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Abstract. The lagged rank cross-correlation between model-
derived root-zone soil moisture estimates and remotely
sensed vegetation indices (VI) is examined between Jan-
uary 2000 and December 2010 to quantify the skill of var-
ious soil moisture models for agricultural drought monitor-
ing. Examined modeling strategies range from a simple an-
tecedent precipitation index to the application of modern land
surface models (LSMs) based on complex water and energy
balance formulations. A quasi-global evaluation of lagged
VI/soil moisture cross-correlation suggests, when globally
averaged across the entire annual cycle, soil moisture esti-
mates obtained from complex LSMs provide little added skill
(< 5 % in relative terms) in anticipating variations in veg-
etation condition relative to a simplified water accounting
procedure based solely on observed precipitation. However,
larger amounts of added skill (5–15 % in relative terms) can
be identified when focusing exclusively on the extra-tropical
growing season and/or utilizing soil moisture values acquired
by averaging across a multi-model ensemble.

1 Introduction

Agricultural drought is commonly defined as the lack of
sufficient soil water availability to maintain adequate crop
growth and pasture productivity (Panu and Sharma, 2002).
The development of large-scale drought agricultural mon-
itoring systems has received considerable attention in the
past decade, and a range of remote sensing, ground ob-
servation, and land surface modeling techniques has been

proposed in an effort to improve the early detection of
agricultural drought and the efficiency of subsequent miti-
gation responses (Wardlow et al., 2012). One common ap-
proach has been the application of complex water balance
formulations embedded within land surface models (LSMs)
to track temporal anomalies in root-zone soil water availabil-
ity (Mo et al., 2010; Sheffield et al., 2012). These models typ-
ically include water and energy balance formulations based
on time-varying meteorological and radiative forcing as well
as detailed vertical soil physics to describe sub-surface soil
water flux and storage. As a result, these “modern” LSMs
implicitly promise an enhanced representation of root-zone
soil water dynamics relative to soil moisture proxy products
based solely on the simple accounting of antecedent precip-
itation. Recent work has also focused on the potential for
improving soil moisture predictions by averaging across a
multi-model ensemble comprised of various LSMs (Guo et
al., 2007). Despite this potential, quantifying the marginal
value of modern LSMs for global drought monitoring is chal-
lenging due to a lack of adequate large-scale root-zone soil
water datasets available for evaluation purposes (Bolten et
al., 2010).

Recently,Peled et al.(2010) proposed a novel approach
for evaluating LSM soil moisture predictions by examin-
ing the cross-correlation between model-estimated root-zone
soil moisture anomalies and spatially concurrent anoma-
lies in vegetation indices derived from visible/near-infrared
(VIS/NIR) remote sensing. The use of VIS/NIR vegeta-
tion indices (VI) like the enhanced vegetation index (EVI)
and the normalized difference vegetation index (NDVI) is
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well-established for monitoring the extent and severity of
agricultural drought (Kogan, 1995; Peters et al., 2002; Ji
and Peters, 2003). The potential of root-zone soil moisture
monitoring lies in its ability to provide a leading indicator
of subsequent VI anomalies (Adegoke and Carleton, 2002;
Ji and Peters, 2005; Musyimi, 2010). That is, under water-
limited conditions, a negative soil moisture anomaly should
temporally precede a detectable impact on vegetation health
and biomass. The analysis inPeled et al.(2010) is based on
the assumption that the strength of soil moisture/VI cross-
correlation can be used as a large-scale proxy for the accu-
racy of a model-based, root-zone soil moisture product.

Here we expand the geographic scope ofPeled et al.
(2010) (from the European continent to all global land be-
tween 60◦ S and 60◦ N) and evaluate a wider range of poten-
tial land surface modeling strategies. In particular, this analy-
sis will employ various global LSMs, ranging from complex,
modern LSMs to a simple antecedent precipitation index to
sample lagged rank-correlations between model-estimated
soil moisture and remotely sensed VI products. These cross-
correlations will then be examined for evidence that higher-
order water and energy processes captured by modern LSMs,
but neglected in simple accounting procedures based solely
on antecedent precipitation, add significant marginal utility
to agricultural drought monitoring. The intent here is not so
much to promote the use of highly simplified models, but
rather to critically evaluate the value of processes contained
in more complex models. In addition to evaluating stand-
alone LSM predictions via comparisons with NDVI, the ad-
vantages of acquiring soil moisture products from a multi-
model ensemble will also be quantified, and an attempt will
be made to verify results via comparisons between model-
based, root-zone soil moisture products and an independent,
satellite-derived surface soil moisture product.

