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Abstract. Hydrological drought is increasingly studied us-
ing large-scale models. It is, however, not sure whether
large-scale models reproduce the development of hydrolog-
ical drought correctly. The pressing question is how well
do large-scale models simulate the propagation from me-
teorological to hydrological drought? To answer this ques-
tion, we evaluated the simulation of drought propagation
in an ensemble mean of ten large-scale models, both land-
surface models and global hydrological models, that par-
ticipated in the model intercomparison project of WATCH
(WaterMIP). For a selection of case study areas, we studied
drought characteristics (number of droughts, duration, sever-
ity), drought propagation features (pooling, attenuation, lag,
lengthening), and hydrological drought typology (classical
rainfall deficit drought, rain-to-snow-season drought, wet-to-
dry-season drought, cold snow season drought, warm snow
season drought, composite drought).

Drought characteristics simulated by large-scale models
clearly reflected drought propagation; i.e. drought events be-
came fewer and longer when moving through the hydrolog-
ical cycle. However, more differentiation was expected be-
tween fast and slowly responding systems, with slowly re-
sponding systems having fewer and longer droughts in runoff
than fast responding systems. This was not found using large-
scale models. Drought propagation features were poorly re-
produced by the large-scale models, because runoff reacted
immediately to precipitation, in all case study areas. This
fast reaction to precipitation, even in cold climates in winter
and in semi-arid climates in summer, also greatly influenced
the hydrological drought typology as identified by the large-
scale models. In general, the large-scale models had the cor-
rect representation of drought types, but the percentages of

occurrence had some important mismatches, e.g. an overes-
timation ofclassical rainfall deficit droughts, and an under-
estimation ofwet-to-dry-season droughtsand snow-related
droughts. Furthermore, almost nocomposite droughtswere
simulated for slowly responding areas, while many multi-
year drought events were expected in these systems.

We conclude that most drought propagation processes are
reasonably well reproduced by the ensemble mean of large-
scale models in contrasting catchments in Europe. Chal-
lenges, however, remain in catchments with cold and semi-
arid climates and catchments with large storage in aquifers
or lakes. This leads to a high uncertainty in hydrological
drought simulation at large scales. Improvement of drought
simulation in large-scale models should focus on a bet-
ter representation of hydrological processes that are im-
portant for drought development, such as evapotranspira-
tion, snow accumulation and melt, and especially storage.
Besides the more explicit inclusion of storage in large-
scale models, also parametrisation of storage processes re-
quires attention, for example through a global-scale dataset
on aquifer characteristics, improved large-scale datasets on
other land characteristics (e.g. soils, land cover), and calibra-
tion/evaluation of the models against observations of storage
(e.g. in snow, groundwater).

1 Introduction

Drought studies on global or continental scale increasingly
make use of large-scale models, both land-surface models
(LSMs) and global hydrological models (GHMs) (Andreadis
et al., 2005; Lehner et al., 2006; Sheffield and Wood, 2008;
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Fig. 1. Flow chart of drought propagation, based onStahl(2001);
Peters(2003); Van Loon and Van Lanen(2012a).

Mishra and Singh, 2011; Wang et al., 2011; Stahl et al.,
2012). There is, however, little knowledge on the perfor-
mance of large-scale models in simulating drought develop-
ment in the large variety of climate zones and catchments
around the world (Gudmundsson et al., 2012). Simulating
low flow and drought is a challenge, even for catchment-
scale models (Smakhtin, 2001; Staudinger et al., 2011). So
the question is how well do large-scale models perform for
low flows and drought? A evaluation of large-scale models is
needed to estimate the uncertainty related to drought simula-
tion using large-scale models and to guide further improve-
ment of these models. Some first steps in the evaluation of
drought simulation by large-scale models are set byPrud-
homme et al.(2011); Stahl et al.(2011a, 2012), andGud-
mundsson et al.(2012). They looked at trends and general
patterns/statistics of low flows, but most of them did not take
into account actual timing and duration of drought events.
Only Prudhomme et al.(2011) investigated timing and du-
ration of drought events. However, likeStahl et al.(2011a,
2012) andGudmundsson et al.(2012), they focused solely
on runoff. Drought propagation from meteorological to hy-
drological drought was not taken into account. Hence, the
simulation of processes underlying hydrological drought de-
velopment (i.e. drought propagation, Fig.1) by large-scale
models is not yet evaluated. With this study we take a first
step towards filling that gap. A correct simulation of these
processes is needed, so that we know that large-scale simu-
lations are robust when extrapolating to data-scarce regions
(e.g.Stahl et al., 2012) or to the future (e.g.Gosling et al.,
2011; Corzo Perez et al., 2011).

In this study, drought is defined as a sustained and region-
ally extensive period of below-average natural water avail-
ability (Tallaksen and Van Lanen, 2004). We focus on the
development of hydrological drought, which is a drought in
groundwater and/or discharge (Fig.1). Hydrological drought
is a recurring and worldwide phenomenon, with spatial and
temporal characteristics that vary significantly from one

region to another (Tallaksen and Van Lanen, 2004). Some
of the most studied drought characteristics are number of
droughts, drought duration, and drought deficit (Hisdal et al.,
2004; Fleig et al., 2006; Sheffield and Wood, 2011). Not
only drought characteristics vary per region, but also the way
a drought propagates from a precipitation and/or temperature
anomaly to a hydrological drought differs around the world
(Tallaksen and Van Lanen, 2004; Mishra and Singh, 2010;
Van Loon et al., 2010). The flow chart in Fig.1 demonstrates
the propagation of drought and how it is dependent on mete-
orological factors like precipitation and temperature (similar
illustrations can be found in e.g.Changnon Jr., 1987; Tallak-
sen and Van Lanen, 2004; Sheffield and Wood, 2011, how-
ever without making a distinction between rain and snow
seasons in cold climates). Despite these different ways that
a hydrological drought can develop from the meteorologi-
cal situation, some drought propagation features are common
to all hydrological droughts (Eltahir and Yeh, 1999; Peters
et al., 2003; Van Lanen et al., 2004; Van Loon et al., 2011b;
Van Loon and Van Lanen, 2012a):

– meteorological droughts are combined into a prolonged
hydrological drought (pooling);

– meteorological droughts are attenuated in the stores
(attenuation);

– a lag occurs between meteorological, soil moisture and
hydrological drought (lag);

– droughts become longer moving from meteorological to
soil moisture to hydrological drought (lengthening).

These drought propagation features manifest themselves in
different ways dependent on catchment characteristics and
climate (Van Lanen et al., 2004, 2012). This results in
different hydrological drought types, dependent on the in-
terplay between precipitation, temperature, and catchment
characteristics.Van Loon and Van Lanen(2012a) distin-
guish six different hydrological drought types in their hy-
drological drought typology: (i)classical rainfall deficit
drought, (ii) rain-to-snow-season drought, (iii) wet-to-dry-
season drought, (iv) cold snow season drought, (v) warm
snow season drought, and (vi)composite drought.

The above-mentioned elements of drought propagation,
i.e. drought characteristics, drought propagation features,
and drought typology, can be used as tools to evaluate the
simulation of drought propagation by large-scale models.
In hydrology, often only one single large-scale model is
used with its specific advantages and disadvantages (e.g.
Lehner et al., 2006; Sheffield and Wood, 2007; Döll and
Zhang, 2009; Hurkmans et al., 2009; Mishra and Singh,
2010; Sutanudjaja et al., 2011). In several studies, however,
the multi-model ensemble of a number of large-scale mod-
els was closer to observations than most participating mod-
els individually, both in general hydrological studies (e.g.
Gao and Dirmeyer, 2006; Guo et al., 2007) and in low
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Table 1.Main characteristics of the participating models (derived fromHaddeland et al., 2011).

