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Abstract. Process-oriented rainfall-runoff models are de- and find a set of robust parameter vectors. Recent studies
signed to approximate the complex hydrologic processexonfirmed the effectivity of this method. However, all ROPE
within a specific catchment and in particular to simulate approaches published so far just identify robust model pa-
the discharge at the catchment outlet. Most of these modrameter vectors with respect to one single objective. The con-
els exhibit a high degree of complexity and require the de-sideration of multiple objectives is just possible by aggrega-
termination of various parameters by calibration. Recently,tion. In this paper, we present an approach that combines the
automatic calibration methods became popular in order tgrinciples of multi-objective optimisation and depth-based
identify parameter vectors with high corresponding modelsampling, entitled Multi-Objective Robust Parameter Esti-
performance. The model performance is often assessed hyation (MOROPE). It applies a multi-objective optimisation

a purpose-oriented objective function. Practical experiencelgorithm in order to identify non-dominated robust model
suggests that in many situations one single objective funcparameter vectors. Subsequently, it samples parameter vec-
tion cannot adequately describe the model’s ability to repre+tors with high data depth using a further developed sampling
sent any aspect of the catchment’s behaviour. This is regardalgorithm presented ikKraue and Cullmanii20123. We

less of whether the objective is aggregated of several criterigtudy the effectivity of the proposed method using synthet-
that measure different (possibly opposite) aspects of the sydeal test functions and for the calibration of a distributed
tem behaviour. One strategy to circumvent this problem ishydrologic model with focus on flood events in a small,
to define multiple objective functions and to apply a multi- pre-alpine, and fast responding catchment in Switzerland.
objective optimisation algorithm to identify the set of Pareto
optimal or non-dominated solutions. Nonetheless, there is a
major disadvantage of automatic calibration procedures that
understand the problem of model calibration just as the solu-
tion of an optimisation problem: due to the complex—shapedl
response surface, the estimated solution of the optimisation
problem can result in different near-optimum parameter vecHydrologic models are simplified, conceptual representa-
tors that can lead to a very different performance on the vali-ions of a part of the hydrologic cycle. They relate rainfall
dation dataBardossy and Singf2008 studied this problem 0 streamflow on a continuous basis. Many of those mod-
for single-objective calibration problems using the example€ls are driven by a vector of parameters that cannot be mea-
of hydrological models and proposed a geometrical Samp"m‘:)xsured directly, but must be determined through indirect meth-
approach called Robust Parameter Estimation (ROPE). Thi€ds. This is an important aspect of model calibration. Ef-
approach applies the concept of data depth in order to ovedicient and effective parameter estimation techniques are a

come the shortcomings of automatic calibration procedure$rucial factor for the successful application of these mod-
els. In the process of parameter estimation, the values of the
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model parameters are adjusted until the catchment behaviowmalidation data. The actual goal of a good model calibration
is closely matched. should not be to find parameter vectors that perform best for
Traditionally, this calibration is performed manually ad- the calibration period but to find parameter vectors that are
justing the parameters while visually inspecting the agree+obust. In this context, the term robust is closely related to
ment between observations and model predictions. For théhe terms transferable and less sensitive. Robust parameter
application of automatic approaches, the calibration is for-vectors should not just perform well on the calibration data
mulated as an optimisation problem. A purpose-specific ob-but also provide a sufficient model performance in the vali-
jective functionf quantifies the agreement between observa-dation. Hence, these parameters can be transferred to other
tions and simulation results. Many practical studies suggestime periods. Furthermore, robust parameter vectors should
that one single objective function, no matter how carefully be as insensitive as possible. This means that a small change
chosen, is often insufficient to represent all characteristics obf the estimated parameter vectors should not lead to a signif-
the system behaviouGupta et al. 1998 Cullmann 2006 icant change (usually a decrease) of the model performance.
Gill et al., 2006 Fenicia et al.2007). For instance, the mean Against this background, the term sensitive is always related
absolute error of the discharge at the catchment outlet mighto a good model performance and to the general sensitivity of
be a good indicator for the ability to represent the water bal-the considered model parameters. This means that a sensitive
ance; however, it is likely to be inadequate to measure thenodel parameter will always stay sensitive. However, a small
model performance for flood forecasts where a correct sim-change of this parameter within the region of robust model
ulation of the peak flow value and timing is crucial. Conse- parameter vectors should have a smaller effect on the (good)
quently, single-objective calibration approaches that providemodel performance than in other regions. This requirement
one unique, global best parameter vector are in many casds important, because the set of optimal parameters cannot
not considered acceptable by experienced hydrologists. Thee exactly determined and may even slightly change under
most elementary solution to circumvent this problem is to ag-slightly different conditions.
gregate several objective functions. However, this approach The application of advanced parameter estimation ap-
involves a great deal of subjective judgment and neglects th@roaches that do not understand a model calibration as a pure
global bests for individual objective functions. Another ad- optimisation task is a necessary though not sufficient condi-
vanced option is a multi-objective view of the optimisation tion for the determination of robust model parameters. The
problem referring to the concept of Pareto optimalifgifo success of a robust modelling strategy also strongly depends
et al, 1998. A multi-objective optimisation algorithm ap- on a good implementation of the principle of parsimony. The
proximates the set of non-dominated (i.e. Pareto optimal)goal of this concept is to obtain a model that represents a de-
solutions with respect to a set of given objectives. The sefsired structure with as few parameters as possible. The essen-
of Pareto optimal solutions is denoted as the Pareto optimatial number of parameters depends on the available informa-
set or Pareto se®, and the image of under the mapping tion, e.g. the number of gaging stations in a catchment or the
of all considered objectiveg is called Pareto front. Often, temporal resolution of the observations. The selection of a
both terms are used synonymously. This can however lead tparsimonious model structure was subject of many studies in
misunderstandings. Consider that the term Pareto optimal seétydrology (e.gBeven 1989 van der Linden and WqQ@003
means the set of true or estimated solutions in the parameBoyle et al, 2006 Wagener and Wheate2006. Another
ter space, whereas the term Pareto front means its image iessential prerequisite for the estimation of robust model pa-
the objective space. This difference is important for the ma-rameters is the selection of appropriate calibration data. The
jor concept of this paper. The Pareto optimal set or Paretalata used for calibration should be both representative for
set reflects the trade-offs among all given objectives. Evoluthe considered processes and contain as much information
tionary algorithms, i.e. genetic algorithms (GA), and particle as possible that can be used to identify the parameters that
swarm optimisation (PSO) or other population-based algo-describe the considered processes best. The development of
rithms can be used to perform this task. There are many difwell-founded statistical methods based on information the-
ferent strategies with different strengths and shortcomingsory that are suitable to perform this task for both data-driven
Recently, multi-method algorithms have found favour in or- and process-oriented models has attracted rising scientific in-
der to approximate this set. The approximated Pareto optimatierest (seMaier and Dandy200Q Wagener and Wheater
set is indicated byA. 2002 Wagener and Gupt2005 Thyer et al, 2006 Singh
Bardossy and Singf2008 studied one of the major short- 2010. Of course also the selection of appropriate objective
comings of automatic calibration procedures that understandunctions plays an important role for a successful model cal-
the problem of model calibration just as an optimisation ibration. Typically, the formulation of uncorrelated criteria
problem: the parameters of fitted hydrologic models dependhat use several considered model outputs adds new informa-
upon the input data. The quality of input data cannot be astion. A comprehensive overview and a more detailed discus-
sured as there may be measurement errors for both inpwution of these issues within the scope of multi-objective opti-
and state variables. That is why the estimated best paranmisation are given ifEfstratiadis and Koutsoyiann{2010).
eter vectors can lead to a very different performance on the
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The approach presented in this paper focusses on the emhe developed methodology calibrating a distributed hydro-
hancement of the results provided by approved evolutiondogic model in a small catchment with high process dynamics
ary multi-objective optimisation methods. The underlying focussing on flood events.
principle to achieve this goal is the application of data depth
metrics in order to sample robust parameter vectors with re-
spect to a set of identified parameter vectors with good mode#  Combining multi-objective optimisation and
performanceBardossy and SingfR008 developed a first depth-based parameter sampling
method using this approach and called it Robust Parameter _

Estimation Method (ROPE). Recent studies using further de- € Proposed MO-ROPE approach synthesizes the concepts

veloped versions of this methodology (ekgaule and Cull- of multi-objective model calibratiop and the depth—based
mann 20123 confirmed the potentials of the depth-based ROPE approach. Therefore, we will thoroughly introduce

parameter sampling for the estimation of robust hydrologicP0th concepts in this section.

parameter vectors. . - N
However, all ROPE approaches published so far just iden—2 1 Effective and efficient approximation of the

. . . Pareto set

tify robust model parameter vectors with respect to one sin-

gle objective. The consideration of multiple objectives iS ap ggsential prerequisite for a successful application of the

just possible by aggregation. In this paper we present a new, 4564 MO-ROPE method is an effective and efficient ap-
method, entitled Multi-Objective Robust Parameter Estima-p, o imation of the Pareto set for a given calibration problem.

tion (MO-ROPE) that synthesizes the advantages of both theya cenly, several evolutionary search strategies, e.g. genetic

multi-objectiye view and rol_Just parameter estim_atio_n. Inor- algorithms (GA) and particle swarm optimisation (PSO), be-
der to quantify the uncertainty of the parameterisation W'thcame popular to fulfill this task. Multi-method approaches

respect to the given objectives, the method estimates a Seh,en go one step further and apply several search strategies
of robust model parameter vectors applying a two-Step apjn paraliel with the goal to exploit their strengths, and to min-

proach. Within the first step, a suitable multi-objective op- imise their weaknesses. A very popular and effective state-
timisation algorithm is used to approximate the Pareto opti-of_tha_art method in this category is the AMALGAM ap-
mal set. I_n a second step, parameter vectors with high datﬁroach presented Byrugt and Robinsoi2007) that merges
depth (with respect to the Pareto set) are sampled assunjpe strengths of four well-founded multi-objective optimisa-

ing that those parameter vectors are more. robust than thﬁon strategies. Benchmark results using a set of well-known
complete Pareto optimal set. Notwithstanding the alreadymulti-objective test problems show that AMALGAM ap-

raised fact that the application of advanced parameter eStimaﬁroaches a factor of 10 improvement over current optimiza-
tion approaches is not sufficient for the estimation of robust;;,, algorithms for more complex, higher-dimensional prob-
model parameters, we will follow the notation Bardossy lems. Following Wolpert and Macready’s “no free lunch”

and Singh(2008 and denote the parameter estimation usingseqrem, showing that it is impossible to develop a single

data depth metrics by the abbreviation ROPE. search algorithm that will always be superior to any other

In the following section, we introduce a multi-objective algorithm, an outperformance of AMALGAM by a single
parameter estimation technique that applies evqutiona%eWW developed algorithm is thus virtually excluded.

multi-objective optimisation algorithms and the concept of | aver the existence of a superior multi-method ap-

data depth in order to estimate a robust set of paramep ,4ch should not completely prevent the development of al-

ter vectors for a given multi-objective calibration problem. o hadve multi-objective calibration strategies. In case that
First, we discuss suitable techniques for the approximation o e is a new method that provides at least in some cases

of the Pareto optimal set. We suggest the application of, g ,herior performance to other considered single calibra-

a modified version of the advanced multi-method calibra-jon srategies, development and application within the frame
tion framework AMALGAM first presented byrugt etal. ot 5 myti-method framework might be successful. Further-

(2009. Itapplies an additional hybrid search strategy entitled 5 6 there are many real world multi-objective calibration
MO-PSO-GA that is a modified version of a search S"at'problems that are simple enough to be solved by such ap-

egy that has proven successful within the frame of anOthe'broaches. That is why we adapted a search strategy called
single-objective ROPE strategy. Afterwards, we briefly intro- PSO-GA, that is based on PSO and GA in order to approx-
duce and discuss the principle of data depth and the depthp e the Pareto sktit has proven to be successful in es-
based sampling approach. The developed solution is testeglmaﬂng a set of good parameter vectors with a given un-

on a set of well-known multi-objective test problems. We certainty bound within the scope of a ROPE framework that
study the effectivity and efficiency of the suggested multi- ;¢ provided inKrauBe and Cullmani20123. The devel-

objective optimisation strategy and show the advantages OI)ped approach is entitied Multi-Objective optimisation by
the depth-based sampling strategy for several low- and high-

dimensional test problems that are subject to uncertainty. 1The subscript “u” indicates that the PSO-@i& not just a clas-
Furthermore, a real world case study shows the success aical optimisation procedure but also provides an uncertainty range.
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Algorithm 1 MO-PSO-GA.

