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Abstract. The present study aims at the evaluation of sources
of uncertainty in modelling of heat transport in a river caused
by the discharge coming from a cooling system of a de-
signed gas-stem power plant. This study was a part of an
Environmental Impact Assessment and was based on two-
dimensional modelling of temperature distribution in an ac-
tual river. The problems with the proper description of the
computational domain, velocity field and hydraulic charac-
teristics were considered in the work. An in-depth discussion
on the methods of evaluation of the dispersion coefficients in
the model comprising of all four components of the disper-
sion tensor was carried out. It was shown that in natural rivers
all components of a dispersion tensor should be taken into ac-
count to qualitatively reflect the proper shape of temperature
distributions. The results considerably depend on the 2-D ve-
locity field as well as hydraulic and morphometric charac-
teristics of the flow. Numerical methods and their influence
on the final results of computations were also discussed. All
computations were based upon a real case study performed
in Vistula River in Poland.

1 Introduction

A prerequisite for the construction of a new industrial plant
is an Environmental Impact Assessment (EIA), understood
as a formal process used to predict the environmental con-
sequences of any development project. In case of gas-stem
power plants, as part of the EIA, one needs to evaluate the
impacts caused by heated water discharged into a river. It is
rather obvious that the credibility of the computations per-
formed within EIA depends strongly on the available data.
In practice, however, such data is often of limited reliability,

yet quantitative results from relevant models are expected.
In other words, time constraints and lack of information re-
quire that the EIA must rely exclusively on expert skills and
opinions. Moreover, planning of additional measuring cam-
paigns during EIA may become impossible within the given
time. Therefore, the discussion of the usefulness of the ob-
tained results is of crucial importance. The authors aim to
share their experience in the use of an up-to-date model on
the spread of a warm water jet in a river in the light of scarcity
of proper data. It is quite a common practice that profes-
sionals gain personal experience, particularly with respect
to the models developed by themselves. Usually they have
good knowledge on how their parameters and boundary con-
ditions should be assigned to yield satisfactory results, and
at the same time they realise that their model may fail under
some circumstances. Evaluation of such circumstances con-
stitute, in fact, an empirical estimate of the uncertainty of the
simulated results.

Beven(2007a) claims that in non-ideal cases (i.e., nearly
all real applications) non-statistical (epistemic) uncertainties
may dominate. They are e.g., bias and nonstationarity in in-
put errors, model structural errors and commensurability er-
rors (where a variable or parameter in a model is differ-
ent to an equivalent quantity that can be measured in the
field). In practice, it is almost impossible to separate differ-
ent sources of aleatory (statistical) and epistemic uncertain-
ties unless very strong assumptions are made (Beven, 2007b;
Beven et al., 2011). Nevertheless, assessing the sources of
uncertainty with respect to the processes under study is cru-
cial for the analysis (e.g.Catari et al., 2011; Hughes et al.,
2011). Only a few sources of uncertainty, but those which
significantly influence the results, will be studied herein. It
is by no means a formal uncertainty analysis – even simple
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goodness-of-fit criteria cannot be applied because no ob-
served values are at our disposal to compare with the pre-
dicted dependent variables. In uncertainty analysis there are
obviously other possibilities, for example, with use of Monte
Carlo-type simulations that are capable of predicting model
output variability from a large number of deterministic model
runs, with input variables sampled from appropriate distri-
butions (e.g.Kochanek and Tynan, 2010; Scharffenberg and
Kavvas, 2011; Shen et al., 2012). The question arises, how-
ever, as to which distributions would be appropriate for the
particular case considered. Moreover, the computational ex-
pense of multiple model runs would definitely be too high.

One source of uncertainty is insufficient knowledge of the
analysed phenomena. In addition, we have to consider errors
introduced by the models used in the calculations, which al-
ways simplify the described phenomena. For various reasons
these models cannot take into account all the variables con-
trolling the phenomena, and usually simplifications are made
to make the problem practically solvable. Possible numerical
errors caused by the applied numerical algorithms have to be
considered as well.

The analysis of extreme cases, in which the natural envi-
ronment is endangered most, is very often considered in EIA
as the worst-case scenario, in other words, as the worst per-
formance among all scenarios that could be generated.

The present study is based on a case study aimed at build-
ing scenarios of the spread of heated water discharged from
a designed gas-stem power plant on the Vistula River be-
low Włocławek town (Kalinowska et al., 2012). Such heated
water constitutes an environmental problem in many situa-
tions and, therefore, is often called thermal pollution. It is
usually a side effect of power plants operations, chemical in-
dustries and other hydraulic engineering facilities using wa-
ter from rivers and open channels in the cooling process. We
encountered a number of problems significantly influencing
the credibility of the results, which motivated us to share this
experience with the readers. In the study, a two-dimensional
temperature field resulting from a warm water discharge was
sought.

