in several cases of non-
linear hydrological applications, it was reported that the en-
semble Kalman filter can also handle non-Gaussian or non-
additive noise (Margulis et al., 2002; Dunne et al., 2005).

This study attempted to introduce a new application of data
assimilation into a hydrological study. With respect to a pre-
vious study, a new aspect and advantage of this study is (1) to
demonstrate an operational frame applying EnKF into de-
termining the parameter (i.e. aerodynamic roughness height)
less explored in previous data assimilation study; (2) to con-
duct a calibration requiring a smaller number of parameters
– only one estimate, sensible heat flux used in EnKF as a
true field – in comparison with a cost function minimization
approach; (3) to be less affected by the saturation problem
of remotely sensed vegetation index in estimation of aerody-
namic roughness; (4) to be time-variant in comparison with
literature values which stay constant regardless of Monsoon
dynamics; (5) to be applicable when eddy covariance data
are not available.

This study suggested that ensemble kalman filter provides
a versatile and relatively more simple tool to extract appro-
priate aerodynamic roughness height from single or two heat
flux. Heat flux model states were fitted against observations
via EnKF. They were inversely tracked back to the input en-
semble members that yielded heat flux EnKF final analysis.
Detail methods were described in following sections, respec-
tively. In result, aerodynamic roughness height estimated in
this study was inserted into an energy balance model to show
its impact. Those heat flux outcomes were compared before
and after calibration. Additionally, parameter estimated by
this approach was compared with other approaches such as
eddy covariance or vegetation index formulation.

2 Methods

EnKF was employed to compensate for the limitations of
each model physics with different error structures by merg-
ing the model estimates contaminated by updating model
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Fig.2.Conceptual diagram for the determination of roughness via EnKF  
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Fig. 2.Conceptual diagram for determination of aerodynamic roughness via EnKF.

states presumably deteriorated by aerodynamic roughness in-
put errors, but independent from assumption of energy bal-
ance closure with the field observation independent from
aerodynamic roughness input errors, but biased by the as-
sumption of energy balance closure. In other words, field
measured heat flux estimates were employed as EnKF true
field, while hydrological model estimates played a role of re-
lating optimal heat flux to initial parameter input. Brief con-
cept was introduced in Fig. 2. Each of the blocks was ex-
plained in following sections.

2.1 Field observation: Bowen Ratio Energy Balance
(BREB)

During the experimental period, eddy covariance data were
unavailable at the BJ station in Naqu sites in 2006. Instead,

the Bowen Ratio Energy Balance (BREB) method was em-
ployed, based upon a previous validation study with eddy co-
variance data (van der Velde et al., 2009). Several previous
studies also employed the BREB over the Tibetan Plateau
in a long-term estimation (Liu et al., 2009; Lu et al., 2012).
By this, it was considered that BREB is capable of estimate
semi-arid climate heat flux in given temperature and vapour
pressure levels, since they were previously agreeable with
eddy covariance data in study above. In addition to this, since
error source of BREB estimates stem from the gradient of
temperature or vapour pressure, those errors were filtered out
in this section in order to decrease the uncertainty.
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BREB estimates heat flux using temperature and vapor
pressure gradient as follows:

Bowen ratio(β) = γ
T1 − T2

e1 − e2
(1-1)

where, e1 and e2 are vapor pressure measurements [kPa]
observed at two different levels, whileT1 and T2 are air
temperature [K] measured at the same measurement heights
(Z1/Z2>4) andγ is psychometric constant [kPa K−1]. This
Bowen ratio is further used to calculate heat flux from surface
energy balance.

λE =
Rn − Go

1 + β
H =

β

1 + β
(Rn − Go) (1-2)

where,

Go = kh
Tskin − Tsl

dz
(1-3)

λE is latent heat.H is sensible heat. Soil heat flux (Go) was
determined by thermal conductivitykh [W mK−1] as a func-
tion of soil moisture contents [m3 m−3]. z is soil depth, while
Tskin is surface temperature.Tsl is soil temperature at depth
of 0.05 m. Net radiation was combined from inward and out-
ward short wave radiation as well as inward and outward long
wave radiation, whose component was measured from a ra-
diation sensor (van der Velde, 2010).