Algorithm 2 VPAC operator.

initialise the non-dominated frontl < @

1: pick random numbergq, ¢ ~ U (0, 1)

for all particlesi do 2: update positions using equations

L " A +

initialise position and local best;, £; € U[x|p, *ubl xp < H5E2 — gy

and velocityv; < 0 xp < X152 oy
end for 3: reset the particles memopy < x1 andpy < x»
while stop criteria not medo 4: update the velocitieat; < vq andvy < v2

for all particlesi do
in case that the particle; is not dominated by all mem-
bers inA, add it to this setd « AU x;
remove all members fromd that are dominated hy;
update the local bes; as the best position found so far
from the particle with index in case that it weakly dom-
inates all positions explored by this particle so far

end for

assign to each particle a random member of the arghive

A as a “personal” global best

discard the worst, < v - #{particleg from the population

initialise genetic offspringga < ¥
for i =1to"J do
select a paifx1, x2} from the population by tournament
selection
apply the VPAC operator to generate new offspring
{x1,,x2,} < vpad{x1,x2})
Oga < OgaU {xlo,xzo}
end for
for all particlesi do
update velocity using equation
v < wv; +¢1 RoE; —x;) + 2 R1(8; — x;)
update position using equation
X< Xx;+v;
end for
merge new population with genetic offspring
particles< particlesu oga

end while

Particle Swarm Optimisation and Genetic Algorithm (MO-

PSO-

GA). A pseudocode listing of the algorithm is given

in Algorithm 1. The algorithm was set up according to the
ideas provided byettles and Soul@005. They introduced

a hybrid between a GA and PSO. The algorithm is controlledtails regarding this issue, we refer &ill et al. (200§ and
by a parameter called the breeding ratio This parameter

ator that is called Velocity Propelled Averaged Crossover
(VPAC). The goal of its application is to create two children
whose positions are in between the parent’'s positions, but
accelerated away from the parent’s current direction (nega-
tive velocity) in order to increase diversity in the population.
This might be effective because, towards the end of a typical
PSO run, the population tends to be highly concentrated in a
small portion of the search space which reduces the effective
search space. Algorithhxshows how the new child position
vectors and velocities are calculated using VPAC. The used
PSO strategy is an adaption of the strategy used in the PSO-
GA, approach provided irauRe and Cullman20123.

The movement of the particles is controlled by three parame-
ters: the particle inertia weight, the cognitive attractiog,

and the social attractiogy,. The parametep determines the
velocity of the proper motion of the particles. specifies the
degree of movement towards the local optimum, @andon-

trols the movement towards the global optimum of the whole
particle swarm. We set the algorithm’s parameters accord-
ing to literature recommendations (see TableFor further
details and studies regarding the setting of the algorithm’s
parameters, refer tBerez and Behdinaf2007) and Settles
(2005 who also provide references to additional literature
and materials. The used stopping criterion is either a fixed
number of iteration steps that has to be set according to the
given problem or a maximum number of members in the set
of good parameter vectors. Another option might be a check
that assesses the stability of the estimated set. We suggest to
carry out some test runs with different limits and check the
stability of the estimated parameter vectors. For further de-

Cabrera and Coell(2010.

controls the proportion of the population that is not moved In contrast to normal single-objective approaches, it stores
according to the PSO strategy but is transformed using theall so far approximated Pareto optimal parameter vectors in a
GA. Thus, values for the breeding ratio parameter range fronset.4 which is used to direct the search towards the complete
[0—1]. Settles and Soul€005 propose a default value of region enclosing the Pareto optimal parameter vectors. Dif-
0.5, with the expectation that the best results would be withferently to other MO-PSO approaches (&j! et al., 2006,

an even mix of both GA and PSO. However, other values forthe the so-called “personal” global best for each patrticle is
the breeding ratio may provide better results depending omot the closest particle of the so far approximated Pareto op-
the characteristics of different considered calibration prob-timal set.4, but a random member of. Furthermore, each
lems. For further details, we refer 8ettles and Soul@005 particle has a local best that is just updated by the current
and referred literature. The evolution of the particles by theposition in case that it weakly dominates all so far found
GA is done using the following technique: from the pool of positions of the particle. After a given number of iterations,
possible candidates, a subset of parameter vectors is selectéte set.A holds a number of parameter vectors that repre-
by tournament selection. They are recombined by an opersent the Pareto set of the given multi-optimisation problem.
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We assume that the introduction of additional features toTable 1.Default values of the parameters controlling the MO-PSO-
a normal PSO search strategy can outperform other simpl&A algorithm.

multi-objective calibration strategies and might be a useful
complement to existing advanced multi-method optimisation ~ Symbol  Description Default value
strategies, e.g. the AMALGAM algorithm. Therefore, we

. . " Breeding ratio ®

integrated the developed algorithm as an additional search Particle inertia weight ~ ® decreasing to.@
strategy into the AMALGAM framework. In the follow- b1 Cognitive attraction (5

ing, the extended AMALGAM approach will be denoted by &2 Social attraction 5

AMALGAM *. The AMALGAM framework contains a sim-
ple handling of boundary constraints. Infeasible solutions
that are out of the bounds are just set to the bounds in or-
der to preserve their feasibility. In order to enable the frame-ing scientific interest is a more intelligent selection of the cal-
work to deal with more complex bounds, we added someibration data (se®@agener and Wheatg2002 Wagener and
features of a constraint handling technique based on adapgsupta 2005 Thyer et al, 2006); another one is the devel-
tive penalty functions and a distance measure proposed bgpment of advanced methods for the identification of robust
Woldesenbet et a[2007). This method uses the number of model parameters.

feasible individuals in the population in order to be able to A methodology that focusses on the latter approach is the
control whether a modified objective function focusses justrobust parameter estimation approach (ROPE). It was first
on the objective values or the constraint violation. As long presented byBardossy and Singi2008. The ROPE ap-

as all members of the current population are feasible, theroach is based on the application of the principle of data

objectives remain unchanged. depth in order to sample robust parameter vectors. Data depth
o is a statistical method used for multivariate data analysis
2.2 Robust parameter estimation which has recently attracted a lot of research interest (e.g.

o ) ) ) Cramey 2003 Liu et al, 2006. A specific data depth func-
The application of automatic calibration procedures for 5, assigns a numeric value to a given point which corre-

model parameter estimation often completely neglects posgpongs 1o its centrality, with respect to a set of points. This

sible gncertainties in the observations used to guantify theapproach provides a center-outward ordering of points in Eu-
matching of simulated values and mv.easuremeﬁsmdossy clidean space of any dimension with respect to a given point
and Singh(2008§ studied this problem: due to the complex- get or distribution. This provides the possibility of a new non-
shaped response surface and the erroneous observations, &3 metric multivariate statistical analysis in which no distri-
solution of the optimisation problem can lead to very dif- 1, fional assumptions are needed. Recent studies of compu-
ferent near-optimum parameter vectors that correspond to &iional geometry and multivariate statistics (e et al,
much different model performance on the validation data.zooei Bremner et a].2008 showed that members with high
The actual goal of a good model calibration should not begenih with respect to a given point set, are more robust in or-
to f|_nd parame_ter vectors that perform best for the calibrationyg 1o represent the underlying distribution than a whole set.
period but to find parameter vectors that The deep points can be identified using a data depth metric
_ lead to good model performance over the selected timd™Pleémented in a data depth function. Most proposed metrics
period: used in data depth functions are inherently geometric, with
' a numeric value assigned to each data point that represents
— are not sensitive: small changes of the parameterdts centrality within the given dataset. The depth median, the
should not lead to very different results; point of maximal depth, is the depth-based estimator for the
_ ~ center of the dataset. Depth contours can be used to visu-
— are transferable: they perform well for other time peri- alize and quantify the data. For instance they can be used
ods and might also perform well on other catchménts. 1 define central regions enclosing a part of the space with
. high depth. The concept of data depth is illustrated in Eig.
_Typlcally, such parameter vectors also lead to a hydrolog-b)?a sinF])pIe 2-dimensi<§)nal exampIeF.) For a random pointgset
ically reasonable representation of the corresponding proc e,y o jaia depth was computed for each point of the
cesses In the (;ontext of the POSSIb'"“eS of the used r‘nOdeI'set With respect to the point set itself. The used depth func-
According toBardossy and Sing(2008, we ga}l! SUCh. pa- tion is the halfspace depth. According to its originator, it is
rameter vectors robust. There are two possibilities to |mproveaISO known as Tukey deptTgkey, 1975. It is one of the
existing calibration approa_ches iT‘ order to identify robust Pahest known among the data dept,h mea'sures in nonparamet-
rameter vectors. One starting point that recently attracted ”SFic statistics, and in discrete and computational geometry and
25ingh(2010 studied the influence of robust parameter estima- has proved to be a very robust measure in order to identify the
tion on the transferability of model parameters. Consider howevercenter of a multivariate dataset (€Rpusseeuw and Struyf
that this aspect is not a focus in this paper. 1998 Cramer 2003 Serfling 2006. According toDonoho
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Fig. 1. 2-dimensional point set shaded according to assigned depth.
A darker point represents higher depth. The lines indicate convex
hulls enclosing the 25 %, 50 %, 75% and 100 % deepest points. The

used depth function is halfspace depth. L

Fig. 2. lllustration of the halfspace depth in the two-dimensional

and Gaskd1992, the halfspace depth of an arbitrary point space. The poirt has depth 2 with respect to the given point set.

0 = (61, ...,04) € RY with respect to @-dimensional dataset
Z is defined as the smallest number of data points in any

closed halfspace with boundary throughlt can be written estimated parameter vectors achieve the best possible
as performance with respect to the given objectives and
T - calibration data. Thus, they are from now on called
hdepthi6 | Z) := H[}}l'gl#{lvu xizu -0} @) the good parameter vectors. For single-objective prob-
lems, the good parameter vectors can be expressed by
whereu ranges over all vectors iR, with ||u|| = 1. Within a set comprising the global optimum plus an uncer-
this equation, the symbal just indicates that the labelled tainty bound that depends on the assumed uncertainties.
vector is transposed. Considering multi-objective calibration, we suggest to
express the good parameter vectors by a set of non-
Very often the halfspace depth is normalised by dividing dominated parameter vectors, i.e. the Pareto optimal set.

the “hdepth” value by the number of points in the Zet _
2. Afterwards, a set of parameter vectors deep with respect

hdeptho | Z) to the previously identified set of good parameter vec-
hdepthi(6]2) := #zZy (2) tors is generated under the assumption that those pa-
rameter vectors are more robust than the complete set
The principle of the halfspace depth of a painvith respect of good parameter vectofs.

to a point setZ in R? is illustrated in Fig2. The plot shows
some lines througl® that split the parameter space into  The depth-based sampling with ROPE can be very use-
two halfspaces. Obviously, each possible halfspace througfi! for the estimation of robust hydrologic model parame-
f contains at least two points of the given set. Hence7 théers. Different studies with the semi-distributed HBV model
non-normalised halfspace depth hdépttz) = 2. For any focussing on the simulation of the water balanBérgossy
further details of the halfspace depth, refefltckey (1975;  and Singh 2008 and the modelling of flood events with a
Donoho and Gask(1992; Rousseeuw and Struyf998. distributed hydrologic modeKrauf3e and Cullmanr20123
As mentioned aboveBardossy and Singt2008 devel- illustrate the advantages and potential of this approach.
oped a method entitled ROPE that applies the principle of
data depth in order to identify a set of robust model param-
eters. The approach was further developedKibguRe and
Cullmann(20123. In general all ROPE approaches consist  3“The reason for this is that one assumes that the low depth
of two steps: points can be regarded as an iso-hypersurface corresponding to the
selected level. If one assumes continuity of the objective function
1. In a first step, a set of model parameter vectors with athen higher values of the function are expected in the interior of the
reasonable good model performance is identified. Theset” Bardossy and Singl2008 p. 1278).
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Algorithm 3 MO-ROPE. It just tries to identify parameter vectors that are located in

1: Execute the multi-objective PSO-based MO-PSO-GA proce-the central regions of the Pareto optimal set in the parame-
dure to estimate an approximation of the Pareto optimal set oft€" SPace. A pseudocode listing of the proposed MO-ROPE
the problem. This set is denoted By approach is provided in Algorithf& The developed solution

2: Sample parameter vectof® ; with high data depth w.r.t4 enables the possibility to apply the ROPE approach on multi-
by the GenDeepstrategy provided irkrauBe and Cullmann objective calibration problems. The algorithm was imple-
(20113. Consider that the data depth is computed within the mented in MATLAB and &+ and is embedded in a robust
parameter space. parameter estimation framework which comprises other pub-

3: retum Dy lished robust parameter estimation approaches. The frame-

work is open source and available from the author.

