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Abstract. Groundwater and surface water interactions within
riparian corridors impact the distribution of phreatophytes
that tap into groundwater stores. The changes in canopy area
of phreatophytes over time is related to changes in depth to
groundwater, distance from a stream or river, and hydrologic
soil group. Remote sensing was used to determine the lo-
cation of trees with pre-development and post-development
aerial photography over the Ogallala Aquifer in the central
plains of the United States. It was found that once the depth
to groundwater becomes greater than about 3 m, tree popula-
tions decrease as depth to water increases. This subsequently
limited the extent of phreatophytes to within 700 m of the
river. It was also found that phreatophytes have a higher like-
lihood of growing on hydrologic soil groups with higher sat-
urated hydraulic conductivity. Phreatophytes exist along por-
tions of the Arkansas River corridor where significant de-
creases in groundwater occurred as long as alluvium exists
to create perched conditions where trees survive dry periods.
Significant decreases (more that 50 %) in canopy cover exists
along river segments where groundwater declined by more
than 10 m, indicating areas with good hydraulic connectiv-
ity between surface water and groundwater. Thus, interpre-
tation of changes in phreatophyte distribution using histori-
cal and recent aerial photography is important in delineating
zones of enhanced recharge where aquifers might be effec-
tively recharged through diversion of surface water runoff.

1 Introduction

Groundwater is often tapped in the semiarid grasslands of the
world where limited precipitation and water demands often
exceed natural recharge rates. A case study for aquifer de-
pletion is the Ogallala Aquifer, which supports 30 % of the
irrigated agriculture in the United States. While groundwa-
ter provides a foundation to sustain agriculture, municipali-
ties, and industry through dry periods, long-term sustainabil-
ity challenges exist due to aquifer depletion. The species and
composition of riparian habitat along the rivers and streams
that overlie the Ogallala Aquifer in Western Kansas have
changed across pre-development to post-development condi-
tions. Since most riparian tree species use high quantities of
water, alteration of location and density may serve as an indi-
cator of changes in local water table. This study uses changes
in riparian trees to identify zones of groundwater/surface wa-
ter interactions.

Phreatophytes are plants capable of directly tapping into
the capillary fringe above groundwater stores and hy-
draulically redistributing water (Amenu and Kumar, 2008).
In Western Kansas, the two dominant phreatophyte tree
species are cottonwood (populous deltoids) and salt cedar
(Tamarisk). Cottonwood trees are typically found in flood
plains because they require floods to germinate (Nagler et al.,
2005). Cottonwoods have a maximum rooting depth of 2.6 m
(Canadell et al., 1996), their roots do not penetrate soils with
low hydraulic conductivity (Law et al., 2000; Cooper et al.,
2003), and they consume 0.62 m3 of groundwater per day
(Butler Jr. et al., 2007). Water use by tamarisk has been
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estimated to be as high as 0.76 m3 day−1 for a single tree
(Hoddenbach, 1987), though subsequent studies have shown
that actual water use per canopy area by tamarisk is compara-
ble to water use by cottonwoods (Owens and Moore, 2007).
Tamarisk maintains a high level of ET even during periods of
stress, and it is capable of tapping groundwater to depths be-
low 10 m (Busch et al., 1992; Cleverly et al., 2006). Tamarisk
also has the property that it is highly resistant to soil salin-
ity and accumulates salinity in its vicinity (Shafroth et al.,
2005).

The central plains region in the United States of Amer-
ica was largely devoid of trees prior to the mid-1800s due
to grazing by local wildlife, natural prairie fires, and win-
ter fuel burning during to the rise of the horse culture (West
and Ruark, 2004). Phreatophyte trees became established
as prairie fires and native grazing ceased due to conversion
of grasslands to agriculture. Irrigated agriculture began in
Kansas during the late 1800s using ditch irrigation and wind-
powered pumps. While centrifugal pumps were introduced in
the 1890s, these pumps required a water table no deeper than
20 feet to be effective. It was not until the 1940s that tech-
nology advanced far enough for pumping the deep Ogallala
Aquifer to become economically feasible, and after weather-
ing the Dust Bowl of the 1930s many farmers turned to irri-
gated agriculture (Opie, 2000). Groundwater resources were
appropriated through the 1980s to beyond sustainable rates of
natural recharge; this has lead to substantial groundwater ta-
ble declines and decreased streamflows in the Arkansas and
Cimarron Rivers in Western Kansas. We are studying how
these declines have caused a redistribution of phreatophyte
trees, reflecting the availability of a local water supply.

