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Abstract. As an initial step in assessing the prospect of using
global hydrological models (GHMs) for hydrological fore-
casting, this study investigates the skill of the GHM PCR-
GLOBWB in reproducing the occurrence of past extremes
in monthly discharge on a global scale. Global terrestrial hy-
drology from 1958 until 2001 is simulated by forcing PCR-
GLOBWB with daily meteorological data obtained by down-
scaling the CRU dataset to daily fields using the ERA-40 re-
analysis. Simulated discharge values are compared with ob-
served monthly streamflow records for a selection of 20 large
river basins that represent all continents and a wide range of
climatic zones.

We assess model skill in three ways all of which contribute
different information on the potential forecasting skill of a
GHM. First, the general skill of the model in reproducing hy-
drographs is evaluated. Second, model skill in reproducing
significantly higher and lower flows than the monthly nor-
mals is assessed in terms of skill scores used for forecasts
of categorical events. Third, model skill in reproducing flood
and drought events is assessed by constructing binary contin-
gency tables for floods and droughts for each basin. The skill
is then compared to that of a simple estimation of discharge
from the water balance (P -E).

The results show that the model has skill in all three
types of assessments. After bias correction the model skill in
simulating hydrographs is improved considerably. For most
basins it is higher than that of the climatology. The skill is
highest in reproducing monthly anomalies. The model also
has skill in reproducing floods and droughts, with a markedly
higher skill in floods. The model skill far exceeds that of the
water balance estimate. We conclude that the prospect for us-
ing PCR-GLOBWB for monthly and seasonal forecasting of

the occurrence of hydrological extremes is positive. We argue
that this conclusion applies equally to other similar GHMs
and LSMs, which may show sufficient skill to forecast the
occurrence of monthly flow extremes.

1 Introduction

Global hydrological models (GHMs) that simulate land sur-
face dynamics of the hydrological cycle on a global scale
have developed rapidly over the past decades. GHMs are
comparable to land surface models (LSMs), such as H-
TESSEL (Pappenberger et al., 2011; Balsamo et al., 2009),
ISBA-SGH (Decharme and Douville, 2006), MOSES (Ged-
ney and Cox, 2003), NOAH (Ek et al., 2003), MATSIRO
(Takata et al., 2003) and SWAP (Gusev and Nasonova,
2003), which were introduced in general circulation models
(GCMs) to resolve the land component and provide realis-
tic lower boundary conditions on temperature and moisture
(Decharme and Douville, 2007). Although largely similar to
LSMs, GHMs focus more on modeling runoff and stream-
flow, as well as a more comprehensive representation of the
terrestrial hydrological processes. Examples are VIC (Wood
et al., 1992), WaterGap (D̈oll et al., 2003), LaD (Milly and
Schmakin, 2002), WBM (Fekete et al., 2002), and Macro-
PDM (Arnell, 1999). GHMs and LSMs have been widely
applied to estimate current and future continental runoff (Ni-
jssen et al., 2001a; Fekete et al., 2002; Milly et al., 2005),
to investigate the hydrological response to global warming
(Arnell, 2004; Nijssen et al., 2001b; Milly et al., 2005),
to study future projections of extremes in river discharge
(Hirabayashi et al., 2008; Lehner et al., 2006) and to assess
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freshwater availability (Alcamo et al., 2003; Islam et al.,
2007; Oki et al., 2001; V̈orösmarty et al., 2000; Van Beek
et al., 2011; Wada et al., 2011).

Given the capability of GHMs to quantify streamflow,
their relevance for integrated water resources management
of large river basins has been recognized (Refsgaard, 2001).
Reliable and timely forecasts of extremes in streamflow can
help mitigate flood and drought risks and optimize water al-
locations to different sectors and sub-regions. The applica-
tion of GHMs could be particularly promising for developing
regions of the world where no effective flood and drought
early warning systems are in place. However, up to now
large-scale hydrological models have rarely been used for
river flow forecasting, mainly because appropriate routing
of river discharge is not included, and forecasting systems
are limited to higher resolution national or regional domains
(e.g. the European LISFLOOD system with a grid resolution
of 5× 5 km; De Roo et al., 2000).

In this paper we investigate the skill of the global hydro-
logical model PCR-GLOBWB in reproducing the occurrence
of past extremes in the monthly discharges of 20 large rivers
of the world that represent all continents and a wide range of
climatic zones. The motivation for the paper is twofold. The
first objective is to present our evaluation of PCR-GLOBWB
as an initial step in assessing the prospect of using a GHM for
forecasting hydrological extremes. The second one is to iden-
tify a methodology that can serve as a benchmark verification
procedure for hydrological forecasting. This procedure uses
methods and skill scores that were developed primarily for
verification of meteorological forecasts.

Global terrestrial hydrology is simulated for a historical
period from 1958 until 2001, by forcing PCR-GLOBWB
with a meteorological data set produced by combining ERA-
40 reanalysis (Uppala et al., 2005) and Climate Research
Unit (CRU) data from the University of East Anglia (New et
al., 2000). The use of a historical meteorological dataset im-
plies that the hydrological forecasts are not affected by fore-
casting uncertainty in the forcing and the propagation thereof
with increasing lead times. In this sense, the results presented
here are indicative of the maximum skill that can currently be
achieved by this and similar GHMs given the associated er-
rors in forcing, discharge observations, model structure and
parameterization.

We assess the skill of PCR-GLOBWB in reproducing hy-
drological extremes in three ways. First, a general verifica-
tion of simulated hydrographs is carried out. Second, model
skill in reproducing significantly higher and lower flows
than the monthly normals is assessed by constructing cat-
egorical contingency tables and applying skill scores used
in meteorology for forecasts of ordinal categorical events.
Third, model skill in reproducing flood and drought events
is assessed by applying verification measures for forecasts
of binary events, where floods and droughts are defined in
terms of discharge values being higher or lower than dis-
charges associated with a given return period. The model

skill quantified in terms of these three sets of skill scores is
then compared with the skill obtained by a simple estimation
of discharge from the water balance (P -E) over each basin.