2.3 Synthesizing multi-objective optimisation and 3 Case studies
robust parameter estimation
3.1 Preliminary case study: investigating the

We propose to synthesize the strengths of multi-objective ~ effectivity and efficiency of different
optimisation and robust parameter estimation with data depth ~ Multi-method multi-objective algorithms
functions in a new algorithm, entitled multi-objective robust using common test problems
parameter estimation (MO-ROPE). It synthesizes the advan-

tages of a multi-objective view and the ROPE approach. Thel Ne published results of single-objective robust parameter

approach firstly applies a suitable multi-objective optimisa- estimation approaches have shown that the quality of the set
tion algorithm in order to estimate a set of non-dominated©f 900d parameter vectors plays an important role for the
solutionsA, thus the Pareto optimal set. A suitable method FoPustness of the estimated model parameter vectors (e.g.

to do this task could be one of the methods discussed abov&raufse and Cullmanr20123. This is why an effective es-
e.g. the AMALGAM approach. In a second step, the a|go_t|mat|on of the non-dominated solutions in the first algorith-

rithm samples a set of parameter vectors that are deep witA'iC Step is an important prerequisite for a successful appli-
respect to the previously identified sét The result is a set cation of a multi-objective robust parameter estimation ap-

of parameter vector®; that has high data depth with re- proach. Thus, in a preliminary case study, we applied the

spect to the sefi. We propose to do the sampling using a multi-objective optimisation algorithms discussed in the pre-

stratified approach called GenDeep. It provides advantage\é'ous section in order to approximate the Pareto set for sev-

. - .“eral benchmark problems with analytical solutions. We com-
for the sampling from non-elliptic, banana-shaped and multi-
A . . are the performance of the stand-alone MO-PSO-GA ap-
modal distributions. That might be a crucial in case of Paret

optimal sets that are distributed non-linearly or even 0verproach with the results obtained by other simple evolutionary

different distinct regions in the parameter space. The Gen—mL”t"ObJeCtNe optimisation strategies. Furthermore, we dis-

. : cuss the advantages of the integration of this hybrid approach
Deep strategy is thoroughly discussedkirau3e and Cull- . - .
mann (20128, It was already successfully applied for the into the advanced multi-method algorithm AMALGAM. We

sampling of deep parameter vectors within the frame of acompare the original version of AMALGAM that already ap-

further developed single-objective ROPE stratefya(iRe plies four approved multi-objective optimisation algoritfims

. and an extended version called AMALGANMhat comprises
and Cullmanp20123. Consider that MO-ROPE samples the the MO-PSO-GA approach as well.

deep parameters in the parameter space and not in the objec- For the first problem, entitted COELLO function, we fol-

tive space. Hence, the estimated robust solutions are just d?éwed the settings itGill et al. (200§, We ran the the al-

pendent on the geometrical structure of the previously iden- orithms with a population size of 30 and set the maximum
tified Pareto optimal set. Any further assumptions regard-g hop

. - : s number of function evaluations to 5000. The true front of
ing realistic ranges of the considered objectives are not re-

. ) : . o . . ~and the non-dominated front estimated by MO-PSO-GA are
quired. This makes it an in principle different approach in - . . . .
. . .. . shown in Fig.3. It is obvious that the true front is approxi-
comparison to other published approaches that distinguish . )
: ) L mated well and all sections of the front are uniformly cov-
robust and non-behavioural solutions by subjective cut-off

thresholds in the objective space (eéfstratiadis and Kout- e.red. The same holds tr.u.e fpr the estimates of bioth'con-
" ! i . sidered AMALGAM modifications. Thus, for an objective
soyiannis2010. Although this solution can easily select ro-

. . " . comparison of the approximated front against the true front,
bust parameter vectors, it requires additional assumptions on .
. . oo we calculated two performance metrics and compared them
the optimal range of the considered objectives. Furthermore,
the non-behavioural solutions might not always exclusively  4the griginal AMALGAM contains the genetic NSGA-II algo-
correspond to the extreme tails of the Pareto front. Henceyithm (Deb et al, 2002, a simple PSO approackénnedy et al.
the depth-based sampling completely forgets about the locaz001), the adaptive metropolis search (AM$)dario et al. 2001),

tion of the Pareto optimal solutions in the objective space.and differential evolution (DE)Storn and Pricel997).
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Table 2. Description of two simple multi-objective test problems used in this study

Problem N Parameter range Objective functions Characteristics

) =x2—x;
fox)=-% —xp+1
COELLO 2 [0,7] subject to Nonconvex
0> %+x2—6.5, 0> %+x2—7.5,
0>5x14+x2—-30, x,x2>0
A =YY x?
() =S L2 .12y N 2
VRUGTy {2,10,3Q [0, 1] fi@) =23 _1x+(x; =1 Zi:/+lxl Convex

where 2< j < (N +1)

Table 3. Performance metrics for the non-dominated fronts esti- of a triangular-shaped area in the parameter space, having
mated by several evolutionary multi-objective optimisation algo- the corner pointg0, 0), (0, 1) and (1,0) for x1 andxy, re-

rithms edited according Gill et al. (2009. spectively. We defined an extended version that is defined for
any dimension greater than or equal to two. It is defined by
Algorithm GD SP N + 1 objectives. In a first simple experiment, we estimated
AMALGAM * 0.0005 0.0570 the Pareto set for the 2-dimensional case. A higher dimen-
AMALGAM 0.0005 0.0581 sional version with 30 dimensions is considered in a follow-
MO-PSO-GA 0.0006 0.0621 ing case study that studies the advantages of deep parameter

vectors. According t&/rugt et al.(2003, we set set the pop-

MOPSO @ill et al, 2009 00122 0.1415 ulation size to values of 10, 20, 50, and 100, but limited the

MOPSO (Coello et al, 20049 0.0365 0.1095

NSGA-I| 0.0842 0.0985 number of iterations to 50. Thus, the maximum number of
Micro-GA 0.1508 0.315 function evaluations is limited to 500, 1000, 2500 and 5000.
PAES 0.1932 0.1101 The estimated parameters for the MO-PSO-GA and AMAL-

GAM are given in Figs4 and5. The results of AMALGAM

are just about equal and are thus neglected here. The results
) i i i i estimated by MO-PSO-GA and AMALGAM have a similar
with a published overview according Bill et al. (2009. o 5jity A detailed visual comparison with published results

The .results are provided in Tab3e The met'rics considered  ,qtimated by MOSCEM\(rugt et al, 2003 and two other
in this comparison are the generational distance (GD) met'multi-objective PSO implementation€gello et al, 2004

ric introduced byvan Veldhuizen and Lamor(@99§ that Gy ot 4], 2006 confirms that the non-dominated front esti-

measures the distance between the elements of the estimatgel, by MO-PSO-GA is less clustered and provides a fairly
non-domlnated setdgnd the rl:nown true fhront, and the Spr?c'ng)etter approximation of the true Pareto front. Already the run
metrlcl(SP) according t(sil 0tt|(1993 t af‘t r:neaSL'Jres the  ith population size 20 and a corresponding number of func-
mutual distance between the elements of the estimated N0, e\ ajyations of just 1000 provides better results. This un-

dominated front. Lower values of GD and SP denote a bettefjerlines the efficiency of the MO-PSO-GA algorithm in com-
approximation and a more uniform spread, respectively, Withparison with other single-method search strategies.

Zero bejng the optimum. We abstainfromar_nore detailed in? The previous benchmarks underlined the efficiency of
troduction of Fhese measures, as they are just used for thi§,o Mmo-Pso-Ga algorithm in comparison with other sim-
small_ comparison. The results show that all three s;uggeste&e multi-objective optimisation. However, the test prob-
algorithms provide excellent results for the COELLO prob- o 15 \yere still far too easy to notice any differences be-
lem. The MO-PSO-GA approach outperforms existing PSOyeen the different suggested algorithms. That is why we

approaches and obtains results that are almost equivalent Bsted the suggested solutions on another set of more com-
the results of AMALGAM and AMALGAM'. In a second plex and well-known multi-objective benchmark problems

test, we consider a problem that was proposed and usgd asp?ovided by Zitzler et al. (2000, Deb et al. (2003 and
benchmark by/rugt et al.(2003. That is why we refer to this Fonseca and FlemingL993 that are commonly used in

benchmark as VRUGT. Itis originally defined for two dimen- literature (e.g.Vrugt and Robinson2007. An overview
sions with three objectives. The Pareto solution set consists e '
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Table 4. Description of complex multi-objective benchmark problems used in this study.

Problem N Parameter range Objective functions Characteristics
fix)=x1
ZDT1 30 [0, 1] Fox) = g(x)[1— /x1/8®)] Convex
g =1+9[ 1 x;i /(N - 1]
fi(x) =x1
ZDT2 30 [0, 1] Fo(x) = g(x)[1— (x1/g(x))?] Nonconvex
g() =149 1 x;/(N - D]
fix)=x1 Convex,
ZDT3 30 [0, 1] fo(x) =g®)[1—/x1/g(x) — (x1/g(x))sSin(10mrx1)] disconnected
gx)=1+9[Y N x;/(N-1)]
x1€1[0,1] fix)=x1
ZDT4 10 x2 N €[-5,-5] fo(x)=gx)[1— (xl/g(x))z] Nonconvex
g(x) =1+10(N — 1) + XN | (x; — 10cog4rx;))]
f1(x) =1—e 1. sinf(6rx1) Nonconvex,
2
ZDT6 10 [0, 1] fox)=1- (];1(%)) nonuniformly
0.25
g(x) =1+ 9[va=1xi/(N - 1)] spaced
AG) = 1— e~ Dita i1V
FONy (310 [-4,4] fi®) =1— ¢ Xitati=1/V37 Nonconvex
fiy) =y1
fo(y) = g(y)e(—yl/g(y))
ROT 10 [0, 1] g(») =1+10(N -1+ XV, y;2—10cog4ry;) Rotated,
y=TRx correlated
8.6 : : ch/sop/download/supplementary/testprobleviie chose the
e Estimated front versions with 1000 members each. According to the studies
41l True front conducted invVrugt and Robinsor{2007), we applied each
considered optimisation algorithm for the approximation of
891 ‘ ‘ | the Pareto optimal sets for the given test problems using a
g population size of 100 points in combination with 150 gener-
o sl ] ations. Each optimisation run was repeated 30 times in order
8 to avoid an interference of the results by outliers. In addition
< 73l | to the three considered algorithms MO-PSO-GA, AMAL-
GAM and AMALGAM*, we also considered the NSGA-II
76l | algorithm according tdeb et al.(2002. It was subject of
attention in many scientific publications and demonstrated
‘ ‘ ‘ ‘ ‘ superiority over many existing multi-objective optimisation
—4 -2 0 2 4 6 8 methods. Furthermore, it already served as a reference in
fi (5131, g;2) the first study with AMALGAM presented byrugt and

