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Abstract. This study investigates the impact on river dis-
charge simulations of errors in the precipitation forcing,
together with changes in the representation of vegetation
variables and of plant transpiration. The most recent Euro-
pean Centre for Medium-Range Weather Forecasts reanal-
ysis (ERA-Interim) is used to drive the Interactions be-
tween Soil, Biosphere, and Atmosphere–Total Runoff In-
tegrating Pathways (ISBA-TRIP) continental hydrological
system over Europe and the Mediterranean basin over the
1991–2008 period. As ERA-Interim tends to underestimate
precipitation, a number of precipitation corrections are pro-
posed. In particular, the monthly Global Precipitation Clima-
tology Centre (GPCC) precipitation product is used to bias-
correct the 3-hourly ERA-Interim estimates. This correction
markedly improves the match between the ISBA-TRIP sim-
ulations and the river discharge observations from the Global
Runoff Data Centre (GRDC), at 150 gauging stations. The
impact on TRIP river discharge simulations of various repre-
sentations of the evapotranspiration in the ISBA land surface
model is investigated as well: ISBA is used together with its
upgraded carbon flux version (ISBA-A-gs). The latter is ei-
ther driven by the satellite-derived climatology of the Leaf
Area Index (LAI) used by ISBA, or performs prognostic LAI
simulations. The ISBA-A-gs model, with or without dynam-
ically simulated LAI, allows a better representation of river
discharge at low water levels. On the other hand, ISBA-A-
gs does not perform as well as the original ISBA model at
springtime.

1 Introduction

Over the last decades, Europe was affected by severe drought
events. The drought of 2003 had a marked impact on agri-
culture and industry over Western and Central Europe (Ciais
et al., 2005; Vidal et al., 2010). In 2004 and in 2010, re-
spectively, severe droughts affected the Iberian Peninsula
(Garćıa-Herrera et al., 2007) and Russia (Barriopedro et al.,
2011). Drought duration and location are variable but always
have economic, social and environmental impacts. As a re-
sult, it is necessary to understand these events and to predict
when and where they will occur. Even if no universally ac-
cepted definition of drought exists (Tate and Gustard, 2000),
three consistent drought categories are frequently used and
have been defined by Wilhite and Glantz (1985): meteoro-
logical drought (deficit in precipitation), agricultural drought
(deficit in soil moisture, and/or in Leaf Area Index – LAI)
and hydrological drought (e.g. deficit in river discharge).
Modelling platforms including land surface models (LSMs),
forced by gridded atmospheric variables and coupled to river
routing models, represent efficient and powerful tools to un-
derstand the global hydrological cycle and to study differ-
ent drought types (Dirmeyer et al., 2006). While precipita-
tion data allow the evaluation of meteorological droughts,
LSMs coupled to runoff models are needed to characterize
agricultural and hydrological droughts, with simulated bio-
physical variables (LAI, surface and root-zone soil mois-
ture) fully consistent with surface flux (latent and sensible
heat fluxes, CO2 fluxes) and river discharge simulations. In-
deed, the LSM performance impacts the hydrological simu-
lations (Lohmann et al., 1998; Boone et al., 2004; Decharme,
2007; Balsamo et al., 2009). LSMs were significantly im-
proved over recent decades and can now be coupled with
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river routing schemes to understand the regional and global
water cycles (D̈umenil and Todini, 1992; Habets et al., 1999;
Oki et al., 1999; Decharme et al., 2006).