2 Models and data

The analysis is based on root-zone soil moisture products ex-
tracted from four separate models: version 3.2 of the National
Centers for Environmental Prediction, Oregon State Univer-
sity; Air Force Weather Office and National Weather Ser-
vice Hydrologic Research Laboratory model (Noah) (Ek et
al., 2003; Mitchell, 2005; Barlarge et al., 2010); version 2.0
of the Common Land Model (CLM2.0) (Dai et al., 2003);
the Catchment Land Surface Model (CLSM) (Koster et al.,
2000; Ducharne et al., 2000); and, as an obviously simplified
baseline approach, the antecedent precipitation index (API).
The three “modern” LSMs (i.e., Noah, CLM2.0 and CLSM)
were selected due to their availability within the NASA Land
Information System (LIS) data assimilation test-bed which
provides a framework for the integrated use of several com-
munity LSMs (Kumar et al., 2006). All models are run on a
0.25◦ grid between 1 January 2000 and 31 December 2010
for all global land area between 60◦ S and 60◦ N. Noah,

CLM2.0, and CLSM are run on a half-hourly time step while
API calculations are based on a daily time step. For all mod-
els, a 1 January 2000 initialization is derived by separately
looping each model through three integrations of this time
period.

2.1 Soil moisture models

All three modern LSMs dynamically predict vertically dis-
cretized profile soil moisture based on a complex vertical rep-
resentation of water flow within the soil column and a surface
energy balance approach for the estimation of evapotranspi-
ration. In addition to precipitation, modern LSMs require
air temperature, air pressure, relative humidity, wind speed,
and radiation (both shortwave and longwave) forcing data
as input. Vertical soil water processes (e.g., infiltration and
drainage) vary as a function of soil hydraulic properties typi-
cally tied to soil textural classifications through pedo-transfer
functions. Energy balance processes depend strongly on land
surface parameters like albedo, surface roughness, and leaf
area index parameters typically specified as a function of
vegetation class or climatological VI information. While the
focus here is on the growing season, Noah, CLM2.0, and
CLSM all contain snow modules which account for the ac-
cumulation, retention and melting of snow water storage.

Root-zone soil moisture is nominally defined as LSM-
predicted soil moisture for the top 1 m of the soil column (θ).
For this particular implementation, Noah uses four soil layers
with thicknesses of 10, 30, 60, and 100 cm (descending from
the surface), and CLM2.0 uses ten soil layers with thick-
nesses of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38, 33.60, 55.39,
91.33, and 113.7 cm. Consequently, the top three Noah lay-
ers and top eight CLM2.0 layers are averaged (using relative
weights equal to the ratio of each layer thickness to the 1-m
total root-zone depth) to obtain an integrated root-zone soil
moisture product. The Catchment LSM, by contrast, is non-
traditional in that the vertical soil moisture profile is diag-
nosed as a net variation in water storage relative to an equilib-
rium soil moisture profile calculated between the surface and
the top of the water table. In this way, CLSM calculates soil
moisture within both a 2-cm surface layer and a 1-m root-
zone layer (Koster et al., 2000). All three modern LSMs are
run on a half-hourly time step continuously throughout the
year.

Finally, an API-based root-zone soil water proxy (θAPI)
is calculated as a linear combination of the previous day’s
value (θAPI,j−1) and accumulated precipitation (in mm) for
the current day (Pj ):

θAPI,j = γ θAPI,j−1 + Pj (1)

where the constant parameterγ controls the effective mem-
ory of API levels to past rainfall accumulations. Unlike the
modern LSMs described above, the API model neglects vari-
ations in root-zone soil moisture storage due to surface en-
ergy balance processes, the vertical and/or lateral movement
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of water between multiple soil moisture states, and the im-
pact of snow melt on soil water availability.

2.2 Model forcing data

The modern LSMs are driven by two separate forcing
datasets which provide fine-scale (hourly to three-hourly)
values of precipitation, insolation, air temperature, humidity,
wind speed, and air pressure. The first dataset is derived from
the Global Data Assimilation System (GDAS) obtained from
the weather forecast model of the National Centers for En-
vironmental Prediction (Derber et al., 1991). In order to mit-
igate known biases, GDAS precipitation fields are rescaled
to match coarse-resolution (2.5◦, 5-day) precipitation accu-
mulation totals from the NOAA Climate Prediction Center’s
(CPC) operational global Merged Analysis of Precipitation
(CMAP) product (Xie and Arkin, 1997) which blends satel-
lite and rain-gauge observations.