Robinson(2007. Thus, it is a good indicator to assess the
Fig. 3. True Pareto front and the non-dominated front estimated byperformance of the hybrid MO-PSO-GA algorithm.
MO-PSO-GA using Coello’s function. The goal of a multi-objective optimisation algorithm is
to approximate the Pareto optimal set of a given optimisa-
tion problem. The Pareto set in the parameter space cor-
over the used benchmarks is given in Table Pre- responds tp a Pareto front in the opjective space. Thus, a
ood algorithm should estimate solutions that correspond to

generated, uniformly spaced, reference sets representln§non-d0minated front that approximate the true Pareto front

the known exact Pareto optimal sets for the given opti- . : . o
o . ] . as close as possible. With the evolution of multi-objective
misation problems are provided http://www.tik.ee.ethz.
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No. ranky = 380 No. ranky = 2025 No. rank] = 3563

g o g & 05 ] & o5
0 0 Fiup e 0
0 05 1 0 05 1 0 0.5 1 0 05 1
31 31 31 31
(a) Population size = 10 (b) Population size = 20 (b) Population size = 50 (b) Population size = 100

Fig. 4. Scatter plots for the rank 1 points (blue dots) for 50 evaluation generations estimated by MO-PSO-GA with a populatidia)ize of
10, (b) 20, (c) 50, and(d) 100 respectively. The boundaries of the triangle enclosing the true front are the blue dot-dashed blue lines.

No. rank) = 413 No. ranky = 780 No. rank) = 3621

057 ° 0.5 0.5 0.5

£
z2
z2
z

0 05 1 0 0.5 1 0 05 1 0 05 1
z1 1 zp 31
(a) Population size = 10 (b) Population size = 20 (b) Population size = 50 (b) Population size = 100

Fig. 5. Scatter plots for the rank 1 points (blue dots) for 50 evaluation generations estimated by AMALGAM with a population(s)ze of
10, (b) 20, (c) 50, and(d) 100 respectively. The boundaries of the triangle enclosing the true front are the blue dot-dashed blue lines.

optimisation algorithms, a lot of metrics have emerged in or-denotes the distance between the first (leftmost) point in the
der to quantify the effectivity and efficiency of compared ap- obtained approximation and the beginning of the true front.
proaches. We follow the suggestions\afigt and Robinson  The same applies fafi and the last (rightmost) point of the
(2007 and use the following three metrics proposedigb obtained Pareto approximation. The mettcis a measure
(2001 andDeb et al (2002 in order to measure the effectiv- of the deviation of the individual distance between the con-
ity and efficiency of the compared optimisation algorithms. secutive solutions ia from its mean value weighted by the
Theconvergence metric (Yiieasures the extent of conver- distance of the extreme tails d@f from the tails of the true
gence of the approximated set of non-dominated solutions front . ThusA is computed by
to the known true set of Pareto optimal solutidhsThe met- _
ric Y computes by the average of the Euclidean distance of,  di +di + Z,-L:]lldi —d|
each point inA to its closest neighbour i. The closer the  di+d+(L—-1d
value of Y is to zero, the better is the matching of the esti-
mated solutions to the true Pareto optimal set. Consider thaf® Perfect approximation of the true Pareto front would have

the distances are computed in the objective space. a A value of zero. A perfect distribution, whose tails are ide-
Another important performance criterion for evolutionary ally identical to those of the true front, would correspond to
algorithms for multi-objective optimization problems is the df = di = 0. Furthermore, such an approximation should be
diversity metricA. It measures the extent of the spread or di- Perfectly distributed so that ad} = d. This leads toA = 0.
versity of the estimated solutions along the true Pareto frontHence, smaller values for this metric indicate a better spread
In order to calculate this metric, we compute the Euclidean@nd uniform distribution along the front.
distances between two consecutive solutioné.ifhese dis- Therelative hypervolume indicatdRHV) quantifies both
tances are stored in a vectdrwith length L — 1 whereL convergence and diversity of the so far estimated approxi-
denotes the cardinality of the sét In a second step, we cal- Mation within a single measure, and is therefore one of the
culate the Euclidean distances between the extrapolated ef€st unary measures available to diagnose whether the non-
treme solutions of the true Pareto front and the boundary sodominated solution set estimated by an optimisation algo-

lutions of the obtained non-dominated s&tandd;. Thus,ds rithm is a good approximation of the true Pareto set. This
metric is computed by one minus the ratio between the

3
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objective space dominated by the estimated non-dominated 1
set, and the objective space dominated by the given true
Pareto set.

RHV =1—

HV (A) @
HV (P) .

Thus, a perfect fit of the true front corresponds to a relative
hypervolume indicator of zero. Followingrugt and Robin-
son (2007, we use a relative hypervolume indicator with 0.25
value of less than.005 as a criterion indicating that the esti-

mated solutiom is sufficiently close to the true Pareto gt

and counts the function evaluations carried out so far in order ~

to measure the efficiency of the optimisation algorithms. O 025 05 075 1
The effectivity of the considered optimisation algorithms

in terms of the metrics Y and\ is provided in Tableb. L1

The obtained results for the existing algorithms AMALGAM
and NSGA-II are close to the values published in literature
(Vrugt and Robinson2007). This indicates that the frame-
work was set up correctly. Of particular relevance are how-
ever the results of the proposed approaches MO-PSO-GA

and AMALGAM*. Aside from the ROT problem, the MO-  essary and important step towards the identification of ro-
PSO-GA approach provides results that are comparable ofust parameter vectors. The main thrust of the MO-ROPE
better to those estimated by NSGA-II. Notwithstanding theseapproach is however the sampling of deep parameter vectors
convincing results, the achieved performances are one stefhat are considered to be robust and thus a more represen-
worse than the results yielded by AMALGAM. However, the tative solution in environments that are affected by a con-
already excellent results of the AMALGAM approach can siderable degree of uncertainty. In such situations that are
even be slightly improved by an extension with the MO-PSO-common for real-world problems, the Pareto set cannot be
GA approach. For all test problems, the AMALGAMro-  uniquely identified. The erroneous data can even lead to very
vides the best results for all benchmark problems consideredjifferent optimal parameter vectors. This issue is related to
An exception is again the ROT problem where the additionalthe requirement that robust parameter vectors should be as
MO-PSO-GA approach does not provide any additional im-insensitive as possible. In this regard the estimated parame-
provements. These results both confirm the superiority of aer vectors are considered as sensitive if a small change of the
well-founded multi-method approach, such as the AMAL- whole vector might lead to a big change in the performance
GAM approach. Furthermore, the benefits of additional sin-of the model. To consider this issue, we just slightly altered
gle or hybrid search strategies can be used in order to imthe estimated parameter vectors and studied the results for
prove the results of advanced multi-method approaches. lthe whole identified set, the deep parameters and the hull.
also confirms Wolpert and Macready’s “no free lunch” the- The alteration was done using the following equation:

orem that shows that it is impossible to construct one sin-

gle (parameter) search algorithm that will always outperformX = X + €x (5)

any other_algorlt_thoIperf[ and Macready1 997). Further_ wheree, is a multi-dimensional random independent Gaus-
research is required to estimate a perfect set of strategies in

order to obtain a multi-method approach that yields the best &N error with mean zero and a standard deviation that equals
one percent of the range of the parameter in the estimated

possible results. According to the obtained results, we sugs:

gest to use the AMALGAM approach for the estimation of Pareto set in each considered dimension. Consider that .thIS
the Pareto optimal set procedure alters the parameter vectors even less than in a

similar experiment for sets of good parameters estimated
by single-objective optimisation algorithms conducted by
Bardossy and Singt2008.

Furthermore, we assumed that the actual values of the
objective function cannot be exactly identified. That is due
3.2.1 Uncertainty in synthetic test cases to errors in the observations. We consider this issue as

follows. For a given multi-objective calibration problem
In the previous case study, we studied different strategies = {fi1... fn}, we defined a corresponding probleftt =
that are suitable to approximate the Pareto optimal set of 417’ ... f,;}, where every objective functioi € F* is ex-
given multi-objective optimisation problem. This is a nec- actly the same as its corresponding memfjet F besides

Fig. 6. Scatter plot of the approximated Pareto set for the problem
VRUGT; in the 2-dimensional parameter space; the deep and the
shallow solutions (hull) are indicated by red and blue dots.

3.2 Studying the effectivity of depth-based sampling
for multi-objective calibration problems that are
subject to uncertainty
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Table 5. Effectivity of the four presented algorithms in terms of the performance metrics YAdfiod the given more complex test bench-
marks. The statistics represent mean values over 30 optimisation runs.

Convergence metric: Y

Problem MO-PSO-GA  NSGA-II AMALGAM  AMALGAM*
ZDT1 0.0024 0.0040 0.0009 0.0006
ZDT2 0.0174 0.0053 0.0007 0.0004
ZDT3 0.0016 0.0024 0.0012 0.0011
ZDT4 0.0148 0.0411 0.0028 0.0024
ZDT6 0.0161 0.0502 0.0008 0.0004
FON;

FONyo

ROT 13.57 3.66 0.46 0.46

Diversity metric:A

Problem MO-PSO-GA  NSGA AMALGAM  AMALGAM¢
ZDT1 0.40 0.41 0.35 0.34

ZDT2 0.46 0.45 0.33 0.33

ZDT3 0.60 0.61 0.44 0.43

ZDT4 0.75 0.81 0.41 0.40

ZDT6 0.57 0.56 0.47 0.45

FON;

FONio

ROT 1.62 1.10 0.65 0.67

Table 6. Efficiency of the four presented algorithms in terms of the number of model runs that are required to result in a relative hypervolume
smaller than @O5. The statistics represent mean values over 30 optimisation runs.