Model namea Input variables (from WFD)b Output variablesc Reference(s)

GWAVA P , T , W , Q, LWn, SW, SP SM,Qsub, Qtotal Meigh et al.(1999)
H08 R, S, T , W , Q, LW, SW, SP SM,Qsub, Qtotal Hanasaki et al.(2008)
HTESSEL R, S, T , W , Q, LW, SW, SP SM,Qsub, Qtotal Balsamo et al.(2009)
JULES R, S, T , W , Q, LW, SW, SP SM,Qsub, Qtotal Best et al.(2011); Clark et al.(2011)
LPJmL P , T , LWn, SW SM, GW,Qsub, Qtotal Bondeau et al.(2007); Rost et al.(2008)
Mac-PDM P , T , W , Q, LWn, SW GW,Qsub, Qtotal Arnell (1999); Gosling and Arnell(2011)
MATSIRO R, S, T , W , Q, LW, SW, SP SM,Qsub, Qtotal Takata et al.(2003); Koirala (2010)
MPI-HM P , T SM, Qsub, Qtotal Hagemann and Gates(2003),

Hagemann and D̈umenil(1998)
Orchidee R, S, T , W , Q, SW, LW, SP SM,Qsub, Qtotal de Rosnay and Polcher(1998)
WaterGAP P , T , LWn, SW SM, GW,Qsub, Qtotal Alcamo et al.(2003)

a Model names written in bold are classified as LSMs in this paper; the other models are classified as GHMs.
b R: rainfall rate,S: snowfall rate,P : precipitation (rain or snow distinguished in the model),T : air temperature,W : wind speed,Q: specific humidity,
LW: longwave radiation (downward), LWn: longwave radiation (net), SW: shortwave radiation (downward), SP: surface pressure.
c SM: soil moisture storage, GW: groundwater storage,Qsub: subsurface runoff,Qtotal: total runoff (subsurface runoff+ surface runoff).

flow and drought research (e.g.Gudmundsson et al., 2012;
Stahl et al., 2011b). Therefore, in this study, we investigated
a multi-model ensemble, as was previously done in some
other drought studies (Wang et al., 2009, 2011; Gudmunds-
son et al., 2012; Stahl et al., 2012; Van Huijgevoort et al.,
2012a). The aim of this paper is explicitly not to compare
individual models or model approaches, but to see whether
large-scale models in general can reproduce drought prop-
agation. Therefore, outcome from individual models is not
shown; only the multi-model ensemble with ranges of daily
minimum and maximum is presented.

The objective of this study is to evaluate the simulation
of drought propagation in large-scale hydrological models.
To reach this objective, we used a global meteorological
dataset (Sect.2.1.1), hydrological data from an ensemble
of ten large-scale models (Sect.2.1.2), selected a number
of case study areas with contrasting climate and catchment
characteristics (Sects.2.2.1and2.2.2), and studied drought
development in those areas in detail (Sects.2.2.3and2.2.4).
Focus is hereby not on individual drought events, but on gen-
eral phenomena, i.e. (i) drought characteristics (Sect.3.1),
(ii) drought propagation features (Sect.3.2), and (iii) drought
typology (Sect.3.3). Individual drought events of specific
case study areas are only included as examples to illustrate
these general phenomena. In Sect.4, we discuss our method-
ology and results and in Sect.5 we summarize and conclude
this study.

2 Data and methods

In this study, we used data from a large-scale meteorological
dataset and from a suite of large-scale hydrological models.
These large-scale data were extracted and post-processed in
a number of steps. Subsequently, we performed drought anal-
ysis on the hydrometeorological data and applied the hydro-
logical drought typology.

2.1 Large-scale data

2.1.1 Meteorological data

The large-scale meteorological data used in this study were
obtained from the WATCH Forcing Data (WFD,Weedon
et al., 2011). This dataset consists of gridded time series of
meteorological variables (e.g. rainfall, snowfall, temperature,
wind speed) on a daily basis for 1958–2001. The data have
a spatial resolution of 0.5◦ based on the CRU land mask.

The WFD originate from modification (e.g. bias correction
and downscaling) of the ECMWF ERA-40 re-analysis data
(Uppala et al., 2005). The data have been interpolated and
corrected for the elevation differences between the grids. For
precipitation, the ERA-40 data were first adjusted to have the
same number of wet days as CRU (Brohan et al., 2006). Next,
the data were bias-corrected using monthly GPCC precipita-
tion totals (Schneider et al., 2008) and, finally, gauge-catch
corrections were applied.

For temperature, the ERA-40 data were bias-corrected
using CRU monthly average temperatures and temperature
ranges. For more information the reader is referred toWee-
don et al.(2011). In this study, we used time series of tem-
perature and precipitation to investigate drought propagation.
The WFD have also been used to force the large-scale hydro-
logical models (Haddeland et al., 2011), from which output
data were used in this study.

2.1.2 Hydrological data

The large-scale hydrological data used in this study were
obtained from large-scale hydrological models that partici-
pated in the model intercomparison project (WaterMIP) of
WATCH (http://www.eu-watch.org), which is described by
Haddeland et al.(2011). Data of ten large-scale hydrolog-
ical models have been provided, i.e. GWAVA, H08, HT-
ESSEL, JULES, LPJmL, Mac-PDM, MATSIRO, MPI-HM,
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Table 2. Catchment characteristics of the selected catchments Narsjø (Norway), Upper-Metuje and Upper-Sázava (Czech Republic),
Nedǒzery (Slovakia), and Upper-Guadiana (Spain); obs. period= observation period,T = temperature,P = precipitation, PET= potential
evaporation,Q = discharge.

Narsjø Upper-Metuje Upper-Sázava Nedǒzery Upper-Guadiana

catchment

area [km2] 119 73.6 131 181 16,479
altitude [m a.m.s.l.]a 945 591 628 573 769

(737–1595) (459–780) (487–805) (288–1172) (599–1100)
Köppen-Geiger Dfc Cfb Cfb Dfb Csac, Csb
climate typeb [–] and Bsk
obs. period 1958–2007 1982–2005 1963–1999 1974–2006 1960–2001
continuous snow 7 4 4 4 0
cover [months]
T [◦C] 0.7 5.9 6.8 7.6 14.1
P [mm yr−1] 594 746 717 873 450
PET [mm yr−1] 296 574 684 981 1250
Q [mm yr−1] 820 321 291 352 16

grid cell

latitude 62.25 50.75 49.75 48.75 39.25
longitude 11.75 16.25 15.75 18.75 −3.75
area of catchment 72 % 100 % 91 % 100 % 14 %
within grid cell
area of grid cell 6 % 4 % 6 % 9 % 99 %
covered by catchment
altitude [m a.m.s.l.] 785 446 461 580 740

a Mean (min–max).b Kottek et al.(2006). c Climate type of selected grid cell in Upper-Guadiana catchment.

Orchidee, and WaterGAP (Table1). All models were run at
0.5◦ spatial resolution for the global land area for a 38-yr pe-
riod (1963–2000), with a 5-yr spin-up period (1958–1962).

Based on the type of model (LSM/GHM) and its devel-
opment history, the large-scale models use different vari-
ables from the WFD as input (Table1) and have different
schemes for calculating evapotranspiration, snow accumu-
lation and melt, and runoff (Haddeland et al., 2011; Gud-
mundsson et al., 2012). LSMs and GHMs were run on a dif-
ferent time steps, and after simulation sub-daily data were
aggregated to daily data. The model time step is not expected
to influence drought simulation, in contrast with model struc-
ture, which is of paramount importance (see Sect.4.2).

Human impacts such as reservoir operation and water
withdrawals for agriculture or drinking water were not in-
cluded in the model output we used for this study. The large-
scale models have not been calibrated for WaterMIP, except
WaterGAP, for which correction factors were applied in some
major river basins (e.g.Alcamo et al., 2003; Hunger and
Döll, 2008). More details of the models can be found inHad-
deland et al.(2011) andGudmundsson et al.(2012), or in the
references listed in Table1.

Output variables used in this study include the main water
balance states and fluxes on daily time scale: soil moisture
storage (SM), groundwater storage (GW), subsurface runoff

(Qsub), and total runoff (Qtotal= surface runoff+ subsurface
runoff). Soil moisture data were only available for nine mod-
els, groundwater storage only for three models (see Table1).
In the models that explicitly simulate groundwater storage,
subsurface runoff reflects baseflow. In the other models, sub-
surface runoff is drained from the soil storage and reflects a
slow runoff component.

2.2 Methodology

2.2.1 Extraction of data for case study areas

To investigate whether drought propagation from an anomaly
in precipitation/temperature (meteorological situation in
Fig. 1) to groundwater/runoff (hydrological drought in
Fig. 1) is well reproduced by large-scale models, time se-
ries of model results need to be studied. Only a limited num-
ber of case study areas can be studied in detail, and prior
knowledge of drought propagation in the selected case study
areas is essential for a proper evaluation of the models. For
example,Gudmundsson et al.(2012) concluded that the lim-
itation of their study was the loss of information due to spa-
tial aggregation in data processing. Therefore, in this study,
a limited selection of case study areas was used that cor-
responds to catchments that have been studied in previous
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papers (Van Huijgevoort et al., 2010; Van Loon et al., 2010;
Van Loon and Van Lanen, 2012a). These catchments are re-
stricted to Europe, but the conclusions drawn with regard
to the studied catchments have a wider validity because of
their contrasting climate and catchment characteristics and
the general phenomena that were studied.

From the gridded large-scale meteorological and hydro-
logical datasets mentioned in the previous section, we se-
lected five case study areas for detailed drought propaga-
tion research. These case study areas correspond to natu-
ral headwater catchments in Europe with contrasting climate
and catchment characteristics (Table2). A short description
of the case study areas is given in this subsection; more de-
tailed descriptions can be found inVan Lanen et al.(2008)
andVan Loon and Van Lanen(2012a).

