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Abstract. Process-oriented rainfall-runoff models are de-
signed to approximate the complex hydrologic processes
within a specific catchment and in particular to simulate
the discharge at the catchment outlet. Most of these mod-
els exhibit a high degree of complexity and require the de-
termination of various parameters by calibration. Recently,
automatic calibration methods became popular in order to
identify parameter vectors with high corresponding model
performance. The model performance is often assessed by
a purpose-oriented objective function. Practical experience
suggests that in many situations one single objective func-
tion cannot adequately describe the model’s ability to repre-
sent any aspect of the catchment’s behaviour. This is regard-
less of whether the objective is aggregated of several criteria
that measure different (possibly opposite) aspects of the sys-
tem behaviour. One strategy to circumvent this problem is
to define multiple objective functions and to apply a multi-
objective optimisation algorithm to identify the set of Pareto
optimal or non-dominated solutions. Nonetheless, there is a
major disadvantage of automatic calibration procedures that
understand the problem of model calibration just as the solu-
tion of an optimisation problem: due to the complex-shaped
response surface, the estimated solution of the optimisation
problem can result in different near-optimum parameter vec-
tors that can lead to a very different performance on the vali-
dation data.Bárdossy and Singh(2008) studied this problem
for single-objective calibration problems using the example
of hydrological models and proposed a geometrical sampling
approach called Robust Parameter Estimation (ROPE). This
approach applies the concept of data depth in order to over-
come the shortcomings of automatic calibration procedures

and find a set of robust parameter vectors. Recent studies
confirmed the effectivity of this method. However, all ROPE
approaches published so far just identify robust model pa-
rameter vectors with respect to one single objective. The con-
sideration of multiple objectives is just possible by aggrega-
tion. In this paper, we present an approach that combines the
principles of multi-objective optimisation and depth-based
sampling, entitled Multi-Objective Robust Parameter Esti-
mation (MOROPE). It applies a multi-objective optimisation
algorithm in order to identify non-dominated robust model
parameter vectors. Subsequently, it samples parameter vec-
tors with high data depth using a further developed sampling
algorithm presented inKrauße and Cullmann(2012a). We
study the effectivity of the proposed method using synthet-
ical test functions and for the calibration of a distributed
hydrologic model with focus on flood events in a small,
pre-alpine, and fast responding catchment in Switzerland.

1 Introduction

Hydrologic models are simplified, conceptual representa-
tions of a part of the hydrologic cycle. They relate rainfall
to streamflow on a continuous basis. Many of those mod-
els are driven by a vector of parameters that cannot be mea-
sured directly, but must be determined through indirect meth-
ods. This is an important aspect of model calibration. Ef-
ficient and effective parameter estimation techniques are a
crucial factor for the successful application of these mod-
els. In the process of parameter estimation, the values of the
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model parameters are adjusted until the catchment behaviour
is closely matched.

Traditionally, this calibration is performed manually ad-
justing the parameters while visually inspecting the agree-
ment between observations and model predictions. For the
application of automatic approaches, the calibration is for-
mulated as an optimisation problem. A purpose-specific ob-
jective functionf quantifies the agreement between observa-
tions and simulation results. Many practical studies suggest
that one single objective function, no matter how carefully
chosen, is often insufficient to represent all characteristics of
the system behaviour (Gupta et al., 1998; Cullmann, 2006;
Gill et al., 2006; Fenicia et al., 2007). For instance, the mean
absolute error of the discharge at the catchment outlet might
be a good indicator for the ability to represent the water bal-
ance; however, it is likely to be inadequate to measure the
model performance for flood forecasts where a correct sim-
ulation of the peak flow value and timing is crucial. Conse-
quently, single-objective calibration approaches that provide
one unique, global best parameter vector are in many cases
not considered acceptable by experienced hydrologists. The
most elementary solution to circumvent this problem is to ag-
gregate several objective functions. However, this approach
involves a great deal of subjective judgment and neglects the
global bests for individual objective functions. Another ad-
vanced option is a multi-objective view of the optimisation
problem referring to the concept of Pareto optimality (Yapo
et al., 1998). A multi-objective optimisation algorithm ap-
proximates the set of non-dominated (i.e. Pareto optimal)
solutions with respect to a set of given objectives. The set
of Pareto optimal solutions is denoted as the Pareto optimal
set or Pareto set̃P, and the image of̃P under the mapping
of all considered objectivesF is called Pareto front. Often,
both terms are used synonymously. This can however lead to
misunderstandings. Consider that the term Pareto optimal set
means the set of true or estimated solutions in the parame-
ter space, whereas the term Pareto front means its image in
the objective space. This difference is important for the ma-
jor concept of this paper. The Pareto optimal set or Pareto
set reflects the trade-offs among all given objectives. Evolu-
tionary algorithms, i.e. genetic algorithms (GA), and particle
swarm optimisation (PSO) or other population-based algo-
rithms can be used to perform this task. There are many dif-
ferent strategies with different strengths and shortcomings.
Recently, multi-method algorithms have found favour in or-
der to approximate this set. The approximated Pareto optimal
set is indicated byÃ.

Bárdossy and Singh(2008) studied one of the major short-
comings of automatic calibration procedures that understand
the problem of model calibration just as an optimisation
problem: the parameters of fitted hydrologic models depend
upon the input data. The quality of input data cannot be as-
sured as there may be measurement errors for both input
and state variables. That is why the estimated best param-
eter vectors can lead to a very different performance on the

validation data. The actual goal of a good model calibration
should not be to find parameter vectors that perform best for
the calibration period but to find parameter vectors that are
robust. In this context, the term robust is closely related to
the terms transferable and less sensitive. Robust parameter
vectors should not just perform well on the calibration data
but also provide a sufficient model performance in the vali-
dation. Hence, these parameters can be transferred to other
time periods. Furthermore, robust parameter vectors should
be as insensitive as possible. This means that a small change
of the estimated parameter vectors should not lead to a signif-
icant change (usually a decrease) of the model performance.
Against this background, the term sensitive is always related
to a good model performance and to the general sensitivity of
the considered model parameters. This means that a sensitive
model parameter will always stay sensitive. However, a small
change of this parameter within the region of robust model
parameter vectors should have a smaller effect on the (good)
model performance than in other regions. This requirement
is important, because the set of optimal parameters cannot
be exactly determined and may even slightly change under
slightly different conditions.

The application of advanced parameter estimation ap-
proaches that do not understand a model calibration as a pure
optimisation task is a necessary though not sufficient condi-
tion for the determination of robust model parameters. The
success of a robust modelling strategy also strongly depends
on a good implementation of the principle of parsimony. The
goal of this concept is to obtain a model that represents a de-
sired structure with as few parameters as possible. The essen-
tial number of parameters depends on the available informa-
tion, e.g. the number of gaging stations in a catchment or the
temporal resolution of the observations. The selection of a
parsimonious model structure was subject of many studies in
hydrology (e.g.Beven, 1989; van der Linden and Woo, 2003;
Boyle et al., 2006; Wagener and Wheater, 2006). Another
essential prerequisite for the estimation of robust model pa-
rameters is the selection of appropriate calibration data. The
data used for calibration should be both representative for
the considered processes and contain as much information
as possible that can be used to identify the parameters that
describe the considered processes best. The development of
well-founded statistical methods based on information the-
ory that are suitable to perform this task for both data-driven
and process-oriented models has attracted rising scientific in-
terest (seeMaier and Dandy, 2000; Wagener and Wheater,
2002; Wagener and Gupta, 2005; Thyer et al., 2006; Singh,
2010). Of course also the selection of appropriate objective
functions plays an important role for a successful model cal-
ibration. Typically, the formulation of uncorrelated criteria
that use several considered model outputs adds new informa-
tion. A comprehensive overview and a more detailed discus-
sion of these issues within the scope of multi-objective opti-
misation are given inEfstratiadis and Koutsoyiannis(2010).
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The approach presented in this paper focusses on the en-
hancement of the results provided by approved evolution-
ary multi-objective optimisation methods. The underlying
principle to achieve this goal is the application of data depth
metrics in order to sample robust parameter vectors with re-
spect to a set of identified parameter vectors with good model
performance.Bárdossy and Singh(2008) developed a first
method using this approach and called it Robust Parameter
Estimation Method (ROPE). Recent studies using further de-
veloped versions of this methodology (e.g.Krauße and Cull-
mann, 2012a) confirmed the potentials of the depth-based
parameter sampling for the estimation of robust hydrologic
parameter vectors.

However, all ROPE approaches published so far just iden-
tify robust model parameter vectors with respect to one sin-
gle objective. The consideration of multiple objectives is
just possible by aggregation. In this paper we present a new
method, entitled Multi-Objective Robust Parameter Estima-
tion (MO-ROPE) that synthesizes the advantages of both the
multi-objective view and robust parameter estimation. In or-
der to quantify the uncertainty of the parameterisation with
respect to the given objectives, the method estimates a set
of robust model parameter vectors applying a two-step ap-
proach. Within the first step, a suitable multi-objective op-
timisation algorithm is used to approximate the Pareto opti-
mal set. In a second step, parameter vectors with high data
depth (with respect to the Pareto set) are sampled assum-
ing that those parameter vectors are more robust than the
complete Pareto optimal set. Notwithstanding the already
raised fact that the application of advanced parameter estima-
tion approaches is not sufficient for the estimation of robust
model parameters, we will follow the notation ofBárdossy
and Singh(2008) and denote the parameter estimation using
data depth metrics by the abbreviation ROPE.

In the following section, we introduce a multi-objective
parameter estimation technique that applies evolutionary
multi-objective optimisation algorithms and the concept of
data depth in order to estimate a robust set of parame-
ter vectors for a given multi-objective calibration problem.
First, we discuss suitable techniques for the approximation
of the Pareto optimal set. We suggest the application of
a modified version of the advanced multi-method calibra-
tion framework AMALGAM first presented byVrugt et al.
(2009). It applies an additional hybrid search strategy entitled
MO-PSO-GA that is a modified version of a search strat-
egy that has proven successful within the frame of another
single-objective ROPE strategy. Afterwards, we briefly intro-
duce and discuss the principle of data depth and the depth-
based sampling approach. The developed solution is tested
on a set of well-known multi-objective test problems. We
study the effectivity and efficiency of the suggested multi-
objective optimisation strategy and show the advantages of
the depth-based sampling strategy for several low- and high-
dimensional test problems that are subject to uncertainty.
Furthermore, a real world case study shows the success of

the developed methodology calibrating a distributed hydro-
logic model in a small catchment with high process dynamics
focussing on flood events.

2 Combining multi-objective optimisation and
depth-based parameter sampling

The proposed MO-ROPE approach synthesizes the concepts
of multi-objective model calibration and the depth-based
ROPE approach. Therefore, we will thoroughly introduce
both concepts in this section.

2.1 Effective and efficient approximation of the
Pareto set

An essential prerequisite for a successful application of the
proposed MO-ROPE method is an effective and efficient ap-
proximation of the Pareto set for a given calibration problem.
Recently, several evolutionary search strategies, e.g. genetic
algorithms (GA) and particle swarm optimisation (PSO), be-
came popular to fulfill this task. Multi-method approaches
even go one step further and apply several search strategies
in parallel with the goal to exploit their strengths, and to min-
imise their weaknesses. A very popular and effective state-
of-the-art method in this category is the AMALGAM ap-
proach presented byVrugt and Robinson(2007) that merges
the strengths of four well-founded multi-objective optimisa-
tion strategies. Benchmark results using a set of well-known
multi-objective test problems show that AMALGAM ap-
proaches a factor of 10 improvement over current optimiza-
tion algorithms for more complex, higher-dimensional prob-
lems. Following Wolpert and Macready’s “no free lunch”
theorem, showing that it is impossible to develop a single
search algorithm that will always be superior to any other
algorithm, an outperformance of AMALGAM by a single
newly developed algorithm is thus virtually excluded.

However, the existence of a superior multi-method ap-
proach should not completely prevent the development of al-
ternative multi-objective calibration strategies. In case that
there is a new method that provides at least in some cases
a superior performance to other considered single calibra-
tion strategies, development and application within the frame
of a multi-method framework might be successful. Further-
more, there are many real world multi-objective calibration
problems that are simple enough to be solved by such ap-
proaches. That is why we adapted a search strategy called
PSO-GAu that is based on PSO and GA in order to approx-
imate the Pareto set1. It has proven to be successful in es-
timating a set of good parameter vectors with a given un-
certainty bound within the scope of a ROPE framework that
is provided inKrauße and Cullmann(2012a). The devel-
oped approach is entitled Multi-Objective optimisation by

1The subscript “u” indicates that the PSO-GAu is not just a clas-
sical optimisation procedure but also provides an uncertainty range.
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Algorithm 1 MO-PSO-GA.

initialise the non-dominated front:̃A←∅
for all particlesi do

initialise position and local bestxi , x̂i ∈ U [x lb,xub]

and velocityvi← 0
end for
while stop criteria not metdo

for all particlesi do
in case that the particlexi is not dominated by all mem-
bers inÃ, add it to this setÃ← Ã∪ xi
remove all members from̃A that are dominated byxi
update the local best̂xi as the best position found so far
from the particle with indexi in case that it weakly dom-
inates all positions explored by this particle so far

end for
assign to each particle a random member of the archiveĝi ∈

Ã as a “personal” global best
discard the worstnψ ← ψ ·#{particles} from the population

initialise genetic offspringoga←∅

for i = 1 to
nψ
2 do

select a pair{x1,x2} from the population by tournament
selection
apply the VPAC operator to generate new offspring
{x1o ,x2o } ← vpac({x1,x2})

oga← oga∪ {x1o ,x2o }

end for
for all particlesi do

update velocity using equation
vi← ωvi +φ1R2(x̂i − xi)+φ2R1(ĝi − xi)

update position using equation
xi← xi + vi

end for
merge new population with genetic offspring
particles← particles∪ oga

end while

Particle Swarm Optimisation and Genetic Algorithm (MO-
PSO-GA). A pseudocode listing of the algorithm is given
in Algorithm 1. The algorithm was set up according to the
ideas provided bySettles and Soule(2005). They introduced
a hybrid between a GA and PSO. The algorithm is controlled
by a parameter called the breeding ratioψ . This parameter
controls the proportion of the population that is not moved
according to the PSO strategy but is transformed using the
GA. Thus, values for the breeding ratio parameter range from
[0−1]. Settles and Soule(2005) propose a default value of
0.5, with the expectation that the best results would be with
an even mix of both GA and PSO. However, other values for
the breeding ratio may provide better results depending on
the characteristics of different considered calibration prob-
lems. For further details, we refer toSettles and Soule(2005)
and referred literature. The evolution of the particles by the
GA is done using the following technique: from the pool of
possible candidates, a subset of parameter vectors is selected
by tournament selection. They are recombined by an oper-

Algorithm 2 VPAC operator.

1: pick random numbersφ1,φ2∼ U(0,1)
2: update positions using equations

x1←
x1+x2

2 −φ1v1

x2←
x1+x2

2 −φ2v2
3: reset the particles memoryp1← x1 andp2← x2
4: update the velocities:v1← v1 andv2← v2

ator that is called Velocity Propelled Averaged Crossover
(VPAC). The goal of its application is to create two children
whose positions are in between the parent’s positions, but
accelerated away from the parent’s current direction (nega-
tive velocity) in order to increase diversity in the population.
This might be effective because, towards the end of a typical
PSO run, the population tends to be highly concentrated in a
small portion of the search space which reduces the effective
search space. Algorithm2 shows how the new child position
vectors and velocities are calculated using VPAC. The used
PSO strategy is an adaption of the strategy used in the PSO-
GAu approach provided inKrauße and Cullmann(2012a).
The movement of the particles is controlled by three parame-
ters: the particle inertia weightω, the cognitive attractionφ1
and the social attractionφ2. The parameterω determines the
velocity of the proper motion of the particles.φ1 specifies the
degree of movement towards the local optimum, andφ2 con-
trols the movement towards the global optimum of the whole
particle swarm. We set the algorithm’s parameters accord-
ing to literature recommendations (see Table1). For further
details and studies regarding the setting of the algorithm’s
parameters, refer toPerez and Behdinan(2007) andSettles
(2005) who also provide references to additional literature
and materials. The used stopping criterion is either a fixed
number of iteration steps that has to be set according to the
given problem or a maximum number of members in the set
of good parameter vectors. Another option might be a check
that assesses the stability of the estimated set. We suggest to
carry out some test runs with different limits and check the
stability of the estimated parameter vectors. For further de-
tails regarding this issue, we refer toGill et al. (2006) and
Cabrera and Coello(2010).

In contrast to normal single-objective approaches, it stores
all so far approximated Pareto optimal parameter vectors in a
setÃ which is used to direct the search towards the complete
region enclosing the Pareto optimal parameter vectors. Dif-
ferently to other MO-PSO approaches (e.g.Gill et al., 2006),
the the so-called “personal” global best for each particle is
not the closest particle of the so far approximated Pareto op-
timal setÃ, but a random member of̃A. Furthermore, each
particle has a local best that is just updated by the current
position in case that it weakly dominates all so far found
positions of the particle. After a given number of iterations,
the setÃ holds a number of parameter vectors that repre-
sent the Pareto set of the given multi-optimisation problem.
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We assume that the introduction of additional features to
a normal PSO search strategy can outperform other simple
multi-objective calibration strategies and might be a useful
complement to existing advanced multi-method optimisation
strategies, e.g. the AMALGAM algorithm. Therefore, we
integrated the developed algorithm as an additional search
strategy into the AMALGAM framework. In the follow-
ing, the extended AMALGAM approach will be denoted by
AMALGAM ∗. The AMALGAM framework contains a sim-
ple handling of boundary constraints. Infeasible solutions
that are out of the bounds are just set to the bounds in or-
der to preserve their feasibility. In order to enable the frame-
work to deal with more complex bounds, we added some
features of a constraint handling technique based on adap-
tive penalty functions and a distance measure proposed by
Woldesenbet et al.(2007). This method uses the number of
feasible individuals in the population in order to be able to
control whether a modified objective function focusses just
on the objective values or the constraint violation. As long
as all members of the current population are feasible, the
objectives remain unchanged.

2.2 Robust parameter estimation

The application of automatic calibration procedures for
model parameter estimation often completely neglects pos-
sible uncertainties in the observations used to quantify the
matching of simulated values and measurements.Bárdossy
and Singh(2008) studied this problem: due to the complex-
shaped response surface and the erroneous observations, the
solution of the optimisation problem can lead to very dif-
ferent near-optimum parameter vectors that correspond to a
much different model performance on the validation data.
The actual goal of a good model calibration should not be
to find parameter vectors that perform best for the calibration
period but to find parameter vectors that

– lead to good model performance over the selected time
period;

– are not sensitive: small changes of the parameters
should not lead to very different results;

– are transferable: they perform well for other time peri-
ods and might also perform well on other catchments.2

Typically, such parameter vectors also lead to a hydrolog-
ically reasonable representation of the corresponding pro-
cesses in the context of the possibilities of the used model.
According toBárdossy and Singh(2008), we call such pa-
rameter vectors robust. There are two possibilities to improve
existing calibration approaches in order to identify robust pa-
rameter vectors. One starting point that recently attracted ris-

2Singh(2010) studied the influence of robust parameter estima-
tion on the transferability of model parameters. Consider however
that this aspect is not a focus in this paper.

Table 1.Default values of the parameters controlling the MO-PSO-
GA algorithm.

Symbol Description Default value

ψ Breeding ratio 0.5
ω Particle inertia weight 0.9 decreasing to 0.4
φ1 Cognitive attraction 0.5
φ2 Social attraction 1.25

ing scientific interest is a more intelligent selection of the cal-
ibration data (seeWagener and Wheater, 2002; Wagener and
Gupta, 2005; Thyer et al., 2006); another one is the devel-
opment of advanced methods for the identification of robust
model parameters.