The Mediterranean basin will probably be affected by cli-
mate change to a large extent (Gibelin and Déqúe, 2003;
Giorgi, 2006; Planton et al., 2012). The fourth assessment
report of the Intergovernmental Panel on Climate Change
(IPCC) emphasized that over Europe and Mediterranean ar-
eas, the annual mean temperature of the air is likely to in-
crease more than the global mean. In most Mediterranean
regions, this trend would be associated with a decrease in an-
nual precipitation (Christensen et al., 2007). In this context, it
is important to build monitoring systems of the land surface
variables and of the hydrological variables over this region,
able to describe extreme climatic events such as droughts
and to analyze their severity with respect to past droughts.
In the framework of the HYMEX (HYdrological cycle in the
Mediterranean EXperiment) project (HYMEX White Book,
2008) and particularly with the aim of simulating hydro-
logical droughts over the 1991–2008 period, river discharge
simulations were performed with the ISBA (Interactions be-
tween Soil, Biosphere, and Atmosphere) LSM (Noilhan and
Planton, 1989; Noilhan and Mahfouf, 1996) coupled with the
Total Runoff Integrating Pathways (TRIP; Oki et al., 1997)
model over Europe and the Mediterranean basin. The ISBA
LSM was developed at Ḿet́eo-France to describe the land
surface processes in weather forecast and climate models.
ISBA uses a limited number of parameters, mapped accord-
ing to the soil and vegetation types provided by the global
1 km× 1 km resolution ECOCLIMAP land cover and look-
up table database (Masson et al., 2003). The European Cen-
ter for Medium range Weather Forecasts (ECMWF) ERA-
Interim (ERA-I) gridded atmospheric reanalysis (Simmons
et al., 2007; Dee et al., 2011) was used to drive the coupled
ISBA-TRIP continental hydrological system.

The river discharge simulated by the ISBA-TRIP system
results from the following water fluxes: (1) the ERA-I pre-
cipitation, and (2) the simulated soil moisture changes, evap-
otranspiration, surface runoff and drainage. Therefore, pro-
vided bias-corrected precipitation data are used (Fekete et al.,
2003), and that errors caused by the coarse resolution spa-
tial average of the atmospheric forcings combined with the
non-linearity in the hydrological response are not too large
(Van Dijk and Renzullo, 2011), the simulated river flow can
be used for the intercomparison of LSM simulations (Boone
et al., 2004). Szczypta et al. (2011) have shown that, over
France, the ERA-I precipitation correlates very well with the
SAFRAN (Syst̀eme d’Analyse Fournissant des Renseigne-
ments A la Neige) analysis (Quintana-Segui et al., 2008)
based on a dense network of in situ observations. However,
ERA-I tends to markedly underestimate the precipitation, by
27 % on average. Photiadou et al. (2011) have shown that the
underestimated ERA-I precipitation leads to underestimated
river discharges.

The two major objectives of this study are (1) to reduce
the bias of the ERA-I precipitation using ancillary data and
validate the bias-corrected precipitation through river dis-
charge simulations, and (2) to test different LSM configura-
tions driven by the best available atmospheric forcing. First,
the ERA-I precipitation bias is characterized over Europe and
the Mediterranean basin by comparing monthly ERA-I pre-
cipitation data with the monthly Global Precipitation Clima-
tology Centre (GPCC) product (Rudolf et al., 2005), which
is based on ground observations. The GPCC data are used
to bias-correct the ERA-I 3-hourly precipitation. The origi-
nal and the bias corrected ERA-I precipitation data sets are
used by ISBA-TRIP to produce river discharge simulations.
Following Decharme and Douville (2006b), the comparison
between these simulations and the Global Runoff Data Cen-
tre (GRDC) daily observations are used to assess the added
value of the bias-corrected ERA-I precipitation on the ISBA-
TRIP simulations. Second, the relevance of using different
precipitation fields and versions of ISBA LSM (the standard
version or the CO2-responsive versions) is examined through
ISBA-TRIP simulations of river discharge. ISBA-TRIP sim-
ulations based on the bias-corrected ERA-I precipitation are
used to benchmark two versions of the ISBA model: the stan-
dard version and the ISBA-A-gs carbon version (Calvet et
al., 1998; Gibelin et al., 2006). The latter uses either the
same satellite-derived LAI climatology as the standard ISBA
or produces prognostic LAI estimates. The impact of these
LSM options and of LAI on the river discharge simulations
is evaluated.

After an overview of the different data sets, models, scores
and methods used in this study (Sect. 2), the results are pre-
sented in Sect. 3. The impact of precipitation on the runoff
model simulations over Europe is presented, together with
the impact of the carbon option of ISBA and LAI. These re-
sults are analyzed and discussed in Sect. 4, in relation to the
water balance of the Mediterranean basin. The main conclu-
sions of this study are summarized in Sect. 5.