Number of function evaluations

Problem MO-PSO-GA  NSGA AMALGAM  AMALGAM
ZDT1 1.576 6.124 756 704

ZDT2 8.624 7.152 1.148 988

ZDT3 4.404 4.956 1.252 1.040
ZDT4 9.376 (143 13.635 (16§  6.472 5.916

ZDT6 6.736 8.780 960 874

FONg 4.710 4.930 1.510 1.380
FONygo 4.710 4.930 1.510 1.380

ROT N/CH N/C** 9.527 9.874

* Number of runs that have failed to converge are shown in parenttésiesne of the 30 optimisation runs have
converged after 150 generations.

an additional uncertainty term. The uncertainty is subject tomodel calibration and should not affect the performance to a

the following error model: too large extent.
We now conducted the following experiment in order to
fi'(e) = fi(x) +ep, (6) study the advantages of the deep parameter vectors and the

effectivity of the depth-based sampling:
wheree ;, is a random independent Gaussian error with con-
stant variance. We assumed mean and standard deviation ofl. In a first step, we applied the MO-ROPE framework in
just one percent of the range of the objectjgen the true order to estimate robust parameter vectors for a multi-
Pareto front of the problem original problem. Even though objective calibration problen#. According to the re-
the defined error models are quite subjective, the resulting  sults of the previously presented case study we chose
disturbances of both the objectives and the parameters are the AMALGAM* for the approximation of the Pareto
still well below the typical changes observed in hydrologic optimal setA. Afterwards, we sampled a set of deep
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Fig. 7. Scatter plot of the approximated Pareto set for the problem VRUGThe 3-dimensional objective space; the deep and the shallow
solutions (hull) are indicated by red and blue dots.
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Fig. 8. Scatter plot indicating the distribution of the actual Pareto fronts for the problem VBW6iTsidering uncertainty. Scatter plot of

the approximated Pareto set for the problem VRY@Tthe 3-dimensional objective space; the deep and the shallow solutions (hull) are
indicated by red and blue dots.

parameter vector® ;. Additionally, we generated an- lems FON and ROT where the true Pareto set is a multi-
other set that comprises all vectors Anwith shallow ~ dimensional line that is usually approximated by a cigar-
depth. We call it the hull oft and denote it by ;. Con- shaped set. The same applies for reasonable models that sim-
sider once again that the deep parameters are sampled iiate natural or technical processes where the Pareto op-
the parameter space and not in the objective space. Thi#mal parameters also form such geometric structures (e.g.
means that the depth-based sampling does not requirBardossy2007 Vrugt et al, 2003. We did not consider the
any a priori knowledge of the used objectives. problems ZDT1-ZDT6 where the corresponding Pareto set is
a one-dimensional line with just one free parameter. In such
2. In a second step, we compared the performance of theases, the sampling of deep parameters is not useful.
complete estimated Pareto set and the sampled deep The principle of the depth-based sampling from the Pareto
parameter vectors on the probleR). We generated optimal sets is illustrated using the example of the problem
10000 different realisations of the errorg andex. ~ VRUGTY . The estimated non-dominated solutioAs the
For each realisation, we altered the parameter vectorsiccordingly sampled deep parameter vectors and the hull in
and identified the corresponding Pareto optimal set asoth parameter and objective space are provided by Bigs.
a subset ofA andD ;. Now we compared the perfor- and7. The region defined by the deep parameter vectors cor-
mance of the complete approximated ParetoAsghe  responds to central parts of the Pareto front. However, there

sampled deep parameter vectdrg and its hull ; re- is no direct relationship to a simple cutoff value or even a
garding their ability to represent the set of true Paretodirect one to one relationship that maps just deep parameter
sets forF,. vectors to the central part of the Pareto front. This is in par-

_ ) ticular underlined by the distribution of the hull that corre-
We performed this experiment for the test problemssponds to larger parts of the tails but also contains members
VRUGT, FON and ROT in lower and higher dimensions i the central region of the Pareto front. The advantage of
that were already considered in the previous case study. Fqhe depth-based sampling approach is illustrated by &ig.
the problems VRUGT and FON, a subscript indicates thejt shows the density of the distribution of all possible Pareto
used number of dimensions. The Pareto set of the problengonts for VRUGT; that were estimated for the different re-
VRUGT is a multi-dimensional more or less convex region gjisations o ; ande, . Furthermore, there is an overlay with

where the sampling of deep parameter vectors might be posscatter plots that represent the distribution of the estimated
sible. The same applies, to a lesser extent, for the prob-
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Table 7. Effectivity of the estimated Pareto optimal séf)@nd the corresponding deep £) and shallow T{ ;) parameter vectors in terms
of the performance metrics Y antl, and the mean sum of all squared objective functions. The metrics were calculated with respect to the
individually identified non-dominated front (as a subset of the originally approximation) for each realisation of the perturbamcks; .
The statistics represent the mean values over 10 000 realisations.

Convergence metric: Y

Diversity metries Lsm

Problem A DA HA

Dz H; Dz H;

VRUGTS
VRUGTY,
VRUGTS,
FON4
FON!,
ROT

0.12
0.02
0.03
0.015
0.11
221

0.07
1E-6 0.05
~0 0.0514
0.010 0.016
0.09 0.12
124 283

0.17

0.35

0.73
0.37

0.60
0.29
0.34

0.59
1.04
0.61

0.88
0.30
0.34

0.63
1.11
1.02

2.10
21.4
89.3

1.10
12.4
40.2

2.79
30.6
114.0
0.84 081 0.87
137 134 139
31225 17440 39951

0.65
1.13
0.94

30

\-A W7 .“@i\

20

Density

10

0.6

0.7
A

0.8 0.9

Fig. 9. Distribution of the diversity metria\ for the approximated
Pareto set for the problem VRUGTits shallow solutions (hull) are
indicated by red and blue bars.

approximation of the Pareto set of VRUGA) the corre-
sponding deep parameter vectdrs;) and the hull ;) in
the objective space of the problem VRUETn comparison

with the complete Pareto set, the deep parameter vectors do

€7, the metrics were computed with respect to the individu-
ally identified non-dominated front (as a subset of the origi-
nally approximationd). For all given test problems, the sam-
pled deep parameter vectors provide, in comparison with the
complete estimated Pareto set, a better mean approximation
of the actual Pareto sets in the objective space considering
uncertainty regarding both the matching and a uniform dis-
tribution. Furthermore, the mean sum of the squares of all
objectives is less for the deep parameter vectors. The effec-
tivity of the depth-based sampling becomes even more ob-
jectionable if one considers the results for the parameter vec-
tors with shallow depth, i.e. the hull. The parameters in the
hull show the least suitable regarding its ability to represent
a robust solution for the set of potential Pareto solution in an
uncertain environment. Consider that the benefit of the depth-
based sampling is greater for the problem VRUGT where the
Pareto optimal set comprises a larger region. Typically, this
is the case for hydrologic models. The results show that the
depth-based sampling might be a suitable method to identify
robust solutions with respect to a previously identified Pareto
optimal set.

3.2.2 Uncertainty in the synthetic application of a
hydrologic model

not just show a better convergence to the set of true Pareto

fronts for the problem considering uncertainty. According
the distributions of the distribution metris given in Fig.9,

to In the previous case study, we showed the advantages of
the depth-based sampling in comparison with a pure multi-

they also provide a better mean approximation of the sprea@bjective optimisation using synthetical benchmark experi-

of the true Pareto fronts for the problem VRUGT
The advantages of the depth-based sampling are not

ments. One last experiment should establish that the MO-
limROPE method really produces robust parameter vectors in

ited to simple low-dimensional problems. The results for all the context of hydrologic model calibration. The experiment
considered problems including uncertainty are quantified iniS done carrying out the following steps:

Table 7. It compares both performance metrics used in the
previous case, i.e. the convergence metric Y that measures

the extent of convergence to the actual Pareto setgfor

and the diversity metricz that provides information about
the spread of the solutions along the Pareto front. Further-
more, it provides the mean sum of the squares of all indi-

vidual objectives. For each realisation of the errgysand
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1. We chose a simple lumped hydrologic model and used
observation data to generate synthetic discharge series.

2. Afterwards, we added noise to the observations and the
synthetic discharge. The noisy data were splitinto a cal-

ibration and validation period in three different ways.
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Table 8.Overview of the used model parameters considered for theTable 9. Overview of the used combination of calibration and vali-

synthetic hydrologic model calibration. dation events.
para- lower/upper Experi- Calibration Validation
meter unit boundary ment events events
a [] 0 1 S1 {12} {5,6,10, 17,18, 20, 2P
k1 [l 001 20 S2 { 4,12} (5,6,10, 17,18, 20, 2P
ko [l 20 60 S3 {4,12,8} {5,6,10,17,18,20,2P

3. The model was now calibrated and validated for eachwith
realisation comparing AMALGAM and the proposed
MO-ROPE approach. e ~N(0,0.5¢etp (12)

The used observations were generated using the measurgdditionally, the generated synthetic discharge time series
ments in the Rietholzbach catchment. The used hydrologigvere altered as defined in E4.3).

model is described below. The model is a very simple lumped

model consisting of two linear storage units. It takes bothg(t) = g(#)(1+€q(1)) (13)
precipitation (prec) and potential evapotranspiration (etp) as .

input values and computes the corresponding discharge withvith

two linear storage units. In a first step the precipitation and

. L e ~N(0,q) (14)
potential evapotranspiration are used to compute the effective
precipitation as given in Eq7]. The lumped model was now calibrated with respect to two
Deit(1) = max(O, predr) — etp(r)) @) objective functions: the relative deviation of simulated and

observed peak runoff (rPD) and the Nash-Sutcliffe efficiency
The effective precipitatiorperr is distributed to two linear  (NS). For details, see Tabl8in the following section. The
storage units using the parametesis defined in Eq.4). mean validation results for both a pure multi-objective cali-
dinn (1) = a % pett(t) ®) bration using the AMALGAM algorithm and the correspond-

n e ing deep parameter vectors are given in Tall@and11. It

Giny (1) = (1 —a) * pefi(t) ()  is obvious that the deep parameters provide a slightly bet-
The linear storage units are filled with the computed inflows.ter model performance in mean and have less outliers on
Each of both linear storage units generates discharge propothe negative side of the performance scale in terms of both

tional to the stored water contel, as defined in Eq.10). considered performance criteria. This is also indicated by

The storage consdescribes how fast the storage unit drains @ slightly smaller standard deviation of the model perfor-

the stored water content to the outlet. mances. These results show that the advantages of the depth-
V(1) based sampling approach apply not only for completely syn-

. (10) thetic benchmarks but also for the calibration of a simple
) _ hydrologic model in a controlled environment. This under-
The total discharge is the sum of the two outflodsy,  lines the possibilities of the depth-based sampling for the

anquutz. Thus, the calibration problem consists of the threeestimation of robust hydro'ogic model parameterS.
parameterg, k1 andk, with the boundaries given in Tab&

The boundaries for the storage coefficigntandk, account
for the fact that one linear storage unit should represent thét ~ Calibrating WaSiM with MO-ROPE focussing on
faster runoff components while the other one models the in-  flood forecasting

terflow and groundwater discharge. The initial storage con- )

tent was fixed toVi, = 0.015 for the faster responding stor- 4-1 ~Case study area and the hydrologic model
age unit and/y, = 5 for the less responsive one.

The data basis was the meteorological observations for 2
historic flood events in the Rietholzbach catchment (for de-
tails, see Sectd). We combined the time periods in three
different ways for calibration and validation sets as shown
in Table9. The observations were altered by adding Gaus-
sian noise as given in EqLY). This was repeated 100 times
resulting in 100 different possible observation time series.

Gout(t +1) =

Jln a real world application, the MO-ROPE approach is
tested on the calibration of the distributed hydrologic model
WaSiM-ETH /6.4 model (further referred to as WaSiM). he
model was developed ychulla(1997). WaSiM transforms
rainfall into runoff according to the scheme shown in Hig.

It exemplary shows that the soil water compartments receive
infiltration which is computed by a modified approach ac-
cording toGreen and Amp{1911). This module is also used
etp. (1) = etp(z) + e etp(r) (1)) to determine the direct runofy and the interflowQjs in
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Table 10.Validation performance of the solutions estimated by AMALGAM and MO-ROPE in terms of the Nash-Sutcliffe efficiency (NS).

Experiment AMALGAM MO-ROPE

Mean Std Range Mean Std Range
S1 095 0.28 0.88-0.99 096 0.21 0.91-0.99
S2 0.97 0.21 0.91-0.99 0.98 0.13 0.93-0.99
S3 0.98 0.12 0.93-0.99 0.98 0.08 0.96-0.99

Table 11.Validation performance of the solutions estimated by AMALGAM and MO-ROPE in terms of the relative peak deviation (rPD).