Previous studies have examined changes in groundwater
stores, the balance of groundwater recharge and pumping,
and sustaining the usable lifetime of the Ogallala Aquifer.
The rate of recharge to the Ogallala Aquifer is low and
beyond sustainable irrigation development in many regions
such as our study site (Sophocleous, 2005), although signifi-
cantly higher recharge occurs in other locations of the Ogal-
lala Aquifer, such as the Sand Hills of Nebraska (Szilagyi
et al., 2012). Recharge is limited through terrestrial ecosys-
tems due to thick loess soils holding water, which enables
dryland farming practices to store water in the soils during
fallow years and grow crops in subsequent seasons (Devlin
and Sophocleous, 2005). Steward and Ahring(2009) studied
the paths of water particles captured by cottonwoods near
Larned, Kansas and demonstrated how fields of trees are ca-
pable of siphoning groundwater stores from upper regions of
the aquifer.

Brunke and Gonser(1997) reviewed the connectivity be-
tween river and groundwater, viewing them as linked com-
ponents of the hydrologic ecosystem. Beneath any stream
or river, a hyporheic zone exists defined as “a saturated,
subterranean matrix of interstitial spaces characterized by
permanent darkness, low current velocities, and high sub-
strate stability.” The exchange process between groundwater

and surface water is influenced by the geological and an-
thropogenic genesis of the catchment area, hydrology, cli-
mate, and geomorphology. Rivers with lower elevation than
groundwater have baseflow from groundwater to surface wa-
ter that sustains rivers during dry seasons; rivers with higher
elevation serve as areas of enhanced infiltration to ground-
water. The direction and rate of flow in this exchange is
dependent on hydraulic head gradient and sediment proper-
ties (Brunke and Gonser, 1997). This process is temporal as
precipitation provides runoff and increased interflow, lead-
ing to higher surface water elevation that may infiltrate to
groundwater. Excessive pumping of an aquifer can lead to
colmation, which reduces the function of the hyporheic zone
and makes infiltration less likely even with the presence of
streamflow. Such reductions of infiltration cause the water
table to decrease even further, possibly killing off riparian
vegetation and increasing erosion (Brunke and Gonser, 1997;
de Rosnay and Polcher, 1998).

This study examines groundwater/surface water interac-
tions, and uses changes in the distribution of phreatophytes
to quantify hydrologic pathways and controls. Remote sens-
ing software was used to digitize tree locations, and GIS
tools were used to relate tree location with soil type, depth
to water, and distance to rivers. While several studies used
remote sensing approaches to investigate groundwater (Ah-
mad et al., 2005; Becker, 2006; Jiang et al., 2008; Münch
and Conrad, 2007; Rodell et al., 2007), none specifically em-
phasized phreatophyte distribution. The specific need to in-
corporate groundwater root uptake with remote sensing tech-
niques was articulated byWinsemius et al.(2008). This study
addresses the question: “Can we use changes in tree distribu-
tion to infer good recharge zones, which are needed to fill the
aquifer?”.

2 Methods

The distribution of phreatophytes that tap groundwater is
closely related to the depth to water since trees have lim-
ited capacity to uptake groundwater as depth increases. The
depth to water is obtained in ArcGIS by subtracting a 30 m
digital elevation model (DEM) from groundwater elevation.
This was accomplished using groundwater elevation at obser-
vation wells in Kansas available through the Water Informa-
tion Storage and Retrieval Database (WIZARD); this dataset
was used byMcGuire (2011) to map water level changes in
the High Plains. A raster map of water level was obtained
by kriging the elevation from wells in southwestern Kansas.
These wells represent all WIZARD wells that were mea-
sured during the recovery period after the cones of depres-
sion have recovered from yearly irrigation and before winter
pre-irrigation for the next year occurs (Steward et al., 2009).
Fluctuations in water level elevation caused by barometric
pressure on the order of fractions of meters (Butler Jr. et al.,
2011) were not specifically addressed, since the drawdown
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aerial photography is available.
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Fig. 1.The study region in southwestern Kansas and depth to water in 1965 and 2005, years for which aerial photography is available.