While this “GDAS + CMAP” product is representative
of currently available global LSM forcing datasets, higher-
quality forcing datasets are available in selected continen-
tal areas. To reflect this, the modern LSMs are also forced
with the North American Land Data Assimilation System
Version 2 (NLDAS-2) forcing dataset (Xia et al., 2012)
within a regional domain centered on the contiguous United
States (CONUS) (25.75◦–52◦ N, 124◦–68.75◦ W). Relative
to GDAS + CMAP, the NLDAS-2 dataset is based on regional
(as opposed to global) reanalysis products and leverages
a greater abundance of ground- and satellite-based obser-
vational resources. In particular, NLDAS-2 precipitation is
based on the merger of daily CPC rain gauge accumulations,
ground-based radar estimates, satellite-based retrievals, and
North American Regional Reanalysis (NARR) precipitation
fields (Cosgrove et al., 2003). Incoming longwave and short-
wave radiation estimates are taken from the NASA/GEWEX
Surface Radiation Budget (SRB) dataset and geostationary
satellite observations. Remaining NLDAS-2 forcing vari-
ables (e.g., air temperature, wind speed, relative humidity,
and air pressure) are based on NCEP North American Re-
gional Reanalysis (NARR).

Modern LSMs generally use remotely sensed VI informa-
tion to estimate either vegetation fractional coverage (Noah)
or leaf area index (CLM2.0 and CLSM). Unless otherwise
noted, all such parameters are derived from climatological
VI information derived using long-term Advanced Very High
Resolution Radiometer (AVHRR) surface reflectance prod-
ucts. Since they lack inter-annual variability, the use of cli-
matological VI information as LSM input eliminates the risk
of cross-correlated errors between LSM soil moisture esti-
mates and inter-annual variations in VI products used for the
purpose of evaluation. Additional land cover information is
derived from the 1-km University of Maryland land cover
classification (Hansen et al., 2000). Soil texture is obtained
by merging the global Foreign Agricultural Office (FAO)
soil classification product with the State Soil Geographic

(STATSGO) database within CONUS. In contrast, the API
model is forced solely by daily (0:00–24:00 UTC) precipita-
tion accumulations acquired by temporally aggregating sub-
daily GDAS + CMAP and/or NLDAS-2 precipitation accu-
mulations. The single parameterγ is assumed to be a fixed
global constant (see below).

2.3 Evaluation data

The primary strategy for evaluating model-based soil mois-
ture will be comparison against satellite-derived NDVI de-
rived from the monthly Moderate Resolution Imaging Spec-
troradiometer (MODIS) MOD13C2 composite product (Col-
lection 5) between February 2000 and December 2010. Only
reliable MODIS VI retrievals categorized as “Good data –
use with confidence” in the MOD13C2 pixel reliability field
are included in the analysis and spatially aggregated to match
the 0.25◦ LSM modeling grid.

In an attempt to verify NDVI-based results, model-based
soil moisture estimates will also be compared to 0.25◦ Ad-
vanced Microwave-Scanning Radiometer-EOS (AMSR-E)
surface soil moisture retrievals derived via the Land Param-
eter Retrieval Model (LPRM) (Owe et al., 2008) by Richard
de Jeu and colleagues at VU University Amsterdam. Com-
parisons are made with LPRM AMSR-E retrievals obtained
between July 2002 to December 2011. Note that retrievals
are masked during periods of dense vegetation cover, heavy
precipitation, and/or frozen surface condition, and assumed
to reflect surface soil moisture conditions only in the top 1–
3 cm of the soil column.

3 Analysis

The analysis is based on the assumption that higher-quality
root-zone soil moisture datasets will exhibit stronger lagged
correlations with future VI anomalies (Peled et al., 2010).
However, secondary characteristics like climatological sea-
sonality, distribution shape, and temporal auto-correlation
can also impact soil moisture/VI cross-correlation. In order
to minimize these effects, results are based on rank correla-
tions sampled after the transformation of both raw VI and soil
moisture data into a monthly rank time series and the stan-
dardization of soil moisture auto-correlation functions. See
below for a description of this processing.

3.1 Rank time series calculation

To begin, every model-based root-zone soil moisture product
θ is aggregated to create a monthly time seriesθ̄i from Jan-
uary 2000 to December 2010 for each 0.25◦ land pixel be-
tween 60◦ S and 60◦ N. Next, θ̄i for a single monthi (and a
single 0.25◦ land pixel) are ranked across all 11 occurrences
of the same month of the year between 2000 and 2010 for
the same pixel. As a result, thēθ time series is transformed
into a monthly time series of ranks – or Rank(θ̄)i – which
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reflect the relative wetness of a particular monthi relative
to the same month of the year during all other years. The
same ranking procedure is applied to monthly NDVI to create
Rank(NDVI)i and monthly-averaged LPRM AMSR-E sur-
face soil moisture retrievals to create Rank(LPRM)i . This
rank transformation accomplishes two key objectives. First,
it removes the seasonal cycle from each product so that the
analysis focuses solely on inter-annual variations. Second, it
ensures a consistent distribution for variables in the cross-
correlation analysis and minimizes the potential impact of
outliers. The use of a monthly time scale is intended as a
compromise between minimizing the temporal resolution of
the analysis while maximizing the spatial coverage and com-
pleteness of composited VI products.