Experiment AMALGAM MO-ROPE

Mean Std Range Mean Std Range
S1 0.04 0.08 0.02-0.16 0.03 0.06 0.02-0.13
S2 0.03 0.06 0.02-0.14 0.02 0.04 0.02-0.11
S3 0.03 0.05 0.02-0.10 0.02 0.03 0.02-0.07

the model.Qq is then routed via a flow-time grid and fi- events (e.gMarx, 2007 Cullmann et al.2008 Grundmann
nally projected cell-wise to the catchment outlet by means2010. We performed this case study in the Rietholzbach
of a simple bucket-type function. The recession coefficientcatchment because it has a long record of hourly datasets
of this function is the model parametgg. The soil water and the perturbing impact of data heterogeneity is relatively
movement through the different soil layers is modelled by small in this catchment. Furthermore, the WaSiM model
means of the discrete form of the Richards equation. Thehas been thoroughly tested within this catchm&uhilla
WaSiM model was calibrated for the Rietholzbach catch-1997. Notwithstanding these advantages, the modelling of
ment, a small pre-alpine catchment located in the north-easiood events in such a small catchment is a challenging task.
of Switzerland. A significant number of hydrologic studies Typically, the achievable model performance is just moder-
have been conducted in this basin. It has been observed asate and the modelling process is subject to many uncertain-
research catchment by the ETH Zurich since 1975. The outleties that can hardly be quantified. However, the results of
drains a 3.18 krhhilly pre-alpine watershed with an average previous studies dealing with flood forecasting suggest that
annual precipitation of 1600 mm, generating a mean runoffan improved parametrisation of headwater catchments can
of 1046 mm per year. For further information, refeiGartz have a big impact on the model performance for gauging
et al. (1999; Zappa(2002 and the websitéttp://www.iac.  stations in the lower reaches that are usually monitored by
ethz.ch/research/rietholzbadh this case study, WaSiM will  operational flood forecasting centres (eGullmann 2006
be calibrated for the simulation of extreme discharges. OuiGrundmann2010. Many studies dealing with model cal-
of a time series of 27 yr (1981-2008) of hourly measure-ibration focussing on flood events showed that there is a
ments (precipitation, temperature, wind speed, global radiatremendous tradeoff between a correct modelling of the peak
tion, and streamflow), 24 significant flood events were identi-flow values and a good representation of the catchment be-
fied, such that the whole range of possible flood characterishaviour in terms of the streamflow at the outlet (d/pussa
tics occurring in the catchment is well covered. An exceptionand Chahinian2009 Grundmann2010. The goal of this
was made in that we did not use any winter events to avoid a&ase study is thus to study the advantages of the developed
blurring of the results due to the dynamics of snow accumu-MO-ROPE strategy for the calibration of a process-oriented
lation and melt. For further details and a more comprehensivédnydrologic model focussing on flood events with respect to
overview, refer tdrauf3e and Cullman(20113. multiple objectives.
The WaSiM model has been chosen in this study be-
cause its physically based unsaturated zone module mait.2 Calibrating WaSiM for flood events using two
tains the characteristic physics of dynamic rainfall-runoff objectives
processes even for unobserved events. This is especially im-
portant for correctly portraying the pre-event catchment con-n a first case study, we calibrated WaSiM using two objec-
ditions. “WaSiM is therefore — amongst the available mod- tives. The relative peak flow deviation (rPD) quantifies the
els — one of the best suited for extrapolation into the rangeagreement between observed and simulated peak flow value,
of extreme flood events"Gullmann 2006 p. 20). That is  whereas the coefficient of efficiency accordinghash and
why it has been widely used for the modelling of flood Sutcliffe (1970 (NS) assesses the global fit of the observed
and simulated hydrograph. According to our experience with
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Table 12.Overview of the used model parameters considered for calibration; the reference parametéyevts estimated in order to
use WaSiM for water-balance simulations in the Rietholzbach catchment; the parameterisation of the soil hydraulic parameters is done for
each soil according to the pedotransfer functions providétldasten et al(1999 andBrakensiek et al1984).

Parameter Unit Reference Lower/Upper boundary Description
(Bwb)

kg [h] 7 0.01 25 storage coefficient of direct runoff

ki [h] 20 1 60 storage coefficient of interflow

dr [-] 21 1 80 drainage density

krec [-] 0.1 0.01 1 gradient oks with increasing depth
ks [ms1] 222 -5 31% -6 132 -4 saturated hydraulic conductivity
Bs [ 0.412 Q38 046 saturation water content

BsL = Or [ 0.01 001 001 residual water content
o [-] 4.60 162 897 empirical shape parameter (MVG)
n [-] 1.29 118 145 empirical shape parameter (MVG)
ks [ms1] 7.12-7 107e—7 295%—6 saturated hydraulic conductivity
Bs [ 0.42 041 046 saturation water content

BsiL = Or [ 0.01 001 001 residual water content
o [-] 1.36 067 217 empirical shape parameter (MVG)
n [-] 1.26 114 146 empirical shape parameter (MVG)

Table 13.0Objective functions used in this study, whesg, ¢y, (9), and®,,, ©,, (9) are the observed and simulated discharge and mean soil
moisture at time stefy respectively. The simulated values are computed by the parameter #ectdenotes the number of observations.

Name Description Formula
1y —. 2
NS Nash-Sutcliffe efficiency T ”12’:;(%—’%@
¥ el (‘Ix,- ~4x)
rPD rel. peak flow deviation 1smax—@smax(®)1
9xmax

FloodSkill aggregate between NS and rPD  NS-rPD

Y i=1"(0y, —0,)-(0,,~0))

re moisture correlation coefficient
n n
JEi1(©4, =002 Y11 (6,,-6, )2

WaSiM, both criteria have a small correlation and are mostadditional calibration parameters. A reasonable a priori es-
suitable to quantify the model performance focussing ontimation of the distribution of the soil hydraulic parame-
flood events. In a further case study, we additionally consid-ters and a scaling of these values to one scaling parameter
ered the correlation between the simulated soil moisture angber soil (Bs. and Bsj.) were done using an approach pre-
the observed soil moisture in terms of the lysimeter weightsented inGrundmann(2010. Previous studies with WaSiM

in the catchment. An overview of objective criteria referred focussing on flood events (e Qulimann 2006 Grundmann

to in the following case studies is provided in Tali® The 2010 showed that the selected set of model parameters is
model parameters considered for calibration are the concephe most sensitive and suitable calibrating WaSiM for the
tual model parameterky, ki, “dr” and kec. kg and k; are modelling of flood events in fast responding catchments.
storage coefficients that control the outflow of linear stor- These results were confirmed by preliminary sensitivity anal-
age events that collect the generated direct runoff and interyses with WaSiM in the Rietholzbach catchme@itilmann

flow, whereas “dr” is a scalar value that controls the genera2006 Seifert 2010. All calibration parameters with their
tion of interflow. The conceptual soil parameigg: deter-  a priori distribution are clearly summarised in Tallg.
mines the decrease of the saturated soil conductivity with

increasing depth. Furthermore, we considered the soil hy-

draulic parameters of the dominating soils SL and SiL as
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Fig. 12. lllustration of the development of the hypervolume of the

We used five flood events with different characteriStics estimated non-dominated front as a function of the generation num-
calibration, and the estimated parameter vectors were vali?€": the hypervolume was calculated with respect to the pi0f
dated on further 19 flood events which corresponds to 100 % peak flow deviation and a Nash value

We applied MO-ROPE using the given setup in order to of zero.

estimate a set of robust model parameter vectors for the

modelling of flood events using the two objectives rPD .
9 g ) %stlmated parameter vectors shows a clear tradeoff between

and NS. The Pareto set was estimated using the extend S
N oth used objectives. That means that the best parameter vec-
AMALGAM * framework. We checked the convergence of .
tors with respect to the peak flow value cannot represent the

the algorithm using the development of the hypervolume .
dominated by the so far estimated non-dominated ParethObal behaviour of the catchment for flood events equally

front in the consecutive generations as given in B, It well. The following final step, the sampling of deep parame-

is evident that the hypervolume reaches stationary after a er vectors, was done using the GenDeep strategy. We com-

proximately 80 generations. With a population size of 50 pared the results of the estimated approximation of Pareto

this corresponds to 4000 function evaluations. We decided {6 etA and thg deep parameter vectary. Additionally, we
. " : compared this set with the parameter vectors determined by
consider an additional buffer and thus set the maximum num-

ber of function evaluations to 6000. The trade-off surface forthe single-objective robust parameter estimation algorithm

both objectives rPD and NS on the basis of all parameter vecBOPE'PSO’ using both the singular objectives rPD and NS,

tors evaluated by AMALGAM and the estimated approxi- and an aggregateq criterion, called FloodSkill (see Tag)e
. ) ~ A as objective functions.
mation of the Pareto optimal set is given in Fig.11. The

. . The estimated Pareto set and the sampled deep parame-
evaluation of the model performances corresponding to th(?er vectors in the parameter space are provided in g

SWe considered flood events caused by convective and advectivd e Pareto set is almost convex which is advantageous for
precipitation, different peak flow values and events with single andthe depth-based sampling. The deep parameter vectors cover
multiple flood crests. the central region of the set, and its convex hull is indicative
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Table 14.Distribution of the robust parameter vectors of the WaSiM model estimated by MO-ROPE and the three different single-objective
ROPE-PSO runs.

kg ki dr BsL BsiL krec
Initial range 0.01-25 1-60 1-80 0.06-16 0.04-9.5 0.01-1
2 0.1 0.1 5 10 50
MO-ROPE 1 JW 0.05 0.05 2.5 5 25
0 0 0 0 0 0
2 275 35 25 37.5 50 50 62.5 75 06 1 14 08 1 1.2 0.66 0.69 0.72
Mean+ Std 293+0.19 3794394 617+506 100+0.14 099+0.08 069+ 0.01
Range [2.47-3.47] [29.1-49.0] [50.4-72.9] [0.61-1.37] [0.82-1.16] [0.66-0.72]
2 = 0.2 0.2 5 5 50
ROPE-PSO(rPD) 1 ﬂﬂm 0.1 0.1 2.5 2.5 25
0 0 0 leeed 0 0 JL 0 rrrm_ﬂm
0 07 1.5 1 13 25 40 575 75 2 26 32 1.2 2 28 0.82 0.87 0.92
Mean+ Std 0344+0.27 54+3.18 592+521 2444015 1974+0.15 088+0.02
Range [0.01-1.33] [1.1-15.4] [40.9-71.0] [1.84-2.93] [0.69-2.50] [0.83-0.92]
1 0.1 — 0.1 1.5 5 5
ROPE-PSO(FlOOdSki“) 0.5 0.05 0.05 0.75 2.5 2.5
0 0 JV 0 —Jﬂ_'_’“”* 0 L 0 0
0.5 3 55 15 37.5 60 20 50 80 1.4 2.5 3.6 0.1 0.5 09 0.04 0.5 0.96
Mean+ Std 3594+0.67 4384528 50841294 234+0.37 058+0.12 055+0.16
Range [0.88-5.03] [19.4-59.9] [22.0-77.4] [1.43-3.54] [0.16-0.89] [0.05-0.87]
1 0.1 0.1 2 5 5]
ROPE'PSO(NS) 0.5 0.05 0.05 1 2.5 2.5
0 0 m 0 0 oSS |} 0 I 0
1.5 37 6 20 40 60 10 425 75 0 07 1.5 0 045 09 0 047 0.94
Mean+ Std 382+0.87 505+6.22 485+6.73 050+0.30 031+0.17 020+0.17
Range [2.00-5.96] [27.9-60.0] [30.6-73.4] [0.08-1.43] [0.01-0.88] [0.01-0.72]

of the shape of the complete set. A comparison of the esWaSiM. In terms of the spread of the parameters, there ex-
timated sets of robust parameter vectors for both the MO-sts an in general strong relationship between the used per-
ROPE run as well as the single-objective ROPE-PSO is giveriormance criterion and the spread of the parameters. Typi-
in Table14. It provides the distributions of the estimated ro- cally, the variance of the estimated parameter distributions is
bust parameter vectors and some basic statistical propertiesmaller the more the used performance criterion quantifies
i.e. the mean value, the standard deviation and their rangehe peak flow deviation. As explained above, it is necessary
Obviously, there is an strong dependence of the parametert® force the direct runoff storage coefficigntto extremely

kg and krec 0N the used performance criterion. The more low values in order to represent the fast runoff components
a correct representation of the observed peak flow value isvith very high dynamics. As a consequence, most of the re-
measured by the used objective criterion, the lower the valuenaining fast and intermediate runoff components have to be
of kg and the higher the value &fec. In general these results represented by the interflow component. Hence, the storage
are reasonable and consistent with the model structure ancoefficient of the interflow; is also forced to relatively small
the corresponding understanding of the hydrologic systemvalues, the value of the drainage “dr” forced to higher val-
Lower values okq increase the dynamics of the generated di- ues (more interflow generation), and the soils adjusted more
rect runoff; a higher value df.c decreases the effective satu- conductively (higher values of the scaling parameigis
rated conductivity of deeper soil layers. This leads to a fasteand Bsj_) in all soil layers (higher values dfec). Further-
generation of direct runoff. Within the Rietholzbach catch- more, the variance of these parameters becomes smaller as
ment, direct runoff on the surface has hardly ever been obseveral flow components with different temporal dynamics
served, not even during large and intensive convective storniave to represented by just one component of the interflow.
events. However, there are many underground pipes thabn the other hand, the estimates for the efficiency criterion
drain the slopes. The effect of these drainage system becomé$S show in general a larger spread. The NS criterion quan-
significantly large during times of intensive precipitation. tifies the agreement of the observed and simulated catch-
The estimated parameters indicate that the drainage flow cament behaviour in a global way with an overweighting of
be effectively represented by the direct runoff component inthe time steps with higher streamflow. A calibration with this
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Fig. 13.Distribution of the Pareto optimal set estimated by MO-ROPE (applying the AMALGAtvhtegy) and the sampled deep parameter
vectors for the WaSiM model using two objectives (rPD and NS).