In EnKF, the key to success is the quality of observations
used as a true field (a priori). Therefore, to acquire reliable
geophysical information representing a characteristic of pa-
rameter of interest (i.e.Zom), this study rejected most of the
uncertain and irrelevant measurement data, according to fol-
lowing criteria:

1. Turbulent data withβ below−0.7 were excluded, to for-
bid latent heat sign error occurring during night time
(Perez et al., 1999; Tsuang et al., 2003).

2. Heat flux values with incorrect sign were further ex-
cluded, according to flux and gradient relationship: la-
tent heat has an opposite sign with respect to specific
humidity gradient (Ohmura, 1982). Accordingly, en-
tire data showed negative humidity gradient, suggesting
positive latent heat (evaporation).

3. To select turbulent characteristics governing aerody-
namic momentum roughness, wind measurement data
with low velocity (U2) less than 1 m s−1 and small wind
velocity gradient (U1–U2<0.3 m s−1) as well as low
friction velocity were also neglected (Liu and Foken,
2001).

4. Data with small temperature gradient (T2–T1<0.1 K)
were discarded (Yang et al., 2003).In arid region such as
Naqu sites, temperature gradient is considered more im-
portant than vapor pressure gradient. Vapor pressure is
usually so small on dry condition that it might be readily
subject to measurement error.

5. Sensible heat fluxes below 10 W m−2 were also ex-
cluded to capture convective condition (Yang et al.,
2003).

Consequently, this data filtering resulted in sensible heat on
free convective turbulent condition ranged above 50 W m−2.

2.2 Model states: Surface Energy Balance System
(SEBS)

SEBS was developed to estimate atmospheric fluxes on the
large to global scale using satellite earth observation data. As
an input, it requires land surface parameters such as canopy
height, emissivity, albedo and LAI, and meteorological tur-
bulent data such as wind speed and humidity as well as ra-
diation. Unlike energy balance residual methods, SEBS es-
timates sensible heat flux from non-linear MOS equations,
while it determines latent heat from evaporation fraction.
Evapotranspiration product of this SEBS baseline algorithm
is available to general public (www.wacmos.com).

2.2.1 Roughness lengths

Displacement heightd0, aerodynamicZom and thermal
roughness lengthsZoh were estimated as followed (Mass-
man, 1997; Su et al., 2001; Su, 2002).

d0 = hc

(
1 −

1

2nec
× (1 − exp(−2nec))

)
(2-1)

zom = hc

(
1 −

d0

hc

)
exp

(
−k

u (hc)

u∗

)
(2-2)

where, hc is canopy height estimated as a function of
MODIV NDVI. Within-canopy extinction is formulated
below.

nec =
CdLAI

2

(
u(hc)

u∗

)2

(2-3)

Here,Cd is drag coefficient of foliage, while LAI is leaf area
index. LAI was formulated as a function of MODIS NDVI
to be propagated through model.u(hc)/u

∗ was determined
from Massman methods (Su et al., 2001). Additionally, by
kB−1 values for mixed canopy and soil, thermal roughness
height is related to aerodynamic roughness height (Choud-
hury and Monteith, 1988).

kB−1
= log

(
zom

zoh

)
(2-4)

Here,kB−1 is an excess resistance to heat transfer. It is ex-
pressed a function of roughness Reynolds number for bare
soil surface, while it is estimated from several other param-
eters such as leaf heat transfer coefficient, fractional canopy
coverage, and within canopy wind speed profile extinction
coefficient for canopy landscape (Su, 2005). Accordingly,
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in this study, if NDVI was under or overestimated, LAI,
u(hc)/u

∗, displacement height, and aerodynamic roughness
height were designed to be consecutively propagated as for-
mulated above.

2.2.2 Evaporation fraction

The roughness height for heat and momentum (resp.Zoh
andZom) determined as above are used in MOS relation-
ship to estimate sensible heat, and aerodynamic resistance
(Su, 2002). Sensible heat estimated in this way is further
exploited to determine latent heat. In SEBS, latent heat is
calculated using evaporative fraction, the ratio of heat fluxes
on hypothetical condition (sensible heat on the hypothetical
wet/dry condition, and residual latent heat on wet condition)
to available energy (Su, 2002).