created by pumping over the 40 yr study period is on the or-
der of 10s of meters. The raster calculator in ArcGIS was
used to create a depth to water raster by subtracting the wa-
ter table elevation from the surface elevation provided by
the DEM. The resulting depth to water maps are illustrated
in Fig. 1 for 1965 and 2005. These years are important as
they represent pre-development conditions before consider-
able well development and more recent post-development
conditions. They also represent dates for which digital im-
agery is available. Note that depth to water is shallow along
the Arkansas River corridor in the northern portion of these
figures and along the Cimarron River corridor in the southern
portion.

The locations of trees along each of these corridors were
identified using aerial photography in the vicinity of each
river, as illustrated in Fig.2. Pre-development aerial pho-
tography was taken by theUSDA Commodity Stabilization
Service(1957) and theUSDA Agriultural Stabilization and
Conservation Service(1965, 1967). While complete sets are
not available for every year, the oldest complete set was used
for each county as follows:

– Hamilton County: September 1957;

– Kearny County: July 1965;

– Finney County: August 1957;

– Morton, Stevens and Seward Counties: May 1967.

We georeferenced each pre-development aerial photograph
to obtain a set of images that spanned each river corridor.
Post-development photography for every county is available
at the Kansas Geospatial Community Commons website.
This photography was taken by the Farm Service Agency
(FSA) National Agriculture Imagery Program, and is avail-
able in georeferenced MrSID format.

Fig. 2. The study sites and aerial photography along the Arkansas (1, 2 and 3) and Cimarron (4, 5 and 6)
Rivers.
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Fig. 2. The study sites and aerial photography along the Arkansas
(1, 2 and 3) and Cimarron (4, 5 and 6) Rivers.

Three study areas were selected in different counties along
each river to test the ability of remote sensing technology
to digitize tree locations. Emphasis was placed on selecting
study areas displaying differences in soil type, depth to wa-
ter, increase in depth to water, and tree distribution. These
study areas are identified in Fig.2. The soils data was down-
loaded from the Soils Data Mart created by the Soil Sur-
vey Geographic (SSURGO) Database for Hamilton, Kearny,
Finney, Morton, Stevens, Gray, Haskell, Seward, and Meade
Counties.
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Remote sensing software was used to create shapefiles
that show tree locations in each study area. At first, an en-
tire study area was attempted, achieving poor results. It was
noted that the software accurately determined tree locations
near the river, where trees were prevalent, but produced many
false positives away from the river, where trees were nonex-
istent. To fix this problem, the photographs were clipped so
that nothing beyond the boundary of the tree locations was
shown.

A class hierarchy was created to classify the aerial pho-
tography for pre-development conditions. Shrub and tree
classes were used to identify phreatophytes due to differ-
ences in canopy size and density. This helped to reduce
the number of false positives associated with having one
broad class. Classes were differentiated based on grayscale
color (pre-development photos are all black and white), near-
est neighbor, and homogeneity. For each class, the oper-
ator mean (arithm.) was used. The expression Gray-Level
Co-Occurrence Matrix (GLCM) Homogeneity (all dir.) was
added, and the expression standard nearest neighbor (gener-
ated) was also used, and the expression “similarity to class”
was applied to these two classes for best results. Several
samples were identified manually for each class, and then
the fuzzy nearest neighbor method (Keller et al., 1985) was
used to automatically classify the entire photograph based
on these samples. The specific parameters used in the re-
mote sensing software for multiresolution segmentation in
the pre-development photography are shape factor 0.5, com-
pactness 0.5, smoothness 0.5, and the scale parameter is 10
(sites 1, 2, 5, 6) or 20 (sites 3, 4). A sample of the multireso-
lution segmentation for pre-development is shown in Fig.3a.