criterion does not necessary force the model to its limits andront with high density in the area of the tails and low den-
can neglect a part of the fast runoff components in order tosity in the central part of the front. The sampled deep pa-
achieve a high NS value. The corresponding peak flow deviarameter vectors show a better performance on the validation
tions are higher, but the flow components can be representedata than the complete Pareto set. The deep parameter vec-
by more model components and as a consequence the vatiers have less outliers with a worse performance and are a
ance of the estimated parameter distributions becomes largegood approximation of the (theoretical) Pareto front in the
The parameter distributions estimated by the multi-objectiveobjective space based on the validation data. The distribu-
MO-ROPE approach have mean values that are in betweetion of the deep parameter vectors suggests that the tails of
the mean values of the single objective calibrations using thehe Pareto front estimated in the calibration are not required
rPD and the aggregated compromise criterion FloodSkill. Infor a robust set of model parameter vectors. For example,
comparison with the single-objective calibration runs, the usethe best parameter vectors with respect to rPD on the cali-
of the multi-objective MO-ROPE approach obtains tighter bration data do not have a better rPD in the validation than
variation intervals. These results confirm the outcome of prethe sampled deep parameter vectors. However, these vectors
vious studies dealing with the multi-objective calibration of correspond to clearly worse NS values. This shows that the
conceptual hydrologic models focussing on flood events (e.gdeep parameter vectors are better transferable to other peri-
Engeland et al]2006 Moussa and Chahinia@009. ods and events and thus more robust. Notwithstanding the
A comparison of the complete Pareto sétits hull H i fact that several shallow parameter vectors also correspond
(thus the points with shallow depth) and the sampled deefo central parts of the Pareto front, we compared the deep
parameter vectorB  in the objective space for both the cal- parameter vectors with the results of an approach using sub-
ibration and the validation data is provided in Figla and  jective cutoff thresholds to select “behaviourial” and reject
b. These figures illustrate the advantage of the depth-basethon-behavioural” solutions as proposed Bistratiadis and
sampling. In the objective space for the calibration data, theKoutsoyiannig2010Q. We simply used cutoff thresholds de-
sampled deep parameter vectors are obviously concentratdthed by the boundaries of the model performances of the
in a central part of the Pareto front, whereas the parametetieep parameter vectors on the calibration data. The result is
vectors in the hull are distributed over all parts of the Paretogiven in Fig.14c. It is evident that the behaviourial parameter
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ones are members of the complete Pareto set that are have a depth
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of the FloodSkill criterioff and its data depth with respect to
rPD the approximated Pareto sdt The parameter vectors with
high data depth show a on average better model performance
(higher FloodSkill values) with less variance than the param-
Fig. 14. Comparison of the identified approximation of the Pareto €ter vectors with low data depth. This implies that parameter
optimal set4 (grey dots) in the objective space spanned by the twovectors with low data depth are more likely to be an outlier
objectives rPD and NS. The plots in the left column are computedwith bad model performance. The estimated results confirm
on the calibration events, whereas the right column shows the rethe underlying assumption of the ROPE approach for multi-
sults on the validation data. Subp(al) additionally emphasises the objective calibration tasks.
parameter vectors in the hull ; (indicated by blue dots); subplot The model performances of the parameter vectors on the
(b) shows the sampled deep parameter vectors (indicated by reg iqation events estimated by both the multi-objective MO-

dots), and subpldt) provides the results for a simple cut-off proce- . P - !
dure with threshold values defined by the performance of the deepRopE and th.e Slngle pbjectlve robust parameter e.stl.matlon
|ins are provided in Figl6. These results once again illus-

parameter vectors on the calibration data. The selected parameté . o
vectors are indicated by green dots. trate the evident tradeoff between the two criteria rPD and

NS. The parameter vectors estimated by the single-objective

ROPE-PSO considering just one criterion (rPD or NS) show
vectors identified by the cut-off thresholds are better suitablédndeed a good validation performance on those criteria. How-
to approximate the (theoretical) Pareto front in the objectiveever, the validation performance in terms of the complemen-
space based on the validation data than the complete Paretary performance criterion that is not considered for calibra-
set identified for the calibration events. Nonetheless, the deefion is not sufficient for a robust modelling of flood events.
parameter vectors provide a closer, denser and more unfor instance, the NS values for the ROPE-PSO estimates us-
form approximation of the Pareto front on the validation data.ing the rPD as calibration objective are in the range of ap-
Moreover, the depth-based sampling does not require any agroximately 0.2-0.4, which is not acceptable, whereas the
sumptions regarding the threshold vaRiesid additionally NS estimates correspond to peak flow deviations of 30-50 %,
provide the possibility to assign likelihood values to the pa-Wwhich is not sufficient either. Also the aggregated FloodSkill
rameter vectors according to their data depth. The advantag@iterion just slightly improves the results. It still overweighs
of the depth-based sampling is illustrated again in Bg.  the NS criteria, and the parameter vectors estimated using the
It visualises the dependency between the model performanckloodSkill criterion do not fully exploit the model’s abilities
of a sampled parameter vector on the validation data in terms

"The FloodSkill is a criterion aggregated by rPD and NS that
6n this study the threshold values were only defined by the helprepresents a compromise between these two criteria (cf. Talze
of the deep parameter vectors. the beginning of this section).
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Table 15.Distribution of the robust parameter vectors of the WaSiM model estimated by MO-ROPE using the 2-o(g¢etike3-objective
calibration(b).

@)
Mean Std CV kg ki dr BsL BsiL krec
kq 293 0.19 0.07 100 0.78-0.72 -0.04 -0.06 0.29
ki 379 394 010 .- 100 -0.43 0.06 0.04 0.01
dr 61.7 5.06 0.08 --- 1.00 0.06 0.01 -0.07
BsL 1.00 0.14 014 .- ... . 1.00  0.38 —0.09
Bsi. 099 0.08 0.08 1.00 -0.04
krec 0.69 0.01 0.02 1.00
(b)
Mean Std CV kg ki dr BsL BsiL krec
kq 288 020 0.07 1.00 0.83-0.68 -0.02 0.11 -0.38
ki 425 533 013 ... 100 -0.52 0.01 0.13 —-0.38
dr 60.6 343 0.06 --- 1.00 0.08 -0.07 0.39
BsL 1.01 0.08 0.08 --- 1.00 0.39 -0.01
Bsii 1.01 0.05 005 ..o .. .~ 1.00  0.00
krec 0.23 0.04 0.16 1.00
0, : : of three validation events and the corresponding parameter
e PD/NS (MO) and model uncertainties for both the robust multi-objective
o PD estimates and the single-objective estimates, using the ag-
0.2l o TFloodSkill gregated FloodSkill criterion as a kind of compromise so-
lution, are given in Figl7. The complete model uncertainty
o NS S . .
g was computed by two normal distributions fitted on the posi-
0oyl tive and negative discharge errors, transformed with the nor-
Z mal quantile transformation (NQTK¢zysztofowicz 1997
according to a method presented Bygeland et al(2010.
0.6 Contrary toEngeland et al2010, we considered observa-
tions with a discharge greater than or equal to 0.33mih
to account for the focus on the correct simulation of higher
08 ‘ ‘ ‘ ‘ flow values. The hydrographs confirm the results of the pre-
0.1 0.2 0.3 0.4 0.5 vious analysis of the model performances. The peak flow val-

rPD ues are better represented by the parameter vectors estimated
by the multi-objective calibration. The confidence band of
the parameter uncertainty is slightly smaller for the multi-
Fig. 16. Comparison of the robust model parameter vectors es-gpjactive calibration than for the single-objective calibration.

timated by the multi-objective MO-ROPE using two objectives tpq yariation intervals of the resulting complete model un-
(rPDINS) and the single-objective robust parameter estimation al- . -
gorithm ROPE-PSO using the objectives rPD, FloodSkill and NS,Certamty are approximately the same for both approaches.

respectively. The plot shows the estimated solution in the objectiv The remaining uncertainty is due to the discussed Short_co_m-
space based on the validation events. ings of the model structure and other neglected uncertainties

in the observations.

in terms of the peak flow deviation. The MO-ROPE results4-3  Calibrating WaSiM for flood events using three
however provide a good model performance on the valida-  ©bjectives describing the fit with both observed

tion data with respect to a good global representation of  hydrograph and soil moisture measurements

the catchment behaviour and a good modelling of the peak

flow values. This confirms the assumption that the use ofin another case study, we calibrated WaSiM again. However,
an advanced multi-objective calibration technique can im-this time we accounted for the provided information of the
prove the performance of hydrologic models used for thesoil moisture in the catchment for model calibration as an
simulation of flood events. The corresponding hydrographsadditional calibration objective. Recent studies showed that
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Fig. 17. Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter shading) and parameter estimates (darker
shading) for the flood events(@), 8 (b) and 13(c), estimated by MO-ROPE (left column) and ROPE-PSO using the FloodSkill criterion

(right column). The dots correspond to the observed streamflow data. The shaded areas of uncertainty correspond to the 95 % confidenc
intervals.

spatially distributed soil moisture measurements can helmately, there are no other soil moisture measurements that
to improve the performance of hydrologic models used forhave a substantial length and no other significant studies for
flood forecasting (e.gOudin et al, 2003. The Rietholzbach the catchment that examine the soil moisture dynamics for
catchment has been intensively monitored as a scientific restorm events in a more distributed way. Therefore, we stud-
search catchment since 1975. Lysimeter measurements déd the temporal dynamics of the soil moisture measurements
liver the necessary soil moisture information on hourly ba-at the lysimeter station and found a relatively strong cor-
sis. Due to the small size of the basin and the location ofrelation between the lysimeter measurements and the sim-
the lysimeter station in the centre of the basin situated orulated soil moisture in the upper layers up to a soil depth
grassland, which is the major land use in the catchment, thef 0.5m also during periods with high streamflow values,
measurements are on average representative for the whoiee. flood eventsNiuller, 2009. Hence, we chose the cor-
catchment for the long terntGurtz et al, 2003. Unfortu- relation between observed and simulated soil moisture as an
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indicate the hullH ;, i.e. the parameter vectors with shallow data re
depth and the red dots indicate the sampled parameter vectors wit{b)
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0.3 o A 04

';-'_ o Dj;
additional objective. We call this performance criterion soil " 04 05
moisture correlation coefficient and denote itdgy Its def- Z 05 §
inition is given in the already referenced Taldld The un- 06
derlying idea considering the soil moisture correlation co- 0.6
efficient as an additional objective is that parameter vectors o ®> arvozs 0 o
do not only correspond to a good representation of catch- 015 02 025 03 035 0.15 0.2 0.25 0.3 0.35 0.4 0.45
rPD rPD

ment’s behaviour in terms of the measured discharge, but

also the mean soil moisture dynamics are potentially better ol -

transferable to other flood events and can be used for ex- | 7

trapolation, i.e. they are potentially more robust. Fhehas 05 G o

a relatively low correlation with both objectives that are al- re

ready taken into account and should thus provide additional .