Figure 1 shows example times series of monthly
Rank(θ̄Noah) and Rank(NDVI) for a single 0.25◦ pixel in the
South Central United States. Formally, the y-axis describes
the fractional rank of monthi relative to the same month of
the year found in other years of the 2000 to 2010 time period
(i.e., the fraction of the same month of the year in differ-
ent years with lower̄θ or lowerNDVI). Periodic gaps in the
NDVI time series reflect months where MODIS-based NDVI
products are deemed unreliable.

3.2 Rank auto-correlation analysis and standardization

Despite the fact that Noah, CLM2.0, and CLSM root-zone
products are all defined to provide top-1-m soil moisture
products, differences in evapotranspiration and soil water pa-
rameterizations between models can induce variations in the
effective persistence of soil moisture anomalies. Such differ-
ences can, in turn, impact sampled soil moisture/VI cross-
correlation. Since we hope to interpret such correlations as
being reflective solely of skill in model-based soil moisture
estimates, large variations in soil moisture auto-correlation
can potentially confound our analysis. For example, oth-
erwise skillful variations in profile soil moisture estimates
from a given model could be unfairly evaluated if sampled
at a depth which did not adequately express their true cross-
correlation with NDVI. To address this, the auto-correlation
function of Rank(θ̄)i – or ρ(L) – is standardized across all
models prior to further cross-correlation analysis. With this
goal in mind, Fig. 2a plots quasi-global averages (i.e., land
areas between 60◦ S and 60◦ N) of ρ(L) for root-zone soil
moisture estimates from Noah, CLM2.0, and CLSM. For top-
1-m LSM results, sampled CLM2.0 and CLSMρ(L) match
relatively closely and will therefore be left unmodified. How-
ever, 1-m Noah results show significantly more temporal
auto-correlation. Consequently, all subsequent Noah results
are instead based on a shallower vertical integration of soil
moisture (i.e., top 40 cm versus top 1 m). Unlike the original
1-m results, 40-cm Noah soil moistureρ(L) results provide
a close match to 1-m CLM2.0 and CLSMρ(L) results. Also
note that all sampledρ(L) functions show considerable tem-
poral auto-correlation at lags of±1-month – suggesting that
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Fig. 1. Example monthly Rank(NDVI) and Rank(θ̄Noah) time se-
ries for a 0.25◦ pixel in the South Central United States. A rank of
zero (one) means that a given month has a lower (higher) soil mois-
ture/NDVI than all other occurrences of its month of the year within
the 2000–2010 time period.

a monthly time scale represents a reasonable temporal sup-
port for capturing root-zone soil moisture dynamics.

API results are based on calibratingγ in Eq. (1) to pro-
duce quasi-globally averaged API-basedρ(L) results which
approximate that of the modern LSMs. However, due to dif-
ferences in the shape of API’sρ(L) function relative to the
modern LSMs’ functions, there is some ambiguity in this cal-
ibration. Figure 2b illustrates this effect by comparing quasi-
globally averaged APIρ(L) for γ = 0.98, 0.985, and 0.99 to
the absolute range ofρ(L) results for Noah, CLM2.0, and
CLSM. Note thatγ = 0.98 represents a plausible fit to the
modern LSM range for|L| = 1 but drifts badly for larger|L|.
Conversely,γ = 0.99 is adequate at large|L| but poor for
small |L|. While the middle choice ofγ = 0.985 minimizes
misfits over the entire range ofL, it still performs badly at
large|L|. Unless otherwise noted, all future API results will
be for the middle caseγ = 0.985. However, given the ambi-
guity noted in Fig. 2b, the sensitivity of key API results toγ

will also be noted.