λE = 3 (Rn − Go) (2-5)

where, evaporative fraction is

3 =
3rλEwet

Rn − Go
(2-6)

Here, relative evaporation is

3r = 1 −
H − Hwet

Hdry − Hwet
(2-7)

and

λEwet = Rn − Go − Hwet (2-8)

Under the dry condition,Hdry in Eq. (2-7) is directly esti-
mated by approximation ofRn −Go assuming latent heat
is zero (λEdry = 0). Sensible heat on wet conditionHwet in
Eq. (2-7) is formulated as followed.

Hwet =

[
(Rn − Go) −

Cpρair

ra

(esat − ea)

γ

]
γ

1 + γ
(2-9)

where,

ra =
1

kU∗

[
ln

(
z − d0

zoh

)
− 9h

(z − d0)

Lw
+ 9h

(
zoh

Lw

)]
(2-10)

Here,ρair is the density of dry air [kg m−3]. Cp is heat capac-
ity [J kgK−1]. ea is actual vapour pressure [Pa], whileesat is
saturation vapour pressure at reference height [Pa].ra is aero-
dynamic resistance to heat transfer [s m−1]. Lw is wet-limit
stability length.1 is the rate of change of saturation vapour
pressure with temperature, whileγ is the psychometric con-
stant [Pa K−1].

2.3 Implementation of Deterministic Ensemble Kalman
Filter (DEnKF)

Ensemble Kalman filter appearing in this study implies De-
terministic Ensemble Kalman Filter. DEnkF was chosen in

order to update ensemble SEBS heat flux pool with BREB
estimates considered as “a priori”. Among other Kalman fil-
ters, DEnKF was selected because it does not require signif-
icant perturbation in observation of latent and sensible heat.
Instead, error of heat flux is considered in data assimilation
by adjusting a variance of observation. In other words, the
term of observation perturbation in traditional Kalman filter
analysis is set to zero (Sakov and Oke, 2008; Reichle, 2008).

Xa
i = Xf

i + K
(
d + Di − HXf

i

)
= Xf

i + K
(
d − HXf

i

)
(3-1)

where,Xa
i is analysis.Xf

i is forecast.K is Kalman gain.d
andDi are, respectively, the observation vector and a syn-
thetic vector of perturbations of observationsd (here, ensem-
ble average ofDi = 0 in DEnKF).i is ensemble member.H
is observation sensitivity matrix as a non-linear operator.

In EnKF, error covariance matrix (P ) is determined by
model state ensemble (X) as followed.

Ai = Xi − x (3-2)

where,x = 1
m

m∑
i=1

Xi . m is ensemble size.Xi is ensemble

member of model state.

P =
1

m − 1

m∑
i=1

(Xi − x) (Xi − x)T =
1

m − 1
AAT (3-3)

Because of following relationshipsAa =Af +K (D −

HAf) ∼= AfKHAf and D = 0, P f HT KT =KHP f , then
error covariance in Eq. (3-3) is rearranged as followed
(Sakov et al., 2008).

P a
= P f

− 2KHP f
+ KHP f HT KT (3-4)

Here, if KH is negligibly small, analysis can be tuned
for quadratic form (KHP f HT KT ) by approximation of
K = 1

2K (Whitaker and Hamill, 2002). Accordingly, analy-
sis error covariance and anomaly stated above become:

Aa
= Af

−
1

2
KHAf

(
where, Af

= Xf
− xf

)
(3-5)

and

P a
= (1 − KH)P f

+
1

4
KHP f HT KT (3-6)

To acquire model state ensemble pool, aerodynamic
roughness height was randomly generated by the assump-
tion of Gaussian distribution. For this, NDVI was perturbed,
since aerodynamic roughness is propagated from NDVI as
explained and designed in Sect. 2.2.1. Other meteorological
inputs were assumed certain. Meteorological inputs were di-
rectly measured from a local BJ station, without a possibil-
ity affected by model structure error or atmospheric effect
of a remote sensor. These parameters such as wind velocity,
pressure, humidity or temperature are very straightforward
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in measurement, unlike indirect estimation in aerodynamic
roughness height. Heat flux output ensemble pool was estab-
lished by propagation from aerodynamic roughness input.