2 Mathematical model of heat transport

When developing models there is always a trade-off between
retaining greater detail of the processes under study and de-
riving tractable equations. Inevitably, some details are sim-
plified in, or even excluded from, the models used in prac-
tice. Although, in general, the temperature distribution in
rivers should be described by the three-dimensional (3-D)
heat transport equation, its reductions to two (2-D) or even
one dimension (1-D) are considered in practice. The main
obstacles to use a 3-D approach is the lack of knowledge
of the realistic detailed 3-D velocity field and high compu-
tational expense. In the so-called mid-field region (stretch-
ing down the river until complete lateral mixing occurs) the

depth-averaged heat transfer models are relevant (Rodi et al.,
1981; Seo et al., 2010; Szymkiewicz, 2010):

h(x)
∂T (x, t)

∂t
= ∇ (h(x)D(x) · ∇T (x, t))

−∇ (h(x)v(x) · T (x, t)) + q(x, t); (1)

where:t – time,x = (x, y) – position vector,T (x, t) – depth-
averaged water temperature,h(x) – local river depth,v(x) –
depth-averaged velocity vector,D(x) – heat dispersion ten-
sor,q(x, t) – source function describing additional heating
or cooling processes. This equation represents the temper-
ature change in time due to heat flows: that is heat carried
with average velocity, carried by velocity fluctuations (tur-
bulent heat conduction), transmitted by the deviation of ve-
locity and temperature across the depth (dispersion of heat)
and heat flows to and from sinks and sources, respectively.

The dispersion tensor that appears in the equation due
to the depth-averaging represents an additional, significant
transport mechanism, which is not a physical process, but
only a consequence of averaging of the equation. By anal-
ogy with the turbulent heat exchange, it is assumed that dis-
persion flow is proportional to the average temperature gra-
dient (Rowiński, 2002; Rutherford, 1994). This proportion-
ality is determined by the so-called dispersion coefficients
(Dxx, Dxy, Dyx, Dyy). It is worth noting that similar molec-
ular and turbulent heat conduction coefficients are several or-
ders of magnitude smaller than the dispersion coefficients.
Usually the molecular coefficients are omitted and the tur-
bulent ones are either omitted or included in the dispersion
tensor.

Depth-averaging results in model simplifications. Water
in the rivers is usually well-mixed and the temperature is
nearly uniform from surface to bottom (Allan, 1995), but
nevertheless we should always remember that some vari-
ations caused by external factors (e.g., surface water tem-
perature exchange with the atmosphere, groundwater, etc.)
may occur. Sources and sinks of heat energy may play an
important role in Eq. (1), but in the case considered herein
we lacked information on these components. They embrace
the exchange with the atmosphere and with the groundwater
through e.g., shortwave and longwave radiation, latent heat
transport, ground heat flux, etc. To some extent we may as-
sume that these additional terms affect both the heated water
and the ambient water in more or less the same way, and
since we are interested in the difference between the temper-
atures in the river and in the warm water jet, the source term
may be neglected in the computations. But this simplifica-
tion is definitely a potential source of error that may arise in
computations. On the other hand, inclusion of this term with
guessed values could introduce more serious errors.
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3 Solution to 2-D heat transport equation

To solve the heat transport equation described in the previ-
ous section, we need to know: the geometry of the river, the
two-dimensional velocity field, the boundary and initial con-
ditions, the full dispersion tensor, and if we want to include
any additional sources (e.g., temperature exchange with the
atmosphere), substantial additional information is required
(like meteorological data). We may encounter serious prob-
lems in the process of data collection and acquisition which
frequently lead to simplifications affecting, to some extent,
the final solutions. When solving typical academic problems
(especially in laboratory), one usually tries to gather all nec-
essary data and consider all possible processes which affect
the solution. In real situations when dealing with EIA, such
an approach is often practically impossible. Measurements
of potentially necessary data are usually limited due to time
constraints, huge costs and many technical restrictions. Re-
cently Piotrowski et al.(2011) have analysed methods for
analysis of the fate of pollutants over long distances (far
field) for applications in ungauged rivers, i.e., where little
hydraulic or morphometric data are available. In the present
study, a different approach is proposed and it is limited to
the mid-field only. However, the obtained solutions have er-
rors that we should be aware of. We need to have in mind
what aspect is of crucial importance for the decision-maker
requesting the EIA and, in this regard, it may be sufficient
to show the possible range of the values of interest (and not
the precise numbers). Knowing the possible minimum, max-
imum and mean values we may be able to prepare realistic
scenarios (including the most significant extreme cases).

Below are discussed some problems that may be encoun-
tered in the preparation of a scenario of the spread of heated
water discharge from a power plant. Various aspects from an
actual EIA study (selected for the purpose of illustration) are
considered herein.

