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Abstract. The absence of a generic modeling framework in
hydrology has long been recognized. With our current prac-
tice of developing more and more complex models for spe-
cific individual situations, there is an increasing emphasis
and urgency on this issue. There have been some attempts
to provide guidelines for a catchment classification frame-
work, but research in this area is still in a state of infancy.
To move forward on this classification framework, identi-
fication of an appropriate basis and development of a suit-
able methodology for its representation are vital. The present
study argues that hydrologic system complexity is an ap-
propriate basis for this classification framework and nonlin-
ear dynamic concepts constitute a suitable methodology. The
study employs a popular nonlinear dynamic method for iden-
tification of the level of complexity of streamflow and for
its classification. The correlation dimension method, which
has its base on data reconstruction and nearest neighbor con-
cepts, is applied to monthly streamflow time series from a
large network of 117 gaging stations across 11 states in the
western United States (US). The dimensionality of the time
series forms the basis for identification of system complex-
ity and, accordingly, streamflows are classified into four ma-
jor categories: low-dimensional, medium-dimensional, high-
dimensional, and unidentifiable. The dimension estimates
show some “homogeneity” in flow complexity within certain
regions of the western US, but there are also strong excep-
tions.

1 Introduction

As in most other fields of science and engineering, growth
in the field of hydrology during the past century has been
unprecedented, largely driven by the invention of power-
ful computers, measurement devices, remote sensors, geo-
graphic information systems (GIS), digital elevation mod-
els (DEM), and networking facilities. This growth may be
viewed in terms of: (1) the various sub-fields that have been
created essentially to “break down” hydrology into specific
components for more focused and detailed studies (e.g. sur-
face hydrology, subsurface hydrology, groundwater hydrol-
ogy, forest hydrology, mountain hydrology, urban hydrology,
isotope hydrology, snow and glacier hydrology, ecohydrol-
ogy); and (2) the numerous scientific theories and mathemat-
ical techniques that have been developed/applied for model-
ing and prediction of hydrologic systems and the associated
processes (e.g. deterministic techniques, stochastic methods,
scaling and fractal theories, artificial neural networks, chaos
theory, wavelets, entropy theory, evolutionary computing).

Despite this growth, there remain many grand challenges
in performing good hydrologic teaching, research, and prac-
tice. Among others, two major concerns are dominating dis-
cussions and debates on current hydrologic studies: (1) hy-
drologic models being developed are often more complex,
having too many parameters and requiring too much data,
than perhaps needed; and (2) models are often developed
for specific situations, and their extensions and generaliza-
tions to other situations are rather difficult. In addition, our
general lack of emphasis in studying the crucial connections
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between the (model) theories and the actual system proper-
ties (e.g. data), our increasing emphasis in applying specific
(and often pre-selected) mathematical techniques indepen-
dently as opposed to the integration of techniques for model-
ing hydrologic systems, and our focus mainly on local-scale
hydrologic problems rather than global-scale hydrologic is-
sues have also come under severe scrutiny (e.g. Beven, 2002;
Sivakumar, 2008). With growing concerns on the occurrence
of global climate change and its potential impacts on wa-
ter resources and the environment (including more frequent
and greater magnitudes of extreme events, such as floods
and droughts), the limitations of the “confines of traditional
hydrology” and the need to go beyond and perform cross-
disciplinary research integrating hydrology with atmospheric
science, geomorphology, geochemistry, ecology, and other
areas have also been increasingly recognized (see, for exam-
ple, Paola et al., 2006, for some details).

In view of these concerns, many studies during the past
decade or so have emphasized the need for simplification in
modeling wherever possible as well as a common framework
in hydrology (e.g. Grayson and Blöschl, 2000; McDonnell
and Woods, 2004). Within this context, some attempts have
also been made towards a catchment classification frame-
work (e.g. Snelder et al., 2005; Sivakumar et al., 2007; see
also the other articles in the current special issue “Catch-
ment Classification and PUB” for some latest studies), with
an aim to streamline catchments into different groups and
sub-groups on the basis of their salient characteristics (e.g.
data and process complexity) and to provide directions to
model developers on the level of model complexity to in-
voke. Nevertheless, these attempts are only preliminary and
research in this direction is still in a state of infancy. Indeed,
there are even questions on the basic form of the classifica-
tion framework and on the components to be included (e.g.
Wagener et al., 2007). Therefore, identification of an appro-
priate basis for the classification framework and development
of a suitable methodology are crucial for moving forward in
hydrology.

The present study attempts to offer some workable guide-
lines for an appropriate basis and a suitable methodology to-
wards a classification framework in hydrology. The study ar-
gues, through highlighting the relevance of complexity and
nonlinearity in hydrologic systems, that system complexity
is an appropriate basis for the classification framework and
nonlinear dynamic concepts constitute a suitable methodol-
ogy for assessing system complexity. With this, it examines
the usefulness of a nonlinear dynamic method for stream-
flow classification. This is done by employing the corre-
lation dimension method (e.g. Grassberger and Procaccia,
1983a) to streamflow from a large network of gaging stations
in the western United States. Monthly streamflow data ob-
served over a period of 52 yr from 117 gaging stations across
11 states are considered for analysis. The identification of
the level of complexity and the subsequent classification are

made based on the dimensionality of the streamflow time se-
ries.

The rest of this paper is organized as follows. Section 2
presents a brief account of major attempts on classification
in hydrology. Section 3 highlights the role of complexity and
nonlinearity in hydrologic systems. Section 4 describes the
correlation dimension method. Section 5 presents the details
of streamflow data from the western United States and re-
sults of their analysis. Conclusions and directions for further
research are presented in Sect. 6.

2 Classification in hydrology: a brief history and scope

The realization of the need for a classification framework
in hydrology is not entirely new. It had indeed been dis-
cussed some time ago, and since then several studies have
also attempted to advance the idea. These studies have inves-
tigated different ways for developing such a framework and
their implications, including river morphology (e.g. Rosgen,
1994; Poff et al., 2006), river/flow regimes (e.g. Beckinsale,
1969; Haines et al., 1988), landscape and land use parameters
(e.g. Merz and Bl̈oschl, 2004; Wardrop et al., 2005), simi-
larity indices (e.g. Olden and Poff, 2003; Ali et al., 2012),
eco-hydrologic factors (e.g. Harris et al., 2000; Olden et al.,
2011), geostatistical properties (e.g. Vormoor et al., 2011),
entropy (e.g. Krasovkaia, 1997), nonlinear and chaotic dy-
namic properties (e.g. Sivakumar et al., 2007), and other rel-
evant characteristics/methods (e.g. Chapman, 1989; Isik and
Singh, 2008). Extensive details of these studies are available
both in the traditional hydrologic literature and in related
fields (e.g. geomorphology, ecohydrology, and freshwater bi-
ology); for some very latest accounts, see Ali et al. (2012)
and also the articles in the current special issue “Catchment
Classification and PUB.”

Although useful in their own ways, these studies are
largely inadequate for a generic classification framework. In
addition to the limitations that exist in each of the different
forms, a coherent effort to bring these disparate forms to-
gether for a workable classification framework is also miss-
ing. The urgency to formulate a generic classification frame-
work in hydrology is increasingly realized now, especially
with our current practice of employing more and more so-
phisticated mathematical techniques and developing more
and more complex models for each and every individual hy-
drologic system/situation, rather than the emphasis needed
for addressing broader-scale hydrologic issues (e.g. Sivaku-
mar, 2008).