According to previous study (Moradkhani et al., 2005),
Normalized RMSE ratio (NRR: time averaged RMSE over
ensemble member averaged RMSE) was used to evaluate
and quantify this randomly generated ensemble pool spread.
Out of 20 trials (variance ranging from 8 to 50 %; ensemble
size ranging from 20 to 100), a group of 1.05 of NRRH and
1.1 of NRRLE (ensemble size = 100, variance = 30 %) was
in acceptable range (cf. ideal NRR is a unity), and used in
this study. Here, NRRH implies NRR for sensible heat while
NRRLE means NRR for latent heat. Number of observation
updated at each assimilation step was equivalent to number
of model states. Inflation was set to 1.01.

3 Results

3.1 Data assimilation

Only sensible heat EnKF final analysis was used to identify
aerodynamic roughness via EnKF for various reasons. First,
in general, it was considered that latent heat in arid area has a
degree of uncertainty in measurement. It was suggested that
vapour pressure gradient is vulnerable to measurement errors
in arid area, since it is much smaller than temperature gradi-
ent on dry condition (Boulet et al., 1997; Jochum et al., 2006;
Prueger et al., 2004; Weaver et al.,1990). This was also sup-
ported by energy budget analysis over the Tibetan Plateau,
indicating that sensible heat is known as the dominant en-
ergy in ABL (Ma et al., 2009).

Second, in a SEBS model structure, as briefly described
in Sect. 2.2, small error in sensible heat can be amplified
or transfered to latent heat, because latent heat is calculated
from the sensible heat estimated beforehand. Furthermore,
Gaussian error propagation analysis was conducted to inves-
tigate the interactive interference between roughness param-
eters and each heat flux. This comparison showed that latent
heat has a higher variance than sensible heat, being interfered
by a larger number of roughness parameter errors including
LAI, displacement height, or canopy height in addition to
aerodynamic roughness itself (Marx et al., 2008). For various
roughness inputs (with a mean of 0.035 m and standard devi-
ation of 0.016 m, ranging from 0.015 to 0.055 m), variance of
sensible and latent heat propagated by SEBS was estimated
as 225 and 331 [W m−2

]
2. With regard to interference (each

parameter was assumed to be independent), latent heat was
affected by several other input errors (i.e. LAI,hc,Zoh, d0) in
addition toZom, while sensible heat mostly affected by aero-
dynamic roughness height. In detail, variances for displace-
ment height (20 931 [W m−2

]
2), thermal roughness height

(663 [W m−2
]
2), canopy height (136 [W m−2

]
2), and LAI

(100 [W m−2
]
2) were reported for latent heat, while variance

of canopy height (89 [W m−2
]
2) other than aerodynamic

roughness was considered significant for sensible heat.

δ2
LE =

(
∂LE

∂Zom

)2

δ2
Zom

+

(
∂LE

∂LAI

)2

δ2
LAI +

(
∂LE

∂hc

)2

δ2
hc

+

(
∂LE

∂Zoh

)2

δ2
Zoh

+

(
∂LE

∂d0

)2

δ2
d0

δ2
H =

(
∂H

∂Zom

)2

δ2
Zom

+

(
∂H

∂hc

)2

δ2
hc

Accordingly, sensible heat was selected to be a more direct
indicator for aerodynamic roughness height estimation.

After assimilation, as shown in Fig. 3, RMSE between En-
semble Kalman Filter – analysed sensible heat and obser-
vation was successfully improved to 17 W m−2 (65 W m−2 :
open-loop). Data point holding a large discrepancy with ob-
servation (i.e. to discardxa

t if |xa
t −Hbreb|>10 W m−2) was

excluded, when it was inversely tracked back to initialZom
ensemble pool as shown in following parameter estimation
(Sect. 3.2).

3.2 Parameter estimation

Based upon previous Gaussian error propagation analysis
that demonstrated relatively less interfered and exclusive re-
lationship between sensible heat flux and roughness param-
eters, aerodynamic roughness input ensemble members cor-
responding to sensible heat EnKF final analysis were found
from ensemble pool. This ensemble member was consid-
ered the very approximate roughness parameter that pro-
duced EnKF final analysis. During pre-Monsoon period of
highly unstable and free convective time that sensible heat
is much greater than latent heat, only daytime unstable sen-
sible heat flux (>150 W m−2) was used to estimate aerody-
namic roughness (Prueger et al., 2004; de Bruin and Verhoef,
1997). Next, since aerodynamic roughness height is usually
scattered with a high standard deviation (Yang et al., 2008),
this study selected only the values the most frequently found
in ensemble member candidates. In Fig. 4, for example, on
day of year 132,Zom of 0.003 m on x-axis was the most fre-
quent (the highest number on y-axis) so that this number was
adopted as aerodynamic roughness height on day of year 132,
while Zom of 0.015 m on x-axis was the most frequent (the
highest number on y-axis) so that this number was assigned
as aerodynamic roughness height on day of year 163 (Yang
et al., 2008).