A methodology that focusses on the latter approach is the
robust parameter estimation approach (ROPE). It was first
presented byBárdossy and Singh(2008). The ROPE ap-
proach is based on the application of the principle of data
depth in order to sample robust parameter vectors. Data depth
is a statistical method used for multivariate data analysis
which has recently attracted a lot of research interest (e.g.
Cramer, 2003; Liu et al., 2006). A specific data depth func-
tion assigns a numeric value to a given point which corre-
sponds to its centrality, with respect to a set of points. This
approach provides a center-outward ordering of points in Eu-
clidean space of any dimension with respect to a given point
set or distribution. This provides the possibility of a new non-
parametric multivariate statistical analysis in which no distri-
butional assumptions are needed. Recent studies of compu-
tational geometry and multivariate statistics (e.g.Liu et al.,
2006; Bremner et al., 2008) showed that members with high
depth with respect to a given point set, are more robust in or-
der to represent the underlying distribution than a whole set.
The deep points can be identified using a data depth metric
implemented in a data depth function. Most proposed metrics
used in data depth functions are inherently geometric, with
a numeric value assigned to each data point that represents
its centrality within the given dataset. The depth median, the
point of maximal depth, is the depth-based estimator for the
center of the dataset. Depth contours can be used to visu-
alize and quantify the data. For instance they can be used
to define central regions enclosing a part of the space with
high depth. The concept of data depth is illustrated in Fig.1
by a simple 2-dimensional example. For a random point set
in R2, the data depth was computed for each point of the
set with respect to the point set itself. The used depth func-
tion is the halfspace depth. According to its originator, it is
also known as Tukey depth (Tukey, 1975). It is one of the
best known among the data depth measures in nonparamet-
ric statistics, and in discrete and computational geometry and
has proved to be a very robust measure in order to identify the
center of a multivariate dataset (e.gRousseeuw and Struyf,
1998; Cramer, 2003; Serfling, 2006). According toDonoho
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Fig. 1.2-dimensional point set shaded according to assigned depth.
A darker point represents higher depth. The lines indicate convex
hulls enclosing the 25 %, 50 %, 75% and 100 % deepest points. The
used depth function is halfspace depth.

and Gasko(1992), the halfspace depth of an arbitrary point
θ = (θ1, . . . ,θd) ∈ Rd with respect to ad-dimensional dataset
Z is defined as the smallest number of data points in any
closed halfspace with boundary throughθ . It can be written
as

hdepth(θ |Z) := min
||u||=1

#{i,u> · x i ≥ u> · θ} (1)

whereu ranges over all vectors inRd with ||u|| = 1. Within
this equation, the symbol> just indicates that the labelled
vector is transposed.

Very often the halfspace depth is normalised by dividing
the “hdepth” value by the number of points in the setZ:

hdepth∗(θ |Z) :=
hdepth(θ |Z)

#{Z}
. (2)

The principle of the halfspace depth of a pointθ with respect
to a point setZ in R2 is illustrated in Fig.2. The plot shows
some lines throughθ that split the parameter space into
two halfspaces. Obviously, each possible halfspace through
θ contains at least two points of the given set. Hence, the
non-normalised halfspace depth hdepth(θ |Z)= 2. For any
further details of the halfspace depth, refer toTukey(1975);
Donoho and Gasko(1992); Rousseeuw and Struyf(1998).

As mentioned above,Bárdossy and Singh(2008) devel-
oped a method entitled ROPE that applies the principle of
data depth in order to identify a set of robust model param-
eters. The approach was further developed byKrauße and
Cullmann(2012a). In general all ROPE approaches consist
of two steps:

1. In a first step, a set of model parameter vectors with a
reasonable good model performance is identified. The
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Fig. 1. 2-dimensional point set shaded according to assigned depth.
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hulls enclosing the 25%, 50%, 75% and 100% deepest points. The
used depth function is halfspace depth.

θ

Fig. 2. Illustration of the halfspace depth in the two-dimensional
space. The point θ has depth 2 with respect to the given point set.

depth with respect to a given point set, are more robust in
order to represent the underlying distribution than whole set.
The deep points can be identified using a data depth metric
implemented in a data depth function. Most proposed met-
rics used in data depth functions are inherently geometric,
with a numeric value assigned to each data point that rep-
resents its centrality within the given data set. The depth
median, the point of maximal depth, is the depth based esti-
mator for the center of the data set. Depth contours can be
used to visualize and quantify the data. For instance they can
be used to define central regions enclosing a part of the space
with high depth. The concept of data depth is illustrated in
Fig. 1 by a simple 2-dimensional example. For a random
point set in R2 the data depth was computed for each point
of the set with respect to the point set itself. The used depth

function is the halfspace depth. According to its originator
is also known as Tukey depth (Tukey, 1975). It is one of the
best known among the data depth measures in nonparamet-
ric statistics, and in discrete and computational geometry and
has proved to be a very robust measure in order to identify the
center of a multivariate dataset (e.g Rousseeuw and Struyf,
1998; Cramer, 2003; Serfling, 2006). According to Donoho
and Gasko (1992) the halfspace depth of an arbitrary point
θ= (θ1,...,θd)∈Rd with respect to a d-dimensional data set
Z is defined as the smallest number of data points in any
closed halfspace with boundary through θ. It can be written
as:

hdepth(θ |Z) := min
||u||=1

#{i,u> ·xi≥u> ·θ} (1)

where u ranges over all vectors in Rd with ||u||= 1.
Within this equation the symbol > just indicates that the
labeled vector is transposed.

Very often the halfspace depth is normalised by dividing
the hdepth value by the number of points in the set Z:

hdepth∗(θ |Z) :=
hdepth(θ |Z)

#{Z}
(2)

The principle of the halfspace depth of a point θ with re-
spect to a point set Z in R2 is illustrated in Fig. 2. The plot
shows some lines through θ that split the parameter space
into two halfspaces. Obviously, each possible halfspace
through θ contains at least two points of the given set. Hence,
the non-normalised halfspace depth hdepth(θ |Z) = 2. For
any further details of the halfspace depth refer to Tukey
(1975); Donoho and Gasko (1992); Rousseeuw and Struyf
(1998).

As mentioned above, Bárdossy and Singh (2008) devel-
oped a method entitled ROPE that applies the principle of
data depth in order to identify a set of robust model param-
eters. The approach was further developed by Krauße and
Cullmann (2011b). In general all ROPE approaches consist
of two steps:

1. In a first step a set of model parameter vectors with a
reasonable good model performance is identified. The
estimated parameter vectors achieve the best possible
performance with respect to the given objectives and
calibration data. Thus, they are from now on called
the good parameter vectors. For single-objective prob-
lems the good parameter vectors can be expressed by
a set comprising the global optimum plus an uncer-
tainty bound that depends on the assumed uncertain-
ties. Considering multi-objective calibration we suggest
to express the good parameter vectors by a set of non-
dominated parameter vectors, i.e. the Pareto-optimal
set.

Fig. 2. Illustration of the halfspace depth in the two-dimensional
space. The pointθ has depth 2 with respect to the given point set.

estimated parameter vectors achieve the best possible
performance with respect to the given objectives and
calibration data. Thus, they are from now on called
the good parameter vectors. For single-objective prob-
lems, the good parameter vectors can be expressed by
a set comprising the global optimum plus an uncer-
tainty bound that depends on the assumed uncertainties.
Considering multi-objective calibration, we suggest to
express the good parameter vectors by a set of non-
dominated parameter vectors, i.e. the Pareto optimal set.

2. Afterwards, a set of parameter vectors deep with respect
to the previously identified set of good parameter vec-
tors is generated under the assumption that those pa-
rameter vectors are more robust than the complete set
of good parameter vectors.3

The depth-based sampling with ROPE can be very use-
ful for the estimation of robust hydrologic model parame-
ters. Different studies with the semi-distributed HBV model
focussing on the simulation of the water balance (Bárdossy
and Singh, 2008) and the modelling of flood events with a
distributed hydrologic model (Krauße and Cullmann, 2012a)
illustrate the advantages and potential of this approach.

3“The reason for this is that one assumes that the low depth
points can be regarded as an iso-hypersurface corresponding to the
selected level. If one assumes continuity of the objective function
then higher values of the function are expected in the interior of the
set” (Bárdossy and Singh, 2008, p. 1278).
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Algorithm 3 MO-ROPE.

1: Execute the multi-objective PSO-based MO-PSO-GA proce-
dure to estimate an approximation of the Pareto optimal set of
the problem. This set is denoted bỹA.

2: Sample parameter vectorsDÃ with high data depth w.r.t.Ã
by the GenDeepstrategy provided inKrauße and Cullmann
(2011a). Consider that the data depth is computed within the
parameter space.

3: return D
Ã

2.3 Synthesizing multi-objective optimisation and
robust parameter estimation

We propose to synthesize the strengths of multi-objective
optimisation and robust parameter estimation with data depth
functions in a new algorithm, entitled multi-objective robust
parameter estimation (MO-ROPE). It synthesizes the advan-
tages of a multi-objective view and the ROPE approach. The
approach firstly applies a suitable multi-objective optimisa-
tion algorithm in order to estimate a set of non-dominated
solutionsÃ, thus the Pareto optimal set. A suitable method
to do this task could be one of the methods discussed above,
e.g. the AMALGAM approach. In a second step, the algo-
rithm samples a set of parameter vectors that are deep with
respect to the previously identified setÃ. The result is a set
of parameter vectorsD

Ã
that has high data depth with re-

spect to the set̃A. We propose to do the sampling using a
stratified approach called GenDeep. It provides advantages
for the sampling from non-elliptic, banana-shaped and multi-
modal distributions. That might be a crucial in case of Pareto
optimal sets that are distributed non-linearly or even over
different distinct regions in the parameter space. The Gen-
Deep strategy is thoroughly discussed inKrauße and Cull-
mann(2012b). It was already successfully applied for the
sampling of deep parameter vectors within the frame of a
further developed single-objective ROPE strategy (Krauße
and Cullmann, 2012a). Consider that MO-ROPE samples the
deep parameters in the parameter space and not in the objec-
tive space. Hence, the estimated robust solutions are just de-
pendent on the geometrical structure of the previously iden-
tified Pareto optimal set. Any further assumptions regard-
ing realistic ranges of the considered objectives are not re-
quired. This makes it an in principle different approach in
comparison to other published approaches that distinguish
robust and non-behavioural solutions by subjective cut-off
thresholds in the objective space (e.g.Efstratiadis and Kout-
soyiannis, 2010). Although this solution can easily select ro-
bust parameter vectors, it requires additional assumptions on
the optimal range of the considered objectives. Furthermore,
the non-behavioural solutions might not always exclusively
correspond to the extreme tails of the Pareto front. Hence,
the depth-based sampling completely forgets about the loca-
tion of the Pareto optimal solutions in the objective space.

It just tries to identify parameter vectors that are located in
the central regions of the Pareto optimal set in the parame-
ter space. A pseudocode listing of the proposed MO-ROPE
approach is provided in Algorithm3. The developed solution
enables the possibility to apply the ROPE approach on multi-
objective calibration problems. The algorithm was imple-
mented in MATLAB and C++ and is embedded in a robust
parameter estimation framework which comprises other pub-
lished robust parameter estimation approaches. The frame-
work is open source and available from the author.

3 Case studies

3.1 Preliminary case study: investigating the
effectivity and efficiency of different
multi-method multi-objective algorithms
using common test problems

The published results of single-objective robust parameter
estimation approaches have shown that the quality of the set
of good parameter vectors plays an important role for the
robustness of the estimated model parameter vectors (e.g.
Krauße and Cullmann, 2012a). This is why an effective es-
timation of the non-dominated solutions in the first algorith-
mic step is an important prerequisite for a successful appli-
cation of a multi-objective robust parameter estimation ap-
proach. Thus, in a preliminary case study, we applied the
multi-objective optimisation algorithms discussed in the pre-
vious section in order to approximate the Pareto set for sev-
eral benchmark problems with analytical solutions. We com-
pare the performance of the stand-alone MO-PSO-GA ap-
proach with the results obtained by other simple evolutionary
multi-objective optimisation strategies. Furthermore, we dis-
cuss the advantages of the integration of this hybrid approach
into the advanced multi-method algorithm AMALGAM. We
compare the original version of AMALGAM that already ap-
plies four approved multi-objective optimisation algorithms4

and an extended version called AMALGAM∗ that comprises
the MO-PSO-GA approach as well.

For the first problem, entitled COELLO function, we fol-
lowed the settings inGill et al. (2006). We ran the the al-
gorithms with a population size of 30 and set the maximum
number of function evaluations to 5000. The true front of
and the non-dominated front estimated by MO-PSO-GA are
shown in Fig.3. It is obvious that the true front is approxi-
mated well and all sections of the front are uniformly cov-
ered. The same holds true for the estimates of both con-
sidered AMALGAM modifications. Thus, for an objective
comparison of the approximated front against the true front,
we calculated two performance metrics and compared them

4The original AMALGAM contains the genetic NSGA-II algo-
rithm (Deb et al., 2002), a simple PSO approach (Kennedy et al.,
2001), the adaptive metropolis search (AMS) (Haario et al., 2001),
and differential evolution (DE) (Storn and Price, 1997).
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Table 2.Description of two simple multi-objective test problems used in this study

Problem N Parameter range Objective functions Characteristics

f1(x)= x
2
1 − x2

f2(x)=−
x1
2 − x2+1

COELLO 2 [0,7] subject to Nonconvex

0≥ x1
6 + x2−6.5, 0≥ x1

2 + x2−7.5,

0≥ 5x1+ x2−30, x,x2 ≥ 0

f1(x)=
∑N
i=1xi

2

VRUGTN {2,10,30} [0, 1] fj (x)=
∑j−1
i=1 xi

2
+ (xj −1)2

∑N
i=j+1xi

2 Convex

where 2≤ j ≤ (N +1)

Table 3. Performance metrics for the non-dominated fronts esti-
mated by several evolutionary multi-objective optimisation algo-
rithms edited according toGill et al. (2006).

Algorithm GD SP

AMALGAM ∗ 0.0005 0.0570
AMALGAM 0.0005 0.0581
MO-PSO-GA 0.0006 0.0621

MOPSO (Gill et al., 2006) 0.0122 0.1415
MOPSO (Coello et al., 2004) 0.0365 0.1095
NSGA-II 0.0842 0.0985
Micro-GA 0.1508 0.315
PAES 0.1932 0.1101

with a published overview according toGill et al. (2006).
The results are provided in Table3. The metrics considered
in this comparison are the generational distance (GD) met-
ric introduced byvan Veldhuizen and Lamont(1998) that
measures the distance between the elements of the estimated
non-dominated set and the known true front, and the spacing
metric (SP) according toSchott (1995) that measures the
mutual distance between the elements of the estimated non-
dominated front. Lower values of GD and SP denote a better
approximation and a more uniform spread, respectively, with
zero being the optimum. We abstain from a more detailed in-
troduction of these measures, as they are just used for this
small comparison. The results show that all three suggested
algorithms provide excellent results for the COELLO prob-
lem. The MO-PSO-GA approach outperforms existing PSO
approaches and obtains results that are almost equivalent to
the results of AMALGAM and AMALGAM∗. In a second
test, we consider a problem that was proposed and used as a
benchmark byVrugt et al.(2003). That is why we refer to this
benchmark as VRUGT. It is originally defined for two dimen-
sions with three objectives. The Pareto solution set consists

of a triangular-shaped area in the parameter space, having
the corner points(0,0), (0,1) and (1,0) for x1 andx2, re-
spectively. We defined an extended version that is defined for
any dimension greater than or equal to two. It is defined by
N +1 objectives. In a first simple experiment, we estimated
the Pareto set for the 2-dimensional case. A higher dimen-
sional version with 30 dimensions is considered in a follow-
ing case study that studies the advantages of deep parameter
vectors. According toVrugt et al.(2003), we set set the pop-
ulation size to values of 10, 20, 50, and 100, but limited the
number of iterations to 50. Thus, the maximum number of
function evaluations is limited to 500, 1000, 2500 and 5000.
The estimated parameters for the MO-PSO-GA and AMAL-
GAM are given in Figs.4 and5. The results of AMALGAM∗

are just about equal and are thus neglected here. The results
estimated by MO-PSO-GA and AMALGAM have a similar
quality. A detailed visual comparison with published results
estimated by MOSCEM (Vrugt et al., 2003) and two other
multi-objective PSO implementations (Coello et al., 2004;
Gill et al., 2006) confirms that the non-dominated front esti-
mated by MO-PSO-GA is less clustered and provides a fairly
better approximation of the true Pareto front. Already the run
with population size 20 and a corresponding number of func-
tion evaluations of just 1000 provides better results. This un-
derlines the efficiency of the MO-PSO-GA algorithm in com-
parison with other single-method search strategies.

The previous benchmarks underlined the efficiency of
the MO-PSO-GA algorithm in comparison with other sim-
ple multi-objective optimisation. However, the test prob-
lems were still far too easy to notice any differences be-
tween the different suggested algorithms. That is why we
tested the suggested solutions on another set of more com-
plex and well-known multi-objective benchmark problems
provided by Zitzler et al. (2000), Deb et al. (2002) and
Fonseca and Fleming(1993) that are commonly used in
literature (e.g.Vrugt and Robinson, 2007). An overview
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T. Krauße et al.: Robust multi-objective calibration strategies 3587

Table 4.Description of complex multi-objective benchmark problems used in this study.

Problem N Parameter range Objective functions Characteristics

f1(x)= x1
ZDT1 30 [0, 1] f2(x)= g(x)[1−

√
x1/g(x)] Convex

g(x)= 1+9[
∑N
i=1xi/(N −1) ]

f1(x)= x1
ZDT2 30 [0, 1] f2(x)= g(x)[1− (x1/g(x))

2
] Nonconvex

g(x)= 1+9[
∑N
i=1xi/(N −1) ]

f1(x)= x1 Convex,
ZDT3 30 [0, 1] f2(x)= g(x)[1−

√
x1/g(x)− (x1/g(x))sin(10πx1)] disconnected

g(x)= 1+9[
∑N
i=1xi/(N −1) ]

x1 ∈ [0,1] f1(x)= x1
ZDT4 10 x2...N ∈ [−5,−5] f2(x)= g(x)[1− (x1/g(x))

2
] Nonconvex

g(x)= 1+10(N −1)+
∑N
i=1 (xi −10cos(4πxi)) ]

f1(x)= 1− e−4x1 · sin6(6πx1) Nonconvex,

ZDT6 10 [0, 1] f2(x)= 1−
(
f1(x)
g(x)

)2
nonuniformly

g(x)= 1+9
[∑N

i=1xi/(N −1)
]0.25

spaced

f1(x)= 1− e−
∑N
i=1(xi+1/

√
3)2

FONN {3,10} [−4, 4] f1(x)= 1− e−
∑N
i=1(xi−1/

√
3)2 Nonconvex

f1(y) = y1
f2(y)= g(y)e

(−y1/g(y))

ROT 10 [0, 1] g(y)= 1+10(N −1)+
∑N
i=2yi

2
−10cos(4πyi) Rotated,

y =Rx correlated
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Table 2. Description of two simple mult-iobjective test problems used in this study

Problem N Parameter range Objective functions Characteristics

COELLO 2 [0,7]

f1(x) =x2
1−x2

f2(x) =−x1

2
−x2 +1

subject to

0≥ x1

6
+x2−6.5, 0≥ x1

2
+x2−7.5,

0≥ 5x1 +x2−30, x,x2≥ 0

Nonconvex

VRUGTN {2,10,30} [0,1]

f1(x) =

N∑
i=1

xi
2

fj(x) =

j−1∑
i=1

xi
2 +(xj−1)2

N∑
i=j+1

xi
2

where 2≤ j≤ (N+1)

Convex
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Fig. 3. True Pareto front and the non-dominated front estimated by
MO-PSO-GA using Coello’s Function.

plies four approved multi-objective optimisation algorithms3

and an extended version called AMALGAM∗ that comprises
the MO-PSO-GA approach as well.

For the first problem, entitled COELLO function we fol-
lowed the settings in Gill et al. (2006). We ran the the al-
gorithms with a population size of 30 and set the maximum
number of function evaluations to 5.000. The true front of
and the non-dominated front estimated by MO-PSO-GA are

3The original AMALGAM contains the genetic NSGA-II algo-
rithm (Deb et al., 2002), a simple PSO approach (Kennedy et al.,
2001), the adaptive metropolis search (AMS) (Haario et al., 2001),
and differential evolution (DE) (Storn and Price, 1997).

Table 3. Performance metrics for the non-dominated fronts esti-
mated by several evolutionary multi-objective optimisation algo-
rithms edited according to Gill et al. (2006)

Algorithm GD SP

AMALGAM∗ 0.0005 0.0570
AMALGAM 0.0005 0.0581
MO-PSO-GA 0.0006 0.0621

MOPSO (Gill et al., 2006) 0.0122 0.1415
MOPSO (Coello et al., 2004) 0.0365 0.1095
NSGA-II 0.0842 0.0985
Micro-GA 0.1508 0.315
PAES 0.1932 0.1101

shown in Fig. 3. It is obvious that the true front is approxi-
mated well and all sections of the front are uniformly cov-
ered. The same holds true for the estimates of both con-
sidered AMALGAM modifications. Thus, for an objective
comparison of the approximated front against the true front
we calculated two performance metrics and compared them
with a published overview according to Gill et al. (2006).
The results are provided in Table 3. The metrics considered
in this comparison are the generational distance (GD) met-
ric introduced by van Veldhuizen and Lamont (1998) that
measures the distance between the elements of the estimated
non-dominated set and the known true front, and the spac-
ing metric (SP) according to Schott (1995) that measures the
mutual distance between the elements of the estimated non-
dominated front. Lower values of GD and SP denote a better
approximation and a more uniform spread, respectively, with

Fig. 3. True Pareto front and the non-dominated front estimated by
MO-PSO-GA using Coello’s function.

over the used benchmarks is given in Table4. Pre-
generated, uniformly spaced, reference sets representing
the known exact Pareto optimal sets for the given opti-
misation problems are provided byhttp://www.tik.ee.ethz.

ch/sop/download/supplementary/testproblems. We chose the
versions with 1000 members each. According to the studies
conducted inVrugt and Robinson(2007), we applied each
considered optimisation algorithm for the approximation of
the Pareto optimal sets for the given test problems using a
population size of 100 points in combination with 150 gener-
ations. Each optimisation run was repeated 30 times in order
to avoid an interference of the results by outliers. In addition
to the three considered algorithms MO-PSO-GA, AMAL-
GAM and AMALGAM∗, we also considered the NSGA-II
algorithm according toDeb et al.(2002). It was subject of
attention in many scientific publications and demonstrated
superiority over many existing multi-objective optimisation
methods. Furthermore, it already served as a reference in
the first study with AMALGAM presented byVrugt and
Robinson(2007). Thus, it is a good indicator to assess the
performance of the hybrid MO-PSO-GA algorithm.