The fundamental idea behind a classification framework
in hydrology is to streamline hydrologic systems into groups
and sub-groups to recognize salient characteristics that are
emblematic and to develop suitable methods/models. This
classification also serves as a middle-ground to the follow-
ing two extremes: (1) treatment of all hydrologic systems in
the same way, regardless of the differences among them; and
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(2) treatment of each and every individual hydrologic system
in its own way, regardless of the similarities among them. Ei-
ther of these approaches has enormous implications for mod-
eling, including complexity of the models, data and computer
requirement, accuracy of results, and overall understanding
of the systems. The classification framework, therefore, is
aimed at providing an optimum way of studying hydrologic
systems, taking into account both minimization of costs and
maximization of benefits. In the end, it should help modelers
identify suitable catchments to apply their models to and also
users to identify suitable models for their catchments.

For its usefulness to be realized both at the global and at
the regional/local levels, the classification framework should
be able to accommodate important general as well as specific
characteristics of hydrologic systems/processes. The frame-
work must also be simple enough and commonly agree-
able to provide a “universal” language for communication
and discussion in hydrology and water resources. The cru-
cial questions now are: (1) What form should the classifi-
cation framework assume? (2) What components need to be
included? (3) What is the appropriate methodology for its
formulation? and (4) How to effectively verify such a classi-
fication framework? A few studies have attempted to address
these questions and relevant issues, such as the examples be-
low.

Wagener et al. (2007) reviewed the existing approaches
to define hydrologic similarity, which has often been in-
voked for classification purposes, and offered some gen-
eral guidelines for catchment classification that include the
use of catchment structure, hydro-climatic region, and catch-
ment functional response, among others. They also identified
the following requirements for a classification framework:
(1) mapping catchment form/hydro-climatic conditions on
catchment function across spatial and temporal scales; (2) in-
cluding partition, storage, and release of water in catch-
ment functions; (3) consideration of uncertainty in the met-
rics/variables used; and (4) basing on functions characterized
by streamflow to start with and subsequently expanding to
other more complex functions.

Using the Shannon entropy, Krasovskaia (1995, 1997) de-
veloped a quantitative methodology for studying river flow
regimes and their classification. The entropy-based method-
ology involves: (1) classification of mean monthly flows into
different types; (2) identification of discriminating periods
for different classes; (3) specification of instability index;
(4) computation of instability index value for each regime
type; and (5) computation of instability index for all flow se-
ries. Another method for grouping river regimes, developed
by Krasovskaia (1997), employs minimization of an entropy-
based objective function. This function uses a concept of
information loss resulting from flow aggregation and deter-
mining the difference between the series aggregated into one
group.

Sivakumar et al. (2007) explored the utility of a simple
nonlinear data reconstruction approach, called phase space

reconstruction, for assessing the complexity of hydrologic
systems and, thus, for their classification. They used the “re-
gion of attraction of trajectories” in the phase space to iden-
tify data as exhibiting “simple” or “intermediate” or “com-
plex” behavior and, correspondingly, classify the system as
potentially low-, medium-, or high-dimensional. The utility
of this reconstruction concept was first demonstrated on two
artificial time series possessing significantly different char-
acteristics and levels of complexity (purely random and low-
dimensional deterministic), and then tested on a host of river-
related data representing different geographic regions, cli-
matic conditions, basin sizes, processes, and scales. The abil-
ity of the phase space to reflect the river basin characteristics
and the associated mechanisms, such as basin size, smooth-
ing, and scaling, was also observed. The “dimensionality”
and “complexity” ideas used by Sivakumar et al. (2007) were
along the lines of the dominant processes concept (DPC),
which was originally introduced in the context of hydrologic
model simplification (Grayson and Blöschl, 2000) and sub-
sequently suggested as a potential means for formulation of
a classification framework (e.g. Woods, 2002; Sivakumar,
2004a).

Following up on the preliminary ideas by Sivakumar et
al. (2007) based on just a few example cases, we attempt here
to advance the studies on nonlinear dynamic concepts for
identifying complexity of hydrologic systems and for their
classification. To this end, we particularly consider that the
extent of “complexity” of the system is reflected by the “vari-
ability” of the representative (observed) data (i.e. streamflow
in the present case), which, in turn, is assessed by its “di-
mensionality”. We apply the correlation dimension method
for studying data dimensionality and system complexity, and
use such information for classification purposes.

3 Complexity and nonlinearity in hydrologic systems

3.1 Complexity in hydrologic systems

Although words “complex” and “complexity” are widely
used both in scientific theory and in common practice, there
is no general consensus on the definition. Nevertheless, one
workable definition may be this: “consisting of intercon-
nected or interwoven parts”. Qualitatively, to understand the
behavior of a complex system, we must understand not only
the behavior of the parts but also how they act together to
form the behavior of the whole. This is because: (1) we can-
not describe the whole without describing each part; and
(2) each part must be described also in relation to other
parts. For a quantitative description, the central issue again
is defining quantitatively what “complexity” means. In the
specific context of classification of systems, such as the one
addressed in this study, it may perhaps be even more use-
ful to ask: (1) What do we mean when we say that one sys-
tem is more complex than another? and (2) Is there a way
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to identify the complexity of one system and to compare it
with the complexity of another system? To develop a quanti-
tative understanding of complexity, a variety of tools can be
used. These may include: statistical (e.g. coefficient of varia-
tion), nonlinear dynamic (e.g. dimension), information theo-
retic (e.g. entropy), or some other measure. In this study, we
discuss the nonlinear dynamic tools, which allow identifica-
tion of complexity of different systems and interpretations
and distinctions on “more complex” and “less complex” sys-
tems. In particular, we attempt to assess the complexity of the
system in terms of variability of the data through dimension
estimation.

Hydrologic phenomena arise as a result of interactions be-
tween climate inputs and landscape characteristics that oc-
cur over a wide range of space and time scales. Due to
the tremendous heterogeneities in climatic inputs and land-
scape properties, such phenomena may be highly variable
and “complex” at all scales. Consequently, they are not fully
understood. In the absence of perfect knowledge, a simpli-
fied way to represent them may be through the concept of
“system”. There are many different definitions of a system,
but perhaps the simplest may be: “a system is a set of con-
nected parts that form a whole”. Chow (1964) defined a sys-
tem as an aggregate or assemblage of parts, being either ob-
jects or concepts, united by some form of regular interaction
or inter-dependence. Dooge (1967a), however, defined a sys-
tem as: “any structure, device, scheme, or procedure, real or
abstract, that inter-relates in a given time reference, an input,
cause, or stimulus, of matter, energy, or information and an
output, effect, or response of information, energy, or matter”.
This definition by Dooge is much more comprehensive and
instructive.

With this system concept, the entire hydrologic cycle
may be regarded as a hydrologic system, whose components
might include precipitation, interception, evaporation, tran-
spiration, infiltration, detention storage or retention storage,
surface runoff, interflow, and groundwater flow, and perhaps
other phases of the hydrologic cycle. Each component may
be treated as a sub-system of the overall cycle, if it satisfies
the characteristics of a system set out in its definition. Thus,
the various components of the hydrologic system can be re-
garded as hydrologic sub-systems. To analyze the total sys-
tem, the simpler sub-systems can be treated separately and
the results combined according to the interactions between
the sub-systems (especially with the assumption of linear-
ity). Whether a particular component is to be treated as a
system or sub-system depends on the “objective of the in-
quiry” (Singh, 1988).