We use discharge observations from the Global Runoff
Data Center (GRDC) reference dataset which contains
monthly discharges for most basins. Consequently, the fore-
casting skill that we assess in this study is indicative for the
potential skill that could be achieved in monthly and seasonal
forecasting, rather than medium-range forecasting.

Among other studies in which the discharge simulations of
other GHMs and LSMs have been compared to discharge ob-
servations, the novelty of this work is to evaluate the ability
of a GHM in reproducing the occurrence of anomalous flows
and past flood and drought events with skill measures used
in verification of meteorological forecasts, in the prospective
context of operational hydrological forecasting.

The rest of this paper is set up as follows: Sect. 2 describes
the GHM PCR-GLOBWB, the historical simulation, the me-
teorological forcing as well as the discharge data used for
skill assessment. Section3 describes the assessment of skill
in reproducing hydrographs, anomalous flows and floods and
droughts. Results are presented and discussed in Sect. 4, fol-
lowed by conclusions in the last section.

2 Historical simulation

2.1 Hydrological model

PCR-GLOBWB (PCRaster Global Water Balance) is a hy-
drological model that simulates the terrestrial part of the
global water cycle (Van Beek and Bierkens, 2009; Bierkens
and Van Beek, 2009). It is coded in the high-level computer
language PCRaster for constructing environmental models
(Wesseling et al., 1996). PCR-GLOBWB is fully distributed
and operates on a regular grid with a cell size of 0.5× 0.5◦

(ca. 55 km squared at the Equator). Meteorological forcing
is applied on a daily time step and assumed to be constant
over the grid cell. Sub-grid variability is taken into account
in the representation of short and tall vegetation, open water,
different soil types, saturated area, surface runoff, interflow
and groundwater discharge.

PCR-GLOBWB is a “leaky-bucket” type of model that
calculates the water balance for every grid cell by tracking
the transfer of water between the atmosphere and the cell,
through stores within each cell, and laterally, as discharge,
from one cell to the next. The model calculates the storages
and fluxes of water, simulates the generation of runoff and its
propagation as discharge through the river network. Precipi-
tation falls either as snow or rain depending on atmospheric
temperature. It can be intercepted by vegetation and added
to the finite canopy storage, which is subject to open wa-
ter evaporation. Snow is accumulated when the temperature
is lower than 0◦C and melts when it is higher. Snow melt is
added to rain and throughfall; it is stored in the available pore
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Fig. 1.Selected catchments.

space in the snow cover, or reaches the top soil layer. Part
of this water is transformed into surface runoff and the re-
mainder infiltrates into the soil through two vertically stacked
soil layers and an underlying groundwater layer. Water is ex-
changed between these layers following Darcy’s law and the
resulting soil moisture is subject to evapotranspiration. The
remaining water contributes to lateral drainage as interflow
from the soil layers or baseflow from the groundwater reser-
voir. The total drainage which consists of surface runoff, in-
terflow and baseflow is routed through the drainage network
of rivers, lakes and wetlands, based on DDM30 (Döll and
Lehner, 2002), using the kinematic wave approach. An ex-
tensive description of PCR-GLOBWB can be found in Van
Beek and Bierkens (2009) and Van Beek et al. (2011).

2.2 Meteorological data set

The meteorological variables required to force PCR-
GLOBWB are daily values of precipitation, evapotranspira-
tion and temperature. In the absence of direct estimates of ac-
tual evapotranspiration, the model can be forced with values
of potential evapotranspiration calculated from temperature,
radiation, cloud cover, vapour pressure and wind speed.

In order to force PCR-GLOBWB with daily meteorolog-
ical data at 0.5◦ resolution, the monthly fields of the CRU
TS 2.1 data set (New et al., 2000) have been downscaled to
daily fields using ERA-40 reanalysis (Uppala et al., 2005).
Precipitation fields are downscaled multiplicatively while an
additive correction is used for temperature. Reference poten-
tial evapotranspiration is calculated first on a monthly basis,
based on monthly cloud cover and vapour pressure deficit
from CRU TS 2.1 as well as radiation and wind speed from
CRU CLIM 1.0 (New et al., 2002). Reference evapotranspi-
ration is converted to crop-specific potential evapotranspira-
tion using crop factors derived following FAO guidelines. Fi-
nally, potential evapotranspiration is downscaled multiplica-
tively to daily values using ERA-40 temperature fields. The
methodology used to calculate potential evaporation for the
different land surfaces in PCR-GLOBWB and the downscal-
ing of the meteorological data is described in detail by Van
Beek (2008). The resulting meteorological data set is limited

Table 1.Basins data.

Basin Area (km2) Q avg (m3 s−1) Length of records

Amazon 6 915 000 190 000 28 yr
Congo 3 680 000 41 800 26 yr
Mississippi 2 981 076 12 743 40 yr 9 months
Nile 3 400 000 2830 40 yr 7 months
Lena 2 500 000 17 000 24 yr
Parana 2 582 672 18 000 33 yr
Yangtze 1 800 000 31 900 31 yr
Mackenzie 1 805 000 10 700 16 yr 4 months
Volga 1 380 000 8060 24 yr
Niger 2 117 700 6000 21 yr 10 months
Murray 1 061 469 767 16 yr
Orange River 973 000 365 20 yr 3 months
Ganges 907 000 12 015 9 yr
Indus 1 165 000 6600 10 yr 6 months
Danube 817 000 6400 42 yr 10 months
Yellow River 752 000 2571 30 yr
Brahmaputra 930 000 48 160 5 yr 10 months
Rhine 65 638 2200 29 yr
Zambezi 1 390 000 3400 4 yr
Mekong 795 000 16 000 29 yr 5 months

to the period from 1958 to 2001 for which ERA-40 data are
available.