The post-development photography was classified simi-
larly to the pre-development photography. The same param-
eters were used for multiresolution segmentation as in the
pre-development photography except that a scale parameter
of 10 was used for each study site except for site 2 where
5 was used. Due to differences between study areas such as
different-colored grass, varying tree thicknesses, etc., differ-
ent class hierarchies were created for different study areas.
Each class in all study areas used the operator mean (arithm.),
and the expressions GLCM Homogeneity (all dir.) and Stan-
dard Nearest Neighbor (generated). A sample of the poly-
gons depicting phreatophyte location for post-development
conditions is shown in Fig.3b.

Statistical analysis was conducted on the remote sensing
results for each study area to determine the accuracy of the
results. A sample size of 204 was chosen to be taken for each
study area. This was based on the formula for the binomial
probability theory:

N =
pq Z2

E2
=

85 × 15 × 22

52
= 204 (1)

whereN is the sample size,Z = 2 from the standard normal
deviate of 1.96 for the 95 % two-sided confidence level,p is

a 

(a) Predevelopment (1965)

(b) Post-development (2005)

Fig. 3. An example of the multiresolution segmentation (in study site 1) used to delineate phreatophyte
locations with aerial photography.
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(a) Predevelopment (1965)
a 

(a) Predevelopment (1965)

(b) Post-development (2005)

Fig. 3. An example of the multiresolution segmentation (in study site 1) used to delineate phreatophyte
locations with aerial photography.
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(b) Post-development (2005)

Fig. 3. An example of the multiresolution segmentation (in
study site 1) used to delineate phreatophyte locations with aerial
photography.

the expected percent accuracy of the entire map,q = 100− p,
andE is the allowable error.

Kappa (K̂) Analysis was used to assess the accuracy of
the remote sensing results. The procedure detailed inJensen
(2005) was followed. The calculated̂K values showed that
in most cases, moderate agreement existed between the clas-
sification map and ground reference. Tree locations were the
only classification that was important, so a second error ma-
trix was constructed combining all classifications other than
trees into one field. This provided a betterK̂ result in every
case.

The same techniques used to map phreatophyte locations
in the study areas were used to map phreatophyte locations
along the entire Arkansas River corridor from Hamilton to
Finney County, and the Cimarron River corridor from Mor-
ton to Seward County. Both pre- and post-development loca-
tions were mapped, and Kappa Analysis (Jensen, 2005) was
used to determine the accuracy of the results. For multires-
olution segmentation, all images used a shape factor of 0.5,
compactness of 0.5, smoothness of 0.5, and scale parameter
of 20. Ideally, the scale parameter should be lower, but due to
the size of the study areas, this number could not be reduced
without creating a memory error. A class hierarchy includ-
ing the operator mean (arithm.) with the expressions GLCM
Homogeneity (all dir.), Standard Nearest Neighbor (all dir.),
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Fig. 4.The distance from phreatophytes to the stream channel in the six study sites and the river corridors.

and Shape: Area Compactness (all dir.) was created for both
river corridors, pre- and post-development.

GIS software was used to create a polygon shapefile
for tree locations using the remote sensing output. Shape-
files were then created that included tree locations, soils
data, depth to water, change in depth to water (for post-
development shapefiles), and distance from a stream or river
in their attribute tables. The centerline of each river was dig-
itized for both pre-development and post-development, and
the total available soil area within 700 m of each river was
also calculated for the remote sensing results along the entire
extent of the river corridors. Soil area within 620 m of each
river was calculated at the six study sites. These distance val-
ues were chosen based on the extent of 95 % confidence in-
tervals calculated for tree distance to the river.

The statistical results presented in the next section were
weighted by the area of the polygons since some polygons
contained multiple trees. The weighted mean and weighted
standard deviation of depth to water and change in depth to
water were calculated for each case, and the weighted mean
and standard deviation of distance to a stream or river were
also calculated. The total areas of tree cover over hydrologic
soil groups A, B, C, and D were also calculated, where these
hydrologic soil groups are defined by theSoil Survey Divi-
sion Staff(1993).

For class A the saturated hydraulic conductivity is very
high or in the upper half of high and the internal free wa-
ter occurrence is very deep; class B has saturated hydraulic
conductivity in the lower half of high or in the upper half
of moderately high and free water occurrence is deep or
very deep; class C has saturated hydraulic conductivity in the
lower half of moderately high or in the upper half of moder-
ately low and internal free water occurrence is deeper than

shallow; class D has saturated hydraulic conductivity below
the upper half of moderately low, and/or internal free water
occurrence is shallow or very shallow and transitory through
permanent.