In this “objective of the inquiry” context, Sivaku-
mar (2008) suggests that hydrologic systems may be viewed
from three different, but related, angles: process, scale, and
purpose of interest. Depending upon the angle at which they
are viewed, hydrologic systems may be either simple or com-
plex; for example, the rainfall occurrence in a desert may be
treated as an extremely simple process since there may be

no rainfall at all, while the runoff process in a large river
basin may be highly complex due to the basin complexities
and heterogeneities, in addition to rainfall variability. Conse-
quently, hydrologic modeling must also be viewed from these
three angles; in other words, the appropriate model to repre-
sent a given hydrologic system may also be either simple or
complex. The obvious question, however, is: how simple or
how complex should the models be? This issue is addressed
in this study, since the basic purpose behind formulation of
a catchment classification framework is the identification of
the most appropriate model (type and complexity) for a given
catchment.

Since complexity is a fundamental and central characteris-
tic of hydrologic systems, and is also a representation of their
generality and specificity, it should form the basis for a clas-
sification framework. The study by Sivakumar et al. (2007),
for example, offers some clues as to the use of complexity
(defined in terms of extent of data variability) as a viable
means for a classification framework.

3.2 Nonlinearity in hydrologic systems

Much of the research in hydrologic systems, at least until
the 1990s, has been based on the assumption of “linearity”;
i.e., the relation between cause (e.g. input) and effect (e.g.
output) is linear or proportional. One of the important fac-
tors that contributed to, or necessitated, this linear approach
was the lack of computational power to develop the (perhaps
more complex) nonlinear mathematical methods. However,
the “nonlinear” behavior of hydrologic systems had been
known for a long time (e.g. Izzard, 1966; Dooge, 1967b).

The nonlinear behavior of hydrologic systems is evident
in various ways and at almost all spatial and temporal scales.
The hydrologic cycle itself is an example of a system ex-
hibiting nonlinear behavior, with almost all of the individ-
ual components themselves exhibiting nonlinear behavior as
well. The climatic inputs and landscape characteristics are
changing in a highly nonlinear fashion, and so are the out-
puts, often in unknown ways. The rainfall-runoff process is
nonlinear, almost regardless of the basin area, land uses, rain-
fall intensity, and other influencing factors. In fact, the ef-
fects of nonlinearity can be tremendous, especially when the
system is sensitively dependent on initial conditions. This
means, even small changes in the inputs may result in large
changes in the outputs (and large changes in the inputs may
turn out to cause only small changes in the outputs), a sit-
uation popularly termed as “chaos” in the nonlinear science
literature (e.g. Lorenz, 1963).

With significant developments in computational power
during the past three decades or so, and also with major ad-
vances in measurement technology and mathematical con-
cepts, studies on the nonlinearity and related properties of
hydrologic systems have started to gain attention. Nonlin-
ear stochastic methods (e.g. Kavvas, 2003), artificial neural
networks (e.g. Govindaraju, 2000), data-based mechanistic

Hydrol. Earth Syst. Sci., 16, 4119–4131, 2012 www.hydrol-earth-syst-sci.net/16/4119/2012/



B. Sivakumar and V. P. Singh: Hydrologic system complexity and nonlinear dynamic concepts 4123

models (e.g. Young and Beven, 1994), and nonlinear dynam-
ics and chaos (e.g. Sivakumar, 2000) are some of the popular
nonlinear techniques that have found extensive applications
in hydrology. This study discusses the utility of nonlinear dy-
namic techniques as a suitable methodology for studying the
complexity of hydrologic systems and, thus, for formulation
of a catchment classification framework. In particular, we ap-
ply a popular nonlinear dynamic method, the correlation di-
mension method, to streamflow time series for classification
purposes.

4 Correlation dimension method

During the past three decades or so, significant advances have
been made in the field of nonlinear sciences to study complex
systems. Numerous methods have been developed and ap-
plied in various fields, including physics, chemistry, biology,
earth sciences, ecology, economics, engineering, medicine,
and psychology. Extensive details of the applications of non-
linear dynamics and chaos concepts in hydrology are found
in Sivakumar (2000) and in the broader field of geophysics
in Sivakumar (2004b).

Popular among the methods developed within the con-
text of nonlinear dynamic and chaos theories are correla-
tion dimension, Lyapunov exponent, false nearest neighbors,
nonlinear prediction, surrogate data, and redundancy meth-
ods. Almost all of these methods involve data embedding
and nearest neighbor search, identifying different yet related
properties of the underlying system dynamics. In this study,
we employ the correlation dimension method for complexity
determination of time series.

Correlation dimension is a measure of the extent to which
the presence of a data point affects the position of the
other points lying on the attractor in (a multi-dimensional)
phase space or coordinate system. The correlation dimension
method uses the correlation integral (or function) for deter-
mining the dimension of the attractor in the phase space and,
hence, for distinguishing, broadly, between low-dimensional
and high-dimensional systems. The concept of the correla-
tion integral is that a time series arising from deterministic
dynamics will have a limited number of degrees of freedom
equal to the smallest number of first-order differential equa-
tions that capture the most important features of the dynam-
ics. Thus, when one constructs phase spaces of increasing di-
mension, a point will be reached where the dimension equals
the number of degrees of freedom, beyond which increasing
the phase space dimension will not have any significant effect
on correlation dimension.

Many algorithms have been formulated for the estima-
tion of the correlation dimension of a time series. Among
these, the Grassberger–Procaccia algorithm (Grassberger and
Procaccia, 1983a) has been and continues to be the most
widely used one, especially in hydrologic studies. The al-
gorithm uses the concept of phase space reconstruction (e.g.

Packard et al., 1980) for representing the dynamics of the
system from an available single-variable time series. Given
a single-variable series,Xi , wherei = 1, 2, ...,N , a multi-
dimensional phase space can be reconstructed as (Takens,
1981):

Y j = (Xj ,Xj+τ ,Xj+2τ , ...,Xj+(m−1)τ ), (1)

wherej = 1, 2, ...,N − (m − 1)τ ; m is the dimension of the
vectorY j , called embedding dimension; andτ is an appro-
priate delay time, which is an integer multiple of sampling
time. It must be noted that if time series of multiple variables
are available (e.g. relevant climate and hydrologic variables
influencing streamflow dynamics, such as rainfall, tempera-
ture, and infiltration), then such can be directly used for re-
construction, which will be a more realistic representation of
the system dynamics and, thus, will yield more reliable re-
sults.

A correct phase space reconstruction in a dimensionm

generally allows interpretation of the system dynamics (if the
variable chosen to represent the system is appropriate) in the
form of an m-dimensional mapfT , given by

Y j+T = fT (Y j ), (2)

whereY j andY j+T are vectors of dimensionm, describing
the state of the system at timesj (current state) andj + T

(future state), respectively.
For an m-dimensional phase space, the correlation func-

tion C(r) is given by

C(r) = lim
N→∞

2

N(N − 1)

∑
i,j

H
(
r −

∥∥Y i − Y j

∥∥)
, (3)

(i≤i<j≤N)

whereH is the Heaviside step function, withH(u) = 1 for
u > 0, andH(u) = 0 for u ≤ 0, whereu = r − ‖Y i − Y j‖, r

is the vector norm (radius of sphere) centered onY i or Y j . If
the time series is characterized by an attractor, thenC(r) and
r are related according to

C(r) ≈ αrν,

r → 0
N → ∞

(4)

whereα is a constant andν is the correlation exponent or the
slope of the LogC(r) versus Logr plot. The slope is gener-
ally estimated by a least square fit of a straight line over a
certain range ofr (i.e. scaling regime) or through estimation
of local slopes between r-values.