The Narsjø catchment is located in a mountainous region
in southeastern Norway. It has a subarctic climate with mild
summers and very cold winters, with a permanent snow cover
for, on average, seven months per year. Mean measured dis-
charge is 820 mm yr−1, with lowest flows in winter and high-
est in spring (May). Narsjø is quickly responding to precip-
itation due to its impermeable subsoil, but storage in lakes
and bogs causes some delay. Of the two grid cells covering
the catchment, the one with the highest coverage (72 %) was
used (Table2).

The Upper-Metuje and Upper-Sázava catchments are lo-
cated in a hilly region in northeastern and central Czech Re-
public, respectively. Both catchments have an oceanic cli-
mate with mild summers and winters, with some snow ac-
cumulation in winter. Mean measured discharge is around
300 mm yr−1, with lowest flows in summer/autumn and
highest flows in spring (March). Both catchments are slowly
responding to precipitation, Upper-Metuje due to an exten-
sive multiple aquifer system and Upper-Sázava due to a num-
ber of lakes. One grid cell completely covers the Upper-
Metuje catchment, whereas for Upper-Sázava, of the two grid
cells covering the catchment, the one with the highest cover-
age (91 %) was used (Table2).

The Nedǒzery catchment is located in central Slovakia
in a mountainous region. It has a humid continental cli-
mate with warm summers and cool winters, with some
snow accumulation in winter. Mean measured discharge is
around 350 mm yr−1 with lowest flows in summer and high-
est flows in spring (March). Nedožery is quickly respond-
ing to precipitation due to limited storage (no groundwa-
ter, lakes, or bogs). One grid cell completely covers this
catchment (Table2).

The Upper-Guadiana catchment is located on the central
Spanish plateau. It has a Mediterranean and semi-arid cli-
mate with very warm summers and mild winters. Poten-
tial evaporation exceeds precipitation, resulting in a rela-
tively low mean measured discharge of 16 mm yr−1. Low-
est flows occur in summer and highest flows in winter.
Upper-Guadiana is slowly responding to precipitation due
to large storage in extensive multi-layer aquifer systems and

wetlands. Of the grid cells covering the catchment, the one
closest to the outlet of the catchment representing 14 % of
the catchment was used (Table2). A number of other grid
cells from this catchment were also studied (including one
with a Bsk-climate instead of a Csa-climate), but the results
were not significantly different. The time series of hydrologi-
cal variables, the drought characteristics, and the conclusions
drawn with regard to the performance of the large-scale mod-
els in simulating drought propagation processes were similar.

We are aware that caution should be taken when compar-
ing large-scale models against observations on the scale of
one single grid cell. In this study, we therefore did not com-
pare model output with observations. Instead, we studied the
most important processes underlying drought propagation in
the example catchments and compared the results with gen-
eral knowledge on drought propagation and with results of
catchment-scale models, described byVan Loon and Van La-
nen(2012a). Comparisons of large-scale model(s) with ob-
servations have been performed previously byVan Loon
et al. (2011b) and Stahl et al.(2011a). Van Loon et al.
(2011b) did a qualitative assessment of the regime of the
ensemble mean of a comparable set of large-scale models
for four of the case study areas that were also used in this
study. They concluded that the most important characteris-
tics of those regimes, i.e. low flows and snow melt peaks,
were reproduced by the large-scale models. This gives confi-
dence that large-scale models can be used for drought anal-
ysis in these case study areas.Stahl et al.(2011a) compared
anomaly indices in a large number of small catchments in Eu-
rope, some being represented by a single grid cell and some
by more than one grid cell (up to nine cells). They found
no significant correlations of anomaly indices with area, and
thus ruled out a scaling effect. Hence, small catchments can
be represented by a single grid cell, as long as the elevation
difference between model and observations is not too high
(in Stahl et al., 2011a, less than 300 m).

2.2.2 Post-processing

We processed the data of the selected case study areas
through a number of steps:

1. interpolation of NA-values of leap days,

2. standardisation of the state variables SM and GW by
dividing the data by the long-term average (needed be-
cause of huge inter-model differences in reference level,
as reported byWang et al., 2009),

3. calculation of the ensemble mean of all models for SM,
GW, Qsub, andQtotal (nine models for SM, three for
GW, and ten forQsub andQtotal; see Table1),

www.hydrol-earth-syst-sci.net/16/4057/2012/ Hydrol. Earth Syst. Sci., 16, 4057–4078, 2012
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Fig. 2. Threshold level method with variable threshold (80th per-
centile of monthly duration curve, smoothed by 30-day moving av-
erage) for groundwater storage (GW; state variable; upper row) and
total runoff (Q; flux; lower row), including an illustration of drought
characteristics duration, deficit volume, and maximum deviation.

4. calculation of the daily maximum and minimum value
of all models for SM, GW,Qsub, andQtotal to determine
model range,

5. smoothing the daily ensemble mean, maximum, and
minimum of SM, GW,Qsub, and Qtotal by applying
a 30-day centred moving average (the need for smooth-
ing when using large-scale models was demonstrated by
Van Loon et al., 2011b).

2.2.3 Drought analysis

Droughts were identified using the variable threshold method
(Yevjevich, 1967; Hisdal et al., 2004; Van Loon and Van La-
nen, 2012a). A monthly threshold derived from the 80-
percentile of the monthly duration curves was used. The dis-
crete monthly threshold values were smoothed by applying
a centred moving average of 30 days (Van Loon and Van La-
nen, 2012a). To eliminate minor droughts, a minimum dura-
tion of 3 days was used (Van Loon et al., 2010). This method
was applied to all hydrometeorological variables, i.e. precip-
itation (from WFD), and the smoothed ensemble mean of
SM, GW, Qsub, andQtotal (from the large-scale hydrologi-
cal models). The smoothing (Sect.2.2.2, step 5) was used as
pooling method (Hisdal et al., 2004; Fleig et al., 2006).

Each drought event can be characterised by its duration
and by some measure of the severity of the event. For
fluxes (e.g. precipitation and runoff) the most commonly
used severity measure is deficit volume (Fig.2), calculated
by summing up the differences between actual flux and the
threshold level over the drought period (Hisdal et al., 2004;
Fleig et al., 2006). For state variables (e.g. soil moisture and

groundwater storage), we used the maximum deviation from
the threshold (max.deviation) as severity measure (Fig.2).
These drought characteristics are used to illustrate drought
propagation (Di Domenico et al., 2010; Van Loon et al.,
2011b; Van Loon and Van Lanen, 2012a).

2.2.4 Typology of hydrological droughts

The hydrological drought typology developed byVan Loon
and Van Lanen(2012a) was used to study drought propaga-
tion processes. This typology (Table3) was developed using
a catchment-scale model that was calibrated against obser-
vations. Here, a short summary is given of the hydrologi-
cal drought types distinguished in the drought typology; for
more details refer toVan Loon and Van Lanen(2012a).

– Classical rainfall deficit droughtsare caused by a rain-
fall deficit (in any season) and occur in all climate types.

– Rain-to-snow-season droughtsare caused by a rainfall
deficit in the rain season and extend into the snow sea-
son in which precipitation peaks do not end the hydro-
logical drought, because temperatures have decreased
below zero, and occur in catchments with a pronounced
snow season.

– Wet-to-dry-season droughtsare caused by a rainfall
deficit in the wet season and extend into the dry season
in which precipitation peaks do not end the hydrological
drought, because they are completely lost to evapotran-
spiration, and occur in catchments with pronounced wet
and dry seasons (e.g. Mediterranean and monsoon cli-
mates).

– Cold snow season droughtsare caused by a low tem-
perature in the snow season. In catchments with a very
cold winter,subtypes A and Boccur, which are caused
by an early beginning of the snow season and a delayed
snow melt, respectively. In catchments with tempera-
tures around zero in winter,subtype Coccurs, which
is caused by below-normal recharge due to snow accu-
mulation.

– Warm snow season droughtsare caused by a high tem-
perature in the snow season. In catchments with a very
cold winter, subtype Aoccurs, which is caused by
an early snow melt. In catchments with temperatures
around zero in winter,subtype Boccurs, which is caused
by a complete melt of the snow cover in combination
with a subsequent rainfall deficit.

– Composite droughtsare caused by a combination of hy-
drological drought events (of the same or different hy-
drological drought types) over various seasons and can
occur in all climate types, but are most likely in (semi-)
arid climates and slowly responding catchments.