3 Results and discussion

The results from the remote sensing software and GIS spa-
tial analysis enables interpretation of the hydrologic con-
trols on phreatophyte distribution. The aggregate tree canopy
along the Arkansas and Cimarron River corridors are shown
in Table1. These results clearly illustrate a decrease in the
canopy area along each river from pre-development to post-
development conditions.

Not only did the total area of phreatophytes decrease, but
the trees also became more concentrated along the river chan-
nel. The distance from the river is plotted against a dimen-
sionless percent of canopy area for the six study sites and the
two river corridors in Fig.4. This data shows that a higher
percentage of trees were located near surface water in 2005
than in 1965. Along each river corridor, the river channel
consistently decreased in overall surface area and phreato-
phytes became concentrated near this smaller channel as il-
lustrated for a portion of study site 1 in Fig.3.

The average distance between trees and the river decreased
after development along the Arkansas River corridor, but
the standard deviation of distance increased, allowing for a
greater range of distances in the 95 % confidence interval.
Based on the results from study areas 1–6, this increase in
standard deviation is likely caused by the average distance
to the river increasing at the far western part of the corri-
dor, where the depth to groundwater did not decrease. This
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Table 1.The aggregate canopy area covered by phreatophytes along
the Arkansas and Cimarron River corridors.

Study area
Pre-development Post-development

canopy area canopy area

Arkansas River 1620 ha 1505 ha
Cimarron River 2097 ha 1336 ha

contrasts with a decrease in average distance to the river
along the rest of the corridor, where depth to groundwater
increased. The results are then further skewed because the
tree densities in the west are much greater than those in the
east.

The same is true along the Cimarron River, so it is easy to
presume that if Morton County were discounted, the decrease
in average distance to the river would be much more pro-
found. However, the average distance to the river increased
at study sites 5 and 6, while decreasing at study site 4. This
is the case because even though the water table has risen
at study site 4, streamflow has greatly decreased, allowing
new trees to grow in areas that the river used to flow, which
decreases the average distance to the river. At study sites 5
and 6, the trees did not redistribute closer to the river be-
cause the distance to groundwater beneath the river is greater
than 20 m, so there is no significant advantage for a phreato-
phyte to grow there. Most of the trees that were near the river
have died off, and there are almost no trees remaining. This
pattern of low tree numbers in regions with large depth to
groundwater is observed throughout much of the study re-
gion, and locations where phreatophytes continue to exist
with large drops in groundwater elevation suggest the pres-
ence of perched conditions in the river alluvium.

The distribution of root depth to groundwater along the
Arkansas and Cimarron River corridors and at the six study
areas is shown in Table2. In almost every case, trees in 2005
were located in areas with a greater depth to groundwater
than in 1965. When looking at the average depth to water
along the entire Arkansas and Cimarron River corridors, it
appears that as depth to water increases, the number of trees
decreases. However, this is not always the case, as evidenced
by study site 1 (Fig.2). As long as the water table remains
at a level that is easily accessed by the roots of the trees, the
trees will not die off with a decline in the water table, and
the number of trees can increase. Along much of the Cimar-
ron River corridor, the depth to groundwater has increased
greatly, while along the far western part of the corridor the
groundwater level increased. Most of the trees in the region
where the water table has lowered have died off, so almost all
of the trees along the Cimarron River corridor are clustered in
the zones of shallow water table. There is an increase in aver-
age depth to water because some trees still exist at locations
where the water table is very deep, and many new trees are lo-
cated in areas that have experienced increases in groundwater

Table 2. Weighed mean and standard deviation for depth to water
beneath phreatophytes.

Pre-development Post-development

Study area Mean
Standard

Mean
Standard

deviation deviation

1 1.4 m 0.8 m 2.1 m 1.0 m
2 1.1 m 0.9 m 12 m 1.1 m
3 1.0 m 0.5 m 19 m 0.3 m
Arkansas River 1.6 m 1.4 m 6.0 m 6.3 m
4 0.9 m 1.2 m 0.2 m 0.6 m
5 11 m 2.1 m 21 m 2.6 m
6 7.1 m 2.2 m 28 m 3.3 m
Cimarron River 3.5 m 4.9 m 8.8 m 14 m

level, but have a depth to water that is greater than what was
beneath the entire Cimarron River prior to development.