The dimensionality of the time series is determined by
checking if there is a saturation ofν with increasingm; the
saturation value ofν is defined as the correlation dimen-
sion (d) of the attractor. In general, a low saturation value
of ν is considered as an indication of a low-dimensional sys-
tem, while a high (or no) saturation value is considered as
an indication of a high-dimensional system. The nearest in-
teger above this saturation value is generally an indication

www.hydrol-earth-syst-sci.net/16/4119/2012/ Hydrol. Earth Syst. Sci., 16, 4119–4131, 2012



4124 B. Sivakumar and V. P. Singh: Hydrologic system complexity and nonlinear dynamic concepts

of the number of variables dominantly governing the sys-
tem dynamics. Although the correlation dimension method is
widely used for distinguishing low-dimensional systems and
high-dimensional systems, additional categories of system
dimensionality (e.g. medium) can also be formed based on
correlation dimension values. This is attempted in the present
study to achieve better grouping of streamflow time series.

It is relevant to note, at this point, that the reliability of the
Grassberger–Procaccia algorithm (or any other algorithm for
that matter) for correlation dimension estimation of real time
series (e.g. streamflow observations) has been under consid-
erable debate, in view of the potential limitations that may
exist with the method and/or the data. Some of the relevant is-
sues are data size (e.g. Havstad and Ehlers, 1989), data noise
(e.g. Schreiber and Kantz, 1996), presence of zeros (e.g. Tso-
nis et al., 1994), temporal correlations and delay time selec-
tion for phase space reconstruction (e.g. Fraser and Swinney,
1986), even stochastic processes yielding low correlation di-
mensions (e.g. Osborne and Provenzale, 1989), and others.
As most of these issues are also highly relevant to hydrologic
time series, there have been criticisms on the correlation di-
mension estimates reported for hydrologic time series as well
(e.g. Schertzer et al., 2002; Koutsoyiannis, 2006).

Numerous studies have addressed these issues and allayed
the concerns on the reliability of correlation dimension esti-
mates of hydrologic time series. Indeed, some studies have
pointed out that many of the criticisms on dimension esti-
mates are often unreliable and unfounded; see Sivakumar
et al. (2002a) in response to Schertzer et al. (2002) regard-
ing the issue of data size. These issues and concerns as well
as clarifications and interpretations regarding correlation di-
mension estimates of hydrologic time series have already
been extensively discussed in the literature (e.g. Sivakumar,
2000; Sivakumar et al., 2002b). Therefore, further details are
not reported herein, and the interested reader is directed to
such studies. However, as the issue of data size is particularly
relevant for the 117 streamflow time series analyzed in this
study (with “only” 624 values in each series), we will briefly
discuss the reliability of our correlation dimension estimates
in Sect. 5.3. We will also briefly explain our selection of the
delay time for phase space reconstruction and its implica-
tions.

5 Data, analysis, and results

5.1 Data

In this study, monthly streamflows from the western United
States (US) are studied, with data collected over an exten-
sive network of 117 gaging stations (see Fig. 1). The sta-
tions are spread over 11 states in the western US: Arizona
(AZ), California (CA), Colorado (CO), Idaho (ID), Mon-
tana (MT), Nevada (NV), New Mexico (NM), Oregon (OR),
Utah (UT), Washington (WA), and Wyoming (WY). The

Fig. 1. Map of the western United States and locations of 117
streamflow gaging stations. AZ – Arizona; CA – California; CO
– Colorado; ID – Idaho; MT – Montana; NM – New Mexico; NV
– Nevada; OR – Oregon; UT – Utah; WA – Washington; WY –
Wyoming.

drainage areas range from as small as 22.79 km2 (8.8 mi2)
(Station #11058500 in California) to as large as 35 094 km2

(13 550 mi2) (Station #13317000 in Idaho); as many as two-
thirds of the catchments are small- to medium-sized, i.e. less
than 1000 km2 (or approximately 400 mi2).

Streamflow data in the US are commonly expressed in
“water years”, which commence in October. The records
used in this study are those observed over a period of 52 yr,
starting in October 1951 and ending in September 2003, and
are average monthly streamflow values. The magnitude of
streamflow varies greatly among the 117 stations (e.g. even
during the same period) as well as within a station (e.g. at dif-
ferent periods). Notable observations of the flow variations
(during the 52-yr period of 1951–2002) are as follows:

– the mean flows range from as low as 0.06 m3 s−1

(1.97 ft3 s−1) at Station #11063500 in CA to as high as
322 m3 s−1 (11 550 ft3 s−1) at Station #13317000 in ID;

– the standard deviation values range from as low as
0.11 m3 s−1 (3.92 ft3 s−1) at Station #11063500 to
as high as 373.5 m3 s−1 (13 193 ft3 s−1) at Station
#13317000;

– the coefficient of variation (CV) values (defined as the
standard deviation divided by the mean) range from as
low as 0.295 at Station #11367500 in CA to to as high
as 4.324 at Station #10258500 in CA;

– the maximum flow observed was 2339 m3 s−1

(82 600 ft3 s−1) at Station #13317000 (the mini-
mum flow at this station was 64 m3 s−1 (2257 ft3 s−1)),
while the flow was zero in 15 stations at one time or
another;
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– flows over 300 m3 s−1 (or about 10 000 ft3 s−1) were ob-
served at 18 stations and flows less than 0.3 m3 s−1 (or
about 10 ft3 s−1) were observed at 38 stations (23 sta-
tions if those having zero flows are excluded); and

– five stations (Station #9448500, #9498500, #9508500,
#12401500, and #14301000) had a maximum flow of
over 300 m3 s−1 (about 10 000 ft3 s−1) and also a mini-
mum flow of less than 3 m3 s−1 (about 100 ft3 s−1).

All these observations clearly reflect the extreme variabil-
ity in streamflow among the 117 stations. The variability
in streamflow is due to, among others: (1) the different cli-
matic regions in the western US; (2) the different drainage
basin characteristics associated with the streamflow stations;
and (3) the variations in hydroclimatic factors and land-use
changes over a period of time at any of these stations.

Further details on these 117 streamflow stations in the
western US (as well as the numerous other ones in the
conterminous US), including streamflow data retrieval, are
available at:http://nwis.waterdata.usgs.gov/nwis. The reader
is also directed to Sivakumar (2003) and Tootle and
Piechota (2006) for some of the studies relevant to stream-
flow at these stations.

5.2 Analysis and results

The correlation dimension analysis is performed on each of
the above 117 streamflow time series. The phase space di-
agrams and the correlation exponent plots (i.e. local slope
versus logr) are carefully interpreted to achieve appropriate
grouping of these time series.

Both phase space diagrams and correlation dimension
plots show varying degrees of results among the 117 time
series. The phase space diagrams exhibit attractors ranging
from reasonably well-structured ones (i.e. in a well-defined
region in the phase space) to totally “shapeless” ones (i.e. dif-
ficult to identify any kind of structure), and others in between
these two extremes. Similarly, the correlation exponent plots
show dimensionalities ranging from very low values of satu-
ration ofν at one extreme (say less than 3) to unidentifiable
ones at the other, and others in between.