The goal of a multi-objective optimisation algorithm is
to approximate the Pareto optimal set of a given optimisa-
tion problem. The Pareto set in the parameter space cor-
responds to a Pareto front in the objective space. Thus, a
good algorithm should estimate solutions that correspond to
a non-dominated front that approximate the true Pareto front
as close as possible. With the evolution of multi-objective

www.hydrol-earth-syst-sci.net/16/3579/2012/ Hydrol. Earth Syst. Sci., 16, 3579–3606, 2012
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Fig. 4. Scatterplots for the rank 1 points (blue dots) for 50 evaluation generations estimated by MO-PSO-GA with a population size of (a)
10, (b) 20, (c) 50, and (d) 100 respectively. The boundaries of the triangle enclosing the true front are the blue dotdashed blue lines.
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zero being the optimum. We abstain from a more detailed
introduction of these measures, as they are just used for this
small comparison. The results show that all three suggested
algorithms provide excellent results for the COELLO prob-
lem. The MO-PSO-GA approach outperforms existing PSO
approaches and obtains results that are almost equivalent to
the results of AMALGAM and AMALGAM∗. In a second
test we consider a problem that was proposed and used as a
benchmark by Vrugt et al. (2003). That is why we refer to
this benchmark as VRUGT. It is originally defined for two
dimensions with three objectives. The Pareto solution set
consists of a triangular-shaped area in the parameter space,
having the corner points (0,0), (0,1) and (1,0) for x1 and
x2, respectively. We defined an extended version that is de-
fined for any dimension greater or equal two. It is defined by
N +1 objectives. In a first simple experiment we estimated
the Pareto set for the 2-dimensional case. A higher dimen-
sional version with 30 dimensions is considered in a follow-
ing case study that studies the advantages of deep parame-
ter vectors. According to Vrugt et al. (2003) we set set the
population size to values of 10, 20, 50, and 100, but limited
the number of iterations to 50. Thus, the maximum number
of function evaluations is limited to 500, 1.000, 2.500 and
5.000. The estimated parameters for the MO-PSO-GA and
AMALGAM are given in Fig. 3.1 and Fig. 4 respectively.
The results of AMALGAM∗ are just about equal and are
thus neglected here. The results estimated by MO-PSO-GA

and AMALGAM have a similar quality. A detailed visual
comparison with published results estimated by MOSCEM
(Vrugt et al., 2003) and two other multi-objective PSO im-
plementations (Coello et al., 2004; Gill et al., 2006) confirms
that the non-dominated front estimated by MO-PSO-GA is
less clustered and provides a fairly better approximation of
the true Pareto front. Already the run with population size
20 and a corresponding number of function evaluations of
just 1.000 provides better results. This underlines the ef-
ficiency of the MO-PSO-GA algorithm in comparison with
other single-method search strategies.

The previous benchmarks underlined the efficiency of the
MO-PSO-GA algorithm in comparison with other simple
multi-objective optimisation. However the test problems
were still far too easy to notice any differences between the
different suggested algorithms. That is why we tested the
suggested solutions on another set of more complex and well
known multi-objective benchmark problems provided by Zit-
zler et al. (2000), Deb et al. (2002) and Fonseca and Fleming
(1993) that are commonly used in literature (e.g. Vrugt and
Robinson, 2007). An overview over the used benchmarks is
given in Table 4. Pre-generated uniformly spaced reference
sets representing the known exact Pareto optimal sets for the
given optimisation problems are provided by http://www.tik.
ee.ethz.ch/sop/download/supplementary/testproblems. We
chose the versions with 1.000 members each. According to
the studies conducted in Vrugt and Robinson (2007) we ap-

Fig. 4. Scatter plots for the rank 1 points (blue dots) for 50 evaluation generations estimated by MO-PSO-GA with a population size of(a)
10, (b) 20, (c) 50, and(d) 100 respectively. The boundaries of the triangle enclosing the true front are the blue dot-dashed blue lines.
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zero being the optimum. We abstain from a more detailed
introduction of these measures, as they are just used for this
small comparison. The results show that all three suggested
algorithms provide excellent results for the COELLO prob-
lem. The MO-PSO-GA approach outperforms existing PSO
approaches and obtains results that are almost equivalent to
the results of AMALGAM and AMALGAM∗. In a second
test we consider a problem that was proposed and used as a
benchmark by Vrugt et al. (2003). That is why we refer to
this benchmark as VRUGT. It is originally defined for two
dimensions with three objectives. The Pareto solution set
consists of a triangular-shaped area in the parameter space,
having the corner points (0,0), (0,1) and (1,0) for x1 and
x2, respectively. We defined an extended version that is de-
fined for any dimension greater or equal two. It is defined by
N +1 objectives. In a first simple experiment we estimated
the Pareto set for the 2-dimensional case. A higher dimen-
sional version with 30 dimensions is considered in a follow-
ing case study that studies the advantages of deep parame-
ter vectors. According to Vrugt et al. (2003) we set set the
population size to values of 10, 20, 50, and 100, but limited
the number of iterations to 50. Thus, the maximum number
of function evaluations is limited to 500, 1.000, 2.500 and
5.000. The estimated parameters for the MO-PSO-GA and
AMALGAM are given in Fig. 3.1 and Fig. 4 respectively.
The results of AMALGAM∗ are just about equal and are
thus neglected here. The results estimated by MO-PSO-GA

and AMALGAM have a similar quality. A detailed visual
comparison with published results estimated by MOSCEM
(Vrugt et al., 2003) and two other multi-objective PSO im-
plementations (Coello et al., 2004; Gill et al., 2006) confirms
that the non-dominated front estimated by MO-PSO-GA is
less clustered and provides a fairly better approximation of
the true Pareto front. Already the run with population size
20 and a corresponding number of function evaluations of
just 1.000 provides better results. This underlines the ef-
ficiency of the MO-PSO-GA algorithm in comparison with
other single-method search strategies.

The previous benchmarks underlined the efficiency of the
MO-PSO-GA algorithm in comparison with other simple
multi-objective optimisation. However the test problems
were still far too easy to notice any differences between the
different suggested algorithms. That is why we tested the
suggested solutions on another set of more complex and well
known multi-objective benchmark problems provided by Zit-
zler et al. (2000), Deb et al. (2002) and Fonseca and Fleming
(1993) that are commonly used in literature (e.g. Vrugt and
Robinson, 2007). An overview over the used benchmarks is
given in Table 4. Pre-generated uniformly spaced reference
sets representing the known exact Pareto optimal sets for the
given optimisation problems are provided by http://www.tik.
ee.ethz.ch/sop/download/supplementary/testproblems. We
chose the versions with 1.000 members each. According to
the studies conducted in Vrugt and Robinson (2007) we ap-

Fig. 5. Scatter plots for the rank 1 points (blue dots) for 50 evaluation generations estimated by AMALGAM with a population size of(a)
10, (b) 20, (c) 50, and(d) 100 respectively. The boundaries of the triangle enclosing the true front are the blue dot-dashed blue lines.

optimisation algorithms, a lot of metrics have emerged in or-
der to quantify the effectivity and efficiency of compared ap-
proaches. We follow the suggestions ofVrugt and Robinson
(2007) and use the following three metrics proposed inDeb
(2001) andDeb et al.(2002) in order to measure the effectiv-
ity and efficiency of the compared optimisation algorithms.

Theconvergence metric (Y)measures the extent of conver-
gence of the approximated set of non-dominated solutionsÃ

to the known true set of Pareto optimal solutionsP̃ . The met-
ric Y computes by the average of the Euclidean distance of
each point inÃ to its closest neighbour iñP . The closer the
value of Y is to zero, the better is the matching of the esti-
mated solutions to the true Pareto optimal set. Consider that
the distances are computed in the objective space.

Another important performance criterion for evolutionary
algorithms for multi-objective optimization problems is the
diversity metric1. It measures the extent of the spread or di-
versity of the estimated solutions along the true Pareto front.
In order to calculate this metric, we compute the Euclidean
distances between two consecutive solutions inÃ. These dis-
tances are stored in a vectord with lengthL−1 whereL
denotes the cardinality of the setÃ. In a second step, we cal-
culate the Euclidean distances between the extrapolated ex-
treme solutions of the true Pareto front and the boundary so-
lutions of the obtained non-dominated set,df anddl . Thus,df

denotes the distance between the first (leftmost) point in the
obtained approximation and the beginning of the true front.
The same applies fordl and the last (rightmost) point of the
obtained Pareto approximation. The metric1 is a measure
of the deviation of the individual distance between the con-
secutive solutions iñA from its mean value weighted by the
distance of the extreme tails of̃A from the tails of the true
front P̃ . Thus1 is computed by

1=
df + dl +

∑L−1
i=1 |di − d̄|

df + dl + (L−1)d̄
. (3)

A perfect approximation of the true Pareto front would have
a1 value of zero. A perfect distribution, whose tails are ide-
ally identical to those of the true front, would correspond to
df = dl = 0. Furthermore, such an approximation should be
perfectly distributed so that alldi = d̄. This leads to1= 0.
Hence, smaller values for this metric indicate a better spread
and uniform distribution along the front.

Therelative hypervolume indicator(RHV) quantifies both
convergence and diversity of the so far estimated approxi-
mation within a single measure, and is therefore one of the
best unary measures available to diagnose whether the non-
dominated solution set estimated by an optimisation algo-
rithm is a good approximation of the true Pareto set. This
metric is computed by one minus the ratio between the
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objective space dominated by the estimated non-dominated
set, and the objective space dominated by the given true
Pareto set.

RHV= 1−
HV(Ã)

HV(P̃ )
(4)

Thus, a perfect fit of the true front corresponds to a relative
hypervolume indicator of zero. FollowingVrugt and Robin-
son (2007), we use a relative hypervolume indicator with
value of less than 0.005 as a criterion indicating that the esti-
mated solutionÃ is sufficiently close to the true Pareto setP̃ ,
and counts the function evaluations carried out so far in order
to measure the efficiency of the optimisation algorithms.

The effectivity of the considered optimisation algorithms
in terms of the metrics Y and1 is provided in Table5.
The obtained results for the existing algorithms AMALGAM
and NSGA-II are close to the values published in literature
(Vrugt and Robinson, 2007). This indicates that the frame-
work was set up correctly. Of particular relevance are how-
ever the results of the proposed approaches MO-PSO-GA
and AMALGAM∗. Aside from the ROT problem, the MO-
PSO-GA approach provides results that are comparable or
better to those estimated by NSGA-II. Notwithstanding these
convincing results, the achieved performances are one step
worse than the results yielded by AMALGAM. However, the
already excellent results of the AMALGAM approach can
even be slightly improved by an extension with the MO-PSO-
GA approach. For all test problems, the AMALGAM∗ pro-
vides the best results for all benchmark problems considered.
An exception is again the ROT problem where the additional
MO-PSO-GA approach does not provide any additional im-
provements. These results both confirm the superiority of a
well-founded multi-method approach, such as the AMAL-
GAM approach. Furthermore, the benefits of additional sin-
gle or hybrid search strategies can be used in order to im-
prove the results of advanced multi-method approaches. It
also confirms Wolpert and Macready’s “no free lunch” the-
orem that shows that it is impossible to construct one sin-
gle (parameter) search algorithm that will always outperform
any other algorithm (Wolpert and Macready, 1997). Further
research is required to estimate a perfect set of strategies in
order to obtain a multi-method approach that yields the best
possible results. According to the obtained results, we sug-
gest to use the AMALGAM∗ approach for the estimation of
the Pareto optimal set.

3.2 Studying the effectivity of depth-based sampling
for multi-objective calibration problems that are
subject to uncertainty

3.2.1 Uncertainty in synthetic test cases

In the previous case study, we studied different strategies
that are suitable to approximate the Pareto optimal set of a
given multi-objective optimisation problem. This is a nec-
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Table 7. Effectivity of the estimated Pareto optimal set (Ã) and the corresponding deep (DÃ) and shallow (HÃ) parameter vectors in terms
of the performance metrics Y and ∆, and the mean sum of all squared objective functions; The metrics were calculated with respect to the
individually identified non-dominated front (as a subset of the originally approximation) for each realisation of the perturbances εx and εf ;
The statistics represent the mean values over 10.000 realisations.

Convergence metric: Y Diversity metric: ∆ 1
m

∑m
i=1(fui )

Problem Ã DÃ HÃ Ã DÃ HÃ Ã DÃ HÃ
VRUGTu2 0.12 0.07 0.17 0.73 0.60 0.88 2.10 1.10 2.79
VRUGTu10 0.02 1E-6 0.05 0.37 0.29 0.30 21.4 12.4 30.6
VRUGTu30 0.03 ≈ 0 0.0514 0.35 0.34 0.34 89.3 40.2 114.0
FONu3 0.015 0.010 0.016 0.65 0.59 0.63 0.84 0.81 0.87
FONu10 0.11 0.09 0.12 1.13 1.04 1.11 1.37 1.34 1.39
ROTu 22.1 12.4 28.3 0.94 0.61 1.02 31225 17440 39951
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Fig. 6. Scatter plot of the approximated Pareto set for the problem
VRUGT2 in the 2-dimensional parameter space; the deep and the
shallow solutions (hull) are indicated by red and blue dots.

7. The region defined by the deep parameter vectors corre-
sponds to central parts of the Pareto front. However, there is
no direct relationship to a simple cutoff value or even a direct
one to one relationship that maps just deep parameter vectors
to the central part of the Pareto front. This is in particular
underlined by the distribution of the hull that corresponds to
larger parts of the tails but also contains members in the cen-
tral region of the Pareto front. The advantage of the depth
based sampling approach is illustrated by Fig. 8. It shows
the density of the distribution of all possible Pareto fronts for
VRUGTu2 that were estimated for the different realisations
of εf and εx. Furthermore there is an overlay with scatter-
plots that represent the distribution of the estimated approx-
imation of the Pareto set of VRUGT (Ã), the corresponding
deep parameter vectors (DÃ) and the hull (HÃ) in the objec-

tive space of the problem VRUGTu2 . In comparison with the
complete Pareto set, the deep parameter vectors do not just
show a better convergence to the set of true Pareto fronts for
the problem considering uncertainty. According to the distri-
butions of the distribution metric ∆ given in Fig. 9, they also
provide in mean a better approximation to the spread of the
true Pareto fronts for the problem VRUGTu2 .

The advantages of the depth based sampling is not lim-
ited to simple low-dimensional problems. The results for
all considered problems including uncertainty is quantified
in Table 7. It compares both performance metrics used in the
previous case, i.e. the convergence metric Y that measures
the extent of convergence to the actual Pareto sets for Fu

and the diversity metric ∆ that provides information about
the spread of the solutions along the Pareto front. Further-
more it provides the mean sum of the squares of all individ-
ual objectives. For each realisation of the errors εx and εf
the metrics were computed with respect to the individually
identified non-dominated front (as a subset of the originally
approximation Ã). For all given test problems the sampled
deep parameter vectors provide in comparison with the com-
plete estimated Pareto set a better mean approximation of the
actual Pareto sets in the objective space considering uncer-
tainty regarding both the matching and a uniform distribu-
tion. Furthermore the mean sum of the squares of all objec-
tives is less for the deep parameter vectors. The effectivity
of the depth based sampling becomes even more objection-
able if one considers the results for the parameter vectors
with shallow depth, i.e. the hull. The parameters in the hull
show are the least suitable regarding its ability to represent a
robust solution for the set of potential Pareto solution in an
uncertain environment. Consider that the benefit of the depth
based sampling is greater for the problem VRUGT where the
Pareto optimal set comprises a larger region. Typically this is
the case for hydrological models. The results show that the
depth based sampling might be a suitable method to iden-
tify robust solutions with respect to a previously identified

Fig. 6. Scatter plot of the approximated Pareto set for the problem
VRUGT2 in the 2-dimensional parameter space; the deep and the
shallow solutions (hull) are indicated by red and blue dots.

essary and important step towards the identification of ro-
bust parameter vectors. The main thrust of the MO-ROPE
approach is however the sampling of deep parameter vectors
that are considered to be robust and thus a more represen-
tative solution in environments that are affected by a con-
siderable degree of uncertainty. In such situations that are
common for real-world problems, the Pareto set cannot be
uniquely identified. The erroneous data can even lead to very
different optimal parameter vectors. This issue is related to
the requirement that robust parameter vectors should be as
insensitive as possible. In this regard the estimated parame-
ter vectors are considered as sensitive if a small change of the
whole vector might lead to a big change in the performance
of the model. To consider this issue, we just slightly altered
the estimated parameter vectors and studied the results for
the whole identified set, the deep parameters and the hull.
The alteration was done using the following equation:

x = x+ εx (5)

whereεx is a multi-dimensional random independent Gaus-
sian error with mean zero and a standard deviation that equals
one percent of the range of the parameter in the estimated
Pareto set in each considered dimension. Consider that this
procedure alters the parameter vectors even less than in a
similar experiment for sets of good parameters estimated
by single-objective optimisation algorithms conducted by
Bárdossy and Singh(2008).

Furthermore, we assumed that the actual values of the
objective function cannot be exactly identified. That is due
to errors in the observations. We consider this issue as
follows. For a given multi-objective calibration problem
F = {f1 . . .fm}, we defined a corresponding problemF u =
{f u1 . . .f

u
m}, where every objective functionf ui ∈ F

u is ex-
actly the same as its corresponding memberfi ∈ F besides
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Table 5. Effectivity of the four presented algorithms in terms of the performance metrics Y and1 for the given more complex test bench-
marks. The statistics represent mean values over 30 optimisation runs.

Convergence metric: Y

Problem MO-PSO-GA NSGA-II AMALGAM AMALGAM∗

ZDT1 0.0024 0.0040 0.0009 0.0006
ZDT2 0.0174 0.0053 0.0007 0.0004
ZDT3 0.0016 0.0024 0.0012 0.0011
ZDT4 0.0148 0.0411 0.0028 0.0024
ZDT6 0.0161 0.0502 0.0008 0.0004
FON3
FON10
ROT 13.57 3.66 0.46 0.46

Diversity metric:1

Problem MO-PSO-GA NSGA AMALGAM AMALGAM∗

ZDT1 0.40 0.41 0.35 0.34
ZDT2 0.46 0.45 0.33 0.33
ZDT3 0.60 0.61 0.44 0.43
ZDT4 0.75 0.81 0.41 0.40
ZDT6 0.57 0.56 0.47 0.45
FON3
FON10
ROT 1.62 1.10 0.65 0.67

Table 6.Efficiency of the four presented algorithms in terms of the number of model runs that are required to result in a relative hypervolume
smaller than 0.005. The statistics represent mean values over 30 optimisation runs.

Number of function evaluations

Problem MO-PSO-GA NSGA AMALGAM AMALGAM∗

ZDT1 1.576 6.124 756 704
ZDT2 8.624 7.152 1.148 988
ZDT3 4.404 4.956 1.252 1.040
ZDT4 9.376 (14)∗ 13.635 (16)∗ 6.472 5.916
ZDT6 6.736 8.780 960 874
FON3 4.710 4.930 1.510 1.380
FON10 4.710 4.930 1.510 1.380
ROT N/C∗∗ N/C∗∗ 9.527 9.874

∗ Number of runs that have failed to converge are shown in parentheses.∗∗ None of the 30 optimisation runs have
converged after 150 generations.

an additional uncertainty term. The uncertainty is subject to
the following error model:

f ui (x)= fi(x)+ εfi (6)

whereεfi is a random independent Gaussian error with con-
stant variance. We assumed mean and standard deviation of
just one percent of the range of the objectivefi in the true
Pareto front of the problem original problem. Even though
the defined error models are quite subjective, the resulting
disturbances of both the objectives and the parameters are
still well below the typical changes observed in hydrologic

model calibration and should not affect the performance to a
too large extent.