3.1 Problem considered

This study is based upon the computations of the spread of
the heated water discharged from a designed gas-stem power
plant located near Włocławek town on the Vistula River. The
variability of water temperature depending on four locations
of differently designed exit pipes was of particular interest
within the study. The water is supposed to be discharged with
a constant flow rate of 14 m3 s−1 and a temperature that is
7◦C higher than the temperature of the ambient water. The
adopted water flow in the river was the averaged low-flow:
Q = 334 m3 s−1. This is a condition with almost minimum
dilution of the heated water discharge and, hence, the largest
temperatures. The detailed description of the study area, the
discussion of the computations and final results may be found
in Kalinowska et al.(2012).

3.2 Geometry

The first problem is encountered already at the level of the
definition of the computational domain. This is a well-known
problem in hydraulic computations, but the problem is not of-
ten revealed by modellers when they publicise their results.
It is worth noting that characterisation of the computational
domain for natural rivers is a type of art even in 1-D situa-
tions when the 1-D velocity field is the main concern of the
modeller (see e.g.Rowiński et al., 2005b).

A particular problem in this study was related to an insuf-
ficient number of measured cross-sections, which required
special interpolation procedures to be used to generate con-
secutive transverse depth profiles for the model. Assuming
that cross-sections were carefully chosen accounting for all
the critical points (like river bends, dunes, river narrowness,
etc.), which obviously is not always the case, the bathymetry
and the computational grid can be described mathematically.
In the considered case 21 cross-sections of the Vistula River
(between the 690.250 and 718.200 km of the Vistula River)
were available. The problem with them was that they were
measured a relatively long time ago, namely in 1994. The
data obviously does not truly represent today’s situation. An
example of the variation in the bed elevation during an earlier
period (between 1971 and 1994) for a selected cross-section
is shown in Fig.1. This change is significant, being as large
as 2 m, and one may expect that equally significant changes
could have occurred after 1994 as well.

Since some preliminary computations showed that the
analysed stretch of the river may be reduced (transverse mix-
ing is faster than initially expected), only 9 cross-sections
were used for the final calculations. The average distance be-
tween the cross-sections turned out to be as large as approx-
imately one kilometre and obviously some of the variability
in bed elevations was omitted.

It is quite obvious that the number of the measured cross-
sections was too small for describing the shape of the river
channel adequately and, therefore, it was necessary to gen-
erate a topographic map and to create (by interpolating pro-
cedures) additional cross-sections before the final bed profile
and computational grid were produced. The two-dimensional
computational grid and the bed profile were prepared using
the CCHEMESH generator developed by NCCHE – Na-
tional Center for Computational Hydroscience and Engineer-
ing (Zhang, 2005a). This is a user-friendly mesh generator
for generating structured quadrilateral meshes based on the
bed topography and the bed elevation data. The grid was then
used to calculate the velocity field by means of the CCHE2D
model (Zhang, 2005b), also developed by NCCHE. A dif-
ferent type of grid was required by the River Mixing model
(RivMix), developed by the authors, used to compute the
temperature distribution (Kalinowska and Rowínski, 2008).
This is often the case when two different computational mod-
els are used. Then all necessary data have to be transformed
from the computational domain of one model to the domain
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Fig. 1. Selected cross-section of Vistula River with marked bed profiles in years 1971 and 1994. Significant changes at the bed profiles are
visible.

of the other one. This procedure should be performed care-
fully, because this is another stage where additional errors
may be introduced. Proper interpolation procedures – Delau-
nay interpolation (de Berg et al., 2008) – were used to trans-
form the data in the analysed case from one computational
grid to the other. In this way, a number of grids with differ-
ent grid steps have been prepared. For the final computations
and analysis presented in the paper a grid with step sizes of
1x =1y = 10 m was chosen. Such step sizes, together with
an appropriate choice of numerical method, gave us a fast
and sufficiently accurate solution in the considered situation.
Figure2 presents the resulting interpolated water depth on
the chosen grid.

The water depths were computed for the selected dis-
charge and water level elevation. It should be noted that any
change in these parameters would definitely affect the solu-
tions. In this case study, it was impossible to perform cal-
culations for different ranges of possible water levels and
discharges and, therefore, it was assumed to be sufficient to
carry out the calculations for a reasonably low water level to
capture the environmentally most severe situation.

It is also important to note the limitations of the two-
dimensional model. Since 2-D depth-averaged models can
be only used after the complete vertical mixing occurs, we
cannot interpret any results in the initial stage in the direct

neighbourhood of the discharge (so-called near-field zone).
According to the procedure proposed inJirka and Weitbrecht
(2005), this initial distance in the considered case reaches
about 75 m from the discharge site.