Based on careful examination of phase space diagrams
and correlation dimension results of all 117 streamflow se-
ries, we are able to identify four reasonably distinct groups.
This identification is made based on the dimensionality of
the attractor (d, i.e. saturation value ofν) as the primary
criterion, since the dimensionality results allow a slightly
better interpretation (qualitatively and quantitatively) com-
pared to phase space diagrams. However, we also place par-
ticular emphasis on the consistency between dimensionality
and attractor shape (phase space diagram) for each group,
for a more reliable grouping. The four groups and the asso-
ciated dimensionalities are as follows: (1) low-dimensional,
with d ≤ 3.0; (2) medium-dimensional, with 3.0< d ≤ 6.0;
(3) high-dimensional, withd > 6.0; and (4) unidentifiable.

The selection of the number of groups and the range of di-
mension values for each group is somewhat arbitrary. Never-
theless, they are certainly reasonable, especially in the con-
text of the number of stations studied in the present study,
since too many groups (with only minor differences among
them) or just two groups (e.g. high-dimensional and low-
dimensional) do not really serve the purpose of classification
of 117 time series. Further, the above grouping according to
correlation dimensions is also reasonable in the context of
process/model complexity, since the influence of more than
six dominant governing variables (i.e.d > 6.0) often leads to
high complexity in dynamics (requiring “complex” models),
whereas that of 3 or less variables can confidently be consid-
ered to lead to simpler dynamics (requiring “simple” mod-
els), with other in between (medium-complexity dynamics,
requiring medium-complexity models).

For discussion here, we present the results for two time
series from each of these four groups. The stations repre-
senting these time series are as follows: (1) low-dimensional
– Station #10032000 (WY) and Station #13317000 (ID);
(2) medium-dimensional – Station #11315000 (CA) and
Station #11381500 (CA); (3) high-dimensional – Sta-
tion #12093500 (WA) and Station #14185000 (OR); and
(4) unidentifiable – Station #8408500 (NM) and Station
#11124500 (CA).

Figure 2a–h presents the phase space diagrams for stream-
flow series from the above eight stations. The diagrams corre-
spond to the reconstruction in two dimensions (m = 2) with
delay timeτ = 1, i.e. the projection of the attractor on the
plane{Xi,Xi+1}. The following general observations may
be made: (1) the plots on the first row exhibit reasonably
well-structured attractors in the phase space, suggesting that
the systems are likely less complex and low-dimensional;
(2) the second row plots indicate slightly wider scattering
of the attractor, suggesting systems of medium complexity
and medium dimension; (3) the plots on the third row exhibit
much wider scattering (especially with one or a few outliers),
suggesting highly complex and high-dimensional systems;
and (4) the last two plots do not show any identifiable pat-
terns, thus making it hard to include them in any of the above
three groups.

Figure 3a–h presents the correlation dimension results for
the above eight streamflow series; the plots show the local
slopes (i.e. correlation exponent,ν) as a function of radius,
r, for embedding dimensions,m, from 1 to 20 (bottom to top
curves). These plots allow an even better interpretation in re-
gards to the dimensionality and complexity of the underlying
systems: (1) the top row plots reveal saturation ofν at a value
less than 3 (shown using a thick horizontal line; see below for
further details about identification of this saturation), sug-
gesting low-dimensional and less complex systems; (2) the
second row plots yield slightly higher dimensions (but less
than 6), suggesting medium-dimensional and slightly more
complex systems; (3) the plots on the third row do not in-
dicate any saturation ofν, suggesting high-dimensional and
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Fig. 2. Phase space diagram:(a) Station #10032000;(b) Station
#13317000;(c) Station #11315000;(d) Station #11381500;(e)Sta-
tion #12093500;(f) Station #14185000;(g) Station #8408500; and
(h) Station #11124500.

highly complex systems; and (4) the results for the last two
series do not show any clear indication regarding the dimen-
sion value or group (as they show neither saturation ofν nor
high-dimensionality) and, therefore, are considered “uniden-
tifiable”.

At this point, a few remarks about the identification of the
scaling region and estimation of the correlation exponent are
in order. As mentioned earlier, the scaling region can be iden-
tified in the following ways: (1) identifying the long “straight
line” portion in the LogC(r) versus Logr plot (i.e. correla-
tion function versus radius); and (2) the “horizontal line” in
the local slope versus Logr plot. It is important to note that
a “perfect straight line” or a “perfect horizontal line” in these
plots may be found when the data are completely clean, but is
often very hard to find when the data are noisy, as is the case
with streamflow (and other hydrologic) data; the higher the
embedding dimension (or attractor dimension), the harder it
is to find the scaling region. Also, when the data are noisy,
the slopes are hard to find at small r-values, and there is
normally a shift in the r-values that yield the best results;
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Fig. 3. Correlation dimension – Local slopes:(a) Station
#10032000;(b) Station #13317000;(c) Station #11315000;(d) Sta-
tion #11381500;(e) Station #12093500;(f) Station #14185000;
(g) Station #8408500; and(h) Station #11124500.

again, the difficulty increases at higher embedding dimen-
sions (and higher attractor dimensions). Therefore, it is often
helpful, and necessary, to use as many ways as possible to be
more confident of the scaling region identification and cor-
relation exponent estimation. Further details on the effects
of noise on the correlation dimension estimate, in particular
reference to hydrologic data (rainfall), are presented in, for
example, Sivakumar et al. (1999b), and the interested reader
is directed to such.

In view of the above, we use not only the local slope versus
Logr for identification and estimation (shown in Fig. 3) but
also the LogC(r) versus Logr plot (figures not shown) and
the changes in the individual values of the calculated slopes
against changingr. Since the (local) slopes may sometimes
change dramatically between successive values ofr, espe-
cially at small r-values (see Fig. 3), we also estimate the
slopes averaged over a range of values ofr (5 values at a
time), in a moving average manner. The dimensions we arrive
at are based on looking at all these combinations and making
the best estimate.
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Fig. 4. Grouping of streamflow stations according to cor-
relation dimension (d) estimates: low-dimensional (d ≤ 3.0);
medium-dimensional (3.0< d ≤ 6.0); high-dimensional (d > 6.0);
and unidentifiable (d not identifiable).

Figure 4 presents the grouping of the 117 streamflow time
series in the western US, according to the above dimension-
ality (and phase space) criterion. The grouping show some
kind of “homogeneity” in the dimensionality and complexity
of streamflow dynamics within certain regions. For instance:
(1) streamflow dynamics in the far northwest (i.e. west-
ern parts of WA and OR) are generally high-dimensional;
(2) the dimensionality of streamflows in the far south and
southwest (southern CA, southern AZ, southern NM) is
generally unidentifiable; (3) the complexity of streamflow
dynamics in the west (northern CA and NV) is generally
medium-dimensional; and (4) low-dimensional complexity
is generally observed for streamflows in Wyoming. However,
this “homogeneity” is not true for every region, and there
are indeed strong exceptions. For example: (1) both low-
dimensional and medium-dimensional complexity of stream-
flow dynamics are observed in some other regions, especially
in the east and north (including CO, ID, MT, and some parts
of WA); and (2) streamflow dynamic complexity in some re-
gions is rather very mixed, ranging from low-dimensional to
medium-dimensional to unidentifiable (UT and, to some ex-
tent, northern NM).

