

1 **A regional and multi-faceted approach to postgraduate water education – the**
2 **WaterNet experience in Southern Africa**

3

4

5 **SUPPLEMENT**

6

7 **Integrated Water Resources Management for Improved Rural Livelihoods in the**
8 **Limpopo River Basin (Limpopo PN17).** (Source: Ncube et al., 2010 and Kileshye-Onema et
9 al., 2011)

10

11 An integrated approach to water resource management is required to balance water for food and
12 nature but also to unlock pathways to sustainable development. The semi-arid Limpopo basin is
13 a hotspot area in terms of scarcity of water for food as well as poverty. Translating IWRM from
14 concept to action here poses a great challenge. Water institutions adopt a conventional blue
15 water framework, focusing on water supply for irrigation, domestic and industrial use. In semi-
16 arid regions such a water resource strategy has its limitations, though. Blue water resources for
17 irrigation are over-committed, while the bulk of agricultural produce sustaining lives of resource
18 poor farmers originates from green water flows in rainfed crop and livestock production.

19

20 IWRM is a systems approach to water management, based on the principle of managing the full
21 water cycle, including green water. The improvement in resilience that the IWRM approach can
22 impart to rural livelihood systems has been investigated and described by a series of case studies.
23 Community or catchment water resource assessments must become an essential precursor to
24 food security interventions, due to the convergence of water scarcity and food scarcity, and the
25 constraints that water resource availability impose on development initiatives in basins such as
26 the Limpopo (Love et al., 2006, 2010).

27

28 Access to green water in rainfed farming can be improved through a package of conservation
29 agriculture techniques. Conservation tillage methods, such as planting basins, help to
30 concentrate rainfall that falls in the field into the root zone of the crops and decreases runoff out
31 of the field (Ncube et al., 2009). Best results are obtained when such methods are combined
32 with fertility improvements such as manure, or micro-dosing with nitrogen fertilizer or with
33 measures such as mulching that improve the use of water by crops and also decrease
34 evaporation (Mupangwa, 2009). Yield improvements in rainfed farming translate very quickly
35 into major improvements in green water productivity (Ncube et al., 2007; Rockström et al.,
36 2007). The farming system's resilience is thus raised without industrial scale interventions.

37
38 Supplementary irrigation, using micro-catchment or runoff farming incorporates small-scale
39 utilization of blue water into rainfed farming. It thus represents a nexus between rainfed and
40 irrigated farming and conjunctive use of green and blue water. Studies in the Limpopo Basin
41 (Mwenge Kahinda et al., 2007; Magombeyi and Taigbenu, 2008) have shown that there is a
42 substantial yield gap which supplementary irrigation can bridge. This is particularly the case
43 especially during years with dry spells during the growing season, when conventional rainfed
44 agriculture may fail completely.

45
46 A multi-stakeholder approach to decision-making builds resilience as negotiation processes
47 between users result in new institutions, or new roles for existing institutions, such as school
48 boards which take over borehole management. Such institutions often evolve and revolve
49 around specific infrastructure (Mabiza et al. 2006). At the same time, these community-based
50 institutions need linkage to formal water management structures (Dzingirai and Manzungu,
51 2009).

52

53

54 **References**

55

56 Dzingirai, V., and Manzungu, E.: Towards an institutional model for water resources
57 management, 10th WaterNet/WARFSA/GWP-SA Annual Symposium, Uganda, 2009.

58 Kileshye-Onema, J.-M., Love, D., Sullivan, A., and Takawira, A.: Research for impact, an
59 approach on capacity development from the Limpopo Basin, 3rd International Forum on
60 Water and Food, November, Tshwane, South Africa, 2011.

61 Love, D., Twomlow, S., Mupangwa, W., Van der Zaag, P., and Gumbo B.: Implementing the
62 millennium development food security goals – Challenges of the southern African context,
63 Phys Chem Earth, 31 (15-16), 731-737, 2006.

64 Love, D., Uhlenbrook, S., Twomlow, S., and Van der Zaag, P.: Changing hydroclimatic and
65 discharge patterns in the northern Limpopo Basin, Zimbabwe, Water SA, 36(3), 335-
66 350, 2010.

67 Mabiza, C., Van der Zaag, P., Manzungu, E., and Ahlers, R.: Community based water resource
68 management Institutions: perspectives from the Mzingwane Catchment, Zimbabwe,
69 Paper presented at the WaterNet/WARFSA/GWP-SA Annual Symposium, 1-3
70 November, Lilongwe, Malawi, 2006.

71 Magombeyi, M.S., and Taigbenu, A.E.: Crop yield risk analysis and mitigation of smallholder
72 farmers at quaternary catchment level: Case study of B72A in Olifants river basin,
73 South Africa, Phys Chem Earth, 33, 744 – 756, 2008.

74 Mupangwa, W.: Water and nitrogen management for risk mitigation in semi-arid cropping
75 systems, PhD thesis. University of the Free State, South Africa, 2009.

76 Mwenge Kahinda, J.-M., Rockström, J., Taigbenu, A.E., and Dimes, J.: Rainwater harvesting to
77 enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe, Phys
78 Chem Earth 32, 1068-1073, 2007.

79 Ncube, B., Dimes, J., Twomlow, S., Mupangwa, W., and Giller, K.: Raising the productivity of
80 smallholder farms under semi-arid conditions by use of small doses of manure and
81 nitrogen: a case of participatory research, Nutr Cycl Agroecosys, 77, 53-67, 2007.

82 Ncube, B., Magombeyi, M., Munguambe, P., Mupangwa, W., and Love, D.: Methodologies and
83 case studies for investigating upstream-downstream interactions of rainwater water
84 harvesting in the Limpopo Basin, in: Humphreys, L (ed.), Proceedings of the Workshop
85 on Increasing the Productivity and Sustainability of Rainfed Cropping Systems of Poor,
86 Smallholder Farmers, Tamale, Ghana, 22-25 September 2008, The CGIAR Challenge
87 Program on Water and Food, Colombo, 209-221, 2009.

88 Ncube, B., Manzungu, E., Love, D., Magombeyi, M., Gumbo, B., and K. Lupankwa: The
89 Challenge of Integrated Water Resource Management for Improved Rural Livelihoods:
90 Managing Risk, Mitigating Drought and Improving Water Productivity in the Water
91 Scarce Limpopo Basin, CPWF Project Number 17: CGIAR Challenge Program on Water
92 and Food Project Report series, 2010. Available online at www.waterandfood.org.

93 Rockström, J., Wani, S., and Hatibu, N.: Managing water in rainfed agriculture, in: Molden, D.
94 (ed.), Water for Food, Water for Life: a Comprehensive Assessment of Water Use in
95 Agriculture, Earthscan, London, and the International Water Management Institute,
96 Colombo, pp315-348, 2007.

97