Canadell et al.(1996) found the maximum rooting depth
of cottonwood trees in a forest to be 2.6 m. The average depth
to water beneath tree canopy at study site 1 is less than 2.6 m
both prior to and post-development, so it seems that 2.6 m is
probably close to the threshold where cottonwoods will start
to die off with an increase in depth to water. This die-off trend
is certainly not linear, and the introduction of tamarisk fur-
ther complicates the prediction of tree die-off because stud-
ies have shown that water table depths have little to no ef-
fect on tamarisk, even at depths below 10 m (Cleverly et al.,
2006). In our study area, it was also found that areas with a
dense tree population (> 10 % tree cover) occurred where the
average depth to water ranged from 0.24–1.4 m. Areas with
moderate tree density (5–10 % tree cover) corresponded to an
average depth to water ranging from 2.1–19 m. Areas with a
low tree density (< 5 % tree cover) corresponded to an aver-
age depth to water ranging from 11–28 m (Ahring, 2009).

The areas of each hydrologic soil group were calculated
within 700 m of the rivers in each study area as shown in
Table3. This table also shows the pre-and post-development
percentage of land area under tree canopy for each study area.
Expected tree canopy areas were calculated by assigning an
equal percentage of total tree canopy area to each soil type,
based upon the percentage of the soil type located within
the study area. More trees were located on hydrologic soil
group A than would be expected if tree location were inde-
pendent of soil type in every case, and less trees were located
on soil group B. In some cases, trees were more likely to
be on soil groups C and D than expected, and in other cases,
fewer trees were on those soils than expected. However, trees
along both the Cimarron and Arkansas Rivers were more
likely to be located on soil group D post-development than
during pre-development. It is not apparent what would cause
this shift to soil group D because it has a low hydraulic
conductivity, but one could speculate that this soil group
might be more conducive to tamarisk, which has increased in
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Table 3.The percent of phreatophyte canopy area over soil classes in pre-development and post-development times.

Soil Group A Soil Group B Soil Group C Soil Group D Aggregate

Study area 1965 2005 Area 1965 2005 Area 1965 2005 Area 1965 2005 Area 1965 2005 Area

1 1.4 1.1 8.9 0.0 0.0 0.4 11.2 12.7 69.6 0.4 3.0 21.1 12.9 16.7 100.0
2 3.4 1.9 31.1 0.0 0.0 6.7 2.4 1.6 51.9 0.3 0.0 10.4 6.1 3.5 100.0
3 4.7 0.0 16.0 0.0 0.0 2.7 10.3 7.7 56.6 0.0 0.0 24.7 15.0 7.7 100.0
Arkansas River 2.8 3.4 20.0 0.2 0.4 14.0 3.2 2.4 50.0 0.9 1.2 16.0 7.0 7.4 100.0
4 6.2 8.5 57.7 0.5 0.7 42.3 0.0 0.0 0.0 0.0 0.0 0.0 6.6 9.2 100.0
5 1.8 1.0 99.9 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.0 100.0
6 2.5 0.7 64.7 0.4 0.4 34.7 0.0 0.0 0.6 0.0 0.0 0.0 3.0 1.2 100.0
Cimarron River 4.5 3.1 51.6 1.2 0.7 40.7 0.5 0.2 3.5 0.3 0.2 4.2 6.6 4.2 100.0

population since development and relies largely on ground-
water sources (Busch et al., 1992). It should be noted that
the canopy area along the Arkansas River shows an increase
from 7.0 to 7.4 % of the aggregate area over hydrologic soil
groups A, B, C and D, while Table1 shows a decrease
along this river. This is because many of the pre-development
trees were located on classes other than these soil groups
(e.g. some were located in the river).