5.3 Discussion

The above classification of streamflow based on complexity
and nonlinear dynamic concepts, with dimensionality (and
other relevant properties) as a criterion, is both useful and
interesting. In particular, the dimension estimates and the
grouping of streamflow time series (Fig. 4) clearly show
that: (1) the dimensionality concept captures the complex-
ity of streamflow dynamics at individual stations indepen-
dently and then allows classification regardless of the prox-
imity of catchments, without resorting to a “regionalization”
approach and the assumptions involved therein; and (2) a
“regionalization” approach, even for monthly streamflows,
is not necessarily the right way to classification, despite the
close proximity of some catchments. In other words, the di-
mension estimates reflect that “near” does not mean “similar”
and, consequently, that extrapolation (and interpolation) may
not always work even when using data from nearby catch-
ments. This observation has important implications for pre-
dictions in ungaged basins (PUBs), especially when they in-
volve extrapolation/interpolation schemes.

Notwithstanding that the dimensionality concept and the
proposed classification are useful, it is still somewhat pre-
mature to offer definitive conclusions and guidelines. Some
reasons for this and also possible ways to address them are
as follows. We are currently studying these issues, and will
report the details in the future.

– Despite the consideration of a study area as large as the
western United States and streamflow time series from
as many as 117 stations, the extent of area covered and
number of time series analyzed are still considerably
smaller when compared to the numerous combinations
that may be encountered with respect to catchments
(e.g. climatic conditions, catchment properties, stream-
flow characteristics). Therefore, it is important to study
a significantly large number of catchments and stream-
flow time series. In the specific context of the western
United States, it would be important to study many more
catchments, especially in the following parts: western
and southern Arizona, western California, eastern Col-
orado, eastern and southern Idaho, almost entire Mon-
tana, almost entire Nevada, western and southern New
Mexico, eastern Oregon, northwest and southeast Utah,
eastern Washington, and eastern Wyoming.

– In the present study, only monthly streamflow time se-
ries are analyzed. Since the dimensionality and com-
plexity of streamflow (and other hydrologic) processes
could change with respect to temporal scale (e.g. Re-
gonda et al., 2004; see also Sivakumar et al., 2001), it
is crucial to study streamflow data observed at least at a
few other scales (e.g. daily, annual) to verify the dimen-
sion estimates and classification. However, as Sivaku-
mar (2008) suggests, and as mentioned earlier, “scale”
is a vital component in the definition of a “system”.

www.hydrol-earth-syst-sci.net/16/4119/2012/ Hydrol. Earth Syst. Sci., 16, 4119–4131, 2012
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Other vital components are “process” and “purpose of
interest”. For instance, one often requires different mod-
els for average events and extreme events (e.g. droughts
and floods); see Sivakumar (2005b) for a discussion
on this, especially on the role of thresholds. In most
cases, study of monthly streamflow dynamics is more
appropriate for medium-term to long-term water plan-
ning and management (including environmental flow
requirements), rather than flood forecasting, which re-
quires data at daily and even much finer timescales.
Therefore, a classification framework may (or may not)
be limited by how a system is defined.

– The correlation dimension method is only one among a
number of nonlinear dynamic-based methods available
for estimating dimensionality and assessing complexity
of systems, despite the fact that it has been the most
widely used. Two other methods are the false nearest
neighbor algorithm (e.g. Kennel et al., 1992) and the
Kolmogorov entropy method (e.g. Grassberger and Pro-
caccia, 1983b). Therefore, it would be particularly use-
ful to employ these methods to verify, and possibly con-
firm, the correlation dimension estimates. As linear ap-
proaches and nonlinear approaches often complement
each other, and the fact that streamflow (and other hy-
drologic) processes often exhibit both linear and non-
linear properties (depending upon catchments, scales,
etc.), it would also be helpful to apply linear techniques
to study the complexity and perhaps find better ways to
classify the streamflow time series. In this regard, cou-
pling/integration of nonlinear and linear techniques may
also be possible.

At this point, it is also important to discuss the reliability
of the correlation dimension estimates obtained for the 117
streamflow time series analyzed in this study. As mentioned
earlier, there have been criticisms on the dimension estimates
reported for hydrologic time series, especially in light of the
potential limitations that may exist with the method/data (e.g.
data size, data noise, presence of zeros, temporal correlation).
Here, we address two issues that are particularly relevant to
the streamflow time series analyzed and methodology used
in this study: data size (“only” 624 values) and temporal cor-
relation (delay timeτ = 1 for phase space reconstruction).

One of the most common criticisms on the use of cor-
relation dimension method (especially the Grassberger–
Procaccia algorithm) for hydrologic (and other real) time
series is that it significantly underestimates the dimension
when the data size is small (e.g. Nerenberg and Essex, 1990;
Schertzer et al., 2002). Many studies have already addressed
this issue through various means (e.g. Lorenz, 1991; Sivaku-
mar et al., 2002a). These studies essentially point out that:
(1) the data size is not a function of embedding (or attrac-
tor) dimension; and (2) it is not appropriate to simply look
at the data length alone (in terms of the sheer number of val-
ues) and that it is far more important to assess if the time

series is long and representative enough (in terms of period
of coverage and sampling time) to capture the essential dy-
namics of the system evolution. For instance, studies have
shown that even a few hundred data (about 300 or so) would
be sufficient for dimension estimate (e.g. Sivakumar, 2005a)
if the period of coverage is long enough for the sampling
time studied (e.g. Sivakumar et al., 2002b). The dimension
estimates obtained for the 117 streamflow time series in the
present study only offer further support to this. With “only”
624 values in each streamflow series, the correlation dimen-
sion method still yields dimension values ranging from very
low to very high (including non-saturation ofν), clearly re-
flecting the variability of the data and complexity of the un-
derlying dynamics and also defying the widely-perceived re-
lationship between data size and embedding dimension. The
primary reason for this is that the streamflow data studied are
long enough (52 yr at monthly scale) to adequately represent
the dynamic changes that occur in the respective catchments.

There are questions regarding the selection of an appro-
priate delay time (τ) for phase space reconstruction and cor-
relation dimension estimation, since a smallτ may result in
temporal correlations between the values in the reconstructed
vector while a largeτ may result in completely indepen-
dent ones. Various methods/guidelines have been proposed
for τ selection to have the best separation of neighboring
trajectories, including autocorrelation function (e.g. Holzfuss
and Mayer-Kress, 1986), mutual information (e.g. Fraser and
Swinney, 1986), and correlation integral (Liebert and Schus-
ter, 1989). Regardless of the method used and the value ofτ

obtained, it is also not clear how such a value is actually rel-
evant to the dynamics that take place in the underlying sys-
tem; see Sivakumar et al. (2007) for relevant issues in using
the autocorrelation function method forτ selection, even for
the case of a well-known artificial low-dimensional chaotic
system, the Henon map (Henon, 1963). For instance, use of
the autocorrelation function method and selection of the lag
time at which the autocorrelation function first crosses the
zero line yieldτ -values ranging from 2 to 40 among all the
117 streamflow series. Theseτ -values do not seem to indi-
cate any consistent relevance to seasonality or other catch-
ment dynamics; for instance,τ = 40 indicates a delay time
of over three years (τ = 3 is obtained in a few cases). Sim-
ilar problems have also been encountered in dealing with
other hydrologic data, whether at the monthly scale or at
other temporal scales; see Sivakumar et al. (2006) for some
details in regards to rainfall data from California. Consider-
ing these issues and associated complications, in the present
study,τ is chosen equal to the sampling (i.e.τ = 1 month)
for phase space reconstruction of each of the 117 streamflow
time series. We believe such a selection is reasonable, espe-
cially since there are no significant correlations at lag time
equal to 1; in most cases, the correlation at lag time one is
about 0.4–0.6, which is relatively small for streamflow (it is
likely that significant correlations occur for daily flows, espe-
cially for large catchments). Extensive details on the issue of
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τ selection are already available in the hydrologic literature
(e.g. Sangoyomi et al., 1996; Sivakumar et al., 1999a) and,
therefore, are not reported herein.