2.3 Simulated and observed discharge time series

The simulated discharge time series represent non-regulated
flow. Twenty large river basins are selected for comparison
of simulated and observed time series on the basis of three
criteria. The first one is to represent all the continents, a wide
range of climate zones and latitudes as well as a variety of
precipitation regimes. The second criterion is the availabil-
ity of observed monthly streamflow records for at least part
of the period 1958–2001. The third criterion is to focus on
developing regions which would benefit most from opera-
tional seasonal forecasting. Selected basins can be seen in
Fig. 1 (Sperna Weiland et al., 2010). Basin characteristics and
record length are presented in Table 1, adapted from Sperna
Weiland et al. (2010).

The discharge data for most of the selected basins are ob-
tained from the Global Runoff Data Center (GRDC, 2007).
When GRDC data are not available, records from the Global
River Discharge Database, RivDis 1.1 (Vörösmarty et al.,
1998) are used. The period of record for the discharge values
reported in the GRDC and RivDis databases varies widely
from basin to basin (Table 1). Simulated daily discharges for
the model grid cells corresponding to gauging stations are
aggregated into monthly values, since this is the temporal
resolution at which observed discharge data are available for
validation. The simulated and observed discharge time series
are used in the assessment of skill as described in the follow-
ing section.
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3 Skill assessment methodology

3.1 Measuring the skill in reproducing hydrographs

The performance of the model in hydrograph simulation is
assessed in terms of verification measures used in forecast-
ing of continuous variables, without applying thresholds. For
this assessment, the most commonly applied statistical mea-
sure, mean squared error (MSE) is calculated for each river
basin. In order to judge the predictive skill, the raw MSE
scores are transferred into MSE Skill Scores, (MSESS). The
MSESS provide a relative measure of the quality of the simu-
lation compared to the mean climatology as a low skill alter-
native method of estimation. Here climatology refers to the
long term mean of the available monthly discharge records
for each of the 12 months of the year. The MSESS is defined
as:

MSESS= 1−
MSE

MSE climatology
. (1)

The range of values that MSESS can take is [-∞, 1]; with
the maximum value of 1 indicating perfect skill; a value of 0
indicating a model skill equivalent to the climatology; and a
negative value implying that the model performs worse than
the climatology.

Additionally we use the coefficient of determination (R2)
and Nash and Sutcliffe’s coefficient of efficiency (NS), which
are often employed in the validation of hydrological models.
These coefficients provide a measure of the model skill rel-
ative to the long-term mean, and independent of the clima-
tology. NS takes on the values [-∞, 1] andR2 [0, 1], with
higher values indicating higher skill.

Bias due to errors in the meteorological forcing, discharge
records, model parameters, or simplifying assumptions, can
highly degrade the quality of the output of a hydrological
model (Hashino et al., 2007). This is true for our simula-
tions as well. We applied these skill measurement methods
on both non bias-corrected and bias-corrected simulation re-
sults. Verification with non bias-corrected data presents a
better reflection of potential shortcomings in the skill of the
GHM and provides the opportunity to compare our simula-
tions with the results of other studies which use non bias-
corrected data, such as the Water Model Intercomparison
Project (WaterMIP), which quantifies and explains the differ-
ences in the results of five GHMs and six LSMs (Haddeland
et al., 2011). Verification with bias-corrected data, on the
other hand, is relevant for the assessment of forecasting skill,
which is the ultimate purpose of this study. It provides an in-
dication of the maximum skill that can be achieved when the
systematic bias due to model errors or forcing is eliminated,
as is generally the case in operational forecasting.

In this study a simple method of a posteriori bias correc-
tion is carried out. It is true that an a priori correction by
basin-specific calibration has a stronger physical basis than
an a posteriori adjustment of the model output. On the other

hand, given the time, data and computational capacity re-
quired for model calibration, a simple post-processing has
the advantage of being far more straightforward and transpar-
ent. The post-processing method we employed is as follows:
bias is calculated for each pair of simulation and observation.
Calculated biases are grouped into 12 months of the year, and
a mean bias is calculated for each of these 12 months. Every
discharge value is corrected for the mean bias calculated for
the corresponding month of the year. The correction is done
by simply subtracting the mean bias for the corresponding
month from the simulated monthly discharge value.

3.2 Measuring the skill in reproducing anomalous flows

In order to analyze whether the model is capable of reproduc-
ing higher or lower flows than usual for a given month, the
discharge time series are transformed into categorical events
defined in terms of three categories of high, normal and low
flow. The analysis is carried out for two different sets of cat-
egories. For the first set, high flow is defined as discharge
values above the 75th percentile for the month in question;
normal flow between the 75th and the 25th percentile; and
low flow below the 25th percentile. For the second set, the
90th and the 10th percentiles are used. Thresholds are iden-
tified separately for simulated and observed discharge. This
approach eliminates any systematic under- or overestimation
in the simulations and thus removes the need for bias correc-
tion. The skill in simulating these three classes is assessed
by constructing categorical contingency tables and applying
skill scores for ordinal categorical events.

Here we use Gerrity Scores (GS) (Gerrity, 1992) which is
a subset of the Gandin and Murphy (GM) family of equi-
table scores for deterministic categorical forecasts (Gandin
and Murphy, 1992). The criterion of equitability is based on
the principle that random forecasts or constant forecasts of
the same single category receive a no-skill score (Murphy
and Daan, 1985). GM scores use a scoring matrix which rep-
resents the reward or penalty accorded to each pair of simula-
tion and observation on the contingency table. In contrast to
other equitable scores such as the Heidke skill score (Heidke,
1926), and Peirce’s skill score (PSS) (Haansen and Kuipers,
1965), the GM family considers differences in relative sam-
ple probabilities of categories when appropriating a reward
or penalty (Livezey, 2003). A correct forecast of a low proba-
bility category is rewarded more than that of a high probabil-
ity category. Likewise failure to forecast a rare event receives
a lighter penalty than a common event.