3.3 Ensemble-mean product

As described above, a final soil moisture product is cre-
ated by averaging across soil moisture results within a multi-
model ensemble. This product is based on transforming each
of the three monthly, modern LSM root-zone soil moisture
products (̄θ Noah, θ̄CLM2.0, and θ̄CLSM) into standard normal
deviates:

θ̄ ′

i =
θ̄i − µθ̄

σθ̄

(2)

where µθ̄ and σθ̄ are the sampled mean and standard-
deviation, respectively, for each̄θ product during all occur-
rences of the month of the year associated with monthi.
Next, all three anomaly products are averaged to create a
monthly ensemble-averaged product:
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Fig. 2. Quasi-global land averages ofρ(L) for (a) modern LSMs
(i.e., Noah, CLM2.0, and CLSM) and(b) various API cases. Noah
results in(a) are shown for both a 40-cm and 1-m root-zone depth
case. “Modern LSM Range” shading in(b) is defined as the absolute
range of 40-cm Noah, 1-m CLM2.0, and 1-m CLSMρ(L) results
in part(a).

θ̄ ′

ENS,i =
1

3

(
θ̄ ′

Noah,i + θ̄ ′

CLM2.0,i + θ̄ ′

CLSM,i

)
. (3)

The resulting time series of̄θ ′

ENS are then ranked to cre-
ate Rank(θ̄ENS). Note that the anomaly notation is dropped
when referring to this rank product since Rank(θ̄ENS) =

Rank(θ̄ ′

ENS).

3.4 Rank cross-correlation calculation

The rank cross-correlationR(L) at lag L between NDVI
and all five root-zone soil moisture rank products (i.e.,
Rank(θ̄Noah), Rank(θ̄CLM2.0), Rank(θ̄CLSM), Rank(θ̄ENS),
and Rank(θ̄API)) is calculated as the sampled correlation
coefficient between Rank(θ̄)i+L and Rank(NDVI)i over all
possiblei. Based on this definition,R(L) for L < 0 relates
the ability ofcurrentsoil moisture conditions to forecastfu-
tureNDVI. Since the Fischer transformation,

F(R) =
1

2
ln([1+ R]/[1− R]), (4)

of sampledR yields a normal distribution with variance
1.06/(n − 3) (Fieller et al., 1957), Z-scores forR(−1) dif-
ferences between an LSM and API can be calculated as:

Fig. 3. Quasi-global map of 0.25◦ R(−1) for the Noah, CLM2.0,
CLSM, ENS, and API cases.

Z =

√
n − 3

2 · 1.06

(
F [RLSM(−1)] −F [RAPI(−1)]

)
(5)

wheren is taken to be the number of months sampled to ob-
tain R(−1). Note that, since Eq. (5) neglects the impact of
temporal auto-correlation in both Rank(NDVI) and Rank(θ̄),
theseZ-scores are likely not appropriate for formal hypothe-
sis testing. Nevertheless, they represent a useful tool for stan-
dardizing observed model-to-model differences.

It is important to note that positiveR(L) is not be expected
for all biomes or land cover types. For example, in energy-
limited areas, relatively dry periods may be associated with
enhanced VI due to reduced cloudiness (Huete et al., 2006).
In these areas, an increase inR(L) (i.e., making it less neg-
ative) cannot be reliably linked to improved soil moisture
skill. Therefore, all 0.25◦ pixels in which the null hypoth-
esisR(−1) >= 0 can be rejected (at 80% significance) for
any model product are subsequently masked from the en-
tire analysis. In order to minimize the impact of cold-season
conditions, months with an average daily high air tempera-
ture below 5◦C are also removed (on a month-by-month and
pixel-by-pixel basis).

This cross-correlation analysis will be repeated for the
case of replacing the target variable Rank(NDVI) with
Rank(LPRM) and sampling the equivalent rank cross-
correlationRLPRM(L). All spatial and temporal rank proce-
dures described above (for the NDVI analysis) are adhered
to. In addition, since temporal gaps exist in the LPRM sur-
face soil moisture retrieval product (e.g., due to snow cover,
dense vegetation and/or frozen soil), all months lacking at
least five separate LPRM retrievals are masked from the cal-
culation of RLPRM(L). Note thatRLPRM(L) results play a
secondary role in the analysis and are used only to verify
NDVI-basedR(L) results.
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Fig. 4. Quasi-global map of 0.25◦ Z-scores for the difference
R(−1)LSM minus R(−1)API where LSM estimates are obtained
from Noah, CLM2.0, CLSM, and ENS.