As shown in Fig. 5, resultant aerodynamic roughness
height reflected the vegetation effects being consistent with
the NDVI and LAI patterns and the bare soil condition in the
beginning of this experimental period. Time- variant rough-
ness showed a mean of 0.0098 m, and standard deviation of
0.0063 m, and range of minimum (0.0029 m) and maximum
(0.0186 m). This estimate was consistent with fixed literature
value for grasslands (0.01 m: Beljaars et al., 1983), but time
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Fig. 3.Daily average sensible heat estimated by EnKF final analysis
and true field (RMSE = 17 W m−2).
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variant. This was also agreeable with previous study carried
out with eddy covariance data over the Naqu site (Sun, 1999;
Yang et al., 2003).
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Fig. 5. Aerodynamic roughness height inversely tracked via EnKF.
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Fig. 5.Aerodynamic roughness height inversely tracked via EnKF.

3.3 Validation with heat flux outputs

Aerodynamic roughness height input found from sensible
heat EnKF final analysis was inserted into original SEBS
to examine its influence over heat flux estimation and en-
ergy source partitioning. Improvement of heat flux estimates
via this calibration was found especially on wet condition. A
large discrepancy among original SEBS model estimates, ob-
servation and estimation of this study was found around day
of year 180 during the summer Monsoon period, as shown
in Fig. 6. Here, original SEBS estimate was considered bi-
ased by incorrect estimation of aerodynamic roughness input
(Fig. 1). BREB observation also could contain some degree
of uncertainty stemming from assumption of energy balance
closure. However, it was considered that the error of original
SEBS before calibration of roughness parameter was consid-
ered bigger than a BREB approach. This is because, as shown
in Sect. 2.1, several uncertain BREB estimates were already
filtered out by five parsimonious criteria. In addition, BREB
estimates were validated with eddy covariance data obtained
previously (van der Velde et al., 2009). To avoid using uncer-
tain data, only sensible heat was used for data assimilation
and calibration, considering dry climate in this experimental
site. Finally, considering an increase in precipitation and sur-
face soil moisture during Monsoon period as demonstrated in
Fig. 7,latent heat estimates higher than original SEBS were
considered plausible, suggesting that approach in this study
successfully exhibited intermediate numbers between origi-
nal SEBS and BREB especially during Monsoon period (Li
et al., 2010; Margulis et al., 2002). Here, soil texture is less
likely to interfer with evaporation, because soil texture in
given site is known as loamy sand, not clay than might be
able to prevent latent heat activity. Thus, it was concluded
that heat flux estimation especially during the Monsoon pe-
riod was improved.

In detail, as shown in Fig. 6, newly estimated aerody-
namic and thermal roughness (0.1·Zom by approximation)
reported better RMSE (H : 34 W m−2, LE: 40 W m−2) with
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BREB heat flux observation than original SEBS RMSE (H :
65 W m−2, LE: 60 W m−2). Here, RMSE (34 W m−2) in sen-
sible heat was found to be slightly higher than the ensemble
Kalman final analysis previously reported in Fig. 3 (RMSE:
17 W m−2), because precedent values on previous time step
were assigned when no optimal aerodynamic parameter (as
Not A Number) was found in a given time step.

There are also various explanations for RMSE in latent
heat (RMSE: 40 W m−2). First, Gaussian error propagation
analysis has previously shown that latent heat is affected by
several other roughness input parameter errors. In addition,
small error in sensible heat can be propagated to latent heat
through SEBS model. In detail, overestimated thermal or
aerodynamic roughness height in original SEBS led to over-
estimated actual sensible heat (H ) by following Eq. (4) be-
low or underestimated aerodynamic resistance (ra) by Eq. (2-
10) or over-estimated wet sensible heat (Hwet) by Eq. (2-9)
(Su, 2005).