We now conducted the following experiment in order to
study the advantages of the deep parameter vectors and the
effectivity of the depth-based sampling:

1. In a first step, we applied the MO-ROPE framework in
order to estimate robust parameter vectors for a multi-
objective calibration problemF . According to the re-
sults of the previously presented case study we chose
the AMALGAM∗ for the approximation of the Pareto
optimal setÃ. Afterwards, we sampled a set of deep
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Fig. 7. Scatter plot of the approximated Pareto set for the problem VRUGT2 in the 3-dimensional objective space; the deep and the shallow
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Pareto-optimal set.

3.2.2 Uncertainty in the synthetic application of a hy-
drological model

In the previous case study we showed the advantages of
the depth-based sampling in comparison with a pure multi-
objective optimisation using synthetical benchmark experi-
ments. One last experiment should establish that the MO-
ROPE method really produces robust parameter vectors in
the context of hydrological model calibration. The experi-
ment is done carrying out the following steps:

1. We chose a simple lumped hydrological model and used
observation data to generate s synthetic discharge series.

2. Afterwards we added noise to the observations and the
synthetic discharge. The noisy data was splitted into a
calibration and validation period in three different ways.

Fig. 7. Scatter plot of the approximated Pareto set for the problem VRUGT2 in the 3-dimensional objective space; the deep and the shallow
solutions (hull) are indicated by red and blue dots.
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Pareto-optimal set.

3.2.2 Uncertainty in the synthetic application of a hy-
drological model

In the previous case study we showed the advantages of
the depth-based sampling in comparison with a pure multi-
objective optimisation using synthetical benchmark experi-
ments. One last experiment should establish that the MO-
ROPE method really produces robust parameter vectors in
the context of hydrological model calibration. The experi-
ment is done carrying out the following steps:

1. We chose a simple lumped hydrological model and used
observation data to generate s synthetic discharge series.

2. Afterwards we added noise to the observations and the
synthetic discharge. The noisy data was splitted into a
calibration and validation period in three different ways.

Fig. 8. Scatter plot indicating the distribution of the actual Pareto fronts for the problem VRUGTu
2 considering uncertainty. Scatter plot of

the approximated Pareto set for the problem VRUGT2 in the 3-dimensional objective space; the deep and the shallow solutions (hull) are
indicated by red and blue dots.

parameter vectorsD
Ã

. Additionally, we generated an-
other set that comprises all vectors iñA with shallow
depth. We call it the hull of̃A and denote it byH

Ã
. Con-

sider once again that the deep parameters are sampled in
the parameter space and not in the objective space. This
means that the depth-based sampling does not require
any a priori knowledge of the used objectives.

2. In a second step, we compared the performance of the
complete estimated Pareto set and the sampled deep
parameter vectors on the problemFu. We generated
10 000 different realisations of the errorsεfi and εx .
For each realisation, we altered the parameter vectors
and identified the corresponding Pareto optimal set as
a subset ofÃ andD

Ã
. Now we compared the perfor-

mance of the complete approximated Pareto setÃ, the
sampled deep parameter vectorsD

Ã
and its hullH

Ã
re-

garding their ability to represent the set of true Pareto
sets forFu.

We performed this experiment for the test problems
VRUGT, FON and ROT in lower and higher dimensions
that were already considered in the previous case study. For
the problems VRUGT and FON, a subscript indicates the
used number of dimensions. The Pareto set of the problem
VRUGT is a multi-dimensional more or less convex region
where the sampling of deep parameter vectors might be pos-
sible. The same applies, to a lesser extent, for the prob-

lems FON and ROT where the true Pareto set is a multi-
dimensional line that is usually approximated by a cigar-
shaped set. The same applies for reasonable models that sim-
ulate natural or technical processes where the Pareto op-
timal parameters also form such geometric structures (e.g.
Bárdossy, 2007; Vrugt et al., 2003). We did not consider the
problems ZDT1-ZDT6 where the corresponding Pareto set is
a one-dimensional line with just one free parameter. In such
cases, the sampling of deep parameters is not useful.

The principle of the depth-based sampling from the Pareto
optimal sets is illustrated using the example of the problem
VRUGTu2 . The estimated non-dominated solutionsÃ, the
accordingly sampled deep parameter vectors and the hull in
both parameter and objective space are provided by Figs.6
and7. The region defined by the deep parameter vectors cor-
responds to central parts of the Pareto front. However, there
is no direct relationship to a simple cutoff value or even a
direct one to one relationship that maps just deep parameter
vectors to the central part of the Pareto front. This is in par-
ticular underlined by the distribution of the hull that corre-
sponds to larger parts of the tails but also contains members
in the central region of the Pareto front. The advantage of
the depth-based sampling approach is illustrated by Fig.8.
It shows the density of the distribution of all possible Pareto
fronts for VRUGTu2 that were estimated for the different re-
alisations ofεf andεx . Furthermore, there is an overlay with
scatter plots that represent the distribution of the estimated
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Table 7. Effectivity of the estimated Pareto optimal set (Ã) and the corresponding deep (D
Ã

) and shallow (H
Ã

) parameter vectors in terms
of the performance metrics Y and1, and the mean sum of all squared objective functions. The metrics were calculated with respect to the
individually identified non-dominated front (as a subset of the originally approximation) for each realisation of the perturbancesεx andεf .
The statistics represent the mean values over 10 000 realisations.

Convergence metric: Y Diversity metric:1 1
m

∑m
i=1(f

u
i
)

Problem Ã D
Ã

H
Ã

Ã D
Ã

H
Ã

Ã D
Ã

H
Ã

VRUGTu2 0.12 0.07 0.17 0.73 0.60 0.88 2.10 1.10 2.79
VRUGTu10 0.02 1E-6 0.05 0.37 0.29 0.30 21.4 12.4 30.6
VRUGTu30 0.03 ≈ 0 0.0514 0.35 0.34 0.34 89.3 40.2 114.0
FONu3 0.015 0.010 0.016 0.65 0.59 0.63 0.84 0.81 0.87
FONu10 0.11 0.09 0.12 1.13 1.04 1.11 1.37 1.34 1.39
ROTu 22.1 12.4 28.3 0.94 0.61 1.02 31225 17440 39951
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Pareto-optimal set.

3.2.2 Uncertainty in the synthetic application of a hy-
drological model

In the previous case study we showed the advantages of
the depth-based sampling in comparison with a pure multi-
objective optimisation using synthetical benchmark experi-
ments. One last experiment should establish that the MO-
ROPE method really produces robust parameter vectors in
the context of hydrological model calibration. The experi-
ment is done carrying out the following steps:

1. We chose a simple lumped hydrological model and used
observation data to generate s synthetic discharge series.

2. Afterwards we added noise to the observations and the
synthetic discharge. The noisy data was splitted into a
calibration and validation period in three different ways.

Fig. 9. Distribution of the diversity metric1 for the approximated
Pareto set for the problem VRUGT2; its shallow solutions (hull) are
indicated by red and blue bars.

approximation of the Pareto set of VRUGT (Ã), the corre-
sponding deep parameter vectors (D

Ã
) and the hull (H

Ã
) in

the objective space of the problem VRUGTu
2. In comparison

with the complete Pareto set, the deep parameter vectors do
not just show a better convergence to the set of true Pareto
fronts for the problem considering uncertainty. According to
the distributions of the distribution metric1 given in Fig.9,
they also provide a better mean approximation of the spread
of the true Pareto fronts for the problem VRUGTu

2.
The advantages of the depth-based sampling are not lim-

ited to simple low-dimensional problems. The results for all
considered problems including uncertainty are quantified in
Table7. It compares both performance metrics used in the
previous case, i.e. the convergence metric Y that measures
the extent of convergence to the actual Pareto sets forF u

and the diversity metric1 that provides information about
the spread of the solutions along the Pareto front. Further-
more, it provides the mean sum of the squares of all indi-
vidual objectives. For each realisation of the errorsεx and

εf , the metrics were computed with respect to the individu-
ally identified non-dominated front (as a subset of the origi-
nally approximationÃ). For all given test problems, the sam-
pled deep parameter vectors provide, in comparison with the
complete estimated Pareto set, a better mean approximation
of the actual Pareto sets in the objective space considering
uncertainty regarding both the matching and a uniform dis-
tribution. Furthermore, the mean sum of the squares of all
objectives is less for the deep parameter vectors. The effec-
tivity of the depth-based sampling becomes even more ob-
jectionable if one considers the results for the parameter vec-
tors with shallow depth, i.e. the hull. The parameters in the
hull show the least suitable regarding its ability to represent
a robust solution for the set of potential Pareto solution in an
uncertain environment. Consider that the benefit of the depth-
based sampling is greater for the problem VRUGT where the
Pareto optimal set comprises a larger region. Typically, this
is the case for hydrologic models. The results show that the
depth-based sampling might be a suitable method to identify
robust solutions with respect to a previously identified Pareto
optimal set.

3.2.2 Uncertainty in the synthetic application of a
hydrologic model

In the previous case study, we showed the advantages of
the depth-based sampling in comparison with a pure multi-
objective optimisation using synthetical benchmark experi-
ments. One last experiment should establish that the MO-
ROPE method really produces robust parameter vectors in
the context of hydrologic model calibration. The experiment
is done carrying out the following steps:

1. We chose a simple lumped hydrologic model and used
observation data to generate synthetic discharge series.

2. Afterwards, we added noise to the observations and the
synthetic discharge. The noisy data were split into a cal-
ibration and validation period in three different ways.
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Table 8.Overview of the used model parameters considered for the
synthetic hydrologic model calibration.

para- lower/upper
meter unit boundary

a [-] 0 1
k1 [h] 0.01 20
k2 [h] 20 60

3. The model was now calibrated and validated for each
realisation comparing AMALGAM and the proposed
MO-ROPE approach.

The used observations were generated using the measure-
ments in the Rietholzbach catchment. The used hydrologic
model is described below. The model is a very simple lumped
model consisting of two linear storage units. It takes both
precipitation (prec) and potential evapotranspiration (etp) as
input values and computes the corresponding discharge with
two linear storage units. In a first step the precipitation and
potential evapotranspiration are used to compute the effective
precipitation as given in Eq. (7).

peff(t)=max(0,prec(t)−etp(t)) (7)

The effective precipitationpeff is distributed to two linear
storage units using the parametera as defined in Eq. (8).

qin1(t)= a ∗peff(t) (8)

qin2(t)= (1− a) ∗peff(t) (9)

The linear storage units are filled with the computed inflows.
Each of both linear storage units generates discharge propor-
tional to the stored water contentVw as defined in Eq. (10).
The storage consk describes how fast the storage unit drains
the stored water content to the outlet.

qout(t +1)=
Vw(t)

k
(10)

The total discharge is the sum of the two outflowsqout1
andqout2. Thus, the calibration problem consists of the three
parametersa, k1 andk2 with the boundaries given in Table8.
The boundaries for the storage coefficientsk1 andk2 account
for the fact that one linear storage unit should represent the
faster runoff components while the other one models the in-
terflow and groundwater discharge. The initial storage con-
tent was fixed toVw1 = 0.015 for the faster responding stor-
age unit andVw2 = 5 for the less responsive one.

The data basis was the meteorological observations for 24
historic flood events in the Rietholzbach catchment (for de-
tails, see Sect.4). We combined the time periods in three
different ways for calibration and validation sets as shown
in Table9. The observations were altered by adding Gaus-
sian noise as given in Eq. (11). This was repeated 100 times
resulting in 100 different possible observation time series.

etpε(t)= etp(t)+ εetp(t) (11)

Table 9.Overview of the used combination of calibration and vali-
dation events.

Experi- Calibration Validation
ment events events

S1 { 12 } { 5, 6, 10, 17, 18, 20, 22}
S2 { 4, 12} { 5, 6, 10, 17, 18, 20, 22}
S3 { 4, 12, 8} { 5, 6, 10, 17, 18, 20, 22}

with

ε ∼N (0,0.5etp) (12)

Additionally, the generated synthetic discharge time series
were altered as defined in Eq. (13).

q(t)= q(t)(1+ ε q(t)) (13)

with

ε ∼N (0,q) (14)

The lumped model was now calibrated with respect to two
objective functions: the relative deviation of simulated and
observed peak runoff (rPD) and the Nash-Sutcliffe efficiency
(NS). For details, see Table13 in the following section. The
mean validation results for both a pure multi-objective cali-
bration using the AMALGAM algorithm and the correspond-
ing deep parameter vectors are given in Tables10 and11. It
is obvious that the deep parameters provide a slightly bet-
ter model performance in mean and have less outliers on
the negative side of the performance scale in terms of both
considered performance criteria. This is also indicated by
a slightly smaller standard deviation of the model perfor-
mances. These results show that the advantages of the depth-
based sampling approach apply not only for completely syn-
thetic benchmarks but also for the calibration of a simple
hydrologic model in a controlled environment. This under-
lines the possibilities of the depth-based sampling for the
estimation of robust hydrologic model parameters.

4 Calibrating WaSiM with MO-ROPE focussing on
flood forecasting

4.1 Case study area and the hydrologic model

In a real world application, the MO-ROPE approach is
tested on the calibration of the distributed hydrologic model
WaSiM-ETH /6.4 model (further referred to as WaSiM). he
model was developed bySchulla(1997). WaSiM transforms
rainfall into runoff according to the scheme shown in Fig.10.
It exemplary shows that the soil water compartments receive
infiltration which is computed by a modified approach ac-
cording toGreen and Ampt(1911). This module is also used
to determine the direct runoffQd and the interflowQifl in
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Table 10.Validation performance of the solutions estimated by AMALGAM and MO-ROPE in terms of the Nash-Sutcliffe efficiency (NS).

Experiment AMALGAM MO-ROPE

Mean Std Range Mean Std Range

S1 0.95 0.28 0.88–0.99 0.96 0.21 0.91–0.99
S2 0.97 0.21 0.91–0.99 0.98 0.13 0.93–0.99
S3 0.98 0.12 0.93–0.99 0.98 0.08 0.96–0.99

Table 11.Validation performance of the solutions estimated by AMALGAM and MO-ROPE in terms of the relative peak deviation (rPD).

Experiment AMALGAM MO-ROPE

Mean Std Range Mean Std Range

S1 0.04 0.08 0.02–0.16 0.03 0.06 0.02–0.13
S2 0.03 0.06 0.02–0.14 0.02 0.04 0.02–0.11
S3 0.03 0.05 0.02–0.10 0.02 0.03 0.02–0.07

the model.Qd is then routed via a flow-time grid and fi-
nally projected cell-wise to the catchment outlet by means
of a simple bucket-type function. The recession coefficient
of this function is the model parameterkd. The soil water
movement through the different soil layers is modelled by
means of the discrete form of the Richards equation. The
WaSiM model was calibrated for the Rietholzbach catch-
ment, a small pre-alpine catchment located in the north-east
of Switzerland. A significant number of hydrologic studies
have been conducted in this basin. It has been observed as a
research catchment by the ETH Zurich since 1975. The outlet
drains a 3.18 km2 hilly pre-alpine watershed with an average
annual precipitation of 1600 mm, generating a mean runoff
of 1046 mm per year. For further information, refer toGurtz
et al. (1999); Zappa(2002) and the websitehttp://www.iac.
ethz.ch/research/rietholzbach. In this case study, WaSiM will
be calibrated for the simulation of extreme discharges. Out
of a time series of 27 yr (1981–2008) of hourly measure-
ments (precipitation, temperature, wind speed, global radia-
tion, and streamflow), 24 significant flood events were identi-
fied, such that the whole range of possible flood characteris-
tics occurring in the catchment is well covered. An exception
was made in that we did not use any winter events to avoid a
blurring of the results due to the dynamics of snow accumu-
lation and melt. For further details and a more comprehensive
overview, refer toKrauße and Cullmann(2011a).

The WaSiM model has been chosen in this study be-
cause its physically based unsaturated zone module main-
tains the characteristic physics of dynamic rainfall-runoff
processes even for unobserved events. This is especially im-
portant for correctly portraying the pre-event catchment con-
ditions. “WaSiM is therefore – amongst the available mod-
els – one of the best suited for extrapolation into the range
of extreme flood events” (Cullmann, 2006, p. 20). That is
why it has been widely used for the modelling of flood

events (e.g.Marx, 2007; Cullmann et al., 2008; Grundmann,
2010). We performed this case study in the Rietholzbach
catchment because it has a long record of hourly datasets
and the perturbing impact of data heterogeneity is relatively
small in this catchment. Furthermore, the WaSiM model
has been thoroughly tested within this catchment (Schulla,
1997). Notwithstanding these advantages, the modelling of
flood events in such a small catchment is a challenging task.
Typically, the achievable model performance is just moder-
ate and the modelling process is subject to many uncertain-
ties that can hardly be quantified. However, the results of
previous studies dealing with flood forecasting suggest that
an improved parametrisation of headwater catchments can
have a big impact on the model performance for gauging
stations in the lower reaches that are usually monitored by
operational flood forecasting centres (e.g.Cullmann, 2006;
Grundmann, 2010). Many studies dealing with model cal-
ibration focussing on flood events showed that there is a
tremendous tradeoff between a correct modelling of the peak
flow values and a good representation of the catchment be-
haviour in terms of the streamflow at the outlet (e.g.Moussa
and Chahinian, 2009; Grundmann, 2010). The goal of this
case study is thus to study the advantages of the developed
MO-ROPE strategy for the calibration of a process-oriented
hydrologic model focussing on flood events with respect to
multiple objectives.

4.2 Calibrating WaSiM for flood events using two
objectives

In a first case study, we calibrated WaSiM using two objec-
tives. The relative peak flow deviation (rPD) quantifies the
agreement between observed and simulated peak flow value,
whereas the coefficient of efficiency according toNash and
Sutcliffe (1970) (NS) assesses the global fit of the observed
and simulated hydrograph. According to our experience with

Hydrol. Earth Syst. Sci., 16, 3579–3606, 2012 www.hydrol-earth-syst-sci.net/16/3579/2012/

http://www.iac.ethz.ch/research/rietholzbach
http://www.iac.ethz.ch/research/rietholzbach


T. Krauße et al.: Robust multi-objective calibration strategies 3595

Table 12.Overview of the used model parameters considered for calibration; the reference parameter vectorθwb was estimated in order to
use WaSiM for water-balance simulations in the Rietholzbach catchment; the parameterisation of the soil hydraulic parameters is done for
each soil according to the pedotransfer functions provided inWösten et al.(1999) andBrakensiek et al.(1984).

Parameter Unit Reference Lower/Upper boundary Description
(θwb)

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 1 60 storage coefficient of interflow
dr [–] 2.1 1 80 drainage density

krec [–] 0.1 0.01 1 gradient ofks with increasing depth

ks [ms−1] 2.22e−5 3.19e−6 1.32e−4 saturated hydraulic conductivity
2s [–] 0.412 0.38 0.46 saturation water content

βSL =
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Table 12. Overview of the used model parameters considered for calibration; the reference parameter vector θwb was estimated in order to
use WaSiM for water-balance simulations in the Rietholzbach catchment; the parameterisation of the soil hydraulic parameters is done for
each soil according to the pedotransfer functions provided in Wösten et al. (1999) and Brakensiek et al. (1984)

parameter unit reference (θwb) lower / upper boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 1 60 storage coefficient of interflow
dr [-] 2.1 1 80 drainage density

krec [-] 0.1 0.01 1 gradient of ks with increasing depth

βSL =


ks [m/s] 2.22e−5 3.19e−6 1.32e−4 saturated hydraulic conductivity
Θs [-] 0.412 0.38 0.46 saturation water content
Θr [-] 0.01 0.01 0.01 residual water content
α [-] 4.60 1.62 8.97 empirical shape parameter (MVG)
n [-] 1.29 1.18 1.45 empirical shape parameter (MVG)

βSiL =


ks [m/s] 7.12e−7 1.07e−7 2.95e−6 saturated hydraulic conductivity
Θs [-] 0.42 0.41 0.46 saturation water content
Θr [-] 0.01 0.01 0.01 residual water content
α [-] 1.36 0.67 2.17 empirical shape parameter (MVG)
n [-] 1.26 1.14 1.46 empirical shape parameter (MVG)

Table 13. Objective functions used in this study, where qxi , qyi(θ), and Θxi , Θyi(θ) are the observed and simulated discharge and mean soil
moisture at time-step i, respectively. The simulated values are computed by the parameter vector θ. n denotes the number of observations.