4 Results

For the caseL = −1 (i.e., Rank(θ̄) temporally precedes
Rank(NDVI) by 1 month), Fig. 3 plots global 0.25◦ Noah,
CLM2.0, CLSM, ENS and APIR(−1) results. White
masked areas represent a combination of open water sur-
faces, areas with non-significant positiveR(−1) (see above),
and barren areas where no temporal NDVI variability is
observed. Substantial coupling (R(−1) > 0.50) is found in
semi-arid areas of the world prone to water-limited plant
growth (e.g., Australia, Southern Africa, and the West-
ern United States). Conversely, humid areas of the Eastern
United States, Europe, and Southeastern Asia demonstrate
weak soil moisture/VI cross-correlation (R(−1) < 0.20). A
secondary cause of lowR(−1) is poor accuracy in model-
based soil moisture predictions. For example, low sampled
R(−1) in arid regions of Sub-Saharan Africa are likely
caused by inadequate rain gauge coverage which prevents
LSMs from accurately capturing relative soil moisture varia-
tions in data-poor regions.

Figure 4 examines model-to-model differences in perfor-
mance between models by plotting spatially distributedZ-
scores for sampledR(−1) differences between the four ap-
proaches based on modern LSM simulations (i.e., Noah,
CLSM, CLM2.0, and ENS) and the API baseline. While re-
gions of significantly improved NDVI forecasting (relative
to API) exist in Noah, CLM2.0, and CLSM predictions (i.e.,
positiveZ-scores indicated by red shading in Fig. 4), they
are balanced by areas where API-based soil moisture prod-
ucts are superior (i.e., negativeZ-scores indicated by blue
shading in Fig. 4). Only the multi-model ENS case appears
to consistently improve upon the API baseline.

Figure 5a compares modeling results on a quasi-global
scale by plotting averageR(L) across all unmasked land ar-
eas in Fig. 3 for a range ofL. SampledR(L) functions are
not symmetric with respect toL = 0, and instead are larger
for L < 0. This lack of symmetry underscores the predictive
role for soil moisture where the largestR(L) is sampled for
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Fig. 5. Quasi-global land averages of(a) R(L) for Noah, CLM2.0,
CLSM, ENS, and API root-zone soil moisture predictions, and
(b) percentage relativeR(L) difference for the modern LSMs
(Noah, CLM2.0, CLSM, and ENS) versus an API baseline (i.e.,
100· [R(L)LSM − R(L)API]/R(L)API).

theL < 0 case in which Rank(θ̄)i+L precedes Rank(NDVI)i .
Using Eqs. (4) and (5), error bars can be constructed for
individual points in Fig. 5. However, even if conservative
reductions in effective degrees of freedom are made to ac-
count for potential spatial and temporal autocorrelation in
Rank(NDVI) and Rank(θ̄), 1σ sampling uncertainty associ-
ated with these quasi-global averages ofR(−1) remains on
the order of 0.005 [–] to 0.001 [–] and therefore smaller than
the size of plotted symbols in Fig. 5. Consequently, it is safe
to assume that all visible differences in plottedR(L) are sig-
nificant at a 1σ certainty level.

Nevertheless, among the stand-alone models, the relative
magnitude of model-to-model variations is small. ForL < 0,
Noah, CLM2.0, and CLSM results are associated withR(L)

values that fall within about±5% of baseline API results
(Fig. 5b). That is, none of the stand-alone modern LSMs
demonstrates any substantial advantage over API in antici-
pating the near-term impact of agricultural drought on NDVI
anomalies. However, using a multi-model ensemble average
acquired from Eq. (3) leads to a larger (and more consis-
tent) amount of improvement relative to the API baseline (see
Fig. 5b). As a result, the only viable method for consistently
increasingR(L) via modified model physics appears to lie
in the use of multi-model ensembles. It should be noted that
ENS results here are based on a very small ensemble size and
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Fig. 6. Quasi-global map of 0.25◦ Z-scores for the difference
RLPRM(−1)LSM minusRLPRM(−1)API (use of LPRM surface soil
moisture retrievals as target variable; left column) andR(−1)LSM
minus R(−1)API (use of NDVI as target variable; right column)
where LSM estimates are obtained from Noah, CLM2.0, and
CLSM.

would almost certainly be enhanced by considering a larger
number of LSMs.

Utilizing EVI as the target VI (not shown) produces a qual-
itatively similar plot except sampledR(L) values are some-
what lower than those found using NDVI for all modeling
cases. Likewise, APIR(L) results in Fig. 5 are slightly im-
proved when using values ofγ along the upper edge of the
feasible range identified in Fig. 2b; however, the overall ef-
fect is very small (on the order of a∼ 2 % relative increase
in R(L) for −2 ≤ L ≤ 0).