Tsur − Tair =
H

kU∗ρairCp

[
ln

(
z − d0

zoh

)
− 9h

(
z − d0

L

)
+9h

(zoh

L

)]
(4)

where,Tsur andTair are potential temperature for land sur-
face and air at the reference height.ψh is stability correction
function for sensible heat transfer, andL is Obukhov length
(Su, 2005).

Overestimated sensible heat could further give a rise to
underestimated relative evaporation (3r) by Eq. (2-7), and
evaporative fraction (3) by Eq. (2-6), and finally latent heat
by Eq. (2-5). This underestimated latent heat and overes-
timated sensible heat by roughness errors was demostrated
in Fig. 6 (original SEBS), while overestimated aerodynamic
roughness by original SEBS was shown in Fig. 1.

A dominant energy in the Tibetan Plateu is known as
sensible heat (Ma et al., 2009). However, this study antic-
ipated some change in energy partioning by vegetaion de-
velopment and elevated soil moisture during Monsoon (van
der Tol et al., 2009). By calibration in this study, it was pos-
sible to reasonably capture this change in energy partition-
ing during Monsoon period. It was found that latent heat
flux was approximately comparable to sensible heat during
Monsoon, suggesting both latent heat and sensible heat con-
tributed to energy source. It was thought that high sensible
heat (above 150 W m−2) developed convective activities in
atmospheric boundary layer (ABL) before Monsoon period,
resulting in Monsoon precipitation as a feedback (Ma et al.,
2009; Wen et al., 2010). This Monsoon precipitation further
elevated surface soil moisture (reached up to 0.3 m3 m−3 dur-
ing Monsoon, and dropped down to 0.05 m3 m−3 after Mon-
soon in Fig. 7). This indirectly increased latent heat again, but
slightly suppressed sensible heat during Monsoon, suggest-
ing some positive correlationship between surface soil mois-
ture and latent heat under given condition – i.e. temperature,
soil texture, vegetation, available surface soil moisture level

(dryness) and a frequency and quantity of Monsoon precipi-
taiton (Li et al., 2010; Margulis et al., 2002).

Another validation was carried out with eddy covariance
data over maize field at Landriano station, in Italy during
vegetation proliferation period (the beginning of July to the
middle of October), where atmospheric condition is mostly
unstable, and soil moisture is moderately high (0.25∼ 0.35)
(Baroni et al., 2010). Unlike previous BREB data in arid con-
dition, it was considered that both latent and sensible heat
fluxes made a contribution to uncertainty (to the same extent,
15∼ 20 % for both, Chavez et al., 2005) under wet condition.
Accordingly, both heat fluxes were assimilated by EnKF. For
a comparison, aerodynamic roughness formulated as a func-
tion of LAI and drag force by Olioso et al. (2002) showed a
mean of 0.32 m. One determined by a traditional wind profile
method including atmospheric stability correction on both
neutral and non-neutral condition reported a mean of 0.18 m
(Ma et al., 2008). Aerodynamic roughness inversely tracked
from heat flux EnKF final analysis illustrated an intermediate
value of 0.25 m as a mean and 0.04 m as standard deviation.

4 Conclusions

In heat flux estimation, aerodynamic roughness is a ma-
jor uncertain input. Unlike other parameters such as pres-
sure, land surface temperature or surface soil moisture, this
parameter can be indirectly estimated using eddy covari-
ance data, which covers only limited fetch size on a local
scale. However, due to measurement errors or some land
surface-atmospheric conditions not satisfying MOS assump-
tions, data are often inclined to be scattered with high stan-
dard variations. In a larger scale, a method using remotely
sensed vegetation index can be employed. However, this still
requires drag force input obtained from eddy covariance data,
and also can be applied to limited vegetation type, on account
of saturation problem of remote sensing. Non-linear MOS
equations are also used to estimate aerodynamic roughness
by iteration. However, this is a complicated procedure requir-
ing the accuracy of several other related parameters involved
in MOS theory.