Name Description Formula

NS Nash-Suttcliffe efficiency 1−
1
n

∑n
i=1 (qxi−qyi (θ))

2

1
n

∑n
i=1(qxi−qx)

2

rPD rel. peak flow deviation |qxmax−qymax (θ)|
qxmax

FloodSkill aggregate between NS and rPD NS−rPD

rΘ moisture correlation coefficient
∑
i=1n(Θxi−Θx)·(Θyi−Θy)√

(
∑n
i=1(Θxi−Θx)2·

∑n
i=1(Θyi−Θy)2

The WaSiM model has been chosen in this study be-
cause its physically based unsaturated zone module main-
tains the characteristic physics of dynamic rainfall-runoff
processes even for unobserved events. This is especially im-
portant for correctly portraying the pre-event catchment con-
ditions. “WaSiM is therefore - amongst the available mod-
els - one of the best suited for extrapolation into the range
of extreme flood events” (Cullmann, 2006, p. 20). That
is why it has been widely used for the modelling of flood
events (e.g. Marx, 2007; Cullmann et al., 2008; Grundmann,
2010). We performed this case study in the Rietholzbach
catchment because it has a long record of hourly data sets
and the perturbing impact of data heterogeneity is relatively
small in this catchment. Furthermore the WaSiM model
has been thoroughly tested within this catchment (Schulla,

1997). Notwithstanding these advantages, the modelling of
flood events in such a small catchment is a challenging task.
Typically the achievable model performance is just moder-
ate and the modelling process is subject to many uncertain-
ties that can hardly be quantified. However, the results of
previous studies dealing with flood forecasting suggest that
an improved parametrisation of headwater catchments can
have a big impact on the model performance for gauging
stations in the lower reaches that are usually monitored by
operational flood forecasting centres (e.g. Cullmann, 2006;
Grundmann, 2010). Many studies dealing with model cal-
ibration focussing on flood events showed that there is a
tremendous tradeoff between a correct modelling of the peak
flow values and a good representation of the catchment be-
haviour in terms of the streamflow at the outlet (e.g. Moussa

2r [–] 0.01 0.01 0.01 residual water content
α [–] 4.60 1.62 8.97 empirical shape parameter (MVG)
n [–] 1.29 1.18 1.45 empirical shape parameter (MVG)

ks [ms−1] 7.12e−7 1.07e−7 2.95e−6 saturated hydraulic conductivity
2s [–] 0.42 0.41 0.46 saturation water content

βSiL =
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use WaSiM for water-balance simulations in the Rietholzbach catchment; the parameterisation of the soil hydraulic parameters is done for
each soil according to the pedotransfer functions provided in Wösten et al. (1999) and Brakensiek et al. (1984)

parameter unit reference (θwb) lower / upper boundary description

kd [h] 7 0.01 25 storage coefficient of direct runoff
ki [h] 20 1 60 storage coefficient of interflow
dr [-] 2.1 1 80 drainage density

krec [-] 0.1 0.01 1 gradient of ks with increasing depth

βSL =


ks [m/s] 2.22e−5 3.19e−6 1.32e−4 saturated hydraulic conductivity
Θs [-] 0.412 0.38 0.46 saturation water content
Θr [-] 0.01 0.01 0.01 residual water content
α [-] 4.60 1.62 8.97 empirical shape parameter (MVG)
n [-] 1.29 1.18 1.45 empirical shape parameter (MVG)

βSiL =


ks [m/s] 7.12e−7 1.07e−7 2.95e−6 saturated hydraulic conductivity
Θs [-] 0.42 0.41 0.46 saturation water content
Θr [-] 0.01 0.01 0.01 residual water content
α [-] 1.36 0.67 2.17 empirical shape parameter (MVG)
n [-] 1.26 1.14 1.46 empirical shape parameter (MVG)

Table 13. Objective functions used in this study, where qxi , qyi(θ), and Θxi , Θyi(θ) are the observed and simulated discharge and mean soil
moisture at time-step i, respectively. The simulated values are computed by the parameter vector θ. n denotes the number of observations.

Name Description Formula

NS Nash-Suttcliffe efficiency 1−
1
n

∑n
i=1 (qxi−qyi (θ))
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i=1(qxi−qx)
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rPD rel. peak flow deviation |qxmax−qymax (θ)|
qxmax

FloodSkill aggregate between NS and rPD NS−rPD

rΘ moisture correlation coefficient
∑
i=1n(Θxi−Θx)·(Θyi−Θy)√

(
∑n
i=1(Θxi−Θx)2·
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The WaSiM model has been chosen in this study be-
cause its physically based unsaturated zone module main-
tains the characteristic physics of dynamic rainfall-runoff
processes even for unobserved events. This is especially im-
portant for correctly portraying the pre-event catchment con-
ditions. “WaSiM is therefore - amongst the available mod-
els - one of the best suited for extrapolation into the range
of extreme flood events” (Cullmann, 2006, p. 20). That
is why it has been widely used for the modelling of flood
events (e.g. Marx, 2007; Cullmann et al., 2008; Grundmann,
2010). We performed this case study in the Rietholzbach
catchment because it has a long record of hourly data sets
and the perturbing impact of data heterogeneity is relatively
small in this catchment. Furthermore the WaSiM model
has been thoroughly tested within this catchment (Schulla,

1997). Notwithstanding these advantages, the modelling of
flood events in such a small catchment is a challenging task.
Typically the achievable model performance is just moder-
ate and the modelling process is subject to many uncertain-
ties that can hardly be quantified. However, the results of
previous studies dealing with flood forecasting suggest that
an improved parametrisation of headwater catchments can
have a big impact on the model performance for gauging
stations in the lower reaches that are usually monitored by
operational flood forecasting centres (e.g. Cullmann, 2006;
Grundmann, 2010). Many studies dealing with model cal-
ibration focussing on flood events showed that there is a
tremendous tradeoff between a correct modelling of the peak
flow values and a good representation of the catchment be-
haviour in terms of the streamflow at the outlet (e.g. Moussa

2r [–] 0.01 0.01 0.01 residual water content
α [–] 1.36 0.67 2.17 empirical shape parameter (MVG)
n [–] 1.26 1.14 1.46 empirical shape parameter (MVG)

Table 13.Objective functions used in this study, whereqxi , qyi (θ), and2xi ,2yi (θ) are the observed and simulated discharge and mean soil
moisture at time stepi, respectively. The simulated values are computed by the parameter vectorθ . n denotes the number of observations.

Name Description Formula

NS Nash-Sutcliffe efficiency 1−
1
n

∑n
i=1 (qxi−qyi (θ))

2

1
n

∑n
i=1

(
qxi−qx

)2

rPD rel. peak flow deviation
|qxmax−qymax(θ)|

qxmax

FloodSkill aggregate between NS and rPD NS–rPD

r2 moisture correlation coefficient
∑
i=1n(2xi−2x )·(2yi−2y )√∑n

i=1(2xi−2x )
2·

∑n
i=1(2yi−2y )

2

WaSiM, both criteria have a small correlation and are most
suitable to quantify the model performance focussing on
flood events. In a further case study, we additionally consid-
ered the correlation between the simulated soil moisture and
the observed soil moisture in terms of the lysimeter weight
in the catchment. An overview of objective criteria referred
to in the following case studies is provided in Table13. The
model parameters considered for calibration are the concep-
tual model parameterskd, ki , “dr” and krec. kd and ki are
storage coefficients that control the outflow of linear stor-
age events that collect the generated direct runoff and inter-
flow, whereas “dr” is a scalar value that controls the genera-
tion of interflow. The conceptual soil parameterkrec deter-
mines the decrease of the saturated soil conductivity with
increasing depth. Furthermore, we considered the soil hy-
draulic parameters of the dominating soils SL and SiL as

additional calibration parameters. A reasonable a priori es-
timation of the distribution of the soil hydraulic parame-
ters and a scaling of these values to one scaling parameter
per soil (βSL andβSiL) were done using an approach pre-
sented inGrundmann(2010). Previous studies with WaSiM
focussing on flood events (e.g.Cullmann, 2006; Grundmann,
2010) showed that the selected set of model parameters is
the most sensitive and suitable calibrating WaSiM for the
modelling of flood events in fast responding catchments.
These results were confirmed by preliminary sensitivity anal-
yses with WaSiM in the Rietholzbach catchment (Cullmann,
2006; Seifert, 2010). All calibration parameters with their
a priori distribution are clearly summarised in Table12.
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Table 10. Validation performance of the solutions estimated by AMALGAM and MO-ROPE in terms of the Nash-Suttcliffe efficiency (NS)

Experiment AMALGAM MO-ROPE
Mean Std Range Mean Std Range

S1 0.95 0.28 0.88 – 0.99 0.96 0.21 0.91 – 0.99
S2 0.97 0.21 0.91 – 0.99 0.98 0.13 0.93 – 0.99
S3 0.98 0.12 0.93 – 0.99 0.98 0.08 0.96 – 0.99

Table 11. Validation performance of the solutions estimated by AMALGAM and MO-ROPE in terms of the relative peak deviation (rPD)

Experiment AMALGAM MO-ROPE
Mean Std Range Mean Std Range

S1 0.04 0.08 0.02 – 0.16 0.03 0.06 0.02 – 0.13
S2 0.03 0.06 0.02 – 0.14 0.02 0.04 0.02 – 0.11
S3 0.03 0.05 0.02 – 0.10 0.02 0.03 0.02 – 0.07

4 Calibrating WaSiM with MO-ROPE focussing on
flood forecasting

4.1 Case study area and the hydrological model

In a real world application, the MO-ROPE approach is
tested on the calibration of the distributed hydrological
model WaSiM-ETH/6.4 model (in the further referred to
as WaSiM). The model was developed by Schulla (1997).
WaSiM transforms rainfall into runoff according to the
scheme shown in Fig. 10. It exemplary shows that the soil
water compartments receive infiltration which is computed
by a modified approach according to Green and Ampt (1911).
This module is also used to determine the direct runoff Qd
and the interflow Qifl in the model. Qd is then routed via
a flow-time grid and finally projected cell-wise to the catch-
ment outlet by means of a simple bucket type function. The
recession coefficient of this function is the model parameter
kd. The soil water movement through the different soil layers
is modeled by means of the discrete form of the Richards-
equation. The WaSiM model was calibrated for the Ri-
etholzbach catchment a small pre-alpine catchment located
in the north-east of Switzerland. A significant number of hy-
drological studies have been conducted in this basin. It has
been observed as a research catchment by the ETH Zurich
since 1975. The outlet drains a 3.18km2 hilly pre-alpine wa-
tershed with an average annual precipitation of 1600 mm,
generating a mean runoff of 1046 mm per year. For further
information refer to Gurtz et al. (1999); Zappa (2002) and the
website http://www.iac.ethz.ch/research/rietholzbach. In this
case study WaSiM will be calibrated for the simulation of
extreme discharges. Out of a time series of 27 years (1981-
2008) of hourly measurements (precipitation, temperature,
wind speed, global radiation, and streamflow), 24 significant
flood events were identified, such that the whole range of
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Fig. 10. Scheme of the WaSiM soil module with location of impact
of soil hydraulic and conceptual model parameters (bold)

possible flood characteristics occurring in the catchment is
well covered. An exception was made in that we did not use
any winter events to avoid a blurring of the results due to
the dynamics of snow accumulation and melt. For further
details and a more comprehensive overview refer to Krauße
and Cullmann (2011a).

Fig. 10.Scheme of the WaSiM soil module with location of impact
of soil hydraulic and conceptual model parameters (bold).

We used five flood events with different characteristics5 for
calibration, and the estimated parameter vectors were vali-
dated on further 19 flood events.

We applied MO-ROPE using the given setup in order to
estimate a set of robust model parameter vectors for the
modelling of flood events using the two objectives rPD
and NS. The Pareto set was estimated using the extended
AMALGAM ∗ framework. We checked the convergence of
the algorithm using the development of the hypervolume
dominated by the so far estimated non-dominated Pareto
front in the consecutive generations as given in Fig.12. It
is evident that the hypervolume reaches stationary after ap-
proximately 80 generations. With a population size of 50,
this corresponds to 4000 function evaluations. We decided to
consider an additional buffer and thus set the maximum num-
ber of function evaluations to 6000. The trade-off surface for
both objectives rPD and NS on the basis of all parameter vec-
tors evaluated by AMALGAM∗ and the estimated approxi-
mation of the Pareto optimal set̃A is given in Fig.11. The
evaluation of the model performances corresponding to the

5We considered flood events caused by convective and advective
precipitation, different peak flow values and events with single and
multiple flood crests.
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and Chahinian, 2009; Grundmann, 2010). The goal of this
case study is thus to study the advantages of the developed
MO-ROPE strategy for the calibration of a process-oriented
hydrologic model focussing on flood events with respect to
multiple objectives.

4.2 Calibrating WaSiM for flood events using two ob-
jectives

In a first case study we calibrated WaSiM using two objec-
tives. The relative peak flow deviation (rPD) quantifies the
agreement between observed and simulated peak flow value
whereas the coefficient of efficiency according to Nash and
Sutcliffe (1970) (NS) assesses the global fit of the observed
and simulated hydrograph. According to our experience with
WaSiM both criteria have a small correlation and are most
suitable to quantify the model performance focussing on
flood events. In a further case study we additionally consid-
ered the correlation between the simulated soil moisture and
the observed soil moisture in terms of the lysimeter weight in
the catchment. An overview over objective criteria referred
to in the following case studies is provided in Table 13. The
model parameters considered for calibration are the concep-
tual model parameters kd, ki, dr and krec. kd and ki are
storage coefficients that control the outflow of linear storage
events that collect the generated direct runoff and interflow
whereas dr is a scalar value that controls the generation of
interflow. The conceptual soil parameter krec determines the
decrease of the saturated soil conductivity with increasing
depth. Furthermore, we considered the soil hydraulic pa-
rameters of the dominating soils SL and SiL as additional
calibration parameters. A reasonable a priori estimation of
the distribution of the soil hydraulic parameters and a scal-
ing of these values to one scaling parameter per soil (βSL and
βSiL) was done using an approach presented in Grundmann
(2010). Previous studies with WaSiM focussing on flood
events (e.g. Cullmann, 2006; Grundmann, 2010) showed that
the selected set of model parameters are the most sensitive
and suitable calibrating WaSiM for the modelling of flood
events in fast responding catchments. These results were
confirmed by preliminary sensitivity analyses with WaSiM in
the Rietholzbach catchment (Cullmann, 2006; Seifert, 2010).
All calibration parameters with their a priori distribution are
clearly summarised in Table 12. We used five flood events
with different characteristics4 for calibration and the esti-
mated parameter vectors were validated on further 19 flood
events.

We applied MO-ROPE using the given setup in order to
estimate a set of robust model parameter vectors for the
modelling of flood events using the two objectives rPD
and NS. The Pareto set was estimated using the extended
AMALGAM∗ framework. We checked the convergence of

4We considered flood events caused by convective and advective
precipitation, different peak flow values and events with single and
multiple flood crests.

N
S

rPD

0 0.1 0.2 0.3
1

0.8

0.6

0.4

Fig. 11. Evolution of the trade-off surface of the WaSiM parame-
ter vectors in the two-dimensional objective space. The grey dots
represent the whole set of parameter vectors that were evaluated
during the the identified approximation of the Pareto optimal set Ã,
whereas the gray crosses represent other dominated parameter vec-
tors that were evaluated by the algorithm. The best single-criteria
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Fig. 12. Illustration of the development of the hypervolume of the
estimated non-dominated front as a function of the generation num-
ber; the hypervolume was calculated with respect to the point [1,0]
which corresponds to 100% peakflow deviation and a Nash value of
zero.

the algorithm using the development of the hypervolume
dominated by the so far estimated non-dominated Pareto
front in the consecutive generations as given in Fig. 12.
It is evident that the hypervolume reaches is stationary af-
ter approximately 80 generations. With a population size of
50 this corresponds to 4.000 function evaluations. We de-
cided to consider an additional buffer and thus set the maxi-
mum number of function evaluations to 6.000. The trade-off
surface for both objectives rPD and NS on the basis of all
parameter vectors evaluated by AMALGAM∗ and the esti-
mated approximation of the Pareto optimal set Ã is given

Fig. 11.Evolution of the trade-off surface of the WaSiM parameter
vectors in the two-dimensional objective space. The grey dots rep-
resent the whole set of parameter vectors that were evaluated during
the approximation of the Pareto optimal setÃ, indicated by red dots.
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and Chahinian, 2009; Grundmann, 2010). The goal of this
case study is thus to study the advantages of the developed
MO-ROPE strategy for the calibration of a process-oriented
hydrologic model focussing on flood events with respect to
multiple objectives.

4.2 Calibrating WaSiM for flood events using two ob-
jectives

In a first case study we calibrated WaSiM using two objec-
tives. The relative peak flow deviation (rPD) quantifies the
agreement between observed and simulated peak flow value
whereas the coefficient of efficiency according to Nash and
Sutcliffe (1970) (NS) assesses the global fit of the observed
and simulated hydrograph. According to our experience with
WaSiM both criteria have a small correlation and are most
suitable to quantify the model performance focussing on
flood events. In a further case study we additionally consid-
ered the correlation between the simulated soil moisture and
the observed soil moisture in terms of the lysimeter weight in
the catchment. An overview over objective criteria referred
to in the following case studies is provided in Table 13. The
model parameters considered for calibration are the concep-
tual model parameters kd, ki, dr and krec. kd and ki are
storage coefficients that control the outflow of linear storage
events that collect the generated direct runoff and interflow
whereas dr is a scalar value that controls the generation of
interflow. The conceptual soil parameter krec determines the
decrease of the saturated soil conductivity with increasing
depth. Furthermore, we considered the soil hydraulic pa-
rameters of the dominating soils SL and SiL as additional
calibration parameters. A reasonable a priori estimation of
the distribution of the soil hydraulic parameters and a scal-
ing of these values to one scaling parameter per soil (βSL and
βSiL) was done using an approach presented in Grundmann
(2010). Previous studies with WaSiM focussing on flood
events (e.g. Cullmann, 2006; Grundmann, 2010) showed that
the selected set of model parameters are the most sensitive
and suitable calibrating WaSiM for the modelling of flood
events in fast responding catchments. These results were
confirmed by preliminary sensitivity analyses with WaSiM in
the Rietholzbach catchment (Cullmann, 2006; Seifert, 2010).
All calibration parameters with their a priori distribution are
clearly summarised in Table 12. We used five flood events
with different characteristics4 for calibration and the esti-
mated parameter vectors were validated on further 19 flood
events.

We applied MO-ROPE using the given setup in order to
estimate a set of robust model parameter vectors for the
modelling of flood events using the two objectives rPD
and NS. The Pareto set was estimated using the extended
AMALGAM∗ framework. We checked the convergence of

4We considered flood events caused by convective and advective
precipitation, different peak flow values and events with single and
multiple flood crests.
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ter vectors in the two-dimensional objective space. The grey dots
represent the whole set of parameter vectors that were evaluated
during the the identified approximation of the Pareto optimal set Ã,
whereas the gray crosses represent other dominated parameter vec-
tors that were evaluated by the algorithm. The best single-criteria
solutions (NS and rPD respectively) are indicated by black dots.
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Fig. 12. Illustration of the development of the hypervolume of the
estimated non-dominated front as a function of the generation num-
ber; the hypervolume was calculated with respect to the point [1,0]
which corresponds to 100% peakflow deviation and a Nash value of
zero.

the algorithm using the development of the hypervolume
dominated by the so far estimated non-dominated Pareto
front in the consecutive generations as given in Fig. 12.
It is evident that the hypervolume reaches is stationary af-
ter approximately 80 generations. With a population size of
50 this corresponds to 4.000 function evaluations. We de-
cided to consider an additional buffer and thus set the maxi-
mum number of function evaluations to 6.000. The trade-off
surface for both objectives rPD and NS on the basis of all
parameter vectors evaluated by AMALGAM∗ and the esti-
mated approximation of the Pareto optimal set Ã is given

Fig. 12. Illustration of the development of the hypervolume of the
estimated non-dominated front as a function of the generation num-
ber; the hypervolume was calculated with respect to the point[1,0]
which corresponds to 100 % peak flow deviation and a Nash value
of zero.

estimated parameter vectors shows a clear tradeoff between
both used objectives. That means that the best parameter vec-
tors with respect to the peak flow value cannot represent the
global behaviour of the catchment for flood events equally
well. The following final step, the sampling of deep parame-
ter vectors, was done using the GenDeep strategy. We com-
pared the results of the estimated approximation of Pareto
setÃ and the deep parameter vectorsDÃ. Additionally, we
compared this set with the parameter vectors determined by
the single-objective robust parameter estimation algorithm
ROPE-PSO, using both the singular objectives rPD and NS,
and an aggregated criterion, called FloodSkill (see Table13),
as objective functions.