6 Conclusions and further research

Hydrologic models play a crucial role in the assessment of
water resources availability and decisions on water planning
and management. Consequently, hydrologic modeling has
become an important research endeavor, particularly facili-
tated by recent technological and methodological advances.
Although numerous hydrologic models have been developed
(often with increasing structural complexity and mathemat-
ical sophistication), identifying which model is appropriate
for which catchment remains a fundamental problem. To this
end, the need for a classification framework that streamlines
catchments into different groups and sub-groups for a more
effective and efficient model selection is increasingly real-
ized. However, an appropriate basis and a suitable methodol-
ogy for such a framework are still elusive.

This study offers one possible way to view the classifi-
cation problem in hydrology through an inverse approach;
i.e., going backward from system outputs. It argues that hy-
drologic system complexity forms an appropriate basis for
the classification framework and nonlinear dynamic con-
cepts constitute a suitable methodology for assessing sys-
tem complexity. Discussing the relevance of complexity
and nonlinearity in hydrologic systems and also the util-
ity of nonlinear dynamic tools for complexity determina-
tion and system identification, the study employs a non-
linear dynamic method for classification of streamflow in
the western United States. Applying the correlation dimen-
sion method (a dimensionality-based method having its ba-
sis in data reconstruction and nearest neighbor concepts) to
monthly streamflow time series from 117 stations in the west-
ern US, the study classifies these time series into four dis-
tinct groups: low-dimensional, medium-dimensional, high-
dimensional, and unidentifiable. The dimension estimates for
the 117 streamflow time series show some “homogeneity”
in the complexity of streamflow dynamics within certain re-
gions of the western US. However, there are also strong ex-
ceptions to this within some other regions. These results not
only indicate the utility of the dimensionality concept for
classification but also suggest that a “regionalization” ap-
proach may not always be the right way to classification. As
“regionalization” is arguably one of the most important as-
pects of extrapolation/interpolation of hydrologic data and,
hence, for predictions in ungaged basins (PUBs), the present
results have important implications to advance our studies on
PUBs.

Since dimensionality of a time series is a representation
of the level of complexity of the underlying system dynam-
ics (and number of dominant governing variables), the above
nonlinear dynamic- and dimensionality-based classification

certainly helps in identifying the appropriate structure and
complexity of models. It is important to further verify, and
confirm, the present results through other methods (both non-
linear and linear) that can be supplementary and complemen-
tary. Verification also needs to be done through: (a) estab-
lishing relationships between the data patterns/complexity
and the actual catchment/process properties; and (b) study-
ing the outputs simulated from existing hydrologic models
and varying their complexities. The effectiveness of any such
classification also needs to be tested on a wide variety of
catchments and hydrologic data representing different cli-
matic conditions, catchment characteristics, land use prop-
erties, and types of data, among others. Detailed studies in
these directions are underway, and the results will be reported
in future publications.

Finally, it is important to remember that classification
of catchments is not the “be-all and end-all” of research
on catchments, but rather only a means towards achieving
broader goals of planning and management of our water re-
sources, environment, ecosystems, and other relevant earth
systems and resources. Nevertheless, catchment classifica-
tion certainly allows us to study catchments more effec-
tively and efficiently and develop more appropriate strate-
gies, in terms of simplification in models/model develop-
ment, generalization in our modeling approach, and improve-
ment in communication both within the hydrologic commu-
nity and across disciplines, as much as possible. Needless to
say, catchment classification needs to be tuned towards the
broader goals, which are carefully identified and properly
defined, in order for us to assess whether catchment clas-
sification is necessary and to evaluate whether a proposed
classification framework is successful. The present study has
highlighted some of the issues associated with these, in-
cluding the need to define a “system” with the necessary
angles to view it from (e.g. process, scale, purpose). The
study of monthly streamflow dynamics in the present study
is tuned towards identification of models for medium-term to
long-term water planning and management (including envi-
ronmental flow requirements), rather than flood forecasting,
which requires data at daily and even much finer timescales.
Although an accurate assessment of the classification pro-
posed in this study still requires some good distance to travel,
the dimensionality concept certainly has potential, including
in identifying where a “regionalization” approach is more ef-
fective, where it is not, and where and why the transitions oc-
cur. We hope that future studies will further help realize the
true potential of the correlation dimension concept, and other
nonlinear dynamic concepts, for formulation of a catchment
classification framework.
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Grayson, R. B. and Blöschl, G.: Spatial Patterns in Catchment
Hydrology: Observations and Modeling. Cambridge University
Press, Cambridge, UK, 2000.

Haines, A. T., Finlayson, B. L., and McMahon, T. A.: A global clas-
sification of river regimes, Appl. Geogr., 8, 255–272, 1988.

Harris, N. M., Gurnell, A. M., Hannah, D. M., and Petts, G. E.:
Classification of river regimes: a context for hydroecology, Hy-
drol. Process., 14, 2831–2848, 2000.

Havstad, J. W. and Ehlers, C. L.: Attractor dimension of nonstation-
ary dynamical systems from small data sets, Phys. Rev. A, 39,
845–853, 1989.

Henon, M.: A two-dimensional mapping with a strange attractor,
Commun. Math. Phys., 50, 69–77, 1963.

Holzfuss, J. and Mayer-Kress, G.: An approach to error-estimation
in the application of dimension algorithms, in: Dimensions
and Entropies in Chaotic Systems, edited by: Mayer-Kress, G.,
Springer, New York, 114–122, 1986.

Isik, S. and Singh, V. P.: Hydrologic regionalization of watersheds
in Turkey, ASCE J. Hydrol. Eng., 13, 824–834, 2008.

Izzard, C. F.: A mathematical model for nonlinear hydrologic sys-
tems, J. Geophys. Res., 71, 4811–4824, 1966.

Kavvas, M. L.: Nonlinear hydrologic processes: conservation equa-
tions for determining their means and probability distributions,
ASCE J. Hydrol. Eng., 8, 44–53, 2003.

Kennel, M. B., Brown, R., and Abarbanel, H. D. I.: Determining
embedding dimension for phase space reconstruction using a ge-
ometric method, Phys. Rev. A, 45, 3403–3411, 1992.

Koutsoyiannis, D.: On the quest for chaotic attractors in hydrologi-
cal processes, Hydrolog. Sci. J., 51, 1065–1091, 2006.

Krasovskaia, I.: Quantification of the stability of river flow regimes,
Hydrolog. Sci. J., 40, 587–598, 1995.

Krasovskaia, I.: Entropy-based grouping of river flow regimes, J.
Hydrol., 202, 173–191, 1997.

Liebert, W. and Schuster, H. G.: Proper choice of the time delay for
the analysis of chaotic time series, Phys. Lett. A, 141, 386–390,
1989.