GS and LEPSCAT scores (Potts et al., 1996) are the two
subsets of the GM family that are appropriate for the specific
case of ordinal categories, defined as ranges of a continuous
variable such as discharge. In this study, GS are preferred
since they are recommended by Livezey (2003) for ordinal
categorical events, on the practical basis of being more con-
venient to use compared to LEPSCAT. GS provide higher
penalties as the discrepancy between simulated and observed
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Fig. 2.Discharge time series.

classes increase. For example a forecast of low flow receives
a heavier penalty when the observed flow is high, and a
lighter one when the observed flow is normal.

Table 2.Skill scores for reproducing hydrographs.

Basin
uncorrected bias corrected

MSESS R2 NS MSESS R2 NS

Amazon −4.92 0.55 −0.13 −0.29 0.79 0.75
Congo −3.83 0.27 −0.87 −0.35 0.64 0.48
Mississippi 0.40 0.77 0.68 0.72 0.85 0.85
Nile −31.51 0.59 −4.35 −4.38 0.57 0.11
Lena −7.81 0.62 0.52 0.40 0.97 0.97
Parana −2.10 0.48 −1.70 0.48 0.65 0.54
Yangtze −0.89 0.89 0.64 0.75 0.95 0.95
Mackenzie −10.51 0.62 0.11 0.33 0.95 0.95
Volga −0.81 0.58 0.51 0.50 0.86 0.86
Niger −81.30 0.11 −18.62 −6.75 0.32 −0.85
Murray −0.70 0.37 −0.45 0.32 0.48 0.42
Orange River 0.11 0.22 0.20 0.17 0.26 0.25
Ganges 0.33 0.90 0.90 0.47 0.92 0.92
Indus −1.63 0.12 0.12 0.08 0.69 0.69
Danube −0.04 0.68 0.38 0.50 0.76 0.70
Yellow River −1.98 0.77 −0.49 0.57 0.79 0.78
Brahmaputra −1.40 0.88 0.71 0.32 0.92 0.92
Rhine 0.57 0.72 0.65 0.74 0.79 0.79
Zambezi −1.49 0.16 −1.13 0.24 0.38 0.35
Mekong −0.61 0.85 0.82 0.13 0.90 0.90

This score takes on the maximum value of 1 for perfect
skill, and the value of 0 for no-skill. The value of GS for a
categorical forecast with K number of categories is given by
Eq. (2):

GS=

K∑
i=1

K∑
j=1

pij sij , (2)

where the relative sample frequencypij of each outcome on
the K× K contingency table is multiplied by the correspond-
ing scoring factorsij (i, j = 1, . . . ,K) from a scoring matrix
S with relative levels of rewards and penalties and summing
the values. The elementssij of the scoring matrixS is given
by Eq. (3):

S=


sii sij · · · siK
sji sjj · · · sjK

...
...

. . .
...

sKi sKK · · · sKK


sii = b

(
i−1∑
r=1

a−1
r +

K−1∑
r=i

ar

)

sij = b

(
i−1∑
r=1

a−1
r − (j − i) +

K−1∑
r=j

ar

)
;(1 ≤ i ≤ j ≤ K)

sji = sij

ai =

1−

i∑
r=1

pr

i∑
r=1

pr

pr =

K∑
j=1

prj

b =
1

K−1

.

(3)
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Table 3. Categorical contingency tables for 75th and 25th per-
centiles. o: observed, s: simulated, L: low flow, N: normal flow,
H: high flow.

 27

Table 3. Categorical contingency tables for 75th and 25th percentiles 642 

o:observed, s:simulated, L: low flow, N: normal flow, H:high flow   643 

Amazon  Parana  Murray  Yellow River 

o  
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 53 27 4  L 73 23 0 L 30 14 4 L 34 45 4

N 35 96 37  N 37 140 27 N 29 46 21 N 37 116 40

H 1 32 51  H 2 34 60 H 4 18 26 H 2 25 57

           
Congo  Yangtze  Orange River  Brahmaputra 

o 
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 24 40 8  L 76 20 0 L 32 26 1 L 6 6 0

N 16 101 51  N 21 141 19 N 38 76 10 N 9 29 7

H 1 14 57  H 0 29 66 H 5 28 26 H 2 7 4

           
Mississippi  Mackenzie  Ganges  Rhine 

o  
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 83 37 0  L 24 28 0 L 18 4 2 L 59 24 0

N 34 181 34  N 19 73 10 N 18 31 11 N 25 131 25

H 2 27 91  H 3 32 17 H 2 8 14 H 1 24 59

           
Nile  Volga  Indus  Zambezi 

o  
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 61 49 10  L 51 19 2 L 12 11 4 L 0 9 3

N 57 133 57  N 38 93 14 N 25 32 14 N 1 14 9

H 11 48 61  H 2 26 43 H 2 11 15 H 1 5 6

           
Lena  Niger  Danube  Mekong 

o  
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 26 39 6  L 11 40 15 L 92 35 3 L 41 36 7

N 14 103 28  N 6 72 52 N 34 182 38 N 24 119 43

H 2 29 41  H 2 25 39 H 2 38 90 H 7 27 49

 644 

3.3 Measuring the skill in reproducing floods and
droughts

Floods and droughts are regarded as simple binary events
defined as exceedences of threshold discharges. For some
rivers a monthly time scale may seem to be too coarse to cor-
rectly predict flood sizes. However, when we limit ourselves
to forecasting monthly flows in terms of binary events, these
will certainly be indicative for increased probability of floods
for large rivers. It can be seen in Appendix A that at gauging
station Lobith on the Rhine, throughout the years with avail-
able records during the period from 1815 to 2008, extreme
daily discharges almost always coincide with large monthly
discharges. When the annual maxima of daily discharge are
plotted against the monthly mean discharge of the month in
which this daily maximum occurred, resulting points cluster
along a straight line (see Fig. A1), with daily maxima higher
than monthly mean values as would be expected. Moreover,
Fig. A2 shows that for most of the years, the month in which
the annual maximum daily discharge occurred is also the
month of maximum monthly flow or directly precedes or
succeeds this month. Since the Rhine is the smallest of the
20 global rivers in this study, and given the fact that it has a
rather complex regime, one can infer that the same assump-
tion holds for other larger basins as well.
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Fig. 3.Bias-corrected discharge time series.
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Fig. 4. Reliability diagrams (different colors indicate different
months of the year).