Thus, this study demonstrated a simpler operational
framework to retrieve a parameter of aerodynamic roughness
via EnKF that affords non-linearity. This method demands
only single or two heat flux, depending on climatic character-
istics on site, instrument error and model error structure anal-
ysis. This study successfully adjusted the heat flux outputs
previously over or underestimated by original SEBS, allow-
ing more reliable interpretation for energy partitioning and
water cycle. Although sensible heat is a dominant energy, la-
tent heat was comparable to sensible heat during Monsoon.
Aerodynamic roughness estimated in this study was time-
variant, reflecting vegetation effects, and relatively indepen-
dent from remotely sensed VI saturation problem. This ap-
proach can be applied to region where eddy covariance data
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Fig. 6. Comparison in heat flux estimates: (a) sensible heat, (b) accumulated sensible heat, (c) latent heat, and

(d) accumulated latent heat.
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Fig. 7.Seasonal change in surface soil moisture measured at 5 cm in
depth and rainfall estimated by Chinese meteorological office. Soil
moisture measurement method was described by previous publica-
tion (van der Velde et al., 2009).

are not available. This may replace existing wind profile or
vegetation index approach as an alternative. Future work will
include some scale issues: the application of this approach to
a larger scale with heterogeneity. The forest area where it is
difficult to identify the vertical characteristics with remotely
sensed VIs is also an interest. Effect of observation update
regime – e.g. in case of satellite data with low temporal fre-
quencies – may be explored in future data assimilation study.
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Perez, P. J., Castellvi, F., Ibañez, M., and Rosell, J. I.: Assessment
of reliability of Bowen ratio method for partitioning fluxes, Agr.
Forest Meteorol., 97, 141–150, 1999.

Prueger, J. H., Kustat, W., Hipps, L. E., and Hatfield. J. L.: Aerody-
namic parameters and sensible heat flux estimates for a semi-arid
ecosystem, J. Arid Environ., 57, 87–100, 2004.

Reichle, H. R.: Data assimilation methods in the Earth sciences,
Adv. Water Resour., 31, 1411–1418, 2008.

Reichle, R. H., McLaughlin, D. H., and Entekhabi, D.: Hy-
drologic Data Assimilation with the Ensemble Kalman Fil-
ter, Mon. Weather Rev., 130, 103–114,doi:10.1175/1520-
0493(2002)130<0103:HDAWTE>2.0.CO;2, 2002.

Richter, K. and Timmermans, W. J.: Physically based retrieval of
crop characteristics for improved water use estimates, Hydrol.
Earth Syst. Sci., 13, 663–674,doi:10.5194/hess-13-663-2009,
2009.

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensem-
ble kalman filter:an alternative to ensemble sqaure root filters,
Tellus A, 60, 361–371, 2008.

Scanlon, T. M., Albertson, J. D., and Kustas, W. P.: Scale effects in
estimating large eddy-driven sensible heat fluxes over heteroge-
nous terrain, in: Remote sensing and Hydrology 2000, IAHS
Publ. no. 267, Proceedings of a symposium held at Santa Fe,
April 2000, Santa Fe, USA, 2001.

Su, Z.: The Surface Energy Balance System (SEBS) for estima-
tion of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100,
doi:10.5194/hess-6-85-2002, 2002.

Su, Z.: Estimation of the Surface Energy Balance. Encyclopedia of
Hydrological Sciences, John Wiley & Sons, Ltd., 2005.

Su, Z., Schmugge, T., Kustas, W. P., and Massman, W. J.: An evalua-
tion of two models for estimation of the roughness height for heat
transfer between the land surface and the atmosphere, J. Appl.
Meteorol., 40, 1933–1951, 2001.

Sun, F., Ma, Y., Ma, W., and Li, M.: One observational study on at-
mospheric boundary layer structure in Mt. Qomolangma region,
Plateau Meteorol., 256, 1014–1019, 2006.

Sun, F., Ma, Y., Li, M., Ma, W., Tian, H., and Metzge, S.: Bound-
ary layer effects above a Himalayan valley near Mount Everest,
Geophys. Res. Lett., 34, L08808,doi:10.1029/2007GL029484,
2007.

Sun, J.: Diurnal variations of thermal roughness height over a grass-
land, Bound.-Lay. Meteorol., 92, 407–427, 1999.

Timmermans, J., van der Tol, C., Verhoef, A., Verhoef, W., Su, Z.,
van Helvoirt, M., and Wang, L.: Quantifying the uncertainty in
estimates of surface-atmosphere fluxes through joint evaluation
of the SEBS and SCOPE models, Hydrol. Earth Syst. Sci. Dis-
cuss., 8, 2861–2893,doi:10.5194/hessd-8-2861-2011, 2011.