3.3 Velocity field

The knowledge of a relatively accurate two-dimensional ve-
locity field is a prerequisite to solve the two-dimensional heat
transport equation (Eq.1). In reality we usually do not have
enough measurements, especially when dealing with a 2-D
case; therefore, it is necessary to model the velocity profile.
There are numerous software packages available, but never-
theless it is essential to bear in mind that the solution of the
momentum equations is not straightforward. It is necessary
to know what kind of equations are solved in the applied
software and what kind of numerical algorithms are being
used. Then we may have some expectations on the resulting
errors. In the considered case the CCHE2D model – two-
dimensional depth-averaged, unsteady turbulent open chan-
nel flow was used (Altinakar et al., 2005; Jia and Wang, 2001;
Ye and McCorquodale, 1997; Zhang, 2005b). The model is
based on the depth-averaged Navier-Stokes equations. The
details of the velocity field are given inKalinowska et al.
(2012) and will not be discussed herein. However, one needs
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Fig. 2.The water depth for the considered reach of the Vistula River,
computed for the averaged low-flow discharge.

to remember that an accurate evaluation of the velocity field
is crucial for further computations and it is burdened with all
the problems that turbulence modelling bring, such as choice
of the so-called closure hypotheses, etc. The resulting veloc-
ity magnitude distribution is presented in Fig.3.

3.4 Initial and boundary conditions

The nature of differential equations means that one needs
to know, a priori the initial and boundary conditions for the
problem to be solved. In this study, an average natural river
temperature of the considered area was taken as the initial
condition. It was assumed that the depth-averaged 2-D river
temperature was the same within the entire domain area. We
do realise that in reality the river temperature may change in
space or in time due to day-night or seasonal changes. Taking
into account those changes would require yet more experi-
mental data. Since we are interested in the water temperature
distribution after the release of the heated water (more pre-
cisely: increase of the water temperature values), calculations
may be performed with regards to the relative temperature
(1T ) and may readily be scaled to the river temperature at a
given time of a day or a season.

In the considered case the continuous discharge of
14 m3 s−1 of water heated by 7◦C in relation to ambient wa-
ter was assumed in the computations. It was assumed that the
river bank had a temperature equal to the initial temperature
of ambient water, and the boundary conditions were defined
in a way such that the river water was not allowed to heat the
bank, but the bank could possibly cool down the water. Such
assumption was caused by the lack of information on the
bank temperature, but could locally influence the results. It

Fig. 3. The velocity magnitude for the considered reach of the Vis-
tula River, computed for the averaged low-flow discharge.

may particularly be important when the source of the heated
water is located on the river bank and the difference between
the bank and the source temperature is large.

There are numerous ways of discharging the heated wa-
ter to the river and finding those that minimise the environ-
mental impact is a key element of the EIA. Several options
were analysed in the study, varying according to the location
and method of discharge: a continuous point-like discharge
through a single nozzle or a continuous distributed discharge
through a series of uniformly spaced nozzles along a straight
exit pipe. Four of those variants – two point-like at different
locations and two distributed with exit pipe lengths of 14 and
28 m – were presented inKalinowska et al.(2012).

The numerical implementation of the discharge is again
only a poor approximation of the real conditions. Solving nu-
merically the heat transport equation, the continuous solution
domain has to be replaced with a discrete domain and the line
segment pipe within the considered grid is represented by
discrete points in the grid nodes located along the segment.
In case of the grid with steps of 10 m, the 14 m line segment
is represented by just 2 points (located near the beginning
and the end of the segment) and the 28 m line segment is rep-
resented by 3 points (near the beginning, the centre and the
end of the segment). Such approximations are obviously a
major simplification. An additional serious simplification is
made in the process of calculation of the effective temper-
ature (TE) at a relevant discharge site. Since the single grid
cell of dimension of1x by1y is the smallest fragment of the
river that we can consider, it was assumed that in such sin-
gle cell surrounding the point of discharge the heated water
mixed immediately with the river water. Taking into account
the volume of the river water and the heated water in the
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Table 1. The effective temperature in the single cell at the source
in case of the point-like continuous discharge located at point
Z = (1850, 775) for different sizes of grid cell.

1x =1y [m] TE [
◦C]

1 6.6
5 5.3
10 4.3
25 2.7

considered cell we calculated the effective temperature after
the discharge based on a simple expression:

TE =
QW TW + QZ TZ

Q
; (2)

where:TW – the temperature of the ambient water,TZ – the
temperature of the discharged heated water,QW – river flow
at the source,QZ – heated water flow at the source,Q –
the resultant (total, i.e.,QW +QZ) flow discharge. The river
flow discharge at a given point at the source was determined
by the relationship:

QW = hZ vZ 1x; (3)

where:hZ – the water depth at the source,vZ – water velocity
at the source,1x – grid spacing. Simple calculations show
that the effective temperature obviously depends strongly on
the assumed grid spacing, and the effective temperature nat-
urally tends to 7◦C when the grid size approaches zero (see
Table1).

The above assumptions involve no loss of generality – they
influence the results of the computations mainly in the close
surroundings of the discharge location, an area that cannot
be properly interpreted by the 2-D model anyway because
the processes here require a 3-D treatment.