Decision thresholds for a basin may be defined using var-
ious hydrological and economical criteria. A comprehen-
sive approach with verification over the full range of pos-
sible thresholds for each basin is beyond the scope of this
study. Therefore, a single set of decision thresholds for floods

Table 4. Categorical contingency tables for 90th and 10th per-
centiles. o: observed, s: simulated, L: low flow, N: normal flow,
H: high flow.

 28

Table 4. Categorical contingency tables for 90th and 10th percentiles 645 

o:observed, s:simulated, L: low flow, N: normal flow, H:high flow   646 

Amazon  Parana  Murray  Yellow River 

o  
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 18 18 0  L 21 15 0 L 6 17 0 L 9 27 0

N 16 228 20  N 25 291 8 N 17 115 13 N 17 253 18

H 0 19 17  H 0 12 24 H 1 12 11 H 0 15 21

           
Congo  Yangtze  Orange River  Brahmaputra 

o 
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 4 31 1  L 20 16 0 L 13 11 0 L 3 6 0

N 7 214 19  N 17 277 7 N 15 174 5 N 3 45 4

H 0 12 24  H 0 13 22 H 1 15 8 H 0 8 1

           
Mississippi  Mackenzie  Ganges  Rhine 

o  
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 25 23 0  L 4 19 0 L 6 5 1 L 18 16 0

N 18 360 15  N 10 149 2 N 10 70 4 N 17 252 9

H 0 15 33  H 0 12 10 H 0 6 6 H 0 13 23

           
Nile  Volga  Indus  Zambezi 

o  
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 16 29 3  L 12 10 0 L 1 11 0 L 0 0 0

N 31 332 28  N 24 213 5 N 9 84 9 N 0 35 13

H 1 31 16  H 0 13 11 H 0 11 1 H 0 0 0

           
Lena  Niger  Danube  Mekong 

o  
s L N H  o  

s L N H o  
s L N H o  

s L N H

L 3 21 0  L 0 22 2 L 25 23 0 L 15 20 1

N 8 211 21  N 4 181 29 N 23 373 22 N 8 250 23

H 1 17 6  H 1 14 9 H 0 22 26 H 0 25 11

 647 

and droughts common for all river basins is selected that
can reasonably distinguish between the usual and extreme
states of each basin. The flood and drought thresholds used
in this study correspond to 5-yr return periods for each river.
The discharges corresponding to the 5-yr flood and drought
events have been derived using the Annual Maximum Series
method.

The choice of 5-yr return periods for floods as well as
droughts is made on the basis of two considerations. On the
one hand, events with return periods of a few years do not
reflect the long-term variability, and do not represent unusu-
ally extreme states of a river. On the other hand, the limited
availability of discharge observations does not allow the esti-
mation of rare events beyond a fraction of the record length.
Five years in this case appears to be a practical return period
for the assessment of model skill in reproducing both types
of hydrological extremes observed in all basins, the record
lengths for which are given in Table 1. For the two basins
with the longest records, i.e. the Danube and the Mississippi,
we repeat the analysis for return periods of ten years.

Similar to the approach used in the construction of cate-
gorical tables described in Sect. 3.2, for the construction of
binary tables, the thresholds for observations and simulations
are identified separately in order to decrease the effect of any
systematic under- or overestimation. The skill in simulating
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Table 5.Gerrity skill scores in reproducing anomalous flows for 75th and 25th percentiles, and 90th and 10th percentiles.

Basin GS-75/25 GS-90/10 Basin GS-75/25 GS-90/10

Amazon 0.47 0.43 Murray 0.33 0.27
Congo 0.40 0.34 Orange River 0.34 0.39
Mississippi 0.63 0.57 Ganges 0.47 0.42
Nile 0.32 0.26 Indus 0.21 0.01
Lena 0.35 0.13 Danube 0.60 0.48
Parana 0.58 0.58 Yellow River 0.39 0.36
Yangtze 0.67 0.56 Brahmaputra 0.25 0.16
Mackenzie 0.29 0.28 Rhine 0.61 0.54
Volga 0.53 0.45 Zambezi 0.07 n.a.
Niger 0.15 0.12 Mekong 0.39 0.31

flood and drought events is assessed by constructing 2× 2
contingency tables and applying binary skill scores. Binary
contingency tables present the 2× 2 possible combinations
of simulated and observed event outcomes: hit, false alarm,
miss and correct rejection.