Hydrol. Earth Syst. Sci., 16, 4057–4078, 2012 www.hydrol-earth-syst-sci.net/16/4057/2012/
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Table 3.Drought propagation processes per hydrological drought type and occurrence in Köppen-Geiger major climate types (also visualised
in Fig. 1; Van Loon and Van Lanen, 2012a).

hydrological drought type governing process(es) P control/T control climate type

Classical rainfall deficit drought rainfall deficit (in any season) P control A,B,C,D,E
Rain-to-snow-season drought rainfall deficit in rain season, drought continues into snow seasonP andT control C,D,E
Wet-to-dry-season drought rainfall deficit in wet season, drought continues into dry seasonP andT control A,B,C
Cold snow season drought low temperature in snow season, leading to:

subtype A early beginning of snow season T control D,E
subtype B delayed snow melt T control C,D
subtype C no recharge T control C,D

Warm snow season drought high temperature in snow season, leading to:
subtype A early snow melt T control D,E
subtype B in combination with rainfall deficit, no recharge P andT control C,D

Composite drought combination of a number of drought events over various seasonsP and/orT control A,B,C,D,E

Table3 also includes a column on the influence of precip-
itation (P ) and temperature (T ) control on the development
of each hydrological drought type.Classical rainfall deficit
droughtsare the only hydrological drought type that is com-
pletely governed byP control.Cold snow season droughts
(all subtypes) andwarm snow season droughts – subtype A –
are hydrological drought types that are completely governed
by T control.Rain-to-snow-season droughtsandwet-to-dry-
season droughtsare initiated byP control and continued by
T control.Warm snow season droughts – subtype B –are ini-
tiated byT control and continued byP control. In the case
of composite droughts, it is dependent on the hydrological
drought types that are combined, whether onlyP control,
only T control, or a combination ofP andT control plays
a role (Van Loon and Van Lanen, 2012a).

The application of the drought typology is based on ex-
pert knowledge (like inVan Loon and Van Lanen, 2012a).
In the part of this study dealing with typology, subsurface
runoff (Qsub) was used as proxy for groundwater, because
groundwater storage data were only supplied by three out of
ten large-scale models (see Table1).

3 Results

In this section, we present the results of the analysis of the
large-scale models on drought characteristics, drought prop-
agation features, and drought typology, and link these results
to earlier work on drought propagation. This exercise can be
regarded as evaluation of the large-scale models.

3.1 Drought characteristics

General drought characteristics were determined from the
large-scale model ensemble mean for all five case study ar-
eas (Table4). These drought characteristics reflect aspects of
drought propagation and differences in climate:

– Drought events became fewer and longer when mov-
ing from precipitation via soil moisture to groundwater
storage; i.e. the number of droughts decreased from 3–5
per year to 0.5–1 per year, and the duration increased
from around 15 days to 70–160 days. The decrease in
the number of droughts can be seen in Fig.3e, in which
there were more drought events in precipitation (2nd
row) than in groundwater (4th row) due to attenuation,
and the increase in duration is visualised in Figs.3c
and4b, and c, in which drought events in precipitation
(2nd row) were (more and) shorter than those in ground-
water (4th row).

– Drought events in total runoff had drought characteris-
tics in between those of precipitation and groundwater,
because total runoff reflects both fast and slow pathways
in a catchment. This is visualised in Figs.3 and4, in
which the signal of total runoff (lower row) is a com-
bination of the signals of subsurface runoff (5th row)
representing slow pathways and precipitation (2nd row)
representing fast pathways.

– Deficit volumes were higher for droughts in precipita-
tion than for droughts in total runoff, because precipi-
tation is higher and more variable, resulting in higher
threshold values and a larger deviation from the thresh-
old (compare 2nd and lower row in Figs.3 and4). The
exception was Narsjø, which had a slightly lower vari-
ability in precipitation and a slightly higher variability
in total runoff than the other case study areas, resulting
in a similar mean deficit (i.e. 4.3 mm; Table4).

– Drought characteristics of subsurface runoff were com-
parable to those of groundwater storage (although a dif-
ferent number of large-scale models was used to cal-
culate the average of both variables; see Table1). In
Figs. 3 and4, the 4th and 5th row have a comparable
number and duration of drought events. In some case
study areas, e.g. Narsjø and Nedožery, droughts in sub-
surface runoff were only slightly more and shorter than
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Table 4. General drought characteristics using a 80 % monthly threshold (moving average 30 days) and a minimum drought duration of
3 days for the hydrometeorological variables derived from WFD and simulated with the large-scale models for all selected case study areas.

no. of droughts mean duration mean deficit mean max.deviation
(per year) (day) (mm) (mm)

Narsjø precipitation 4.6 16 4.3 –
soil moisture 1.4 53 – 0.04
groundwater storage 1.0 70 – 0.07
subsurface runoff 1.3 57 4.0 –
total runoff 1.8 42 4.3 –

Upper-Metuje precipitation 4.9 14 6.1 –
soil moisture 1.5 45 – 0.05
groundwater storage 1.0 70 – 0.07
subsurface runoff 1.0 69 4.6 –
total runoff 2.5 28 3.8 –

Upper-Śazava precipitation 4.6 16 6.3 –
soil moisture 1.4 48 – 0.05
groundwater storage 0.7 106 – 0.09
subsurface runoff 0.6 117 7.8 –
total runoff 2.3 30 3.7 –

Nedǒzery precipitation 4.7 15 5.9 –
soil moisture 1.7 41 – 0.04
groundwater storage 0.7 99 – 0.07
subsurface runoff 1.0 66 3.3 –
total runoff 2.9 24 2.7 –

Upper-Guadiana precipitation 3.4 19 4.2 –
soil moisture 1.3 53 – 0.08
groundwater storage 0.5 159 – 0.11
subsurface runoff 0.7 107 0.94 –
total runoff 2.0 36 0.81 –

those in groundwater storage (Table4). The similarity of
both variables also justifies the use ofQsubas a proxy of
groundwater storage in the remainder of this research.

– Due to its semi-arid climate, Upper-Guadiana had
slightly fewer and longer meteorological droughts than
the other case study areas (Table4).

These results correspond to earlier work on drought propa-
gation (Peters et al., 2003; Tallaksen and Van Lanen, 2004;
Di Domenico et al., 2010; Van Loon et al., 2011b; Van Loon
and Van Lanen, 2012a).

The drought characteristics in Table4 also showed unex-
pected behaviour:

– Mean max.deviation was lower for soil moisture
droughts than for droughts in groundwater. This was
expected to be the other way around (like inHohen-
rainer, 2008andVan Loon and Van Lanen, 2012a) and
is probably due to the standardisation of the values of
soil moisture and groundwater (Sect.2.2.2, step 2).

– The drought characteristics of total runoff were in be-
tween those of precipitation and soil moisture in all

case study areas, while a differentiation between fast
and slowly responding systems was anticipated. The
drought characteristics of total runoff in the slowly
responding systems Upper-Metuje, Upper-Sázava, and
Upper-Guadiana were expected to be more compara-
ble to those of groundwater storage/subsurface runoff
(fewer and longer droughts, like inVan Loon and
Van Lanen, 2012a). In the Upper-Śazava and Upper-
Guadiana case study areas, mean duration of droughts
in groundwater storage and subsurface runoff was rel-
atively long, as expected (106 and 117 days and 159
and 107 days, for Upper-Sázava and Upper-Guadiana,
respectively), but total runoff did not reflect a substan-
tial groundwater influence as mean duration of droughts
in total runoff was short (30 and 36 days, respectively).
This is visualised in Figs.3 and 4, in which drought
events in total runoff (lower row) were more and shorter
than those in groundwater (4th row).

– Average groundwater drought duration in Nedožery was
longer (99 days) than groundwater drought duration in
Upper-Metuje (70 days). Nedožery was anticipated to
have shorter groundwater droughts, due to the lack of
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Fig. 3.Example of drought events in all case study areas: Narsjø, Upper-Metuje, Upper-Sázava, Nedǒzery, and Upper-Guadiana in 1970 (all
rows: black, solid line= time series of meteorological variable (30-day moving-average of WFD temperature and precipitation) or ensemble
mean of hydrological variable (see y-axis), grey area= range of individual models, dashed line= smoothed monthly 80 %-threshold of
displayed variable, red area= drought event; upper row: grey line= long-term average of WFD temperature, red line= 0◦C).

storage in the catchment and therefore its fast reac-
tion to precipitation (Sect.2.1.2andOosterwijk et al.,
2009), and Upper-Metuje was anticipated to have longer
groundwater droughts, due to storage in the extensive
aquifer system and therefore its slow reaction to precip-
itation (Sect.2.1.2 and Rakovec et al., 2009). Upper-
Guadiana was expected to have even longer groundwa-
ter droughts than the average of around 160 days, be-
cause multi-year droughts are common in that catch-
ment due to its semi-arid climate and large storage in
extensive aquifer systems and wetlands (Sect.2.1.2and
Peters and Van Lanen, 2003). In Van Loon and Van La-
nen(2012a), average duration of groundwater droughts
in Upper-Guadiana was more than 750 days.

In conclusion, the ensemble mean of the large-scale models
showed a reasonable reproduction of general drought char-
acteristics in the case study areas. Propagation processes
were clearly reflected. In general, the ensemble mean of
the large-scale models is better in simulating quickly re-
sponding systems than slowly responding systems. In slowly
responding systems, too many short hydrological droughts
were simulated.