information for the parameter estimation. Nonetheless, thig19- 19- Comparison of the Pareto optimal sefsand the sub-

is no guarantee that this will really improve the calibration Sequently sampled set of deep parameter vedbysfor the 2-

results as “the possibility of operational use of the varia-°Piective (Ieft) and 3-objective (right) calibration run in the ob-

tional method depends heavily on the availability and quaI-Jec“Ve space based on the calibration evefasand validation

. . ) . d Levents(b). Additionally, each plot contains a boxplot providing in-

ity of.the datasets, especially regarding soil mmstqrg data’tormation about the distribution of the corresponding soil moisture

(Oudin et al, 2003 p. 685). Doubts about the effectivity of - correlation for the sampled deep parameter vectors each (below).

the available soil moisture information are for instance rein-

forced by a further evaluation of the results estimated in the

previous case study. Figude8 provides information about

the dependance betweeg and the data depth with respect tors for both runs are provided in Table2 Obviously, the

to the estimated Pareto set. Obviously, the deep parameteesults for the 2-objective calibration are the same as those

vectors inD ; that are robust in terms of the objectives rPD of the previous case study. For the calibration run using all

and NS provide no better correlation between observed anthree objectives the distribution of the most sensitive param-

simulated soil moisture. eter kg tends to result in smaller values than for the cali-
We repeated the calibration of WaSiM using the MO- bration run considering just the objectives rPD and NS. The

ROPE algorithm using the three introduced objectives rPD distribution of the parametds has approximately the same

NS andrg. All settings of the model and calibration setup mean and variance but a significantly larger negative skew-

remain the same as in the previous case study. In two runaess. The mean value of the parameter “dr” is approximately

robust parameter vectors were estimated in terms of all threéhe same with a significantly lower variance. The same holds

objectives and just the rPD and NS. From now on we referfor the soil parameterSs. and Ssij._. An obvious difference

to both calibration runs as 2-objective and 3-objective cal-can be observed in the distribution of the paramétgt The

ibration. The distributions of the estimated parameter vec-mean value is significantly lower with a higher variance. That
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means that the effective saturated conductivity for deeper soitepresent the preferential flow component natively. Thus, the
layers decreases faster. This means that the lower soil layefast runoff components have to be represented by the direct
in the model have a lower saturated conductivity. The corretunoff component. The identified parameter vectors provide
lations between the most important conceptual model parama good representation of the catchment’s behaviour in terms
eters are approximately the same for both calibration runsof the discharge at the outlet. In such a situation an addi-
However, the correlation between the paramgtgrand the  tional criterion that requires a reasonable representation of
other model parameters is fundamentally different for the 3-the observed soil moisture dynamics can even be counterpro-
objective calibration run. ductive. Another possible explanation for the expected im-
The corresponding model performances on the calibratiorprovements that have not been achieved is the question of
and validation data for both the 2-objective calibration andwhether the soil moisture measurements are representative
the 3-objective calibration considering the soil moisture dy-for the soil moisture dynamics in the whole catchment. Re-
namics are provided in Fidl9. The scatter plots show the cent studies using soil moisture data for the improvement of
rPD and the NS for the approximated Pareto optimal%et hydrologic modelling emphasise the importance of a good
and the subsequently sampled deep parameter veBters  quality of these datasets (e@udin et al, 2003 Norbiato
Evaluating the Pareto front of the 3-objective problem, con-et al, 2008. Focussing on flood events, this requires not only
sider that the Pareto front for this problem is actually a curveda good accuracy and temporal resolution of the soil mois-
3-dimensional face. Hence, the 2-dimensional plot of this 3-ture information but also many spatially distributed measure-
dimensional front is not a non-dominated front with respectments. Unfortunately, these measurements are not available
to just 2 objectives. The calibration results for the 3-objectivein the Rietholzbach catchment. We suggest further studies
calibration are the same in terms of the best values for the inin operational flood forecasting studies for fast responding
dividual objectives. However, the variation intervals for the medium-scale catchments where such information is avail-
two objectives rPD and NS are clearly larger. The NS reachesble. Although this case study did not fully succeed, it con-
values down to 0.5 instead of 0.63 and the rPD goes up to valfirms the advantages of the depth-based sampling. The sam-
ues of 0.28 instead of 0.22. The differences between the twpled deep parameters provide a robust approximation of the
calibration runs in terms of the criteriofyy are just 0.015. Pareto front with tighter variation intervals in terms of all
Referring to the validation results, the improvements of theconsidered objectives. Furthermore, it underlines that a suc-
3-objective calibration in terms of the correlation between cessful robust modelling does not require just an advanced
the observed and simulated soil moisture are again negligiparameter estimation procedure but also the selection of a
bly small. An increase of the correlation coefficient of just as parsimonious as possible model structure, representative
one hundredths is no substantial improvement. However, thealibration data and appropriate calibration objectives. The
validation performance in terms of the criteria assessing acombination of multi-objective optimisation and depth-based
good representation of the observed runoff is slightly worse parameter sampling can be a good tool to obtain robust model
particularly for the rPD. For the 3-objective calibration, the parameters. On its own, the depth-based sampling is however
rPD values on the validation events are approximately in thenot sufficient to achieve robustness.
range of 0.24 up to 0.34, whereas they reach from 0.19 up
to 0.29 for the 2-objective calibration. In terms of the NS
values, the results are comparable. The 3-objective estimates Discussion and conclusions
correspond to NS values in the range of 0.51-0.67 instead

of 0.47-0.67 for the 2-objective calibration. In brief, the soil — This paper presents a hybrid parameter estimation ap-

moisture measurements available in the Rietholzbach catch-
ment are no suitable additional criterion for the calibration
of the hydrologic model WaSiM focussing on flood events.
The negligibly small improvement in terms of the represen-
tation of the soil moisture dynamics and the global NS cri-
terion brings a slight drop of the model performances fo-
cussing on an exact representation of the streamflow values.
One possible explanation for the disappointingly small im-
provement might be the shortcomings in the model structure,
already discussed in the previous case study. The soils of the
Rietholzbach catchment are characterised by many macrop-
ores and some smaller drainages. This induces the genera-
tion of preferential flow which is a very fast runoff compo-
nent. However, the water movement in the unsaturated zone
is described by the model in terms of the Richards equation
that accounts just for the matrix flow in the soil but cannot

www.hydrol-earth-syst-sci.net/16/3579/2012/

proach, entitled multi-objective robust parameter esti-
mation (MO-ROPE), that merges the strength of evo-
lutionary multi-objective optimisation algorithms and
depth-based parameter sampling. In a first step, the al-
gorithm employs a suitable multi-objective optimisa-
tion algorithm in order to approximate the Pareto op-
timal set of model parameter vectors for the given cal-
ibration problem. Within our framework, we apply an
extended version of the advanced multi-method frame-
work AMALGAM. We extended the original version

of AMALGAM with a hybrid evolutionary optimisation
algorithm (MO-PSO-GA) that employs the concepts of
particle swarm optimisation and genetic programming
in order to effectively estimate the Pareto optimal set.
An adapted version of this search strategy has proven
successful within the frame of single-objective ROPE
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algorithms. In a second step, we apply the concept of
data depth for the sampling of robust model parameter
vectors with respect of the identified Pareto optimal set.
We study the efficiency and effectiveness of the devel-
oped solution by means of a set of synthetical bench-
marks and the calibration of a process-oriented hydro-
logic model focussing on flood events.

A set of synthetical benchmarks studies the efficiency
and effectiveness of the AMALGAM framework ex-
tended by the newly developed MO-PSO-GA algo-
rithm in order to estimate the Pareto optimal set for a
given (constrained) multi-objective optimisation prob-
lem. For the given test problems, the developed frame-
work proved its reliability and efficiency in comparison
with other established approaches. The new MO-PSO-
GA strategy is a useful search strategy that is able to out-
perform approved single-strategy multi-objective opti-
misation algorithms. As a consequence within the frame
of the AMALGAM framework, it improves the effectiv-

ity and efficiency of this approach using four approved
search strategies.

Another case study shows the effectivity of the depth-
based sampling approach for several multi-objective
test problems that are subject to uncertainty. The sam-
pled deep parameter vectors are less sensitive to small
changes with respect to their ability to provide a robust
approximation of the set of the possible Pareto fronts in
the objective space considering uncertainties.

In a real world case study, we compared the multi-
objective MO-ROPE approach with the single-objective
robust parameter estimation approach ROPE-PSO es-
timating three conceptual model parameters and three

T. Kraul3e et al.: Robust multi-objective calibration strategies

the peak flow deviation and the Nash-Sutcliffe effi-
ciency criterion, we used the agreement of the observed
and simulated soil moisture dynamics for the estima-
tion of robust parameter vectors for the modelling of
flood events. Although the deep parameter vectors show
once again the advantages of the depth-based sampling,
the improvements in comparison with the calibration
using just two objectives are negligibly small. This is
due to shortcomings in the model structure and a limited
significance of the soil moisture measurements at only
one single spot. We strongly propose similar applica-
tions at larger scale with a sufficient set of spatially dis-
tributed measurements. This case study underlines that
the depth-based parameter sampling can be a very use-
ful technique for the identification of robust parameter
vectors for multi-objective calibration problems.

This paper introduced a new multi-objective method for
the estimation of robust parameter vectors the can im-
prove the results of classical multi-objective optimisa-
tion techniques. Despite all of the presented benefits, it
must not be forgotten that the estimation of robust pa-
rameter vectors cannot be reduced to the development of
robust parameter estimation methods. The shortcomings
of all kind of calibration techniques in the last case study
clearly show necessity that more effort should also go
into finding better process descriptions resulting in hy-
drologic models that are able to represent catchments
in a better way. Furthermore, better methods have to be
developed to improve the identification of representa-
tive calibration data, i.e. the basis of a subsequent model
calibration. The achievement of robustness requires the
combination of improvements in all of these areas.

soil parameters of the hydrologic model WaSiM in the  In this paper, the estimation of the Pareto optimal sets was
small Swiss research catchment Rietholzbach focussinglone using an extended version of AMALGAM approach.
on flood events. Previous studies have already showrConsider that one might substitute this component with any
that the model has problems to represent the globakuitable multi-objective optimisation technique. The applica-
catchment behaviour and the peak flow values equallytion of the technique of depth-based sampling is a relatively
well. This applies in particular to small and fast re- new method which was applied to a limited number of case
sponding catchments. The tradeoff between the represtudies. We strongly propose its application to further mod-
sentation of the peak flow values and the global catch-els, catchments and also other fields of study where measure-
ment behaviour suggests the application of a multi-ment errors with unknown distribution and model structures
objective calibration strategy. The results of this study that cannot be easily identified are present.

show that the application of MO-ROPE is a preferable

option in order to identify robust solutions for such cali- Acknowledgementsie would like to thank the German Research
bration problems. We showed that the parameter vectorgoundation and the Cusanuswerk for the funding of this work. Fur-
in the approximated Pareto optimal set on the calibra-thermore we thank Irene Lehner from the land-climate interactions
tion data can lead to very different results in validation. group at the ETH Zurich for the provision of all the measurement
The sampled parameters with high depth show a robuseata in the Rietholzbach catchment and the Center for Information
performance with less negative outliers. They representServices and High Performance Computing (ZIH) at the University

a robust approximation of the (theoretical) Pareto set onOf Technology, Dresden for the supply with the required computing
the validation data power to carry out all the optimisation runs.

— Inthe scope of a second application, we studied the caliEdited by: H. Cloke
bration of WaSiM considering three objectives. Besides
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