3.5 Dispersion coefficients

Dispersion coefficients controlling the rate of mixing are es-
sential to solve Eq. (1) and at the same time their deter-
mination is extremely complex. In the general case using
Cartesian coordinates the dispersion coefficients form a non-
diagonal dispersion tensor with four dispersion coefficients:

D =

[
Dxx Dxy

Dyx Dyy

]
. (4)

Those four dispersion coefficients should be computed on
the basis of the so-called longitudinalDL and transverseDT
dispersion coefficients. It is crucial to compute the disper-
sion tensorD in the proper way, otherwise unrealistic results
may easily be obtained. The authors in their earlier stud-
ies (Kalinowska and Rowínski, 2008; Rowiński and Kali-
nowska, 2006) presented how erroneous ways of simplifying
the treatment of the dispersion tensor often met in literature,

Fig. 4. Distribution of temperature (1T ) in case of the point-like
continuous discharge in the middle of the channel along the cross-
sections located about 250 and 500 m from the discharge point:
I – with the proper method of the dispersion tensor computation;
II – with simplified method in which the off-diagonal elements of
dispersion tensorDxy andDyx are omitted; III – with simplified
method in which dispersion coefficientsDL andDT are treated as a
vector; IV – with simplified method in which the diagonal elements
of dispersion tensorDxx andDyy are simply replaced byDL and
DT, the off-diagonal elements are treated as 0.

result in misleading concentration distributions revealed both
in their shapes as well as the concentration values. In brief,
the proper way to obtain the full tensorD is rotation of a
diagonal tensorDD containing theDL andDT coefficients:

D = R(α) · DD · R−1(α); (5)

where:R =

[
cosα −sinα

sinα cosα

]
– rotation matrix,α – angle be-

tween the flow direction and x-axis,DD =

[
DL 0
0 DT

]
. There

are several erroneous ways of simplifying the tensor, but they
usually boil down to somehow neglecting the off-diagonal
components:Dxy,Dyx . Figure4 presents the distribution of
the relative temperature1T (the difference between the tem-
perature of ambient water and the actual river temperature)
in case of the point-like continuous discharge in the middle
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of the channel along the cross-sections located ca. 250 and
500 m from the discharge point. The results were obtained
for four different methods of computation of the dispersion
tensorD: using the proper method defined by Eq. (5) and
marked as I; using simplified methods marked as II (the
off-diagonal elements of the dispersion tensor are omitted),
III (dispersion coefficientsDL andDT are treated as a vec-
tor), and IV (the diagonal elements of dispersion tensorDxx

and Dyy are simply replaced byDL and DT, and the off-
diagonal elements are 0). The difference between the results
can be easily observed. The increase of the temperature in the
considered case in the middle of the channel is much bigger
(almost 3 times) when using the proper way of calculation of
the dispersion tensor (I), which could be very important in
case of an EIA. Also the mid-field zone is much larger in this
case. In case of the simplified method IV, the cloud of ther-
mal pollution is pushed to the left river bank. Detailed defi-
nition and analysis of the simplified methods can be found in
Rowiński and Kalinowska(2006).

Longitudinal and transverse dispersion coefficients depend
on many factors related to the geometry of the channel, dy-
namics and turbulence of the flow. Due to their significance
and difficulties associated with their determination these co-
efficients are subject of many discussions in literature, but
there are still a lot of questions and misconceptions concern-
ing their values. The best way of estimating the dispersion
coefficients for the actual river is a tracer experiment, but
usually in practical applications – since such an experiment
is expensive and time consuming – impossible to be carried
out. Moreover, the practice shows that tracer tests are fea-
sible in one-dimensional situations only and they allow for
the determination of just the longitudinal dispersion coeffi-
cients (Deng et al., 2001, 2002; Guymer, 1998; Kumar and
Dalal, 2010; Rowiński et al., 2008; Sukhodolov et al., 1998).
In cases when such tracer tests are not available, reliable esti-
mation of dispersion coefficients becomes extremely difficult
and can be a source of large uncertainty. Universal formu-
lae for these coefficients have been sought in many research
centres and they are usually related to the known hydraulic
parameters, such as averaged depthH , width B and velocity
U , shear velocityU∗ and the channel sinuosityS or the ra-
dius of curvatureR of the considered channel. The derived
formulae are of rather limited universality and often the for-
mulae working for one channel do not hold for others. An-
other problem for the modellers is that many papers propos-
ing or applying such formulae do not discuss their limita-
tions or ways of their determination. According to selected
review articles presenting expressions for transverse disper-
sion coefficients (e.g.Deng et al., 2001; Jeon et al., 2007;
Seo and Baek, 2008), the values ofDT for the considered
area of Vistula River are plotted in Fig.5. Bulk hydraulic
parameters were used in all formulae and one can readily
note differences that these various formulae produce. These
differences are caused by a number of factors. In principle
various formulae are constructed for different types of rivers