3.2 Drought propagation features

For a more thorough insight into drought generating mech-
anisms, we also investigated time series of meteorological
data of the WFD and hydrological data of the large-scale
models for the propagation features mentioned in Sect.1.
From a visual inspection of the total time series of precipita-
tion (examples in 2nd row in Figs.3 and4) and total runoff
(examples in lower row in Figs.3 and4), we learned that the
shape of the signal of the ensemble mean total runoff was
quite similar to the precipitation signal. Recessions, which
are an indication of catchment processes, were not visible in
the time series of total runoff and only slightly in groundwa-
ter storage. With regard to the drought propagation features,
the ensemble mean of the large-scale models showed

– very little lag: the start of a hydrological drought almost
coincided with the start of the associated meteorolog-
ical drought. The lag between a drought in precipita-
tion and total runoff was estimated to be on average be-
tween 4 and 15 days (dependent on catchment), while
using a catchment-scale model it has been estimated
to be between 24 and 51 days for the same catchments
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Fig. 4. Example of drought events in all case study areas, Narsjø, Upper-Metuje, Upper-Sázava, Nedǒzery, and Upper-Guadiana in 1992
(legend: see Fig.3).

(Van Loon and Van Lanen, 2012a). A European-wide
study on the hydrological drought response time to
weather-type occurrence showed even larger values,
varying between 45 and 210 days, dependent on basin
storage properties (Fleig et al., 2010). The absence of
a lag in the ensemble mean of large-scale models can
partly be explained by the fact that we studied single
grid cell runoff, for which no routing was applied. If
we would have studied routed discharge of a large num-
ber of grid cells (i.e. a larger catchment), a larger lag
would have been expected. We checked this hypothesis
by studying the routed discharge of the Upper-Guadiana
case study area, because it is the largest catchment with
highest routing effects expected there. When switch-
ing from single grid cell runoff to routed discharge, the
lag between precipitation and discharge increased from
4 days to 11 days, which is still considerably lower than
the lag of 24 days produced by a catchment-scale model
(Van Loon and Van Lanen, 2012a).

– very little lengthening: also the end of a hydrological
drought almost coincided with the end of the associated
meteorological drought, because a precipitation peak
immediately caused higher runoff in the large-scale

model simulations. Exceptions are some cases in win-
ter with temperatures below zero in which snow accu-
mulation took place (e.g. in Upper-Metuje and Upper-
Sázava, Fig.3b, c). Furthermore, sometimes during
a dry series of years, recovery from drought was slightly
slower than during a wet series of years.

– almost no pooling: most meteorological droughts re-
sulted in a separate hydrological drought (compare
precipitation, 2nd row, and total runoff, lower row,
in Figs. 3 and 4). Only in some cases, meteorologi-
cal droughts grew together into one long hydrological
drought (e.g. the drought events in Upper-Sázava; see
Figs.3c and4c, lower row).

– some attenuation: during a multi-year period of on av-
erage high precipitation, short meteorological drought
events were filtered out (e.g. in Upper-Guadiana in
1970; see Fig.3e, lower row).Prudhomme et al.(2011)
also found that the non-occurrence of extremes is gen-
erally simulated in the correct period by a number of
large-scale models.

In conclusion, the ensemble mean of the large-scale models
showed a poor reproduction of drought propagation features
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in the case study areas. Total runoff reacted immediately
to precipitation. Meteorological droughts directly led to hy-
drological droughts (little lag and only some attenuation)
and a precipitation peak immediately ended a hydrological
drought (little lengthening or pooling).

3.3 Typology

Additionally, we applied the drought typology ofVan Loon
and Van Lanen(2012a) to the large-scale model results.
Many hydrological drought events were unidentifiable (5 %
of all events for Upper-Metuje, up to 28 % for Narsjø, Ta-
ble5, last column), meaning that no anomaly in precipitation
or temperature could be found that caused the hydrological
drought event. Many of these unidentifiable drought events
occurred in the snow season. The snow-related drought types
(i.e.rain-to-snow-season drought, cold snow season drought,
and warm snow season drought, Sect.2.2.4) were clearly
more difficult to distinguish using the ensemble mean of the
large-scale models than using catchment-scale models (with
which the typology was developed). In Narsjø, for example,
a precipitation deficit during winter (with temperatures well
below zero and precipitation falling as snow, Table2) some-
times initiated a hydrological drought during that same win-
ter. This should not occur, because if temperatures are below
zero, a lack of snowfall should not influence winter runoff,
but only snow accumulation.

3.3.1 Classification of all hydrological drought events in
the case study areas

Table5 gives the percentages of all drought events in total
runoff and subsurface runoff (proxy for groundwater storage;
Sects.2.2.4and3.1) in all five case study areas that were at-
tributed to a certain hydrological drought type. The following
can be noted:

– Drought events in subsurface runoff and total runoff had
very similar hydrological drought types. The exception
is composite drought, which did not occur in total runoff
in some case study areas (e.g. Upper-Sázava).

– Many drought events were classified asclassical rain-
fall deficit drought (in total for all case study areas
together, 48 % in subsurface runoff and 62 % in total
runoff). Especially Upper-Śazava and Upper-Guadiana
had manyclassical rainfall deficit droughts.

– As expected,wet-to-dry-season droughtsonly occurred
in the case study area with a semi-arid climate (Upper-
Guadiana) and snow-related droughts (rain-to-snow-
season drought, cold snow season drought, andwarm
snow season drought) only in regions with a continuous
snow cover in winter (all except Upper-Guadiana).

– Composite droughtswere found in all case study areas,
but with low percentages. They did not only occur in

regions with a slow response to precipitation (Upper-
Metuje, Upper-Śazava, and Upper-Guadiana), but also
in Narsjø and Nedǒzery (regions which typically have
only limited storage and a quick response to precipita-
tion). In Nedǒzery, thesecomposite droughtswere two
events in subsurface runoff for which different hydro-
logical drought types in different seasons were not inter-
rupted by a recharge peak. One example in Nedožery, in
which warm snow season droughtsandclassical rain-
fall deficit droughtswere combined, is shown in Fig.5a.
This is a phenomenon that can occur in reality, but that
was not expected in this specific case study area because
of its quick response to precipitation. In Narsjø,com-
posite droughtevents were related to a missing snow
melt peak due to a severe meteorological drought in
winter (e.g. the winter of 1996; see Fig.5b, 2nd row).
This phenomenon was not previously found in obser-
vations or catchment-scale models for the respective
catchment (Van Loon et al., 2010, 2011b; Van Loon and
Van Lanen, 2012a), nor in other European catchments
(Hannaford et al., 2011; Prudhomme et al., 2011). In
these studies, winter drought events in cold climates al-
ways ended by snow melt, even after winters with lim-
ited snow cover. It is therefore unknown whether these
simulations with the large-scale models reflect a phe-
nomenon that occurs in reality.

– Only few composite droughtsoccurred in Upper-
Guadiana and Upper-Metuje, while those case study ar-
eas reflect catchments with extensive aquifer systems
and were therefore expected to have morecomposite
droughts(in Van Loon and Van Lanen, 2012a; com-
posite droughtswere 17 % of all groundwater drought
events in Upper-Metuje and 67 % in Upper-Guadiana).

In Narsjø and Upper-Guadiana, the interplay between pre-
cipitation and temperature was not always according to ex-
pectations, leading to an unforeseen distribution over the
hydrological drought types in Table5. In Narsjø, runoff
peaks and hydrological droughts developed during winter, al-
though winter temperatures were well below zero. This has
two consequences. Firstly, drought events starting in sum-
mer/autumn were ended by a runoff peak in winter and could
therefore not develop into arain-to-snow-season drought,
but were classified asclassical rainfall deficit droughts(see
the drought in groundwater, 4th row, and the minor event
in subsurface runoff and total runoff, 5th and lower row, in
November 1974 in Fig.5c). Secondly,warm snow season
droughts – subtype B, or classical rainfall deficit droughts
developed in Narsjø during winter (see the drought in sub-
surface runoff and total runoff (5th and lower row) in March
1975 in Fig.5c), while those were expected to occur only in
catchments with winter temperatures around or above zero
(Sect.2.2.4). The reason is that in winter, despite the well
below zero temperatures, runoff still reacted immediately to
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Table 5.Hydrological drought types of all hydrological drought events per catchment (subsurface runoff and total runoff).

classical rainfall rain-to-snow- wet-to-dry- cold snow warm snow composite un-
deficit drought season drought season drought season drought season drought drought identifiable