Phreatophyte distributions can be used as indicators for
soil type, hydraulic connectivity, and depth to groundwater.
In Western Kansas, areas with good hydraulic connectivity
are of interest because it is not economically feasible to cre-
ate artificial recharge projects that use injection due to treat-
ment costs. This is the unfortunate case, since rivers in the
study region flow seldom if at all, and excess discharge above
authorized surface water rights does not exist as it does fur-
ther east near Wichita, Kansas, where Aquifer Storage and
Recovery is filling the Equus Beds Aquifer for the city’s mu-
nicipal and industrial needs. It would be feasible, however, to
route ditches over land with good hydraulic connectivity to
increase natural recharge. It is possible that phreatophyte lo-
cations could be used to indicate locations with good surface
water/groundwater connectivity because of the likelihood of
phreatophytes to be located on hydrologic soil group A. It
was found here that phreatophytes exist on all hydrologic soil
types, so enhanced areas of recharge must take into account
more than just the surficial soils.

Phreatophyte distributions are a good indicator of depth
to groundwater since a dense distribution of trees indicates
a shallow water table, while a sparse distribution indicates
a deep water table. The distribution of phreatophytes may
also be influenced by human activity (tree cutting) and
climatic conditions (flooding events); however, the occur-
rence of dead tree stands, interpretation of USGS gaug-
ing station data, and anecdotal evidence from conversations
with local stakeholders suggests that such forcings have
not significantly impacted phreatophyte distribution in the
study region. Figure5 identifies areas of high recharge by
quantifying the decrease or increase in phreatophyte canopy
area and changes in the depth to groundwater from pre- to
post-development. This figure was constructed by centering
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Fig. 5.The decrease (red) or increase (blue) in phreatophyte canopy
area between pre-development and post-development correlates
with changes in the depth to groundwater, and substantiates the oc-
currence of high recharge zones.

circles with 5 km radii along each river and computing the
change in canopy area over each river segment. The mean
change in groundwater elevation is tabulated for each class
of percent change in canopy in Table4.

Along the Arkansas River, pre-development phreatophytes
generally existed along a river corridor with mean depth to
water of 1.5 m or less. In general, phreatophyte concentra-
tions decreased substantially along river segments where the
depth to water decreased by more than 8 m, with an exception
in the central portion of Kearny County.

The phreatophyte distribution along the Cimarron River
shows the same patterns of increase in canopy area to the
west and east and decreases in the central portion of the study
region. Phreatophytes increased in areas where groundwater
remains within 1 m of land surface (note that negative values
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Table 4. The mean pre- and post-development groundwater eleva-
tion and the change in groundwater elevation are tabulated for each
class of % change in canopy area. Negative values indicate higher
groundwater than river elevation, and that baseflow conditions exist
from groundwater to surface water.

Mean groundwater elevation (m)

Canopy Arkansas River Cimarron River

change 1965 2005 Change 1965 2005 Change

< −50 % 0.3 16.6 16.4 7.3 24.8 17.5
−50–−25 % −0.1 8.7 8.8 8.1 30.0 21.9
−25–0 % 1.0 5.8 4.8 1.2 13.6 12.4
0–25 % 1.3 6.8 5.5 −9.8 −1.0 8.8
25–50 % 1.5 11.4 9.9 −6.4 −4.4 2.0
> 50 % 0.2 3.9 3.7 −9.1 −4.5 4.6

of depth to water indicate that groundwater is providing base-
flow to rivers). Phreatophytes decrease along the Cimarron
River where depth to water and change in groundwater ele-
vation both fell below 10 m.

Phreatophyte distribution is influenced by the occurrence
of streamflow. Along the Arkansas River, streamflow exists
in the western portion of the study area. Peak streamflows
in Kansas are now limited by reservoirs in Colorado, yet the
Arkansas River compact legally requires annual streamflow
releases from Colorado to Kansas. While the Arkansas River
is one of three publicly accessible rivers in Kansas, there has
been no measurable streamflow in the eastern portions of the
study region in many recent years. One reason for this is the
Bear Creek fault in Kearny County that serves as a conduit
for surface water to drain from the Arkansas River to the
Ogallala, and this along with unlined diversion ditches may
reduce streamflow. Gauging stations along the Cimarron in-
dicate that the river flows into Kansas and out of Kansas but
the river largely disappears throughout the central portion of
the study region.