The estimated Pareto set and the sampled deep parame-
ter vectors in the parameter space are provided in Fig.13.
The Pareto set is almost convex which is advantageous for
the depth-based sampling. The deep parameter vectors cover
the central region of the set, and its convex hull is indicative
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Table 14.Distribution of the robust parameter vectors of the WaSiM model estimated by MO-ROPE and the three different single-objective
ROPE-PSO runs.

kd ki dr βSL βSiL krec

Initial range 0.01–25 1–60 1–80 0.06–16 0.04–9.5 0.01–1

MO-ROPE
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Table 14. Distribution of the robust parameter vectors of the WaSiM model estimated by MO-ROPE and the three different single-objective
ROPE-PSO runs.

kd ki dr βSL βSiL krec

Initial range 0.01−25 1−60 1−80 0.06−16 0.04−9.5 0.01−1
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Range [2.47−3.47] [29.1−49.0] [50.4−72.9] [0.61−1.37] [0.82−1.16] [0.66−0.72]
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Range [2.00−5.96] [27.9−60.0] [30.6−73.4] [0.08−1.43] [0.01−0.88] [0.01−0.72]

dr is forced to higher values (more interflow generation), the
soils are adjusted more conductive (higher values of the scal-
ing parameters βSL and βSiL) in all soil layers (higher values
of krec). Furthermore the variance of these parameters gets
smaller as several flow components with different temporal
dynamics have to represented by just one component the in-
terflow. On the other hand the estimates for the efficiency
criterion NS show in general a larger spread. The NS crite-
rion quantifies the agreement of the observed and simulated
catchment behaviour in a global way with an overweighting
of the time steps with higher streamflow. A calibration with
this criterion does not necessary force the model to its limits
and can neglect a part of the fast runoff components in order
to achieve a high NS value. The corresponding peak flow
deviations are higher but the flow components can be repre-
sented by more model components and as a consequence the
variance of the estimated parameter distributions gets larger.
The parameter distributions estimated by the multi-objective
MO-ROPE approach have mean values that are in-between
the mean values of the single objective calibrations using the

rPD and the aggregated compromise criterion FloodSkill. In
comparison with the single-objective calibration runs, the use
of the multi-objective MO-ROPE approach obtains tighter
variation intervals. These results confirm the outcome of pre-
vious studies dealing with the multi-objective calibration of
conceptual hydrologic models focussing on flood events (e.g.
Engeland et al., 2006; Moussa and Chahinian, 2009).

A comparison of the complete Pareto set Ã, its hull HÃ
(thus the points with shallow depth) and the sampled deep
parameter vectors DÃ in the objective space for both the cal-
ibration and the validation data is provided in Fig. 14 (a) and
(b). These figures illustrate the advantage of the depth based
sampling. In the objective space for the calibration data the
sampled deep parameter vectors are obviously concentrated
in a central part of the Pareto front, whereas the parameter
vectors in the hull are distributed over all parts of the Pareto
front with high density in the area of the tails and low density
in the central part of the front. The sampled deep parameter
vectors show a better performance on the validation data than
the complete Pareto set. The deep parameter vectors have

Mean±Std 2.93±0.19 37.9±3.94 61.7±5.06 1.00±0.14 0.99±0.08 0.69±0.01
Range [2.47–3.47] [29.1–49.0] [50.4–72.9] [0.61–1.37] [0.82–1.16] [0.66–0.72]

ROPE-PSO(rPD)
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Table 14. Distribution of the robust parameter vectors of the WaSiM model estimated by MO-ROPE and the three different single-objective
ROPE-PSO runs.
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dr is forced to higher values (more interflow generation), the
soils are adjusted more conductive (higher values of the scal-
ing parameters βSL and βSiL) in all soil layers (higher values
of krec). Furthermore the variance of these parameters gets
smaller as several flow components with different temporal
dynamics have to represented by just one component the in-
terflow. On the other hand the estimates for the efficiency
criterion NS show in general a larger spread. The NS crite-
rion quantifies the agreement of the observed and simulated
catchment behaviour in a global way with an overweighting
of the time steps with higher streamflow. A calibration with
this criterion does not necessary force the model to its limits
and can neglect a part of the fast runoff components in order
to achieve a high NS value. The corresponding peak flow
deviations are higher but the flow components can be repre-
sented by more model components and as a consequence the
variance of the estimated parameter distributions gets larger.
The parameter distributions estimated by the multi-objective
MO-ROPE approach have mean values that are in-between
the mean values of the single objective calibrations using the

rPD and the aggregated compromise criterion FloodSkill. In
comparison with the single-objective calibration runs, the use
of the multi-objective MO-ROPE approach obtains tighter
variation intervals. These results confirm the outcome of pre-
vious studies dealing with the multi-objective calibration of
conceptual hydrologic models focussing on flood events (e.g.
Engeland et al., 2006; Moussa and Chahinian, 2009).

A comparison of the complete Pareto set Ã, its hull HÃ
(thus the points with shallow depth) and the sampled deep
parameter vectors DÃ in the objective space for both the cal-
ibration and the validation data is provided in Fig. 14 (a) and
(b). These figures illustrate the advantage of the depth based
sampling. In the objective space for the calibration data the
sampled deep parameter vectors are obviously concentrated
in a central part of the Pareto front, whereas the parameter
vectors in the hull are distributed over all parts of the Pareto
front with high density in the area of the tails and low density
in the central part of the front. The sampled deep parameter
vectors show a better performance on the validation data than
the complete Pareto set. The deep parameter vectors have

Mean±Std 0.34±0.27 5.4±3.18 59.2±5.21 2.44±0.15 1.97±0.15 0.88±0.02
Range [0.01–1.33] [1.1–15.4] [40.9–71.0] [1.84–2.93] [0.69–2.50] [0.83–0.92]

ROPE-PSO(FloodSkill)
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Table 14. Distribution of the robust parameter vectors of the WaSiM model estimated by MO-ROPE and the three different single-objective
ROPE-PSO runs.

kd ki dr βSL βSiL krec
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dr is forced to higher values (more interflow generation), the
soils are adjusted more conductive (higher values of the scal-
ing parameters βSL and βSiL) in all soil layers (higher values
of krec). Furthermore the variance of these parameters gets
smaller as several flow components with different temporal
dynamics have to represented by just one component the in-
terflow. On the other hand the estimates for the efficiency
criterion NS show in general a larger spread. The NS crite-
rion quantifies the agreement of the observed and simulated
catchment behaviour in a global way with an overweighting
of the time steps with higher streamflow. A calibration with
this criterion does not necessary force the model to its limits
and can neglect a part of the fast runoff components in order
to achieve a high NS value. The corresponding peak flow
deviations are higher but the flow components can be repre-
sented by more model components and as a consequence the
variance of the estimated parameter distributions gets larger.
The parameter distributions estimated by the multi-objective
MO-ROPE approach have mean values that are in-between
the mean values of the single objective calibrations using the

rPD and the aggregated compromise criterion FloodSkill. In
comparison with the single-objective calibration runs, the use
of the multi-objective MO-ROPE approach obtains tighter
variation intervals. These results confirm the outcome of pre-
vious studies dealing with the multi-objective calibration of
conceptual hydrologic models focussing on flood events (e.g.
Engeland et al., 2006; Moussa and Chahinian, 2009).

A comparison of the complete Pareto set Ã, its hull HÃ
(thus the points with shallow depth) and the sampled deep
parameter vectors DÃ in the objective space for both the cal-
ibration and the validation data is provided in Fig. 14 (a) and
(b). These figures illustrate the advantage of the depth based
sampling. In the objective space for the calibration data the
sampled deep parameter vectors are obviously concentrated
in a central part of the Pareto front, whereas the parameter
vectors in the hull are distributed over all parts of the Pareto
front with high density in the area of the tails and low density
in the central part of the front. The sampled deep parameter
vectors show a better performance on the validation data than
the complete Pareto set. The deep parameter vectors have

Mean±Std 3.59±0.67 43.8±5.28 50.8±12.94 2.34±0.37 0.58±0.12 0.55±0.16
Range [0.88–5.03] [19.4–59.9] [22.0–77.4] [1.43–3.54] [0.16–0.89] [0.05–0.87]
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Table 14. Distribution of the robust parameter vectors of the WaSiM model estimated by MO-ROPE and the three different single-objective
ROPE-PSO runs.

kd ki dr βSL βSiL krec

Initial range 0.01−25 1−60 1−80 0.06−16 0.04−9.5 0.01−1

MO-ROPE

2 2.75 3.5
0

1

2

25 37.5 50
0

0.05

0.1

50 62.5 75
0

0.05

0.1

0.6 1 1.4
0

2.5

5

0.8 1 1.2
0

5

10

0.66 0.69 0.72
0

25

50

Mean± Std 2.93±0.19 37.9±3.94 61.7±5.06 1.00±0.14 0.99±0.08 0.69±0.01

Range [2.47−3.47] [29.1−49.0] [50.4−72.9] [0.61−1.37] [0.82−1.16] [0.66−0.72]

ROPE-PSO (rPD)

0 0.75 1.5
0

1

2

1 13 25
0

0.1

0.2

40 57.5 75
0

0.1

0.2

2 2.6 3.2
0

2.5

5

1.2 2 2.8
0

2.5

5

0.82 0.87 0.92
0

25

50

Mean± Std 0.34±0.27 5.4±3.18 59.2±5.21 2.44±0.15 1.97±0.15 0.88±0.02

Range [0.01−1.33] [1.1−15.4] [40.9−71.0] [1.84−2.93] [0.69−2.50] [0.83−0.92]

ROPE-PSO (FloodSkill)

0.5 3 5.5
0

0.5

1

15 37.5 60
0

0.05

0.1

20 50 80
0

0.05

0.1

1.4 2.5 3.6
0

0.75

1.5

0.1 0.5 0.9
0

2.5

5

0.04 0.5 0.96
0

2.5

5

Mean± Std 3.59±0.67 43.8±5.28 50.8±12.94 2.34±0.37 0.58±0.12 0.55±0.16

Range [0.88−5.03] [19.4−59.9] [22.0−77.4] [1.43−3.54] [0.16−0.89] [0.05−0.87]

ROPE-PSO (NS)

1.5 3.75 6
0

0.5

1

20 40 60
0

0.05

0.1

10 42.5 75
0

0.05

0.1

0 0.75 1.5
0

1

2

0 0.45 0.9
0

2.5

5

0 0.47 0.94
0

2.5

5

Mean± Std 3.82±0.87 50.5±6.22 48.5±6.73 0.50±0.30 0.31±0.17 0.20±0.17

Range [2.00−5.96] [27.9−60.0] [30.6−73.4] [0.08−1.43] [0.01−0.88] [0.01−0.72]

dr is forced to higher values (more interflow generation), the
soils are adjusted more conductive (higher values of the scal-
ing parameters βSL and βSiL) in all soil layers (higher values
of krec). Furthermore the variance of these parameters gets
smaller as several flow components with different temporal
dynamics have to represented by just one component the in-
terflow. On the other hand the estimates for the efficiency
criterion NS show in general a larger spread. The NS crite-
rion quantifies the agreement of the observed and simulated
catchment behaviour in a global way with an overweighting
of the time steps with higher streamflow. A calibration with
this criterion does not necessary force the model to its limits
and can neglect a part of the fast runoff components in order
to achieve a high NS value. The corresponding peak flow
deviations are higher but the flow components can be repre-
sented by more model components and as a consequence the
variance of the estimated parameter distributions gets larger.
The parameter distributions estimated by the multi-objective
MO-ROPE approach have mean values that are in-between
the mean values of the single objective calibrations using the

rPD and the aggregated compromise criterion FloodSkill. In
comparison with the single-objective calibration runs, the use
of the multi-objective MO-ROPE approach obtains tighter
variation intervals. These results confirm the outcome of pre-
vious studies dealing with the multi-objective calibration of
conceptual hydrologic models focussing on flood events (e.g.
Engeland et al., 2006; Moussa and Chahinian, 2009).

A comparison of the complete Pareto set Ã, its hull HÃ
(thus the points with shallow depth) and the sampled deep
parameter vectors DÃ in the objective space for both the cal-
ibration and the validation data is provided in Fig. 14 (a) and
(b). These figures illustrate the advantage of the depth based
sampling. In the objective space for the calibration data the
sampled deep parameter vectors are obviously concentrated
in a central part of the Pareto front, whereas the parameter
vectors in the hull are distributed over all parts of the Pareto
front with high density in the area of the tails and low density
in the central part of the front. The sampled deep parameter
vectors show a better performance on the validation data than
the complete Pareto set. The deep parameter vectors have

Mean±Std 3.82±0.87 50.5±6.22 48.5±6.73 0.50±0.30 0.31±0.17 0.20±0.17
Range [2.00–5.96] [27.9–60.0] [30.6–73.4] [0.08–1.43] [0.01–0.88] [0.01–0.72]

of the shape of the complete set. A comparison of the es-
timated sets of robust parameter vectors for both the MO-
ROPE run as well as the single-objective ROPE-PSO is given
in Table14. It provides the distributions of the estimated ro-
bust parameter vectors and some basic statistical properties,
i.e. the mean value, the standard deviation and their range.
Obviously, there is an strong dependence of the parameters
kd and krec on the used performance criterion. The more
a correct representation of the observed peak flow value is
measured by the used objective criterion, the lower the value
of kd and the higher the value ofkrec. In general these results
are reasonable and consistent with the model structure and
the corresponding understanding of the hydrologic system.
Lower values ofkd increase the dynamics of the generated di-
rect runoff; a higher value ofkrec decreases the effective satu-
rated conductivity of deeper soil layers. This leads to a faster
generation of direct runoff. Within the Rietholzbach catch-
ment, direct runoff on the surface has hardly ever been ob-
served, not even during large and intensive convective storm
events. However, there are many underground pipes that
drain the slopes. The effect of these drainage system becomes
significantly large during times of intensive precipitation.
The estimated parameters indicate that the drainage flow can
be effectively represented by the direct runoff component in

WaSiM. In terms of the spread of the parameters, there ex-
ists an in general strong relationship between the used per-
formance criterion and the spread of the parameters. Typi-
cally, the variance of the estimated parameter distributions is
smaller the more the used performance criterion quantifies
the peak flow deviation. As explained above, it is necessary
to force the direct runoff storage coefficientkd to extremely
low values in order to represent the fast runoff components
with very high dynamics. As a consequence, most of the re-
maining fast and intermediate runoff components have to be
represented by the interflow component. Hence, the storage
coefficient of the interflowki is also forced to relatively small
values, the value of the drainage “dr” forced to higher val-
ues (more interflow generation), and the soils adjusted more
conductively (higher values of the scaling parametersβSL
andβSiL) in all soil layers (higher values ofkrec). Further-
more, the variance of these parameters becomes smaller as
several flow components with different temporal dynamics
have to represented by just one component of the interflow.
On the other hand, the estimates for the efficiency criterion
NS show in general a larger spread. The NS criterion quan-
tifies the agreement of the observed and simulated catch-
ment behaviour in a global way with an overweighting of
the time steps with higher streamflow. A calibration with this
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Fig. 13. Distribution of the Pareto optimal set estimated by MO-ROPE (applying the AMALGAM∗ strategy) and the sampled deep parameter
vectors for the WaSiM model using two objectives (rPD and NS).

in Fig. 11. The evaluation of the model performances cor-
responding to the estimated parameter vectors show a clear
tradeoff between both used objectives. That means that the
best parameter vectors with respect to the peak flow value
cannot represent the global behaviour of the catchment for
flood events equally well. The following final step, the sam-
pling of deep parameter vectors was done using the GenDeep
strategy. We compared the results of the estimated approxi-
mation of Pareto set Ã and the deep parameter vectors DÃ.
Additionally we compared this set with the parameter vectors
determined by the single-objective robust parameter estima-
tion algorithm ROPE-PSO, using both the singular objectives
rPD and NS, and an aggregated criterion, called FloodSkill
(see Table 13) as objective functions.

The estimated Pareto set and the sampled deep param-
eter vectors in the parameter space are provided in Figure
13. The Pareto set is almost convex which is advantageous
for the depth based sampling. The deep parameter vectors
cover the central region of the set and its convex hull is in-
dicative of the shape of the complete set. A comparison of
the estimated sets of robust parameter vectors for both the
MO-ROPE run as well as the single-objective ROPE-PSO
is given in Table 4.2. It provides the distributions of the
estimated robust parameter vectors and some basic statisti-
cal properties, i.e. the mean value, the standard deviation
and their range. Obviously, there is an strong dependence
of the parameters kd and krec on the used performance cri-
terion. The more a correct representation of the observed

peak flow value is measured by the used objective criterion,
the lower the value of kd and the higher the value of krec.
In general these results are reasonable and consistent with
the model structure and the corresponding understanding of
the hydrological system. Lower values of kd increase the
dynamics of the generated direct runoff, a higher value of
krec decreases the effective saturated conductivity of deeper
soil layers. This leads to a faster generation of direct runoff.
Within the Rietholzbach catchment direct runoff on the sur-
face has hardly ever been observed, even not during large and
intensive convective storm events. However, there are many
underground pipes that drain the slopes. The effect of these
drainage system gets significantly large during times of in-
tensive precipitation. The estimated parameters indicate that
the drainage flow can be effectively represented by the direct
runoff component in WaSiM. In terms of the spread of the
parameters there exists an in general strong relationship be-
tween the used performance criterion and the spread of the
parameters. Typically, the variance of the estimated param-
eter distributions is smaller the more the used performance
criterion quantifies the peak flow deviation. As explained
above, it is necessary to force the direct runoff storage coef-
ficient kd to extremely low values in order to represent the
fast runoff components with very high dynamics. As a con-
sequence, most of the remaining fast and intermediate runoff
components have to be represented by the interflow compo-
nent. Hence the storage coefficient of the interflow ki is also
forced to relatively small values, the value of the drainage

Fig. 13.Distribution of the Pareto optimal set estimated by MO-ROPE (applying the AMALGAM∗ strategy) and the sampled deep parameter
vectors for the WaSiM model using two objectives (rPD and NS).

criterion does not necessary force the model to its limits and
can neglect a part of the fast runoff components in order to
achieve a high NS value. The corresponding peak flow devia-
tions are higher, but the flow components can be represented
by more model components and as a consequence the vari-
ance of the estimated parameter distributions becomes larger.
The parameter distributions estimated by the multi-objective
MO-ROPE approach have mean values that are in between
the mean values of the single objective calibrations using the
rPD and the aggregated compromise criterion FloodSkill. In
comparison with the single-objective calibration runs, the use
of the multi-objective MO-ROPE approach obtains tighter
variation intervals. These results confirm the outcome of pre-
vious studies dealing with the multi-objective calibration of
conceptual hydrologic models focussing on flood events (e.g.
Engeland et al., 2006; Moussa and Chahinian, 2009).

A comparison of the complete Pareto setÃ, its hullHÃ
(thus the points with shallow depth) and the sampled deep
parameter vectorsDÃ in the objective space for both the cal-
ibration and the validation data is provided in Fig.14a and
b. These figures illustrate the advantage of the depth-based
sampling. In the objective space for the calibration data, the
sampled deep parameter vectors are obviously concentrated
in a central part of the Pareto front, whereas the parameter
vectors in the hull are distributed over all parts of the Pareto

front with high density in the area of the tails and low den-
sity in the central part of the front. The sampled deep pa-
rameter vectors show a better performance on the validation
data than the complete Pareto set. The deep parameter vec-
tors have less outliers with a worse performance and are a
good approximation of the (theoretical) Pareto front in the
objective space based on the validation data. The distribu-
tion of the deep parameter vectors suggests that the tails of
the Pareto front estimated in the calibration are not required
for a robust set of model parameter vectors. For example,
the best parameter vectors with respect to rPD on the cali-
bration data do not have a better rPD in the validation than
the sampled deep parameter vectors. However, these vectors
correspond to clearly worse NS values. This shows that the
deep parameter vectors are better transferable to other peri-
ods and events and thus more robust. Notwithstanding the
fact that several shallow parameter vectors also correspond
to central parts of the Pareto front, we compared the deep
parameter vectors with the results of an approach using sub-
jective cutoff thresholds to select “behaviourial” and reject
“non-behavioural” solutions as proposed byEfstratiadis and
Koutsoyiannis(2010). We simply used cutoff thresholds de-
fined by the boundaries of the model performances of the
deep parameter vectors on the calibration data. The result is
given in Fig.14c. It is evident that the behaviourial parameter
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Fig. 14. Comparison of the identified approximation of the Pareto optimal set Ã (gray dots) in the objective space spanned by the two
objectives rPD and NS. The plots in the left column are computed on the calibration events whereas the right column shows the results on
the validation data. Subplot (a) additionally emphasises the parameter vectors in the hull AÃ (indicated by blue dots), subplot (b) shows
the sampled deep parameter vectors (indicated by red dots) and subplot (c) provides the results for a simple cut-off procedure with threshold
values defined by the performance of the deep parameter vectors on the calibration data. The selected parameter vectors are indicated by
yellow dots.