and flow conditions and they take into account different pro-
cesses and different variables. For example, the formula pro-
posed byFischer(1967) considers the transverse turbulent
diffusion only. The formula was built for an artificial uni-
form and straight channel with constant depth. Other for-
mulae take into account both the transverse turbulent diffu-
sion and the transverse dispersion. In the Rutherford formula
(Rutherford, 1994) it is assumed that the dispersion effect is
significantly larger than turbulent diffusion which is omitted.
Note also other problems that should be tackled when using
these formulae. Some of them include, for example, geomet-
rical parameters such as sinuosity index or curvature radius
of the channel. Those values are easily measurable in lab-
oratory conditions, but in natural rivers their determination
may become extremely difficult and not unique. Meanders
and bends may change significantly from one section to an-
other and then the values of the dispersion coefficients should
also change. Single values assumed for the whole river reach
may introduce serious errors. Moreover, in practice the di-
vision of the river reach into sections with constant sinuos-
ity may become intractable. The situation turns out to be not
much simpler when the mean river width or depth are taken
into account. In the considered case herein the average width
of the channel is about 400 m. The values ofDT coefficients
obtained with use of the average river width are presented in
Fig.5 in green. The geometry of the considered Vistula River
reach is such that at some cross-sections the river narrows to
300 m or even to 200 m. Then the values ofDT change and
these changes are revealed through the width dependence of
the various formulae (see Fig.5 blue and red bars).

In case of the longitudinal dispersion coefficientDL , the
number of formulae presented in literature is extremely large.
Wallis and Manson(2004) review and discuss many of them.
Numerous and successful attempts pertain also to other meth-
ods like, for example, artificial intelligence methods allow-
ing to estimate this coefficient on the basis of the known
hydraulic parameters (see e.g.Kashefipour et al., 2002; Pi-
otrowski et al., 2011, 2006; Rowiński et al., 2005c; Tayfur
and Singh, 2005).

It turns out that the differences between the values of the
obtainedDL , with use of different methods or expressions,
are larger than in case of the coefficientDT. The differences
in the obtainedDL values by means of various methods are
often one or more orders of magnitude. There is also an-
other crucial problem related to the basic definition of the
DL coefficient. The longitudinal dispersion coefficient ap-
pearing in 2-D equations is not the same entity as the lon-
gitudinal dispersion coefficient in 1-D equations and this fact
is very often forgotten in scientific considerations. The val-
ues of dispersion coefficients relevant in 1-D situations are
very often adopted to 2-D models which on one hand is of-
ten done unconsciously, and on the other hand is a practical
approach since usually only values for the 1-D approach are
available. This introduces additional and eventually quite se-
rious errors.

www.hydrol-earth-syst-sci.net/16/4177/2012/ Hydrol. Earth Syst. Sci., 16, 4177–4190, 2012
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Fig. 5. Transverse dispersion coefficient for the considered reach
of the Vistula River calculated using several formulae (taking into
account different hydraulic parameters). For the convenience of the
reader, the lower part of the chart is also presented in a different
scale.b – dimensionless parameter; lab and field – denotes a test
site (experiment performed in a laboratory channel or in a river).

Let us illustrate the above problem. In the case study con-
sidered in this paper there was no experimental data that
could be used to calibrate the model to obtain the proper val-
ues of theDL andDT coefficients. As expected, different re-
lationships for dispersion coefficient resulted in significantly
different values ofDL andDT. In the study the most general
relationship for dispersion coefficients (Czernuszenko, 1990;
Sawicki, 2003) was used:

D = ahu∗; (6)

where:D – longitudinal or transverse dispersion coefficient,
u∗ – bed shear velocity,a – dimensionless parameter that the-
oretically may assume values from a relatively large range.
Taking into account the reasonable maximum and minimum
values of the parametera (based on the experience gained
in similar rivers) we were able to analyse the environmen-
tally most severe cases, which is actually the main task of
an EIA. The most probable value ofa was also analysed

and presented in the study. The choice ofa is not free from
subjectiveness.

The value of the parametera is not the same for longitudi-
nal and transverse dispersion coefficients. Usually the ranges
of a for DL andDT are the following (e.g.Rutherford, 1994;
Sawicki, 2003):

30 ≤ DL
/
hu∗ ≤ 3000;

0.15 ≤ DT
/
hu∗ ≤ 0.9. (7)