It stands to reason that in areas where there is no regular
stream flow, tree locations could be used to indicate levels
with high potential for recharge. The Ogallala Aquifer was
too deep to support phreatophytes in pre-development con-
ditions and trees were located within river corridors. Along
much of the central portions of each river corridor, the declin-
ing groundwater tables have fallen below published depths
to which Kansas phreatophyte species are capable of surviv-
ing. In areas where there is large post-development depth to
water and little to no streamflow, the presence of phreato-
phytes may indicate an alluvial aquifer with perched condi-
tions and an underlying aquitard that keeps ephemeral sur-
face water from moving directly downward into the Ogallala
Aquifer. Such alluvium exists along portions of the Arkansas
River corridor including Kearny County (Yang, 2012). Areas
with no trees do not have an alluvial aquifer and have high
recharge potential.

4 Conclusions

The Ogallala Aquifer has been pumped for irrigation in
Kansas since the 1950’s. Since this time, some regions of
Western Kansas have experienced a water table decline of
more than 40 m (Fig.1). The decline of the water table,
as well as a change in overall land use, has caused a re-
distribution of riparian phreatophytes along the Cimarron
and Arkansas Rivers. This study analyzes the redistribution
of phreatophytes in Southwest Kansas to identify zones of
recharge along the Arkansas and Cimarron River systems.
Six study areas were chosen, and tree distributions were
mapped using remote sensing on aerial photography (Fig.2).
Tree locations at each study area and also along the entire
Arkansas and Cimarron River corridors were analyzed based
on hydrologic soil group, depth to groundwater, increase in
depth to groundwater, and distance from a stream or river.

The results for average depth to water vary spatially. In ar-
eas with a dense tree population (> 10 % tree cover), the av-
erage depth to water ranged from 0.24–1.4 m. In areas with
moderate tree density (5–10 % tree cover), the average depth
to water ranged from 2.1–19 m. In areas with low tree den-
sity (< 5 % tree cover), the average depth to water ranged
from 11–28 m. The wide ranges of values is likely due to
the differences in rooting depths of cottonwood trees and salt
cedars. In general, the canopy area of trees decreases as depth
to groundwater increases, but phreatophytes can still exist at
depths up to, and possibly exceeding, 35 m (in part by tap-
ping local perched water sources in the alluvium). The results
for distance to a stream or river indicate that as the water table
declines, trees will be redistributed closer to the river (Fig.4),
as long as the water table near the river is shallow enough
to be ideal for phreatophyte growth. Phreatophyte locations
can be used as an indicator for areas with good surface wa-
ter/groundwater connectivity because they are more likely to
be located on hydrologic soil group A than any other group
(Table3). This soil group has a high hydraulic conductivity,
which is one of the most important factors in determining
the permeability of the hyporheic zone (Soil Survey Division
Staff, 1993; Brunke and Gonser, 1997).

Phreatophyte distributions have changed over time in re-
sponse to a declining groundwater table associated with
pumping the Ogallala Aquifer. This study analyzed possible
causes for this redistribution, and through this analysis, de-
veloped a set of conditions under which phreatophytes are
likely to exist. It was shown that changes in tree distribu-
tions can be used as indicators for changes in depth to water
and groundwater/surface water connectivity (Fig.5). Large
declines in canopy cover in regions with ephemeral surface
water are indicative of zones with high recharge potential
where surface water might be diverted to fill aquifers. These
results may find particular application in other grasslands of
the world with ungauged basins where changes in phreato-
phytes may be observed from remote sensing in locations
where monitoring well networks do not exist to infer depth
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to water (Winsemius et al., 2008). This study shows that re-
sults should be interpreted through geologic understanding as
faults may also provide enhanced conduits between ground-
water and surface water. Future research is suggested to de-
termine if phreatophytes are an indicator of water quality,
and methods should be developed to make naturally infil-
trated water cleaner without treatment. Such activities will
be important to successfully filling a depleting aquifer as the
existing surface water in the Arkansas River during low flow
conditions contains high levels of chlorides and sulfates, and
exceeds drinking water standards for uranium (Whittemore
et al., 2010). Water is much cleaner during high flows, such
as in the event of a flood, so a recharge project that utilized
the river channel and surrounding area to capture flood flows
would be highly beneficial to communities and producers
along the river basin.
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