Narsjø Qsub 25 % 13 % – 15 % 19 % 2 % 27 %
Qtotal 31 % 9 % – 12 % 15 % 4 % 28 %

Upper- Qsub 53 % 3 % – 13 % 23 % 5 % 5 %
Metuje Qtotal 63 % – – 14 % 17 % 1 % 6 %
Upper- Qsub 63 % 4 % – 4 % 8 % 17 % 4 %
Sázava Qtotal 71 % 2 % – 7 % 9 % – 11 %
Nedǒzery Qsub 50 % 10 % – 20 % 5 % 5 % 10 %

Qtotal 62 % 2 % – 14 % 7 % – 15 %
Upper- Qsub 65 % – 19 % – – 4 % 12 %
Guadiana Qtotal 75 % – 8 % – – – 17 %

Table 6.Hydrological drought types of the five most severe hydrological drought events per catchment (subsurface runoff and total runoff),
selection based on deficit volume.

classical rainfall rain-to-snow- wet-to-dry- cold snow warm snow composite
deficit drought season drought season drought season drought season drought drought

Narsjø Qsub 20 % 20 % – – 40 % 20 %
Qtotal – 40 % – – 20 % 40 %

Upper- Qsub – 20 % – 20 % 20 % 40 %
Metuje Qtotal 20 % – – 60 % 20 % –
Upper- Qsub – 20 % – – – 80 %
Sázava Qtotal 20 % 40 % – – 40 % –
Nedǒzery Qsub 20 % 20 % – – 20 % 40 %

Qtotal 80 % – – – 20 % –
Upper- Qsub 40 % – 20 % – – 20 %
Guadiana Qtotal 60 % – 40 % – – –

precipitation, so that a lack of precipitation in winter could
start a hydrological drought.

A similar process was observed in Upper-Guadiana. In
summer, when potential evapotranspiration is much higher
than precipitation, recharge and runoff should be zero be-
cause all precipitation is normally lost to evapotranspiration.
In the ensemble mean of the large-scale models, however,
runoff peaks still occur in Upper-Guadiana in summer. Con-
sequently, drought events did not extend into the dry season
and were classified asclassical rainfall deficit droughtsin-
stead ofwet-to-dry-season droughts(see the runoff peak in
July 1987 in Fig.5d, lower row).

3.3.2 Classification of the five most severe hydrological
drought events in selected case study areas

For each case study area, the five most severe drought events
were selected based on deficit volume (like inVan Loon and
Van Lanen, 2012a). This changed the distribution over the
hydrological drought types (compare Tables5 and6).

Theclassical rainfall deficit droughtoccurred less in most
case study areas (in total, for all case study areas together,
from 48 % to 16 % in subsurface runoff, and from 62 % to
36 % in runoff). The exception is total runoff in Nedožery,

where four of the five most severe drought events were of
the classical rainfall deficit type. Thecold snow season
droughtdisappeared almost completely from the list, because
this hydrological drought type usually has low deficit vol-
umes. These shifts are in line withVan Loon and Van Lanen
(2012a).

If we compare Table6 with Table 5 in Van Loon and
Van Lanen(2012a), we note some differences between the
typology of severe drought events using catchment-scale and
large-scale models, using the ensemble mean of large-scale
models:

– In general, more of the most severe drought events were
classical rainfall deficit droughtsandwarm snow sea-
son droughts(on average in total runoff, 36 %classi-
cal rainfall deficit droughtsusing large-scale models
vs. 32 % using a catchment-scale model, and 20 %warm
snow season droughtsusing large-scale models vs. 16 %
using a catchment-scale model). Differences between
catchments were large. For example, Upper-Metuje had
fewerclassical rainfall deficit droughtsusing the large-
scale models instead of a catchment-scale model (20 %
instead of 60 % in total runoff), whereas Nedožery had
more (80 % instead of 40 % in total runoff).

Hydrol. Earth Syst. Sci., 16, 4057–4078, 2012 www.hydrol-earth-syst-sci.net/16/4057/2012/



A. F. Van Loon et al.: Drought propagation in large-scale hydrological models 4069

Fig. 5.Examples of difficulties with drought simulation:(a) composite droughtin Nedǒzery (1973),(b) composite droughtin Narsjø (1995–
1997),(c) drought in winter in Narsjø (1974–1975), and(d) drought in summer in Upper-Guadiana (1987) (legend: see Fig.3).

– Fewer of the most severe drought events wererain-to-
snow-season droughts(for example, in Narsjø 20 % and
40 %, instead of 80 % using a catchment-scale model).

– The distribution ofcomposite droughtswas different.
Severe drought events of this type did not only occur
in slowly responding catchments, but in all catchments
(in subsurface runoff).

If drought events had have been classified according to their
duration (instead of deficit volume) and the five longest
drought events selected, the distribution over the hydrolog-
ical drought types would have been only slightly different
from Table6 (not shown). Intense, but short-lived drought
types like warm snow season droughtswould have oc-
curred slightly less, and long, but non-intense drought types
like rain-to-snow-season droughtsand wet-to-dry-season
droughtswould have occurred slightly more.

In conclusion, the ensemble mean of the large-scale mod-
els showed a reasonable reproduction of drought typology
in the case study areas. All hydrological drought types of
Van Loon and Van Lanen(2012a) were represented in the
ensemble mean of the large-scale models, and in the climate
type in which they were expected. The distribution of the hy-
drological drought types had some mismatches, e.g. a high
percentage ofclassical rainfall deficit droughtsin all case

study areas, a low percentage ofcomposite droughtsin
slowly responding case study areas, unexpected occurrence
of composite droughtsin quickly responding case study ar-
eas, a low percentage ofrain-to-snow-season droughtsin
cold climates andwet-to-dry-season droughtsin semi-arid
climates.

4 Discussion and recommendations for improvement of
large-scale models

In this research, the central question was how well large-
scale models reproduce drought propagation. Before we an-
swer that question (Sect.4.2) and give some recommenda-
tions for improvement of the models based on our analysis
(Sect.4.2.3), we first discuss the limitations of our method-
ology (Sect.4.1).

4.1 Methodology

We used a specific set of large-scale models for our analy-
sis, but we could have chosen other or more models (GHMs
and LSMs). The time series of the individual models and
therefore the ranges of the hydrological variables shown in
Figs. 3, 4, and5 would have been different. However, we
expect that the ensemble mean of the models would not
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change significantly, because the models in our selection are
representative of the range of large-scale models that exist
(e.g. Haddeland et al., 2011; Harding et al., 2011). They
have very different model structure and parametrisations, and
therefore very different responses. Unfortunately, no overall
“best” large-scale model exists. Some models are, for ex-
ample, very good in temperate regions, but bad in cold cli-
mates; others are good in cold climates, but very bad in trop-
ical regions. The same is true for fast and slowly responding
physio-geographic regions. For drought propagation studies
in small uniform regions, i.e. with similar climate and catch-
ment characteristics, it would be possible to select the large-
scale model that performs best in that region. But for drought
studies on continental or global scale, where conditions and
therefore model results are extremely variable, such a choice
cannot be made and the best solution is using a multi-model
ensemble (as was earlier suggested by various authors; see
Sect.1). As this study aims to test these large-scale applica-
tions, we follow that approach.

The model spread is an indication of model structure un-
certainty in the multi-model ensemble. Parametric uncer-
tainty in the individual models has not been investigated in
this study. A single simulation was used for all models. We
do, however, expect that parametric uncertainty is substan-
tial. The large-scale models were not (or only minimally) cal-
ibrated (Sect.2.1.2), because (i) observed and simulated vari-
ables and scales do not match (for example simulated grid
cell runoff vs. observed catchment discharge, or scarce point-
measurements of groundwater vs. simulated total subsurface
storage); (ii) the models are assumed to include all important
physical processes; and (iii) parameters of the models were
derived from large-scale maps of e.g. vegetation and soil
properties. As a result of both model structure and parametric
uncertainty, the simulation of soil moisture and hydrological
droughts is far more uncertain than simulation of meteoro-
logical droughts. Especially, the simulation of state variables
has a high uncertainty, as reported recently bySamaniego
et al.(2012). In this study, however, the standardisation of the
state variables SM and GW (Sect.2.2.2) and the use of a rela-
tive threshold (percentile of flow duration curve; Sect.2.2.3)
account for biases in the absolute value of the states. Further
issues regarding the effect of model structure and parametric
uncertainty on drought propagation will be discussed in the
next section (Sect.4.2).

We tested the ensemble mean of the large-scale models
in five case study areas. An extrapolation to more and other
case study areas would be interesting, especially to outside
Europe (e.g. tropical and arid regions in Africa and Asia).
The analysis of drought characteristics can be done on a
high number of grid cells with different climate using the
method ofVan Huijgevoort et al.(2012b). The analysis of
drought propagation features and the classification of hy-
drological droughts into types requires visual inspection and
expert knowledge. Therefore, it would be more difficult to

study these drought-related aspects in a much larger sample
of case study areas.