Equitable skill scores used in the verification of binary
forecasts are Heidke skill score (HSS) (Heidke, 1926),
Peirce’s skill score (PSS) (Haansen and Kuipers, 1965),
Gilbert’s skill score (GSS) (Schaefer, 1990) and odds ratio
skill score (ORSS) (Stephenson, 2000). As stated in Sect. 3.2,
the criterion of equitability is based on the principle that ran-
dom forecasts or constant forecasts of the same single cat-
egory receive a no-skill score (Murphy and Daan, 1985).
Two of these four equitable scores, namely HSS and GSS,
are markedly dependent on sample climate. Sample climate,
defined as the sample estimate of the unconditional proba-
bility of occurrence of an event, is purely a characteristic
of the observations with no direct relevance to skill assess-
ment (Mason, 2003). Since dependence on sample climate
makes a skill score unjustifiably sensitive to variations in ob-
served climate and therefore unreliable, HSS and GSS are
excluded in this study. The remaining two equitable scores
PSS and ORSS are independent of the sample climate and
recommended in several studies (McBride and Ebert, 2000;
Stephenson, 2000; G̈ober et al., 2004). However, ORSS is
also excluded because the presence of zero in any cell of
the contingency table renders this skill score inappropriate
(Livezey, 2003). PSS is preferred to other scores in this study
on the basis of these considerations.

The possible values of PSS are within the range [−1,
1] and its true zero-skill value is 0. Negative values imply
less skill than a random prediction. The PSS for floods and
droughts for each basin are calculated in terms of cell counts
of the relevant contingency tables according to the formula:

PSS=
a

a + c
−

b

b + d
, (4)

wherea,b,c andd represent the cell counts for each of the
possible outcomes of hit, false alarm, miss and correct rejec-
tion respectively.

3.4 Measuring added skill over a simple water balance
estimate

In order to demonstrate the added value of running a com-
plex hydrological model over a simple estimation of the wa-
ter balance, the MSESS (non-bias corrected), GS and PSS
are applied on an alternative set of monthly discharge val-
ues at the outlet of each basin. These discharge values are
computed as follows: monthly actual evapotranspiration (E)
is subtracted from the precipitation (P ) on a monthly basis,
then aggregated over the drainage network including down-
stream losses due to open water evaporation to obtain the
instantaneous monthly discharge. This estimate ofP -E in-
corporates the same information from the climatic forcing,
but ignores hydrological information on stores and fluxes that
lead to temporal and spatial redistribution. Skill comparison
of model results with this estimate shows the added value of
the routing and hydrology, while both suffer from the same
poor climatological forcing.

4 Results and discussion

4.1 Skill in reproducing hydrographs

The results of the historical simulation and observed dis-
charge time series for the selected rivers are presented in
Fig. 2 for visual inspection. The difference between the sim-
ulations and observations can be attributed to several er-
rors such as those in the meteorological forcing, discharge
records, model parameters, or simplifying assumptions. The
possible model errors are discussed in depth in Van Beek and
Bierkens (2009) and Van Beek et al. (2011).

Three groups of rivers present a large discrepancy between
the simulations and observations. The first group is the Arctic
rivers, such as the Lena and Mackenzie, and snow and glacier
dominated rivers such as the Indus. Undercatch in the CRU
snowfall amounts reported by Fiedler and Döll (2007) results
in a large underestimation of the spring discharge after the
start of snowmelt. The second group consists of those basins
with heavy regulation and large amounts of withdrawal for
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Table 6. Binary contingency tables for floods and droughts. o: ob-
served, s: simulated.

 30

Table 6. Binary contingency tables for floods and droughts  651 

o:observed, s:simulated 652 

Flood  Drought   Flood  Drought 

Amazon   Parana 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 4 5  yes 4 6   yes 11 6  yes 0 17

no 5 322  no 3 323   no 7 372  no 13 366

                

Congo   Yangtze 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 3 6  yes 0 5   yes 4 0  yes 5 5

no 3 300  no 10 297   no 2 366  no 2 360

                

Mississippi   Mackenzie 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 7 3  yes 7 11   yes 1 0  yes 0 4

no 3 476  no 11 460   no 3 202  no 7 195

                

Nile   Volga 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 5 6  yes 1 49   yes 2 1  yes 2 6

no 8 468  no 11 426   no 3 282  no 4 276

                

Lena   Niger 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 2 4  yes 0 1   yes 1 6  yes 0 31

no 3 279  no 5 282   no 3 252  no 6 225

 653 

 31

 654 

Flood  Drought   Flood  Drought 

Murray   Yellow River 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 5 9  yes 2 25   yes 6 6  yes 2 6

no 4 174  no 2 163   no 3 345  no 7 345

                

Orange River   Brahmaputra 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 1 1  yes 4 13   yes 1 0  yes 1 2

no 4 236  no 12 213   no 0 69  no 0 67

                

Ganges   Rhine 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 1 2  yes 0 3   yes 3 2  yes 5 9

no 2 103  no 2 103   no 3 340  no 6 328

                

Indus   Zambezi 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 1 2  yes 0 15   yes 0 0  yes 0 0

no 1 122  no 2 109   no 1 47  no 1 47

                

Danube   Mekong 

o     
s yes no  o     

s yes no   o     
s yes no  o     

s yes no 

yes 7 7  yes 4 7   yes 2 3  yes 2 6

no 6 494  no 6 497   no 4 344  no 9 336

 655 

Table 7.Peirce’s skill scores for floods and droughts.

Basin PSS-f PSS-d Basin PSS-f PSS-d

Amazon 0.44 0.40 Murray 0.36 0.07
Congo 0.33 0.00 Orange River 0.50 0.24
Mississippi 0.70 0.39 Ganges 0.33 0.00
Nile 0.45 0.02 Indus 0.33 0.00
Lena 0.33 0.00 Danube 0.50 0.36
Parana 0.65 0.00 Yellow River 0.50 0.25
Yangtze 1.00 0.50 Brahmaputra 1.00 0.33
Mackenzie 1.00 0.00 Rhine 0.60 0.36
Volga 0.67 0.25 Zambezi n.a. n.a.
Niger 0.14 0.00 Mekong 0.40 0.25

irrigation and consumption, such as the Murray, Zambezi and
Parana. The routing scheme in the current version of PCR-
GLOBWB simulates natural discharge and does not include
reservoir operations and withdrawals. Therefore the simu-
lated natural flow on these heavily regulated rivers is in dis-
agreement with the measured discharge. Although it is one of
the most heavily regulated rivers, the Nile does not show this
discrepancy since measurements of natural flow upstream of
the High Dam is available for comparison. The last group
consists of rivers in the tropics, which show either overesti-
mation as in Africa, or underestimation as in the Amazon.
This is mostly attributable to the low station coverage over
the tropics in the CRU dataset and to a lesser extent poor pre-
cipitation forecasts in ERA-40 (Troccoli and Kalberg, 2004).