4.1 Comparisons with satellite-based surface
soil moisture

Figure 6 replicatesR(−1) results previously shown in Fig. 4
(right column), but also addsRLPRM(−1) results based on
comparisons between LPRM surface soil moisture retrievals
derived from AMSR-E observations (left column). As in
Fig. 4, Fig. 6 showsZ-scores for differences in rank cor-
relations achieved using modern LSMs versus an API base-
line. Results in Fig. 6 are based on the time period July 2002
to December 2010 and areas in which adequate LPRM re-
trievals are available after masking of densely vegetated
and frozen surfaces. As before, red shading indicates re-
gions where modern LSMs add skill to the API baseline (by
providing a better predictor of either satellite-based surface
soil moisture retrievals or NDVI), and blue shading indi-
cates areas where modern LSMs perform worse than the API
baseline. Results in Fig. 6 indicate relatively strong consis-
tency between results based on comparisons against LPRM
and NDVI. In particular,RLPRM(−1) differences (relative to
API) mirror earlierR(−1) results in suggesting that none of
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Fig. 7. CONUS land averages of(a) R(L) for Noah, CLM2.0,
CLSM, and API root-zone soil moisture predictions based on ei-
ther the GDAS + CMAP or NLDAS-2 forcing datasets, and(b)
percentage relativeR(L) percentage difference for the modern
LSMs (Noah, CLM2.0, and CLSM) versus an API baseline (i.e.,
100· [R(L)LSM − R(L)API]/R(L)API).

the modern LSMs examined provides a clear global advan-
tage over API. Patterns of relative degradation/improvement
versus an API baseline are also roughly comparable for
RLPRM(−1) andR(−1) difference results (see e.g., Noah re-
sults in the first row of Fig. 6).

This general consistency between results obtained from in-
dependent verification strategies lends credibility to our ear-
lier interpretation ofR(−1) as a reliable performance metric
for LSM soil moisture estimates. Nevertheless, two caveats
should be noted forRLPRM(−1) results. First, they are based
on the (vertically inconsistent) comparison of surface soil
moisture retrievals with root-zone soil moisture model esti-
mates. Second, the use ofL = −1 [month] as the lag scale
lacks any clear physical justification and is done simply for
consistency with earlier NDVI-basedR(−1) results.

4.2 Impact of LSM forcing data

Since modern LSMs attempt to exploit temporal variations
in non-rainfall-based forcing (e.g., air temperature and inso-
lation) to better predict soil moisture anomalies, one factor
impacting the performance spread between modern LSMs
and an API baseline may be the quality of non-rainfall forc-
ing data. Figure 7 shows the impact of replacing the global
GDAS + CMAP forcing dataset with the higher-quality (but
non-global) NLDAS-2 dataset. Dashed lines in Fig. 7a show
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CONUS GDAS + CMAPR(L) results for each model and
solid lines NLDAS-2 results for the same CONUS domain.
For clarity, ENS results are omitted. The transition between
GDAS + CMAP and NLDAS-2 forcing clearly improves the
performance of the models. However, nearly all of this im-
provement is attributable to improved rainfall since there is
no discernible improvement in modern LSM results relative
to API (Fig. 7b). In fact, forL < −4, utilizing NLDAS-2
forcing actually degrades the quality of the modern LSM pre-
dictions relative to API (Fig. 7b). Consequently, there is no
evidence that enhancing the quality of non-rainfall forcing
data improves the performance of modern LSMs relative to
an API baseline. Note that the focus here is on the impact
of errors in dynamic model forcings, as opposed to static
inputs like soil texture, since inter-annual model variability,
and thus Rank(θ̄) time series, is more strongly impacted by
time-varying model inputs.

A related issue is the use of a long-term NDVI climatol-
ogy to estimate LSM vegetation parameters. The neglect of
inter-annual variability in this climatology could conceivably
impair the ability of LSMs to accurately characterize relative
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Fig. 9. Spatial averages of relative change in Noah, CLM2.0,
and CLSM R(−1) results versus the API baseline (i.e, 100·

[R(−1)LSM − R(−1)API]/R(−1)API) broken down by month of
the year for Rank(θ̄) within the (a) extra-tropical Northern Hemi-
sphere (ETNH),(b) tropical Northern Hemisphere (TNH),(c) trop-
ical Southern Hemisphere (TSH), and(d) extra-tropical Southern
Hemisphere (ETSH).

variations in root-zone soil moisture availability. To test for
this possibility, Noah results were duplicated for the case of
obtaining fractional vegetation cover from monthly NDVI
composites (as opposed to an NDVI climatology). Surpris-
ingly, this inclusion of inter-annual variability in LSM veg-
etation parameters leads to a slight reduction in globally av-
eraged NoahR(−1) andRLPRM(−1) results. While the rea-
son(s) for this reduction are unclear, it suggests that our use
of an NDVI climatology does not significantly degrade the
performance of modern LSMs.