In classifying hydrological droughts into types, we found a
large number of unidentifiable droughts (Table5). For the re-
maining events, the meteorological anomaly/anomalies caus-
ing the drought event was/were found by visual inspection of
time series of all hydrometeorological variables. Quantifica-
tion of this relationship between meteorological and hydro-
logical drought is barely investigated and has proven to be
very difficult. To our knowledge, the best effort is elaborated
in the recent paper ofWong et al.(2012). They found that
copulas have more potential to link a hydrological drought
to preceding meteorological drought(s) than classical linear
correlation techniques.

Our aim was to use only natural headwater catchments.
The Upper-Guadiana, however, is far from natural, as
groundwater extraction for irrigation has increased dramat-
ically since the 1980s (e.g.Bromley et al., 2001). The re-
sulting hydrological situation is a combination of drought
(natural causes) and water scarcity (anthropogenic causes).
Therefore, the observed hydrological time series of this
case study area were naturalised using the method de-
scribed inVan Loon and Van Lanen(2012b). We compared
drought propagation in the large-scale models (which did
not simulate anthropogenic influences for this exercise; see
Sect.2.1.2) with drought propagation in these naturalised
time series. The use of an undisturbed catchment would
have been better, but finding an undisturbed groundwater-
dominated catchment in a semi-arid climate with sufficient
good quality data is not trivial.

In this study, we used the variable threshold to identify
droughts. There are many other ways to calculate droughts
using a kind of threshold approach, e.g. standardized precipi-
tation index (SPI) and standardized runoff index (SRI;Lloyd-
Hughes and Saunders, 2002; Shukla and Wood, 2008), re-
gional deficiency index (RDI;Stahl, 2001; Hannaford et al.,
2011), fixed threshold level method (Hisdal et al., 2004),
cumulative precipitation anomaly (CPA), and soil moisture
deficit index (SMDI) (e.g.Wanders et al., 2010). These ap-
proaches give different numbers for the drought characteris-
tics for a specific hydrometeorological variable (i.e. the num-
bers in Table4), but the conclusions regarding propagation
are not expected to change when using one of these other
methods. For example,Peters et al.(2006) and Tallaksen
et al.(2009) use a fixed threshold in the Pang catchment (UK)
instead of a variable threshold. They found drought propaga-
tion processes (e.g. lag, lengthening) that are comparable to
the ones found in studies that used a variable threshold (e.g.,
Van Loon and Van Lanen, 2012a). An important reason to
choose the variable threshold level method is that it enables
comparison with the catchment model studies described in
Van Loon and Van Lanen(2012a).

For our analyses, we used grid cell precipitation and
runoff. The use of average catchment precipitation instead
of grid cell precipitation would not have led to different
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results in the drought analysis. There are two reasons for that.
First, the differences between observed catchment precipi-
tation and grid cell precipitation for the studied case study
areas were small, as was demonstrated byVan Huijgevoort
et al.(2010, 2011). Second, meteorological droughts have a
large spatial extent and frequently cover a large region, as
was demonstrated byPeters et al.(2006) andTallaksen et al.
(2009), so there is little chance of missing a meteorological
drought event by using a slightly different spatial coverage.
As river routing has a considerable influence on discharge
characteristics in large catchments, we tested the use of sim-
ulated streamflow at the outlet instead of grid cell runoff for
the Upper-Guadiana case study area. Upper-Guadiana is the
only studied area that is large enough to encompass more
than one grid cell. We found that the lag between meteoro-
logical drought and hydrological drought increased slightly,
but that the shape of the time series did not change at all. Our
conclusion regarding the lack of attenuation and multi-year
droughts are also valid when using streamflow at the outlet.
We expect this to be consistent also in other regions.

4.2 Evaluation of simulation of drought propagation by
large-scale models

We investigated three different aspects of drought propaga-
tion: drought characteristics, drought propagation features,
and drought typology. In general, these drought propaga-
tion aspects indicated a reasonable simulation of hydrolog-
ical drought development in contrasting catchments in Eu-
rope, but we also found important deficiencies. Some drought
propagation processes were clearly not well simulated by the
ensemble mean of the large-scale models. These difficulties
are all related to a too strong coupling between precipita-
tion and discharge, which results in an immediate reaction
of runoff to precipitation. This should not occur in certain
climates types, i.e. semi-arid climates in summer and cold
climates during the frost season, and in catchments with con-
siderable storage. Hence, the difficulties arise from deficien-
cies in the simulation of processes related to temperature and
storage.

4.2.1 Temperature

The drought events simulated by the ensemble mean of the
large-scale models are mainly governed byP control, and
less byT control (Table3). This resulted in an overestimation
of the occurrence of the hydrological drought type that is pre-
dominantly caused byP control, i.e.classical rainfall deficit
drought, and an underestimation of the occurrence of hydro-
logical drought types that are (partly) caused byT control,
i.e.rain-to-snow-season drought, wet-to-dry-season drought,
cold snow season drought, warm snow season drought, espe-
cially subtype A (see Table3 and Sect.2.2.4). This is mainly
due to the simulation of droughts and discharge peaks in pe-
riods in which no drought or peaks were expected. Discharge

peaks in winter in cold climates and in summer in semi-
arid climates end drought events prematurely and therefore
largely influence drought characteristics (shorter than an-
ticipated) and drought typology (fewerrain-to-snow-season
droughtsandwet-to-dry-season droughtsthan anticipated).
Hence, the deficiencies of large-scale models in the repro-
duction of drought propagation processes are related to sim-
ulation of snow (low temperature) and evapotranspiration
(high temperature).

Large-scale models are known to have difficulties with
the correct simulation of snow accumulation (Feyen and
Dankers, 2009; Haddeland et al., 2011; Stahl et al., 2011b,
2012). Prudhomme et al.(2011) andStahl et al.(2012) found
problems in drought simulation in regions with winter tem-
peratures close to zero. Their conclusion is confirmed in
this study. Additionally, we also encountered problems in
regions with winter temperatures well below zero, which
is inconsistent withPrudhomme et al.(2011), who con-
cluded that droughts in Scandinavia were well reproduced.
One reason for incorrect snow simulation is related to el-
evation.Prudhomme et al.(2011) and Stahl et al.(2012)
found a larger error of drought simulation in mountain-
ous areas. In these areas, the grid cell elevation often devi-
ates from the actual elevation of a catchment (Gudmunds-
son et al., 2012). This difference influences both snowfall
(simulated by WFD or by some of the large-scale models
themselves; see input data in Table1) and snow accumu-
lation and melt (simulated by the large-scale models). Ac-
cording toVan Loon and Van Lanen(2012a), elevation plays
an important role in drought propagation, because the devel-
opment of snow-related hydrological drought types is very
sensitive to a narrow temperature range around zero. This is
comparable to floods, for which a critical zone for snowmelt
was found byBiggs and Whitaker(2012). Subgrid variabil-
ity, which is not captured by the large-scale models, re-
sults in a deviation in elevation between large-scale mod-
els and observations/catchment-scale models, and therefore
in a deviation in drought typology. A higher resolution for
the large-scale models might solve this issue, as argued by
Wood et al.(2011). They explicitly mention snow(melt) sim-
ulation as one of the challenges that can be overcome using
hyperresolution models. In climate modelling, the benefits of
higher resolution models are proven, e.g. byHagemann et al.
(2009).

Another temperature-related problem in large-scale mod-
els is the simulation of evapotranspiration. The methodol-
ogy used for calculation of evapotranspiration varies con-
siderably between models (Haddeland et al., 2011) and can
cause significant differences in model results (Gosling and
Arnell, 2011; Stahl et al., 2012). The importance of evap-
otranspiration for drought development has been demon-
strated byMelsen et al.(2011) and Teuling et al.(2012).
One reason for deficiencies in the simulation of evapotran-
spiration can be the lack of evapotranspiration from wet-
lands and surface water (Gosling and Arnell, 2011). Gosling
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and Arnell (2011) also mention that their model does not
include transmission loss along the river network or evap-
oration of infiltrated surface runoff. This is a common is-
sue in GHMs, which generally leads to an overestimation of
runoff in dry catchments. Another reason can be related to
groundwater storage.Van den Hurk et al.(2005) state that
larger storage in model reservoirs results in sustained sum-
mertime evaporation. As many large-scale models have little
storage, summertime evaporation is probably underestimated
and discharge peaks can occur during summer in semi-arid
climates. AlsoBierkens and van den Hurk(2007) andLam
et al.(2011) point towards the role of groundwater storage in
the simulation of evaporation, especially related to the con-
vergence of groundwater in wet discharge zones.

4.2.2 Storage

The effect of storage on hydrological drought development
has been demonstrated by many authors (e.g.Peters et al.,
2003; Van Lanen et al., 2004, 2012; Tallaksen et al., 2009;
Hannaford et al., 2011; Van Loon et al., 2011a; Van Loon and
Van Lanen, 2012a). Therefore, the correct simulation of stor-
age is important if large-scale models are to be used in hy-
drological drought analysis. Additionally, storage is impor-
tant in climate change impact assessment. A more realistic
storage capacity leads to smaller changes in both wintertime
and summertime monthly mean runoff, so to less extreme im-
pacts of climate change (Van den Hurk et al., 2005). Storage
acts as a buffer to climate change.