The improvement in predictive skill due to the correction
of bias can be seen on the discharge time series before and
after the bias correction (Figs. 2 and 3), as well as the relia-
bility diagrams (Fig. 4). It can be observed from these fig-
ures that bias correction highly improves the results. This
improvement is documented quantitatively in Table 2, which
shows the MSE skill scores for the selected basins, both be-
fore and after the bias correction. Table 2 shows that without
a bias correction, the MSESS for the majority of basins are
negative. The improvement in the MSESS due to the cor-
rection varies widely, but is quite high in general, yielding a
skill higher than the climatology for most basins. The three
basins where the highest skill is observed are the Yangtze,
the Rhine and the Mississippi, with MSESS above 0.70. The
model performs worse than the climatology in four basins.
It is interesting to note that the three basins with the worst
performance, namely the Niger, the Nile, and the Congo
are all African rivers. The fourth basin with negative skill
is the Amazon. The relatively low skill in the Amazon and
other monsoon-dominated basins such as the Indus and the
Mekong can be explained to a certain degree by the fact that
for such basins the climatology is already a good estimate of
the expected discharge, so that it is difficult to perform better
than that. The relatively high values ofR2 and NS for these
basins, which are also presented in Table 2, indicate that
the model performance is not poor in monsoon-dominated
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basins, provided that it is evaluated using measures indepen-
dent of the climatology.

4.2 Skill in reproducing anomalous flows

A complete summary of the joint distribution of categorical
simulations and observations for the selected basins is pre-
sented in 3× 3 contingency tables (Tables 3 and 4). These ta-
bles provide the basis for the calculation of the Gerrity Scores
for each basin. As can be seen in Table 5, all the resulting
values of GS are positive, indicating that the model has skill
in reproducing categorical events. In general, GS values are
higher for reproducing the 75th and the 25th percentile flows
than for the 90th and the 10th, as the skill is expected to de-
crease for more extreme flow.

The same three rivers with the highest skill in simulat-
ing exact discharges, namely the Yangtze, the Rhine and
the Mississippi, have again the highest scores for categor-
ical events. The model performance in categorical simula-
tions for the African rivers the Niger, the Nile, and the Congo
is much better than in reproducing hydrographs. The lowest
skill among all the basins is observed for another African
river, the Zambezi, though still above the climatology. For
the Amazon, where the skill in reproducing hydrographs is
less than that of the climatology, we observe that the skill
in reproducing anomalous flows is rather high compared to
other basins. This shows that even in cases where the model
simulations are biased and do not outperform the climatology
in reproducing hydrographs, the skill in reproducing anoma-
lous flows can be relatively high.

4.3 Skill in reproducing floods and droughts

The 2× 2 contingency tables for flood and drought events for
the selected basins can be seen in Table 6. The PSS calculated
on the basis of these tables are presented in Table 7. The re-
sulting PSS show that the skill obtained by binary forecasts
of 5-yr floods and droughts is also higher than an unskilled
forecasting system. The system has a markedly higher skill
in forecasting floods compared to droughts.

Model structure and process descriptions explain the dif-
ference in skill in reproducing floods and droughts. Floods
are largely controlled by the rapid response of basins and
thus react almost directly to the above-average rainfall of the
forcing depending on the antecedent conditions. In contrast,
droughts or low flows represent the response of the hydro-
logical system to prolonged periods of below-average rain-
fall. As such, they are more sensitive to the uncertainty in
model parameterization affecting processes such as the build-
up of soil moisture deficit, the depletion of the groundwa-
ter system by baseflow and the regulation of discharge by
reservoirs or changed withdrawal. With respect to baseflow,
PCR-GLOBWB contains a conceptual model to describe the
influence of lithology and drainage density. This model is
parameterized using global datasets but not calibrated. As a

consequence it can resolve the general trend but not all local
variations. Moreover, the simulated discharge in this study
is the natural one and regulation and consumption are not
considered. All in all, this makes droughts more sensitive to
model uncertainty, all the more so as the rank order of these
events can be less accurately assessed due to the relatively
larger variability of this phenomenon.

There are no basins where the model has a negative skill
score in reproducing either floods or droughts; but for seven
basins, the PSS indicates no skill in reproducing droughts.
This is because the PSS takes on the value of zero when the
contingency table shows no hits. For some basins, the model
demonstrates perfect skill in reproducing floods. This is a
shortcoming of the skill score used. The score takes on the
value of one in cases where there are either no misses or no
false alarms. Yet, to be able to assign perfect skill, one would
expect the number of both misses and false alarms to be zero.

The skill assessment in reproducing 5-yr events is not ap-
plicable to the Zambezi for which the available discharge
record only covers four years (see Table 1). For this basin,
PSS is undefined due to the absence of any observed event.
The short length of the observed discharge records affects
the assessment of skill negatively for the Brahmaputra (five
years and ten months) and the Ganges (nine years; Table 1).

For the two basins with the longest records, i.e. the Danube
and the Mississippi, we have repeated the analysis for return
periods of ten years. The results, which are presented in Ap-
pendix C, show that for both basins, PSS in floods decrease
when the return period increases, as expected. For the Missis-
sippi, the PSS in reproducing 10-yr droughts is surprisingly
slightly higher than in 5-yr droughts. For the Danube, the
PSS in 10-yr droughts is zero since there are no hits on the
contingency tables.