4.3 Impact of seasonality

Large seasonal variability in soil water availability, and thus
R(L), is also expected in certain climate zones. To examine
such seasonal variability, Fig. 8 plots spatially averaged
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R(−1) within various latitude bands according to the month
of the year for Rank(θ̄) obtained using GDAS + CMAP forc-
ings. To maximize the spatial consistency of sampledR(−1)

for different months, the monthly air temperature mask (see
Sect. 3) is not applied here. Observed monthly trends in
Fig. 8 conform well to expected seasonal patterns. For in-
stance, in the extra-tropical Northern Hemisphere (ETNH;
Fig. 8a), the highest soil moisture/vegetation coupling, and
thus sampledR(−1), occurs during the boreal summer when
root-zone soil moisture is generally minimized. Likewise,
seasonalR(−1) trends in tropical regions (Fig. 8b and c) re-
flect the expected progression of the tropical rain belt with
relatively lowerR(−1) found during the rainy seasons for
both the tropical Northern Hemisphere (TNH; May to Octo-
ber) and tropical Southern Hemisphere (TSH; November to
April).

Figure 9 mirrors Fig. 5b by plotting results in Fig. 8 in
terms of percentage variation versus an API baseline. De-
spite relatively modest model-to-model variability in Fig. 8,
several potential trends can be noted. For example,R(−1)

for Noah and CLM2.0 consistently improves upon the API
baseline during mid-to-late portions of the ETNH (see June
to November results in Fig. 9a) and ETSH (see February to
April in Fig. 9d) growing seasons. The enhanced importance
of evapotranspiration to the soil water balance in these pe-
riods may increase the value of energy balance calculations
made by modern LSMs. Likewise, during the end of both the
TNH rainy season (September to November in Fig. 9b) and
the TSH rainy season (January to March in Fig. 9c), all three
modern LSMs appear to maintain some advantage relative to
API.

5 Conclusions

Given the wide variety of remote sensing, ground obser-
vation, and modeling strategies currently being proposed
for global agricultural drought monitoring (Wardlow et al.,
2012), it is important to define benchmarking strategies capa-
ble of objectively evaluating the relative merits of each. Here,
we quantify the added benefit of modern LSMs for antici-
pating future vegetation health and biomass anomalies rela-
tive to a baseline case of utilizing a much simpler antecedent
precipitation index (API). Unlike API, modern LSMs offer a
complex parameterization of the surface energy balance and
detailed vertical water balance physics in an attempt to more
accurately characterize temporal variations in root-zone soil
moisture availability. However, when objectively evaluated
at global scales over the entire seasonal cycle, modern LSMs
offer little relative advantage versus an API baseline in terms
of anticipating the impact of agricultural drought on vege-
tation condition (Figs. 3, 4, and 5) and/or matching inde-
pendent surface soil moisture retrievals obtained from satel-
lite remote sensing (Fig. 6). The relative utility of modern
LSMs versus API is not enhanced by improving the quality

of LSM forcing data (Fig. 7). Taken as a whole, results sug-
gest that non-rainfall forcing data and modern LSM energy
balance calculations currently contribute relatively little to-
wards the accuracy of agricultural drought monitoring sys-
tems. As such, results are broadly consistent with past work
in Abramowitz et al.(2008) questioning the general util-
ity of existing LSM energy balance calculations. However,
clear additive value does emerge when root-zone soil mois-
ture estimates obtained from various models (including mul-
tiple modern LSMs) are merged into a single ensemble-mean
prediction (Figs. 3, 4, and 5). In addition, more added value
(around 5 % to 15 % in relative terms) for modern LSMs is
found during specific points along the seasonal cycle – par-
ticularly during middle to late portions of the extra-tropical
growing season (Figs. 8 and 9).

In summary, it should be stressed that modern LSMs pos-
sess a range of functionality (e.g., data assimilation capabil-
ities, compatibility with crop growth models, and compat-
ibility with atmospheric models) that cannot be duplicated
by simpler models like API. In addition, even if their con-
tribution to off-line drought prediction is marginal, modern
LSMs possess substantial utility by describing the subse-
quent impact of drought conditions on water balance pro-
cesses like ET and runoff. Therefore, results here should not
be interpreted as advocating the use of API in operational
drought monitoring systems. However, for the specific ob-
jectives examined here, complex LSM treatment of surface
water and energy balance processes contributes relatively lit-
tle marginal utility above and beyond that obtainable from
highly simplified modeling approaches. This, in turn, implies
additional model development and benchmarking work are
required before modern LSMs can meet their full potential
as agricultural drought monitoring tools.
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