Currently, storage is not well simulated in the ensem-
ble mean of the large-scale models, resulting in insuffi-
cient variability between fast and slowly responding areas.
In slowly responding areas, the reaction of runoff to pre-
cipitation is too fast, resulting in deficiencies in the repro-
duction of drought characteristics (shorter than anticipated),
drought propagation features (little lag, lengthening, pool-
ing, and attenuation), and drought typology (fewcomposite
droughts). The fast reaction of runoff to precipitation cor-
responds to the findings of, for example,Gosling and Ar-
nell (2011); Haddeland et al.(2011); Stahl et al.(2012);
Gudmundsson et al.(2012). Based on their analysis of spa-
tial cross-correlation patterns and runoff percentiles,Gud-
mundsson et al.(2011, 2012) conclude that discharge dur-
ing dry conditions is largely influenced by terrestrial hydro-
logical processes (catchment storage and release), in con-
trast to floods, which are mostly determined by forcing data.
Stahl et al.(2012) andGudmundsson et al.(2012) found that
these terrestrial hydrological processes are poorly replicated
in the simplified storage schemes of large-scale models. Most
models release too much of the incoming precipitation too
quickly (Gudmundsson et al., 2012), and simulated droughts
are interrupted more frequently than in observations (Stahl
et al., 2011a). Therefore, models perform best in regions
where the runoff response to rainfall is more direct (Stahl
et al., 2011a) or in very wet climates, where storage does not
play an important role.

So both climate control (temperature) and catchment con-
trol (storage) on drought propagation are not simulated cor-
rectly by the ensemble mean of the large-scale models.
This indicates a limited suitability of large-scale models
when extrapolating to the future (e.g.Gosling et al., 2011;
Corzo Perez et al., 2011), in which drought propagation is
governed by climate control, and to data-scarce regions (e.g.
Stahl et al., 2012), in which drought propagation is governed
by climate control and catchment control.

4.2.3 Recommendations

Although representation of hydrological processes is better
in large-scale hydrological models than in global climate
models (GCMs;Hagemann and D̈umenil, 1998; Van den
Hurk et al., 2005; Sperna Weiland et al., 2010), there is still
space for improvement of large-scale hydrological models
for a correct reproduction and prediction of drought prop-
agation across the globe. Simulation of evapotranspiration,
snow accumulation, and storage in large-scale models should
be improved to decrease uncertainty in hydrological drought
simulation.

For improvement of the simulation of evapotranspiration,
better understanding and representation of local-scale hy-
drological processes in dry regions of the world is essential
(Gosling and Arnell, 2011; Lam et al., 2011). Furthermore,
re-infiltration and evaporation of surface runoff should be im-
plemented in large-scale models.

First steps on the improvement of snow simulation are
being set byCherkauer et al.(2003), who improved the
VIC model for cold areas, andDutra et al.(2010) andBal-
samo et al.(2011), who improved snow simulation in TES-
SEL. However, despite major advances,Lettenmaier and Su
(2012) note that “there remain important problems in param-
eterization of cold land hydrological processes within cli-
mate and hydrology models.”

First steps on the improvement of storage simulation
are being set bySutanudjaja et al.(2011) and Tian et al.
(2012), who coupled a groundwater model (MODFLOW and
AquiferFlow) to a land surface model (PCR-GLOBWB and
SiB2). An important limitation is that these couplings are
still offline, not allowing for dynamic feedbacks between
groundwater storage, soil moisture, and evapotranspiration
(Sutanudjaja et al., 2011). Another difficulty is that in large-
scale models parameters are representative of typical rather
than locally realistic hydrogeological conditions (Gosling
and Arnell, 2011; Gudmundsson et al., 2012). For more lo-
cally (or at least, regionally) realistic subsurface runoff simu-
lation using large-scale models, two steps are needed. Firstly,
storage should be better represented in the models, e.g. by
including more groundwater reservoirs into the models or by
online coupling with a groundwater model; secondly, higher-
resolution large-scale datasets on storage properties should
be derived to come to more realistic model parameters for
this groundwater part of large-scale models. This is needed
even in hyperresolution models, because there will always be
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sub-grid variability that needs parametrisation of processes
(Beven and Cloke, 2012). It is important to evaluate model
results not only against observed discharge, but also against
observations of state variables like snow accumulation, soil
moisture, and groundwater storage.

An encouraging note is that not all models have the same
difficulties in simulating temperature and storage effects on
drought propagation (see the model range in Figs.3 and4).
For example, at least one model in the suite of large-scale
models used in this study had extremely slow recessions,
so a very slow reaction to precipitation (as previously also
demonstrated byGudmundsson et al., 2012). The drawback
of this lies in the fact that a single large-scale hydrologi-
cal model is often used globally, independent of the repre-
sentativeness of the model for that specific region. Models
with a fast reaction to precipitation are also used in slowly
responding systems and vice versa (e.g.Prudhomme et al.,
2011). Comparably, models that have difficulties simulat-
ing snow accumulation processes are applied in cold re-
gions and models that have difficulties simulating evapo-
transpiration processes are applied in semi-arid regions (e.g.
Feyen and Dankers, 2009). Therefore, likeStahl et al.(2012)
and Gudmundsson et al.(2012), we still advise the use of
a multi-model ensemble of a number of large-scale model
for drought studies, because then flashy and smooth hydro-
graphs of very different large-scale models are averaged out.
According toBeven and Cloke(2012), ensemble simulation
is one methodology for taking into account the lack of knowl-
edge on parametrisation of sub-grid processes.

Large-scale modellers can learn form each other, as has
been shown by WaterMIP of the WATCH-project. More
model inter-comparison projects (MIPs) are needed that fo-
cus on hydrology, instead of climate (e.g.Gates et al., 1999;
Meehl et al., 2000, 2007; Covey et al., 2003; Friedlingstein
et al., 2006). Therefore, expectations for the recently started
Inter-Sectoral Impact Model Intercomparison Project, ISI-
MIP1, are high (Schiermeier, 2012).

5 Conclusions

This study showed that drought propagation processes in
contrasting catchments in Europe are reasonably well re-
produced by an ensemble mean of ten large-scale models.
However, results also indicated a limited suitability of large-
scale models when extrapolating to the future and to data-
scarce regions, because both climate control (temperature)
and catchment control (storage) on drought propagation are
not simulated correctly by the ensemble mean of the large-
scale models.

1http://www.pik-potsdam.de/research/
climate-impacts-and-vulnerabilities/research/
rd2-cross-cutting-activities/isi-mip.

The ensemble mean of the large-scale models was well
able to simulate general drought propagation processes in
drought characteristics; i.e. drought events became fewer and
longer when moving from precipitation via soil moisture
to groundwater storage, and drought characteristics of dis-
charge were in between. Furthermore, the correct hydrolog-
ical drought types were generally simulated in the correct
climate type, i.e.classical rainfall deficit droughtsin all cli-
mates,wet-to-dry-season droughtsonly in semi-arid climate,
and snow-related droughts in areas with a continuous snow
cover in winter.

However, challenges still occur in catchments with cold
or semi-arid climates and catchments with large storage in
aquifers or lakes. The immediate reaction of runoff to pre-
cipitation in the large-scale models, even in winters with
below-zero temperatures and summers with high evapotran-
spiration, resulted in many short droughts in total runoff,
and consequently in an overestimation ofclassical rainfall
deficit droughtsand an underestimation ofwet-to-dry-season
droughtsand snow-related droughts. The still limited rep-
resentation of storage in the large-scale models is reflected
in the absence of a differentiation in drought characteristics
of total runoff between quickly and slowly responding sys-
tems. Furthermore, almost nocomposite droughtswere simu-
lated for the slowly responding case study areas, while many
multi-year drought events were expected in these systems.
The flashiness of the hydrograph of the ensemble mean of
the large-scale models also showed up clearly in the drought
propagation features. Drought events in the ensemble mean
had very little lag and lengthening, almost no pooling, and
only some attenuation.

In general, we anticipate that the simulation of hydro-
logical drought has a significantly higher uncertainty than
the simulation of meteorological drought. Potential improve-
ment of hydrological drought simulation in large-scale mod-
els lies in the better representation of hydrological processes
that are important for drought development. These processes
are evapotranspiration, snow accumulation, and especially
storage. Besides the more explicit inclusion of storage in
large-scale models, also parametrisation of storage processes
requires attention, for example through a global-scale dataset
on aquifer characteristics, improved large-scale datasets on
other land characteristics (e.g. soils, land cover), and calibra-
tion/evaluation of the models against observations of storage
(e.g. in snow, groundwater).
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