Note the relatively large range of the parametera. In prin-
ciple the range for the longitudinal dispersion coefficient
(Eq.7) is provided for the 1-D case, but this range and espe-
cially the lower range, coincide with the values ofa for the 2-
D case. Since no information is available on the range in the
2-D case, the whole 1-D range is presented to cover a variety
of admissible situations. When detailed geometric and bathy-
metric data is provided (which is rarely the case), it might
be possible to obtain ranges of dispersion coefficients for 2-
D models (Piasecki and Katopodes, 1999). Unfortunately, in
the considered case (which is a frequent situation) the pro-
vided data is extremely scarce and we may work only with
anticipated values. On top of that, any averaging of the value
of h – either within the entire river reach or even between
two given cross-sections may introduce a substantial error.
Another problem of quite fundamental nature is the determi-
nation of the bed shear velocity (seeRowiński et al., 2005a).
In this study the bed shear velocity has been calculated based
on the following basic expression:

u∗ =

√
τ

ρ
; (8)

where:τ – total shear stress,ρ – water density, the calcu-
lation assumesρ = 1000 kg m−3. The distribution of the to-
tal bed shear stress was calculated with use of the CCHE2D
model based on the turbulent Reynolds stresses.

Since we do not know the value of the parametera for
the considered case in the present study, we conducted a
series of simulations for different values ofa. The vari-
ant with the point-like continuous warm water discharge of
14 m3 s−1, located in the middle of the channel has been
chosen to illustrate the problem. Figure6 presents the 2-D
temperature fields for three selected values of parametera

used to calculate the longitudinal dispersion coefficientDL
(a = 100,a = 500,a = 1000). Plots in the left column of Fig.6
present the temperature for the whole area under considera-
tion whereas plots in the right column zoom in on the area
surrounding the point of release. Note that the plots present
the relative temperature1T – the difference between the ac-
tual river temperature and the temperature of ambient wa-
ter. Figure7 allows for accurate quantitative analysis of the
differences between the distributions of water temperature
calculated for various parametersa at the cross-sections lo-
cated, respectively, at 100, 250 and 500 m from the point
of discharge. For the convenience of the reader, these cross-
sections are also marked in Fig.6 (right column). Note that in
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Fig. 6. Two-dimensional temperature distribution in case of continuous discharge of 14 m3 s−1 of warm water at pointZ1 = (1850, 800) for
different values of dimensionless coefficienta: 100 (top panels), 500 (middle panels) and 1000 (bottom panels).
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Fig. 7. Temperature distribution in case of continuous discharge of
14 m3 s−1 of warm water at pointZ1 = (1850, 800) for different
values of dimensionless coefficient across the cross-sections located
at 100, 250 and 500 m from the discharge.

case of large values of the parametera the temperature cloud
slightly propagates also upstream.

Visible differences in the results reveal the importance of
the selection of the dispersion coefficient. Therefore, poten-
tially extreme values ofa are considered to discuss the least
favourable variant that may occur in the river reach. In com-
parison to longitudinal dispersion the selection of the trans-
verse dispersion coefficient in the analysed case does not in-
fluence the results significantly and, therefore, computations
of different variants are not presented.

Further, similarly to previous work (Kalinowska et al.,
2012) the results of computations are presented for the
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Fig. 8. The longitudinal DL and transverse DT dispersion coeffi-
cients for the considered reach of the Vistula River, computed for
the local values of river depth and bed shear velocity.

mental fluid mechanics problems (see e.g. Ziemiański et al.,
2011).670

4 Conclusions

Mathematical models are suitable and powerful tools in En-
vironmental Impact Assessment whenever influence of new
hydraulic constructions on the natural environment have to
be considered. Those tools cannot of course replace relevant675

observations and measurements and in the light of lacking
data and impossibility of model calibration, understanding
of various sources of uncertainties are crucial for the assess-
ment of model credibility. This study was based upon an
investigation of the spread of heated water discharged into680

a river from a designed gas-stem power plant. It was anal-
ysed how model simplifications may influence the final re-
sults. Particular attention was paid to methods of evaluation
of dispersion coefficients. It was shown that in natural rivers
all components of a dispersion tensor should be taken into ac-685

count to qualitatively reflect the proper shape of temperature
distributions. Omission of the off-diagonal dispersion tensor
components may artificially lead to results which are better
from the EIA point of view, i.e. the heated water would cool
down more rapidly than in reality. Since the off-diagonal690

tensor components are obtained from the longitudinal and
transverse dispersion coefficients, their determination is cru-
cial for obtaining accurate results. Approximate values of
dispersion coefficients for Vistula River could be calculated
based on one of numerous phenomenological formulae, but695

only in-situ tracer tests (which are logistically extremely dif-
ficult and expensive) could eventually provide credible re-
sults. Taking into account possible extreme values of these
coefficients we are able to assess the most severe scenarios of
the spread of warm water. The situation in which the worst700

scenario would not meet acceptable environmental standards
might lead to carrying out measurements and/or tracer tests
to determine the dispersion coefficients for the given river
reach. The results depend considerably on the 2D velocity
field, hydraulic and morphometric characteristics of the flow,705

particularly the bed shear stresses. One should also be aware
of the choice of numerical method that might introduce un-
physical phenomena in the final results.
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Fig. 8. The longitudinalDL and transverseDT dispersion coeffi-
cients for the considered reach of the Vistula River, computed for
the local values of river depth and bed shear velocity.