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20,
130–141, 1963.

Lorenz, E. N.: Dimension of weather and climate attractors, Nature,
353, 241–244, 1991.

McDonnell, J. J. and Woods, R. A.: On the need for catchment clas-
sification, J. Hydrol., 299, 2–3, 2004.

Merz, B. and Bl̈oschl, G.: Regionalization of catchment model pa-
rameters, J. Hydrol., 287, 95–123, 2004.

Nerenberg, M. A. H. and Essex, C.: Correlation dimension and sys-
tematic geometric effects, Phys. Rev. A, 42, 7065–7074, 1990.

Olden, J. D. and Poff, N. L.: Redundancy and the choice of hydro-
logic indices for characterizing streamflow regimes, River Res.
Appl., 19, 101–121, 2003.

Olden, J. D., Kennard, M. J., and Pusey, B. J.: A framework
for hydrologic classification with a review of methodologies
and applications in ecohydrology, Ecohydrology, 5, 503–518,
doi:10.1002/eco.251, 2011.

Osborne, A. R. and Provenzale, A.: Finite correlation dimension for
stochastic systems with power-law spectra, Physica D, 35, 357–
381, 1989.

Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S.: Ge-
ometry from a time series, Phys. Rev. Lett., 45, 712–716, 1980.

Paola, C., Foufoula-Georgiou, E., Dietrich, W. E., Hondzo, M.,
Mohrig, D., Parker, G., Power, M. E., Rodriguez-Iturbe, I.,
Voller, V., and Wilcock, P.: Toward a unified science of the
Earth’s surface: opportunities for synthesis among hydrology, ge-
omorphology, geochemistry, and ecology, Water Resour. Res.,
42, W03S10,doi:10.1029/2005WR004336, 2006.

Poff, N. L., Olden, J. D., Pepin, D. M., and Bledsoe, B. P.: Plac-
ing global stream flow variability in geographic and geomorphic
contexts, River Res. Appl., 22, 149–166, 2006.

Regonda, S., Sivakumar, B., and Jain, A.: Temporal scaling in river
flow: can it be chaotic?, Hydrolog. Sci. J., 49, 373–385, 2004.

Rosgen, D. L.: A classification of natural rivers, Catena, 22, 169–
199, 1994.

Sangoyomi, T. B., Lall, U., and Abarbanel, H. D. I.: Nonlinear dy-
namics of the Great Salt Lake: dimension estimation, Water Re-
sour. Res., 32, 149–159, 1996.

Schertzer, D., Tchiguirinskaia, I., Lovejoy, S., Hubert, P., and Bend-
joudi, H.: Which chaos in the rainfall-runoff process? A discus-

Hydrol. Earth Syst. Sci., 16, 4119–4131, 2012 www.hydrol-earth-syst-sci.net/16/4119/2012/

http://dx.doi.org/10.1002/eco.251
http://dx.doi.org/10.1029/2005WR004336


B. Sivakumar and V. P. Singh: Hydrologic system complexity and nonlinear dynamic concepts 4131

sion on “Evidence of chaos in the rainfall-runoff process” by
Sivakumar et al., Hydrolog. Sci. J., 47, 139–147, 2002.

Schreiber, T. and Kantz, H.: Observing and predicting chaotic sig-
nals: is 2 % noise too much?, in: Predictability of Complex Dy-
namical Systems, edited by: Kravtsov, Yu. A. and Kadtke, J. B.,
Springer Series in Synergetics, Springer, Berlin, 43–65, 1996.

Singh, V. P.: Hydrologic Systems: Volume 1, Rainfall-Runoff Mod-
eling, Prentice Hall, New Jersey, USA, 1988.

Sivakumar, B.: Chaos theory in hydrology: important issues and in-
terpretations, J. Hydrol., 227, 1–20, 2000.

Sivakumar, B.: Forecasting monthly streamflow dynamics in the
western United States: a nonlinear dynamical approach, Environ.
Modell. Softw., 18, 721–728, 2003.

Sivakumar, B.: Dominant processes concept in hydrology: moving
forward, Hydrol. Process., 18, 2349–2353, 2004a.

Sivakumar, B.: Chaos theory in geophysics: past, present and future,
Chaos Soliton. Fract., 19, 441–462, 2004b.

Sivakumar, B.: Correlation dimension estimation of hydrologic se-
ries and data size requirement: myth and reality, Hydrolog. Sci.
J., 50, 591–604, 2005a.

Sivakumar, B.: Hydrologic modeling and forecasting: role of thresh-
olds, Environ. Modell. Softw., 20, 515–519, 2005b.

Sivakumar, B.: Dominant processes concept, model simplification
and classification framework in catchment hydrology, Stoch.
Env. Res. Risk A., 22, 737–748, 2008.

Sivakumar, B., Liong, S. Y., Liaw, C. Y., and Phoon, K. K.: Singa-
pore rainfall behavior: chaotic?, ASCE J. Hydrol. Eng. 4, 38–48,
1999a.

Sivakumar, B., Phoon, K. K., Liong, S. Y., and Liaw, C. Y.: A sys-
tematic approach to noise reduction in chaotic hydrological time
series, J. Hydrol., 219, 103–135, 1999b.

Sivakumar, B., Sorooshian, S., Gupta, H. V., and Gao, X.: A chaotic
approach to rainfall disaggregation, Water Resour. Res., 37, 61–
72, 2001.

Sivakumar, B., Berndtsson, R., Olsson, J., and Jinno, K.: Reply to
“Which chaos in the rainfall-runoff process?” by Schertzer et al.,
Hydrolog. Sci. J., 47, 149–158, 2002a.

Sivakumar, B., Persson, M., Berndtsson, R., and Uvo, C. B.: Is cor-
relation dimension a reliable indicator of low-dimensional chaos
in short hydrological time series?, Water Resour. Res., 38, 1011,
doi:10.1029/2001WR000333, 2002b.

Sivakumar, B., Wallender, W. W., Horwath, W. R., Mitchell, J. P.,
Prentice, S. E., and Joyce, B. A.: Nonlinear analysis of rainfall
dynamics in California’s Sacramento Valley, Hydrol. Process.,
20, 1723–1736, 2006.

Sivakumar, B., Jayawardena, A. W., and Li, W. K.: Hydrologic com-
plexity and classification: a simple data reconstruction approach,
Hydrol. Process., 21, 2713–2728, 2007.

Snelder, T. H., Biggs, B. J. F., and Woods, R. A.: Improved eco-
hydrological classification of rivers, River Res. Appl., 21, 609–
628, 2005.

Takens, F.: Detecting strange attractors in turbulence, in: Dynami-
cal Systems and Turbulence, edited by: Rand, D. A. and Young,
L. S., Lecture Notes in Mathematics 898, Springer-Verlag, 366–
381, 1981.

Tootle, G. A. and Piechota, T. C.: Relationships between Pa-
cific and Atlantic ocean sea surface temperatures and U.S.
streamflow variability, Water Resour. Res., 42, W07411,
doi:10.1029/2005WR004184, 2006.

Tsonis, A. A., Triantafyllou, G. N., Elsner, J. B., Holdzkom II, J. J.,
and Kirwan Jr., A. D.: An investigation on the ability of nonlinear
methods to infer dynamics from observables, B. Am. Meteorol.
Soc., 75, 1623–1633, 1994.

Vormoor, K., Skaugen, T., Langsholt, E., Diekkrüger, B., and
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