Tsuanga, B. J., Tsaia, J. L., Lina, M. D., and Chen, C. L.: Deter-
mining aerodynamic roughness using tethersonde and heat flux
measurements in an urban area over a complex terrain, Atmos.
Environ., 37, 1993–2003, 2003.

van der Tol, C., van der Tol, S., Verhoef, A., Su, B., Timmermans,
J., Houldcroft, C., and Gieske, A.: A Bayesian approach to esti-
mate sensible and latent heat over vegetated land surface, Hy-
drol. Earth Syst. Sci., 13, 749–758,doi:10.5194/hess-13-749-
2009, 2009.

van der Velde, R.: Soil moisture remote sensing using active mi-
crowaves and land surface modeling, Ph.D. thesis, ITC disserta-
tion number 176, ITC, Enschede, The Netherlands, 2010.

van der Velde, R., Su, Z., Ek, M., Rodell, M., and Ma, Y.: Influence
of thermodynamic soil and vegetation parameterizations on the
simulation of soil temperature states and surface fluxes by the
Noah LSM over a Tibetan plateau site, Hydrol. Earth Syst. Sci.,
13, 759–777,doi:10.5194/hess-13-759-2009, 2009.

Weaver, H. L.: Temperature and humidity flux-variance relations
determined by one-dimensional eddy correlation, Bound.-Lay.
Meteorol., 53, 77–91, 1990.

Wen, L., Cui, P., Li, Y., Wang, C., Liu, Y., Chen, N., and Su, F.: The
influence of sensible heat on Monsoon precipitation in central
and eastern Tibet, Meteorol. Appl., 17, 452–462, 2010.

Whitaker, J. S. and Hamill, T. M.: Ensemble data assimilation with-
out perturbed observations, Mon. Weather Rev., 132, 1590–1605,
2002.

Wieringa, J.: Updating the Davenport roughness classification, J.
Wind Eng. Ind. Aerodyn., 41–44, 357–368, 1992.

Yang, K., Koike, T., and Yang, D.: Surface flux parameterization in
the Tibetan plateau, Bound.-Lay. Meteorol., 116, 245–262, 2003.

Yang, K., Koike, T., Ishikawa, H., Kim, J., and Li, X.: Tur-
bulent flux transfer over bare-soil surfaces: Characteristics
and parameterization, J. Appl. Meteorol. Clim., 47, 276–290,
doi:10.1175/2007JAMC1547.1, 2008.

Yang, P., Chen, Z., Zhou, Q., Zha, Y., Wu, W., and Shibasaki, R.:
Comparisons of MODIS LAI products and LAI estimates derived
from Landsat TM, Geoscience and Remote Sensing Symposium,
IEEE International Conference on 31 July 2006–4 August 2006,
2681–2684,doi:10.1109/IGARSS.2006.692, 2006.

Yao, Y., Liu, Q., Liu, Q., and Li, X.: LAI retrieval and uncertainty
evaluations for typical low-planted crops at different growth
stages, Remote Sens. Environ., 112, 94–106, 2008.

Zeng, X. and Wang, A.: Consistent Parameterization of Rough-
ness Length and Displacement Height for Sparse and Dense
Canopies in Land Models, J. Hydrometeorol., 8, 730–737,
doi:10.1175/JHM607, 2007.

Hydrol. Earth Syst. Sci., 16, 4291–4302, 2012 www.hydrol-earth-syst-sci.net/16/4291/2012/

http://dx.doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
http://dx.doi.org/10.5194/hess-13-663-2009
http://dx.doi.org/10.5194/hess-6-85-2002
http://dx.doi.org/10.1029/2007GL029484
http://dx.doi.org/10.5194/hessd-8-2861-2011
http://dx.doi.org/10.5194/hess-13-749-2009
http://dx.doi.org/10.5194/hess-13-749-2009
http://dx.doi.org/10.5194/hess-13-759-2009
http://dx.doi.org/10.1175/2007JAMC1547.1
http://dx.doi.org/10.1109/IGARSS.2006.692
http://dx.doi.org/10.1175/JHM607