longitudinal and transverse dispersion coefficients calculated
for a equal to 500 and 0.6, respectively, using the averaged
values of the water depth (1.53 m) and the bed shear velocity
(0.045 m s−1). In this case, the dispersion coefficients values
are: DL = 34.425 m2 s−1 and DT = 0.041 m2 s−1. In case of
using local values of the water depth and the bed shear ve-
locity the distributions of dispersion coefficients are not uni-
form and are presented in Fig.8. Note the differences in the
solutions obtained with use of the averaged and local values
of the depth and the bed shear velocities (see Fig.9). The
difference in results in the selected case is not significant.
The maximum difference between the results (bottom chart)
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Fig. 9. Two-dimensional temperature distribution results for continuous discharge of 14 m3 s−1 of heated water along a straight exit pipe,
14 m long, located near the left bank of the river in case of using averaged (left-top chart) and local values of depth and shear velocity
(right-top chart) for computing dispersion coefficients and difference between them (bottom chart). The beginning and end of the exit pipe
are located, respectively, at points:Z3B = (1730, 690),Z3E= (1740, 700).

is equal to 0.34◦C. But this may possibly change in case of
different hydraulic parameters.

3.6 Numerical solution

An important issue in the discussion of the model results is
the mathematical consistency between continuum and dis-
crete variants of partial differential equations used to rep-
resent the heat transport in a river. In academic studies an
important step would be to compare numerical solutions

obtained from calculations performed on successively re-
fined meshes or grids to a reference solution. In the case con-
sidered herein, the exact solution of the advection-diffusion
equations is not known to define such reference. There-
fore, geometrically simpler problems are considered to as-
sess the numerical solutions. In the evaluation of the numer-
ical methods applied the key problems to be assessed are
(Kalinowska and Rowínski, 2004, 2008): numerical diffu-
sion and numerical dispersion, instability and computational
requirements. The first one – numerical diffusion – results
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in faster spreading of thermal pollution. It is a well-known
effect, but since it may be difficult to observe in real appli-
cations, usage of numerical schemes that may generate such
errors has to be made with care. Numerical dispersion errors
may cause non-physical oscillations, but the effect is easier to
notice in the obtained results. The details of the errors arising
from the use of various numerical methods applied to Eq. (1)
are given inKalinowska and Rowínski(2007). In that study a
two-dimensional model of the spread of passive pollutants in
surface water – RivMix (which offers a choice of four differ-
ent numerical schemes) was used. RivMix was also used in
the current study, to model the thermal pollution, and an ac-
curate and fast Alternative Direction Implicit (ADI) method
was selected to solve Eq. (1). Following some preliminary
numerical tests, appropriate time step (1t = 1 s) and spatial
step (1x =1y = 10 m) sizes were chosen to ensure a suffi-
ciently fast and detailed solution. But before the time and
spatial steps were chosen several numerical tests had been
performed. The influence of the increasing model resolution
on the final results is a subject of many studies in environ-
mental fluid mechanics problems (see e.g.Ziemiánski et al.,
2011).

4 Conclusions

Mathematical models are suitable and powerful tools in En-
vironmental Impact Assessment whenever influence of new
hydraulic constructions on the natural environment have to
be considered. Those tools cannot of course replace relevant
observations and measurements and in the light of lacking
data and impossibility of model calibration, understanding
of various sources of uncertainties are crucial for the assess-
ment of model credibility. This study was based upon an in-
vestigation of the spread of heated water discharged into a
river from a designed gas-stem power plant. It was analysed
how model simplifications may influence the final results.
Particular attention was paid to methods of evaluation of dis-
persion coefficients. It was shown that in natural rivers all
components of a dispersion tensor should be taken into ac-
count to qualitatively reflect the proper shape of temperature
distributions. Omission of the off-diagonal dispersion tensor
components may artificially lead to results which are better
from the EIA point of view, i.e., the heated water would cool
down more rapidly than in reality. Since the off-diagonal ten-
sor components are obtained from the longitudinal and trans-
verse dispersion coefficients, their determination is crucial
for obtaining accurate results. Approximate values of disper-
sion coefficients for Vistula River could be calculated based
on one of numerous phenomenological formulae, but only in-
situ tracer tests (which are logistically extremely difficult and
expensive) could eventually provide credible results. Taking
into account possible extreme values of these coefficients we
are able to assess the most severe scenarios of the spread of
warm water. The situation in which the worst scenario would

not meet acceptable environmental standards might lead to
carrying out measurements and/or tracer tests to determine
the dispersion coefficients for the given river reach. The re-
sults depend considerably on the 2-D velocity field, hydraulic
and morphometric characteristics of the flow, particularly the
bed shear stresses. One should also be aware of the choice of
numerical method that might introduce nonphysical phenom-
ena in the final results.
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