Fig. 14. Comparison of the identified approximation of the Pareto
optimal setÃ (grey dots) in the objective space spanned by the two
objectives rPD and NS. The plots in the left column are computed
on the calibration events, whereas the right column shows the re-
sults on the validation data. Subplot(a) additionally emphasises the
parameter vectors in the hullAÃ (indicated by blue dots); subplot
(b) shows the sampled deep parameter vectors (indicated by red
dots), and subplot(c) provides the results for a simple cut-off proce-
dure with threshold values defined by the performance of the deep
parameter vectors on the calibration data. The selected parameter
vectors are indicated by green dots.

vectors identified by the cut-off thresholds are better suitable
to approximate the (theoretical) Pareto front in the objective
space based on the validation data than the complete Pareto
set identified for the calibration events. Nonetheless, the deep
parameter vectors provide a closer, denser and more uni-
form approximation of the Pareto front on the validation data.
Moreover, the depth-based sampling does not require any as-
sumptions regarding the threshold values6 and additionally
provide the possibility to assign likelihood values to the pa-
rameter vectors according to their data depth. The advantage
of the depth-based sampling is illustrated again in Fig.15.
It visualises the dependency between the model performance
of a sampled parameter vector on the validation data in terms

6In this study the threshold values were only defined by the help
of the deep parameter vectors.
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Fig. 15. Correlation between data depth and overall validation per-
formance in terms of the FloodSkill criterion of all parameter vec-
tors in the approximated Pareto set Ã estimated by the MO-ROPE
calibration using the objectives rPD and NS. The blue dots indicate
the hullHÃ, i.e. the parameter vectors with shallow data depth, the
red dots indicate the ones with high data depth DÃ, and the grey
ones are members of the complete Pareto set that are have a depth
less than the deep ones and are not member of the hull.

less outliers with a worse performance and are a good ap-
proximation of the (theoretical) Pareto front in the objective
space based on the validation data. The distribution of the
deep parameter vectors suggests that the tails of the Pareto
front estimated in the calibration are not required for a robust
set of model parameter vectors. For example the best param-
eter vectors with respect to rPD on the calibration data do not
have a better rPD in the validation than the sampled deep pa-
rameter vectors. However these vectors correspond to clearly
worse NS values. This shows that the deep parameter vec-
tors are better transferable to other periods and events and
thus more robust. Notwithstanding the fact that several shal-
low parameter vectors also correspond to central parts of the
Pareto front, we compared the deep parameter vectors with
the results of an approach using subjective cut-off thresholds
to select “behaviourial” and reject “non-behavioural” solu-
tions as proposed by Efstratiadis and Koutsoyiannis (2010).
We simply used cutoff-thresholds defined by the boundaries
of the model performances of the deep parameter vectors on
the calibration data. The result is given in Fig. 14 (c). It
is evident that the behaviourial parameter vectors identified
by the cut-off thresholds are better suitable to approximate
the (theoretical) Pareto front in the objective space based on
the validation data than the complete Pareto set identified for
the calibration events. Nonetheless the deep parameter vec-
tors provide a closer, denser and more uniform approxima-
tion of the Pareto front on the validation data. Moreover the
depth based sampling does not require any assumptions re-
garding the threshold values5 and additionally provide the

5In this study the threshold values were only defined by the help
of the deep parameter vectors.
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Fig. 16. Comparison of the robust model parameter vectors es-
timated by the multi-objective MO-ROPE using two objectives
(rPD/NS) and the single-objective robust parameter estimation al-
gorithm ROPE-PSO using the objectives rPD, FloodSkill and NS,
respectively. The plot shows the estimated solution in the objective
space based on the validation events.

possibility to assign likelihood values to the parameter vec-
tors according to their data depth. The advantage of the
depth based sampling is illustrated again in Fig. 15. It vi-
sualises the dependency between the model performance of
a sampled parameter vector on the validation data in terms
of the FloodSkill criterion6 and its data depth with respect to
the approximated Pareto set Ã. The parameter vectors with
high data depth show a on average better model performance
(higher FloodSkill values) with less variance than the param-
eter vectors with low data depth. This implies that parameter
vectors with low data depth are more likely to be an outlier
with bad model performance. The estimated results confirm
the underlying assumption of the ROPE approach for multi-
objective calibration tasks.

The model performance of the parameter vectors on the
validation events estimated by both the multi-objective MO-
ROPE and the single-objective robust parameter estimation
runs are provided in Fig. 16. These results once again il-
lustrate the evident tradeoff between the two criteria rPD
and NS. The parameter vectors estimated by the single-
objective ROPE-PSO considering just one criterion (rPD or
NS) show indeed a good validation performance on those
criteria. However the validation performance in terms of
the complementary performance criterion that is not consid-
ered for calibration is not sufficient for a robust modelling
of flood events. For instance the NS values for the ROPE-
PSO estimates using the rPD as calibration objective are in
the range of approximately 0.2-0.4 which is not acceptable
wheras the NS estimates correspond to peak flow deviations
of 30-50% which is not sufficient either. Also the aggregated

6The FloodSkill is a criterion aggregated by rPD and NS that
represents a compromise between these two criteria (cf. Table 13 at
the beginning of this section)

Fig. 15.Correlation between data depth and overall validation per-
formance in terms of the FloodSkill criterion of all parameter vec-
tors in the approximated Pareto setÃ estimated by the MO-ROPE
calibration using the objectives rPD and NS. The blue dots indicate
the hullHÃ, i.e. the parameter vectors with shallow data depth; the
red dots indicate the ones with high data depthDÃ, and the grey
ones are members of the complete Pareto set that are have a depth
less than the deep ones and are not members of the hull.

of the FloodSkill criterion7 and its data depth with respect to
the approximated Pareto setÃ. The parameter vectors with
high data depth show a on average better model performance
(higher FloodSkill values) with less variance than the param-
eter vectors with low data depth. This implies that parameter
vectors with low data depth are more likely to be an outlier
with bad model performance. The estimated results confirm
the underlying assumption of the ROPE approach for multi-
objective calibration tasks.

The model performances of the parameter vectors on the
validation events estimated by both the multi-objective MO-
ROPE and the single-objective robust parameter estimation
runs are provided in Fig.16. These results once again illus-
trate the evident tradeoff between the two criteria rPD and
NS. The parameter vectors estimated by the single-objective
ROPE-PSO considering just one criterion (rPD or NS) show
indeed a good validation performance on those criteria. How-
ever, the validation performance in terms of the complemen-
tary performance criterion that is not considered for calibra-
tion is not sufficient for a robust modelling of flood events.
For instance, the NS values for the ROPE-PSO estimates us-
ing the rPD as calibration objective are in the range of ap-
proximately 0.2–0.4, which is not acceptable, whereas the
NS estimates correspond to peak flow deviations of 30–50 %,
which is not sufficient either. Also the aggregated FloodSkill
criterion just slightly improves the results. It still overweighs
the NS criteria, and the parameter vectors estimated using the
FloodSkill criterion do not fully exploit the model’s abilities

7The FloodSkill is a criterion aggregated by rPD and NS that
represents a compromise between these two criteria (cf. Table13at
the beginning of this section).
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Table 15.Distribution of the robust parameter vectors of the WaSiM model estimated by MO-ROPE using the 2-objective(a) and 3-objective
calibration(b).

(a)

Mean Std CV kd ki dr βSL βSiL krec

kd 2.93 0.19 0.07 1.00 0.78 −0.72 −0.04 −0.06 0.29
ki 37.9 3.94 0.10 · · · 1.00 −0.43 0.06 0.04 0.01
dr 61.7 5.06 0.08 · · · · · · 1.00 0.06 0.01 −0.07

βSL 1.00 0.14 0.14 · · · · · · · · · 1.00 0.38 −0.09
βSiL 0.99 0.08 0.08 · · · · · · · · · · · · 1.00 −0.04
krec 0.69 0.01 0.02 · · · · · · · · · · · · · · · 1.00

(b)

Mean Std CV kd ki dr βSL βSiL krec

kd 2.88 0.20 0.07 1.00 0.83 −0.68 −0.02 0.11 −0.38
ki 42.5 5.33 0.13 · · · 1.00 −0.52 0.01 0.13 −0.38
dr 60.6 3.43 0.06 · · · · · · 1.00 0.08 −0.07 0.39

βSL 1.01 0.08 0.08 · · · · · · · · · 1.00 0.39 −0.01
βSiL 1.01 0.05 0.05 · · · · · · · · · · · · 1.00 0.00
krec 0.23 0.04 0.16 · · · · · · · · · · · · · · · 1.00
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Ã

D
Ã
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Fig. 15. Correlation between data depth and overall validation per-
formance in terms of the FloodSkill criterion of all parameter vec-
tors in the approximated Pareto set Ã estimated by the MO-ROPE
calibration using the objectives rPD and NS. The blue dots indicate
the hullHÃ, i.e. the parameter vectors with shallow data depth, the
red dots indicate the ones with high data depth DÃ, and the grey
ones are members of the complete Pareto set that are have a depth
less than the deep ones and are not member of the hull.

less outliers with a worse performance and are a good ap-
proximation of the (theoretical) Pareto front in the objective
space based on the validation data. The distribution of the
deep parameter vectors suggests that the tails of the Pareto
front estimated in the calibration are not required for a robust
set of model parameter vectors. For example the best param-
eter vectors with respect to rPD on the calibration data do not
have a better rPD in the validation than the sampled deep pa-
rameter vectors. However these vectors correspond to clearly
worse NS values. This shows that the deep parameter vec-
tors are better transferable to other periods and events and
thus more robust. Notwithstanding the fact that several shal-
low parameter vectors also correspond to central parts of the
Pareto front, we compared the deep parameter vectors with
the results of an approach using subjective cut-off thresholds
to select “behaviourial” and reject “non-behavioural” solu-
tions as proposed by Efstratiadis and Koutsoyiannis (2010).
We simply used cutoff-thresholds defined by the boundaries
of the model performances of the deep parameter vectors on
the calibration data. The result is given in Fig. 14 (c). It
is evident that the behaviourial parameter vectors identified
by the cut-off thresholds are better suitable to approximate
the (theoretical) Pareto front in the objective space based on
the validation data than the complete Pareto set identified for
the calibration events. Nonetheless the deep parameter vec-
tors provide a closer, denser and more uniform approxima-
tion of the Pareto front on the validation data. Moreover the
depth based sampling does not require any assumptions re-
garding the threshold values5 and additionally provide the

5In this study the threshold values were only defined by the help
of the deep parameter vectors.
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Fig. 16. Comparison of the robust model parameter vectors es-
timated by the multi-objective MO-ROPE using two objectives
(rPD/NS) and the single-objective robust parameter estimation al-
gorithm ROPE-PSO using the objectives rPD, FloodSkill and NS,
respectively. The plot shows the estimated solution in the objective
space based on the validation events.

possibility to assign likelihood values to the parameter vec-
tors according to their data depth. The advantage of the
depth based sampling is illustrated again in Fig. 15. It vi-
sualises the dependency between the model performance of
a sampled parameter vector on the validation data in terms
of the FloodSkill criterion6 and its data depth with respect to
the approximated Pareto set Ã. The parameter vectors with
high data depth show a on average better model performance
(higher FloodSkill values) with less variance than the param-
eter vectors with low data depth. This implies that parameter
vectors with low data depth are more likely to be an outlier
with bad model performance. The estimated results confirm
the underlying assumption of the ROPE approach for multi-
objective calibration tasks.

The model performance of the parameter vectors on the
validation events estimated by both the multi-objective MO-
ROPE and the single-objective robust parameter estimation
runs are provided in Fig. 16. These results once again il-
lustrate the evident tradeoff between the two criteria rPD
and NS. The parameter vectors estimated by the single-
objective ROPE-PSO considering just one criterion (rPD or
NS) show indeed a good validation performance on those
criteria. However the validation performance in terms of
the complementary performance criterion that is not consid-
ered for calibration is not sufficient for a robust modelling
of flood events. For instance the NS values for the ROPE-
PSO estimates using the rPD as calibration objective are in
the range of approximately 0.2-0.4 which is not acceptable
wheras the NS estimates correspond to peak flow deviations
of 30-50% which is not sufficient either. Also the aggregated

6The FloodSkill is a criterion aggregated by rPD and NS that
represents a compromise between these two criteria (cf. Table 13 at
the beginning of this section)

Fig. 16. Comparison of the robust model parameter vectors es-
timated by the multi-objective MO-ROPE using two objectives
(rPD/NS) and the single-objective robust parameter estimation al-
gorithm ROPE-PSO using the objectives rPD, FloodSkill and NS,
respectively. The plot shows the estimated solution in the objective
space based on the validation events.

in terms of the peak flow deviation. The MO-ROPE results
however provide a good model performance on the valida-
tion data with respect to a good global representation of
the catchment behaviour and a good modelling of the peak
flow values. This confirms the assumption that the use of
an advanced multi-objective calibration technique can im-
prove the performance of hydrologic models used for the
simulation of flood events. The corresponding hydrographs

of three validation events and the corresponding parameter
and model uncertainties for both the robust multi-objective
estimates and the single-objective estimates, using the ag-
gregated FloodSkill criterion as a kind of compromise so-
lution, are given in Fig.17. The complete model uncertainty
was computed by two normal distributions fitted on the posi-
tive and negative discharge errors, transformed with the nor-
mal quantile transformation (NQT) (Krzysztofowicz, 1997)
according to a method presented byEngeland et al.(2010).
Contrary toEngeland et al.(2010), we considered observa-
tions with a discharge greater than or equal to 0.33 mmh−1

to account for the focus on the correct simulation of higher
flow values. The hydrographs confirm the results of the pre-
vious analysis of the model performances. The peak flow val-
ues are better represented by the parameter vectors estimated
by the multi-objective calibration. The confidence band of
the parameter uncertainty is slightly smaller for the multi-
objective calibration than for the single-objective calibration.
The variation intervals of the resulting complete model un-
certainty are approximately the same for both approaches.
The remaining uncertainty is due to the discussed shortcom-
ings of the model structure and other neglected uncertainties
in the observations.

4.3 Calibrating WaSiM for flood events using three
objectives describing the fit with both observed
hydrograph and soil moisture measurements

In another case study, we calibrated WaSiM again. However,
this time we accounted for the provided information of the
soil moisture in the catchment for model calibration as an
additional calibration objective. Recent studies showed that
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(c)

Fig. 17.Hydrograph prediction uncertainty associated with the uncertainty in the model (lighter shading) and parameter estimates (darker
shading) for the flood events 6(a), 8 (b) and 13(c), estimated by MO-ROPE (left column) and ROPE-PSO using the FloodSkill criterion
(right column). The dots correspond to the observed streamflow data. The shaded areas of uncertainty correspond to the 95 % confidence
intervals.

spatially distributed soil moisture measurements can help
to improve the performance of hydrologic models used for
flood forecasting (e.g.Oudin et al., 2003). The Rietholzbach
catchment has been intensively monitored as a scientific re-
search catchment since 1975. Lysimeter measurements de-
liver the necessary soil moisture information on hourly ba-
sis. Due to the small size of the basin and the location of
the lysimeter station in the centre of the basin situated on
grassland, which is the major land use in the catchment, the
measurements are on average representative for the whole
catchment for the long term (Gurtz et al., 2003). Unfortu-

nately, there are no other soil moisture measurements that
have a substantial length and no other significant studies for
the catchment that examine the soil moisture dynamics for
storm events in a more distributed way. Therefore, we stud-
ied the temporal dynamics of the soil moisture measurements
at the lysimeter station and found a relatively strong cor-
relation between the lysimeter measurements and the sim-
ulated soil moisture in the upper layers up to a soil depth
of 0.5 m also during periods with high streamflow values,
i.e. flood events (Müller, 2009). Hence, we chose the cor-
relation between observed and simulated soil moisture as an

www.hydrol-earth-syst-sci.net/16/3579/2012/ Hydrol. Earth Syst. Sci., 16, 3579–3606, 2012
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FloodSkill criterion just slightly improves the results. It still
overweights the NS criterions and the parameter vectors es-
timated using the FloodSkill criterion do not fully exploit the
model’s abilities in terms of the peak flow deviation. The
MO-ROPE results however provide a good model perfor-
mance on the validation data with respect to a good global
representation of the catchment behaviour and a good mod-
elling of the peak flow values. This confirms the assumption
that the use of an advanced multi-objective calibration tech-
nique can improve the performance of hydrologic models
used for the simulation of flood events. The corresponding
hydrographs of three validation events and the corresponding
parameter and model uncertainties for both the robust multi-
objective estimates and the single-objective estimates using
the aggregated FloodSkill criterion as a kind of compromise
solution are given in Fig. 17. The complete model uncer-
tainty was computed by two normal distributions fitted on
the positive and negative discharge errors, transformed with
the normal quantile transformation (NQT) (Krzysztofowicz,
1997) according to a method presented by Engeland et al.
(2010). Contrary to Engeland et al. (2010) we considered
observations with a discharge greater or equal 0.33mm/h to
account for the focus on the correct simulation of higher flow
values. The hydrographs confirm the results of the previ-
ous analysis of the model performances. The peak flow val-
ues are better represented by the parameter vectors estimated
by the multi-objective calibration. The confidence band of
the parameter uncertainty is slightly smaller for the multi-
objective calibration than for the single-objective calibration.
The variation intervals of the resulting complete model un-
certainty is approximately the same for both approaches. The
remaining uncertainty is due to the discussed shortcomings
of the model structure and other neglected uncertainties in
the observations.

 

 

D
Ã
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Fig. 18. Correlation between data depth and overall validation per-
formance in terms of the soil moisture correlation rΘ of the Pareto
set Ã estimated during the 2-objective calibration. The blue dots
indicate the hull HÃ, i.e. the parameter vectors with shallow data
depth and the red dots indicate the sampled parameter vectors ones
with high data depth DÃ.

4.3 Calibrating WaSiM for flood events using three ob-
jectives describing the fit with both observed hydro-
graph and soil moisture measurements

In another case study we calibrated WaSiM again. However,
this time we accounted for the provided information of the
soil moisture in the catchment for model calibration as an
additional calibration objective. Recent studies showed that
spatially distributed soil moisture measurements can help
to improve the performance of hydrologic models used for
flood forecasting (e.g. Oudin et al., 2003). The Rietholzbach
catchment has been intensively monitored as a scientific re-
search catchment since 1975. Lysimeter measurements de-
liver the necessary soil moisture information on hourly ba-
sis. Due to the small size of the basin and the location of
the lysimeter station in the centre of the basin situated on
grassland which is the major land use in the catchment, the
measurements are on average representative for the whole
catchment for the long term (Gurtz et al., 2003). Unfortu-
nately there are no other soil moisture measurements that
have a substantial length and no other significant studies for
the catchment that examine the soil moisture dynamics for
storm events in a more distributed way. Therefore we stud-
ied the temporal dynamics of the soil moisture measurements
at the lysimeter station and found a relatively strong correla-
tion between the lysimeter measurements and the simulated
soil moisture in the upper layers up to a soil depth of 0.5m
also during periods with high streamflow values, i.e. flood
events (Müller, 2009). Hence, we chose the correlation be-
tween observed and simulated soil moisture as an additional
objective. We call this performance criterion soil moisture
correlation coefficient and denote it by rΘ. Its definition
is given in the already referenced Table 13. The underly-
ing idea considering the soil moisture correlation coefficient
as an additional objective is that parameter vectors that do
not only correspond to a good representation of catchment’s
behaviour in terms of the measured discharge but also the
mean soil moisture dynamics are potentially better transfer-
able to other flood events and can be used for extrapolation,
i.e. they are potentially more robust. The rΘ has a relatively
low correlation with both objectives that are already taken
into account and should thus provide additional information
for the parameter estimation. Nonetheless this is no guaran-
tee that this will really improve the calibration results as “the
possibility of operational use of the variational method de-
pends heavily on the availability and quality of the datasets,
especially regarding soil moisture data” (Oudin et al., 2003,
p. 685). Doubts about the effectivity of the available soil
moisture information are for instance reinforced by a further
evaluation of the results estimated in the previous case study.
Fig. 18 provides information about the dependance between
rΘ and the data depth with respect to the estimated Pareto
set. Obviously the deep parameter vectors in DÃ that are ro-
bust in terms of the objectives rPD and NS provide no better
correlation between observed and simulated soil moisture.