Notwithstanding the problems related to limited observa-
tion lengths, skill in reproducing flood and drought events is
demonstrated.

4.4 Added skill over a simple water balance estimate

The added value of running a complex hydrological model
over a simple estimation of the water balance is demon-
strated by comparison of the skill scores MSESS (non-bias
corrected), GS and PSS for model simulated discharges and
for theP -E estimate. Skill scores for both model results and
for theP -E estimate are presented in Appendix B.

The results show that model skill by far exceeds that of the
P -E estimate in all cases. Skill comparison of model results
with this estimate shows the added value of the routing and
hydrology, while both suffer from the same poor climatologi-
cal forcing. In contrast, the monthly climatology of observed
discharge performs better than theP -E estimate as it is more
attuned to the actual climate, save for its anomalies, as well
as the regulation.
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5 Conclusions and recommendations

As an initial step in assessing the prospect of global hydro-
logical forecasting, we tested the ability of a global hydrolog-
ical model PCR-GLOBWB in reproducing the occurrence of
past extremes in the monthly discharge of 20 large rivers of
the world. We assessed the model skill in three ways: first
in simulating hydrographs, second in reproducing monthly
anomalies and third in reproducing flood and drought events.
The advantage of such a procedure is that it provides a more
detailed assessment of forecasting skill and an insight into
which types of forecasting are more promising.

Verification of non bias-corrected hydrographs reflects
model and forcing errors, thus providing the opportunity
for improvement. In addition it allows comparison with the
results of other studies which use non bias-corrected data.
Eliminating the systematic bias due to model errors or forc-
ing, on the other hand, provides an indication of the max-
imum skill that can be achieved in operational forecasting.
Simulations with PCR-GLOBWB are biased for most basins,
and the skill in reproducing hydrographs is lower than the ob-
served climatology. The model skill improves significantly
after a post-processing bias correction and surpasses the ob-
served climatology in most basins.

Results of the analysis indicate that the skill obtained in re-
producing monthly anomalies using non bias-corrected data
is higher than the climatology for all basins. The model also
has skill in reproducing floods and droughts, with a markedly
better performance in the case of floods. The model skill sur-
passess that of a simple water balance estimate in all cases.

Although simulated hydrographs may be biased and do
not always outperform the observed climatology even after
bias correction, higher skills can be attained in forecasting
the occurrence of monthly anomalies as well as floods. The
prospects for operational forecasting of monthly hydrologi-
cal extremes are thus positive. PCR-GLOBWB is similar to
other GHMs in model structure and parameterization; and the
forcing data is similar to those used in simulations with other
GHMs and LSMs. The performance of PCR-GLOBWB in
reproducing runoff is comparable to those of other GHMs
(Sperna Weiland et al., 2010; Wada et al., 2008) and to LSMs
(Sperna Weiland et al., 2011). Given these similarities we ar-
gue that our conclusion is valid for other comparable GHMs
and LSMs as well.

This assessment in retrospect is a preliminary one and it
shows a potential skill given the current GHM, with a meteo-
rological forcing based on observations. The true skill should
be assessed in forecasting mode using meteorological fore-
casts subject to uncertainty from numerical weather predic-
tion (NWP) models.

Appendix A

Correlation between annual maxima of daily and
monthly discharges at gauging station Lobith on the
Rhine
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Fig. A1. Annual maxima of daily discharge vs. corresponding
monthly mean flows.
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Fig. A2. The difference between the month in which the annual
maximum daily discharge occurred and the month of maximum
monthly flow.
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Appendix B

Table B1.Skill comparison of model results of routed streamflow and streamflow estimates based onP -E fields from the water balance.

Basin
MSESS GS PSSf PSSd

model estimate model estimate model estimate model estimate

Amazon −4.92 −21.03 0.47 0.18 0.44 0.66 0.40 0.00
Congo −3.83 −50.09 0.40 0.19 0.33 0.00 0.00 0.00
Mississippi 0.40 −6.69 0.63 0.11 0.70 0.00 0.39 0.14
Nile −31.51 −75 474.70 0.32 0.02 0.45 n.a. 0.02 0.00
Lena −7.81 −13.21 0.35 0.02 0.33 n.a. 0.00 0.03
Parana −2.10 −19.80 0.58 0.15 0.65 0.22 0.00 0.00
Yangtze −0.89 −4.35 0.67 0.23 1.00 0.33 0.50 0.00
Mackenzie −10.51 −12 285.40 0.29 0.04 1.00 0.00 0.00 0.00
Volga −0.81 −30.34 0.53 −0.01 0.67 0.00 0.25 0.03
Niger −81.30 −696.49 0.15 0.05 0.14 0.00 0.00 0.03
Murray −0.70 −13.63 0.33 0.04 0.36 0.00 0.07 0.00
Orange River 0.11 −2.58 0.34 0.08 0.50 0.00 0.24 0.01
Ganges 0.33 −14.04 0.47 0.06 0.33 n.a. 0.00 0.00
Indus −1.63 −3.26 0.21 −0.03 0.33 0.00 0.00 0.00
Danube −0.04 −15.17 0.60 0.13 0.50 0.00 0.36 0.02
Yellow River −1.98 −32.76 0.39 0.11 0.50 0.33 0.25 0.01
Brahmaputra −1.40 −2.25 0.25 0.12 1.00 n.a. 0.33 n.a.
Rhine 0.57 −2.40 0.61 0.35 0.60 1.00 0.36 0.00
Zambezi −1.49 −17.34 0.07 0.04 n.a. n.a. n.a. n.a.
Mekong −0.61 −8.85 0.39 0.19 0.40 0.00 0.25 0.07

Appendix C

Comparison of skill in reproducing 5-yr and 10-yr floods and
droughts for the Mississipi and the Danube

Table C1.Binary contingency tables and PSS for the Mississippi.
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