Fig. 18.Correlation between data depth and overall validation per-
formance in terms of the soil moisture correlationr2 of the Pareto
set Ã estimated during the 2-objective calibration. The blue dots
indicate the hullHÃ, i.e. the parameter vectors with shallow data
depth and the red dots indicate the sampled parameter vectors with
high data depthDÃ.

additional objective. We call this performance criterion soil
moisture correlation coefficient and denote it byr2. Its def-
inition is given in the already referenced Table13. The un-
derlying idea considering the soil moisture correlation co-
efficient as an additional objective is that parameter vectors
do not only correspond to a good representation of catch-
ment’s behaviour in terms of the measured discharge, but
also the mean soil moisture dynamics are potentially better
transferable to other flood events and can be used for ex-
trapolation, i.e. they are potentially more robust. Ther2 has
a relatively low correlation with both objectives that are al-
ready taken into account and should thus provide additional
information for the parameter estimation. Nonetheless, this
is no guarantee that this will really improve the calibration
results as “the possibility of operational use of the varia-
tional method depends heavily on the availability and qual-
ity of the datasets, especially regarding soil moisture data”
(Oudin et al., 2003, p. 685). Doubts about the effectivity of
the available soil moisture information are for instance rein-
forced by a further evaluation of the results estimated in the
previous case study. Figure18 provides information about
the dependance betweenr2 and the data depth with respect
to the estimated Pareto set. Obviously, the deep parameter
vectors inDÃ that are robust in terms of the objectives rPD
and NS provide no better correlation between observed and
simulated soil moisture.

We repeated the calibration of WaSiM using the MO-
ROPE algorithm using the three introduced objectives rPD,
NS andr2. All settings of the model and calibration setup
remain the same as in the previous case study. In two runs
robust parameter vectors were estimated in terms of all three
objectives and just the rPD and NS. From now on we refer
to both calibration runs as 2-objective and 3-objective cal-
ibration. The distributions of the estimated parameter vec-
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Ã

N
S

rPD

3-Objective

N
S

rPD

2-Objective

0.59 0.6 0.61

0.15 0.2 0.25 0.3 0.35 0.4 0.450.15 0.2 0.25 0.3 0.35

3-O

2-O

0.7

0.6

0.5

0.4

0.7

0.6

0.5

0.4

0.3

Fig. 19. Comparison of the Pareto optimal sets Ã and the sub-
sequently sampled set of deep parameter vectors DÃ for the 2-
objective (left) and 3-objective (right) calibration run in the objec-
tive space based on the calibration events (a) and validation events
(b). Additionally each plot contains a boxplot providing informa-
tion about the distribution of the corresponding soil moisture corre-
lation for the sampled deep parameter vectors each (below).

to 0.29 for the 2-objective calibration. In terms of the NS
values the results are comparable. The 3-objective estimates
correspond to NS values in the range of 0.51-0.67 instead of
0.47-0.67 for the 2-objective calibration. In brief, the soil
moisture measurements available in the Rietholzbach catch-
ment are no suitable additional criterion for the calibration of
the hydrologic model WaSiM focussing on flood events. The
negligibly small improvement in terms of the representation
of the soil moisture dynamics and the global NS criterion
bring a slight drop of the model performances focussing on

an exact representation of the streamflow values. One pos-
sible explanation for the disappointingly small improvement
might be the shortcomings in the model structure, already
discussed in the previous case study. The soils of the Ri-
etholzbach catchment are characterised by many macropores
and some smaller drainages. This induces the generation
of preferential flow which is a very fast runoff component.
However, the water movement in the unsaturated zone is de-
scribed by the model in terms of the Richards equation that
account just for the matrix flow in the soil but cannot rep-
resent the preferential flow component natively. Thus, the
fast runoff components have to be represented by the direct
runoff component. The identified parameter vectors provide
a good representation of the catchment’s behaviour in terms
of the discharge at the outlet. In such a situation an addi-
tional criterion that requires a reasonable representation of
the observed soil moisture dynamics can even be counter-
productive. Another possible explanation for the expected
improvements that have not been achieved is the question
whether the soil moisture measurements are representative
for the soil moisture dynamics in the whole catchment. Re-
cent studies using soil moisture data for the improvement of
hydrologic modelling emphasise the importance of a good
quality of these datasets (e.g Oudin et al., 2003; Norbiato
et al., 2008). Focussing on flood events this requires not only
a good accuracy and temporal resolution of the soil mois-
ture information but also many spatially distributed measure-
ments. Unfortunately these measurements are not available
in the Rietholzbach catchment. We suggest further studies
in operational flood forecasting studies for fast responding
medium scale catchments where such information is avail-
able. Although this case study did not fully succeed, it con-
firms the advantages of the depth based sampling. The sam-
pled deep parameters provide a robust approximation of the
Pareto front with tighter variation intervals in terms of all
considered objectives. Furthermore it underlines that a suc-
cessful robust modelling does not require just an advanced
parameter estimation procedure but also the selection of a
as parsimonious as possible model structure, representative
calibration data and appropriate calibration objectives. The
combination of multi-objective optimisation and depth based
parameter sampling can be a good tool to obtain robust model
parameters. Alone for itself the depth based sampling is how-
ever not sufficient to achieve robustness.

5 Discussion and conclusions

– This paper presents a hybrid parameter estimation ap-
proach, entitled Multi-Objective Robust Parameter Es-
timation (MO-ROPE) that merges the strength of evo-
lutionary multi-objective optimisation algorithms and
depth based parameter sampling. In a first step the al-
gorithm employs a suitable multi-objective optimisation
algorithm in order to approximate the Pareto-optimal

Krauße et al.: Robust multi-objective calibration strategies 27

(a)

 

 

 

 

rΘ

D
Ã
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Fig. 19. Comparison of the Pareto optimal sets Ã and the sub-
sequently sampled set of deep parameter vectors DÃ for the 2-
objective (left) and 3-objective (right) calibration run in the objec-
tive space based on the calibration events (a) and validation events
(b). Additionally each plot contains a boxplot providing informa-
tion about the distribution of the corresponding soil moisture corre-
lation for the sampled deep parameter vectors each (below).

to 0.29 for the 2-objective calibration. In terms of the NS
values the results are comparable. The 3-objective estimates
correspond to NS values in the range of 0.51-0.67 instead of
0.47-0.67 for the 2-objective calibration. In brief, the soil
moisture measurements available in the Rietholzbach catch-
ment are no suitable additional criterion for the calibration of
the hydrologic model WaSiM focussing on flood events. The
negligibly small improvement in terms of the representation
of the soil moisture dynamics and the global NS criterion
bring a slight drop of the model performances focussing on

an exact representation of the streamflow values. One pos-
sible explanation for the disappointingly small improvement
might be the shortcomings in the model structure, already
discussed in the previous case study. The soils of the Ri-
etholzbach catchment are characterised by many macropores
and some smaller drainages. This induces the generation
of preferential flow which is a very fast runoff component.
However, the water movement in the unsaturated zone is de-
scribed by the model in terms of the Richards equation that
account just for the matrix flow in the soil but cannot rep-
resent the preferential flow component natively. Thus, the
fast runoff components have to be represented by the direct
runoff component. The identified parameter vectors provide
a good representation of the catchment’s behaviour in terms
of the discharge at the outlet. In such a situation an addi-
tional criterion that requires a reasonable representation of
the observed soil moisture dynamics can even be counter-
productive. Another possible explanation for the expected
improvements that have not been achieved is the question
whether the soil moisture measurements are representative
for the soil moisture dynamics in the whole catchment. Re-
cent studies using soil moisture data for the improvement of
hydrologic modelling emphasise the importance of a good
quality of these datasets (e.g Oudin et al., 2003; Norbiato
et al., 2008). Focussing on flood events this requires not only
a good accuracy and temporal resolution of the soil mois-
ture information but also many spatially distributed measure-
ments. Unfortunately these measurements are not available
in the Rietholzbach catchment. We suggest further studies
in operational flood forecasting studies for fast responding
medium scale catchments where such information is avail-
able. Although this case study did not fully succeed, it con-
firms the advantages of the depth based sampling. The sam-
pled deep parameters provide a robust approximation of the
Pareto front with tighter variation intervals in terms of all
considered objectives. Furthermore it underlines that a suc-
cessful robust modelling does not require just an advanced
parameter estimation procedure but also the selection of a
as parsimonious as possible model structure, representative
calibration data and appropriate calibration objectives. The
combination of multi-objective optimisation and depth based
parameter sampling can be a good tool to obtain robust model
parameters. Alone for itself the depth based sampling is how-
ever not sufficient to achieve robustness.

5 Discussion and conclusions

– This paper presents a hybrid parameter estimation ap-
proach, entitled Multi-Objective Robust Parameter Es-
timation (MO-ROPE) that merges the strength of evo-
lutionary multi-objective optimisation algorithms and
depth based parameter sampling. In a first step the al-
gorithm employs a suitable multi-objective optimisation
algorithm in order to approximate the Pareto-optimal

Fig. 19. Comparison of the Pareto optimal sets̃A and the sub-
sequently sampled set of deep parameter vectorsDÃ for the 2-
objective (left) and 3-objective (right) calibration run in the ob-
jective space based on the calibration events(a) and validation
events(b). Additionally, each plot contains a boxplot providing in-
formation about the distribution of the corresponding soil moisture
correlation for the sampled deep parameter vectors each (below).

tors for both runs are provided in Table4.2. Obviously, the
results for the 2-objective calibration are the same as those
of the previous case study. For the calibration run using all
three objectives the distribution of the most sensitive param-
eter kd tends to result in smaller values than for the cali-
bration run considering just the objectives rPD and NS. The
distribution of the parameterki has approximately the same
mean and variance but a significantly larger negative skew-
ness. The mean value of the parameter “dr” is approximately
the same with a significantly lower variance. The same holds
for the soil parametersβSL andβSiL. An obvious difference
can be observed in the distribution of the parameterkrec. The
mean value is significantly lower with a higher variance. That
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means that the effective saturated conductivity for deeper soil
layers decreases faster. This means that the lower soil layers
in the model have a lower saturated conductivity. The corre-
lations between the most important conceptual model param-
eters are approximately the same for both calibration runs.
However, the correlation between the parameterkrec and the
other model parameters is fundamentally different for the 3-
objective calibration run.

The corresponding model performances on the calibration
and validation data for both the 2-objective calibration and
the 3-objective calibration considering the soil moisture dy-
namics are provided in Fig.19. The scatter plots show the
rPD and the NS for the approximated Pareto optimal setÃ
and the subsequently sampled deep parameter vectorsDÃ.
Evaluating the Pareto front of the 3-objective problem, con-
sider that the Pareto front for this problem is actually a curved
3-dimensional face. Hence, the 2-dimensional plot of this 3-
dimensional front is not a non-dominated front with respect
to just 2 objectives. The calibration results for the 3-objective
calibration are the same in terms of the best values for the in-
dividual objectives. However, the variation intervals for the
two objectives rPD and NS are clearly larger. The NS reaches
values down to 0.5 instead of 0.63 and the rPD goes up to val-
ues of 0.28 instead of 0.22. The differences between the two
calibration runs in terms of the criterionr2 are just 0.015.
Referring to the validation results, the improvements of the
3-objective calibration in terms of the correlation between
the observed and simulated soil moisture are again negligi-
bly small. An increase of the correlation coefficient of just
one hundredths is no substantial improvement. However, the
validation performance in terms of the criteria assessing a
good representation of the observed runoff is slightly worse,
particularly for the rPD. For the 3-objective calibration, the
rPD values on the validation events are approximately in the
range of 0.24 up to 0.34, whereas they reach from 0.19 up
to 0.29 for the 2-objective calibration. In terms of the NS
values, the results are comparable. The 3-objective estimates
correspond to NS values in the range of 0.51–0.67 instead
of 0.47–0.67 for the 2-objective calibration. In brief, the soil
moisture measurements available in the Rietholzbach catch-
ment are no suitable additional criterion for the calibration
of the hydrologic model WaSiM focussing on flood events.
The negligibly small improvement in terms of the represen-
tation of the soil moisture dynamics and the global NS cri-
terion brings a slight drop of the model performances fo-
cussing on an exact representation of the streamflow values.
One possible explanation for the disappointingly small im-
provement might be the shortcomings in the model structure,
already discussed in the previous case study. The soils of the
Rietholzbach catchment are characterised by many macrop-
ores and some smaller drainages. This induces the genera-
tion of preferential flow which is a very fast runoff compo-
nent. However, the water movement in the unsaturated zone
is described by the model in terms of the Richards equation
that accounts just for the matrix flow in the soil but cannot

represent the preferential flow component natively. Thus, the
fast runoff components have to be represented by the direct
runoff component. The identified parameter vectors provide
a good representation of the catchment’s behaviour in terms
of the discharge at the outlet. In such a situation an addi-
tional criterion that requires a reasonable representation of
the observed soil moisture dynamics can even be counterpro-
ductive. Another possible explanation for the expected im-
provements that have not been achieved is the question of
whether the soil moisture measurements are representative
for the soil moisture dynamics in the whole catchment. Re-
cent studies using soil moisture data for the improvement of
hydrologic modelling emphasise the importance of a good
quality of these datasets (e.gOudin et al., 2003; Norbiato
et al., 2008). Focussing on flood events, this requires not only
a good accuracy and temporal resolution of the soil mois-
ture information but also many spatially distributed measure-
ments. Unfortunately, these measurements are not available
in the Rietholzbach catchment. We suggest further studies
in operational flood forecasting studies for fast responding
medium-scale catchments where such information is avail-
able. Although this case study did not fully succeed, it con-
firms the advantages of the depth-based sampling. The sam-
pled deep parameters provide a robust approximation of the
Pareto front with tighter variation intervals in terms of all
considered objectives. Furthermore, it underlines that a suc-
cessful robust modelling does not require just an advanced
parameter estimation procedure but also the selection of a
as parsimonious as possible model structure, representative
calibration data and appropriate calibration objectives. The
combination of multi-objective optimisation and depth-based
parameter sampling can be a good tool to obtain robust model
parameters. On its own, the depth-based sampling is however
not sufficient to achieve robustness.

5 Discussion and conclusions

– This paper presents a hybrid parameter estimation ap-
proach, entitled multi-objective robust parameter esti-
mation (MO-ROPE), that merges the strength of evo-
lutionary multi-objective optimisation algorithms and
depth-based parameter sampling. In a first step, the al-
gorithm employs a suitable multi-objective optimisa-
tion algorithm in order to approximate the Pareto op-
timal set of model parameter vectors for the given cal-
ibration problem. Within our framework, we apply an
extended version of the advanced multi-method frame-
work AMALGAM. We extended the original version
of AMALGAM with a hybrid evolutionary optimisation
algorithm (MO-PSO-GA) that employs the concepts of
particle swarm optimisation and genetic programming
in order to effectively estimate the Pareto optimal set.
An adapted version of this search strategy has proven
successful within the frame of single-objective ROPE
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algorithms. In a second step, we apply the concept of
data depth for the sampling of robust model parameter
vectors with respect of the identified Pareto optimal set.
We study the efficiency and effectiveness of the devel-
oped solution by means of a set of synthetical bench-
marks and the calibration of a process-oriented hydro-
logic model focussing on flood events.

– A set of synthetical benchmarks studies the efficiency
and effectiveness of the AMALGAM framework ex-
tended by the newly developed MO-PSO-GA algo-
rithm in order to estimate the Pareto optimal set for a
given (constrained) multi-objective optimisation prob-
lem. For the given test problems, the developed frame-
work proved its reliability and efficiency in comparison
with other established approaches. The new MO-PSO-
GA strategy is a useful search strategy that is able to out-
perform approved single-strategy multi-objective opti-
misation algorithms. As a consequence within the frame
of the AMALGAM framework, it improves the effectiv-
ity and efficiency of this approach using four approved
search strategies.

– Another case study shows the effectivity of the depth-
based sampling approach for several multi-objective
test problems that are subject to uncertainty. The sam-
pled deep parameter vectors are less sensitive to small
changes with respect to their ability to provide a robust
approximation of the set of the possible Pareto fronts in
the objective space considering uncertainties.

– In a real world case study, we compared the multi-
objective MO-ROPE approach with the single-objective
robust parameter estimation approach ROPE-PSO es-
timating three conceptual model parameters and three
soil parameters of the hydrologic model WaSiM in the
small Swiss research catchment Rietholzbach focussing
on flood events. Previous studies have already shown
that the model has problems to represent the global
catchment behaviour and the peak flow values equally
well. This applies in particular to small and fast re-
sponding catchments. The tradeoff between the repre-
sentation of the peak flow values and the global catch-
ment behaviour suggests the application of a multi-
objective calibration strategy. The results of this study
show that the application of MO-ROPE is a preferable
option in order to identify robust solutions for such cali-
bration problems. We showed that the parameter vectors
in the approximated Pareto optimal set on the calibra-
tion data can lead to very different results in validation.
The sampled parameters with high depth show a robust
performance with less negative outliers. They represent
a robust approximation of the (theoretical) Pareto set on
the validation data.

– In the scope of a second application, we studied the cali-
bration of WaSiM considering three objectives. Besides

the peak flow deviation and the Nash-Sutcliffe effi-
ciency criterion, we used the agreement of the observed
and simulated soil moisture dynamics for the estima-
tion of robust parameter vectors for the modelling of
flood events. Although the deep parameter vectors show
once again the advantages of the depth-based sampling,
the improvements in comparison with the calibration
using just two objectives are negligibly small. This is
due to shortcomings in the model structure and a limited
significance of the soil moisture measurements at only
one single spot. We strongly propose similar applica-
tions at larger scale with a sufficient set of spatially dis-
tributed measurements. This case study underlines that
the depth-based parameter sampling can be a very use-
ful technique for the identification of robust parameter
vectors for multi-objective calibration problems.

– This paper introduced a new multi-objective method for
the estimation of robust parameter vectors the can im-
prove the results of classical multi-objective optimisa-
tion techniques. Despite all of the presented benefits, it
must not be forgotten that the estimation of robust pa-
rameter vectors cannot be reduced to the development of
robust parameter estimation methods. The shortcomings
of all kind of calibration techniques in the last case study
clearly show necessity that more effort should also go
into finding better process descriptions resulting in hy-
drologic models that are able to represent catchments
in a better way. Furthermore, better methods have to be
developed to improve the identification of representa-
tive calibration data, i.e. the basis of a subsequent model
calibration. The achievement of robustness requires the
combination of improvements in all of these areas.

In this paper, the estimation of the Pareto optimal sets was
done using an extended version of AMALGAM approach.
Consider that one might substitute this component with any
suitable multi-objective optimisation technique. The applica-
tion of the technique of depth-based sampling is a relatively
new method which was applied to a limited number of case
studies. We strongly propose its application to further mod-
els, catchments and also other fields of study where measure-
ment errors with unknown distribution and model structures
that cannot be easily identified are present.
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der flächendifferenzierten Niederschlags-Abfluss-Modellierung,
Vol. 8 of Dresdner Schriften zur Hydrologie, Institut für Hydrolo-
gie und Meteorologie, Technische Universitüt Dresden, 2010.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved cal-
ibration of hydrologic models: Multiple and noncommensurable
measures of information, Water Resour. Res., 34, 751–763, 1998.

Gurtz, J., Baltensweiler, A., and Lang, H.: Spatially distributed
hydrotope-based modelling of evapotranspiration and runoff in
mountainous basins, Hydrol. Process., 13, 2751–2768, 1999.

Gurtz, J., Verbunt, M., Zappa, M., Moesch, M., Pos, F., and
Moser, U.: Long-term hydrometeorological measurements and
model-based analyses in the hydrological research catchment Ri-
etholzbach, J. Hydrol. Hydromech., 51, 1–13, 2003.

Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis
algorithm, Bernoulli, 7, 223–242, 2001.

Kennedy, J., Eberhart, R. C., and Shi, Y.: Swarm Intelligence,
Morgan Kaufmann Series in Evolutionary Computation, Morgan
Kaufman, 2001.

Krauße, T. and Cullmann, J.: Identification of hydrological model
parameters for flood forecasting using data depth measures, Hy-
drol. Earth Syst. Sci. Discuss., 8, 2423–2476,doi:10.5194/hessd-
8-2423-2011, 2011a.

Krauße, T. and Cullmann, J.: Towards a more representative
parametrisation of hydrological models via synthesizing parti-
cle swarm optimisation and robust parameter estimation, Hydrol.
Earth Syst. Sci., 16, 603–629,10.5194/hess-16-603-2012, 2012a.

Krauße, T. and Cullmann, J.: Data depth – parsimonious sampling
of robust parameters in hydrological models, Environ. Modell.
Softw., submitted, 2012b.

Krzysztofowicz, R.: Transformation and normalization of vari-
ates with specified distributions, J. Hydrol., 197, 286–292,
doi:10.1016/S0022-1694(96)03276-3, 1997.

Liu, R. Y., Serfling, R., and Souvaine, D. L. (Eds.): Data Depth: Ro-
bust Multivariate Analysis, Computational Geometry and Appli-
cations, Vol. 72 of Series in Discrete Mathematics and Theoreti-
cal Computer Science, American Mathematical Society, 2006.

Maier, H. R. and Dandy, G. C.: Neural networks for the prediction
and forecasting of water resources variables: a review of mod-
elling issues and applications, Environ. Modell. Softw., 15, 101–
124,doi:10.1016/S1364-8152(99)00007-9, 2000.

Marx, A.: Einsatz gekoppelter Modelle und Wetterradar zur Ab-
scḧatzung von Niederschlagsintensitäten und zur Abflussvorher-
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