2 Data and methods

Two independent sets of experiments were performed (Ta-
ble 1): evaluation of the river discharges derived with (1) four
different precipitation forcings, and (2) three different vege-
tation parameterizations.

2.1 Meteorological variables

The ERA-I atmospheric reanalysis is used in this study to
drive the coupled ISBA-TRIP system over the 1991–2008
period, at a spatial resolution of 0.5◦, corresponding to 8142
land grid cells over the considered area (see Fig. 1).
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Table 1.Description and references of the different configurations of the ISBA-TRIP river discharge simulations. It can be noted that ERA-
I-RG and NIT represent the same experiment.

Simulation name
GPCP-rescaled GPCC-unbiased

LSM LAI
precipitation precipitation

ERA-I ISBA-A-gs ISBA-A-gs
ERA-I-R X ISBA-A-gs ISBA-A-gs
ERA-I-G X ISBA-A-gs ISBA-A-gs
ERA-I-RG X X ISBA-A-gs ISBA-A-gs
STD X X Standard ISBA ECOCLIMAP-II
AST X X ISBA-A-gs ECOCLIMAP-II
NIT X X ISBA-A-gs ISBA-A-gs

Fig. 1. Mean number of GPCC rain gauges per grid cell
(0.5◦ × 0.5◦) used to rescale the ERA-I precipitation data set over
the 1991–2008 period.

2.1.1 The ERA-I reanalysis

The ECMWF ERA-I reanalysis covers dates from 1 Jan-
uary 1979 and is updated in near-real-time (with a delay of
approximately one month). This data set is produced with
an atmospheric model using a sequential data assimilation
scheme based on 12-hourly analysis cycles. The available
observations are used together with the previous forecast
simulations to map the atmospheric fields (air temperature,
wind speed, air humidity, atmospheric pressure). Further-
more, while producing a forecast, the atmospheric model
simulates a large variety of physical variables such as pre-
cipitation, turbulent fluxes, radiation fields, and cloud prop-
erties. Even if these quantities are not directly observed, they
are constrained by the observations used to initialize the fore-
cast. All these forcing data were projected from the original
reduced Gaussian grid (of about 0.7◦

× 0.7◦) to a 0.5◦ × 0.5◦

grid, at a 3-hourly time step. A full description of the data

can be found in Simmons et al. (2007), and the assimilation
system is described in Dee et al. (2011).

A verification of the different ERA-I atmospheric vari-
ables was performed over France by Szczypta et al. (2011).
They found that, on average, the ERA-I precipitation is un-
derestimated by 27 % in comparison to the SAFRAN refer-
ence analysis based on thousands of rain gauges. A scale-
selective rescaling procedure correcting for the ERA-I 3-
hourly precipitation bias was implemented by ECMWF (Bal-
samo et al., 2010), based on the monthly accumulated pre-
cipitation provided by the Global Precipitation Climatol-
ogy Project (GPCP). The GPCP v2.1 product (Huffman et
al., 2009) is a monthly global climatology generated on a
2.5◦

× 2.5◦ grid and available over the 1979–2009 period.
This data set is a merged product combining various obser-
vations related to precipitation, including satellite observa-
tions and rain gauge data, assembled and analyzed by the
Global Precipitation Climatology Centre (GPCC, Rudolf et
al., 2010) and by the Climate Prediction Center of the Na-
tional Oceanic and Atmospheric Administration (NOAA).
Note that GPCP v2.1 is an improved version of GPCP
v2.0, described in Adler et al. (2003). Hereafter, the GPCP
rescaled ERA-I precipitation will be referred to as ERA-I-R.
The ERA-I-R precipitation correlates much better with the
SAFRAN precipitation on a 3-hourly basis than ERA-I. Al-
though the ERA-I-R rescaling is performed on a monthly
basis using the GPCP precipitation, the correlation with
SAFRAN is computed for a 18-yr period, and for this reason,
the correlation coefficient can be improved by the monthly
bias correction (Sczcypta et al., 2011).

2.1.2 Bias-corrected ERA-I precipitation based on the
GPCC monthly product

The GPCC provides a global monthly precipitation analy-
sis at a 0.5◦ × 0.5◦ resolution (GPCC v5) over the 1901–
2010 period (Becker, 2011). The GPCC monthly precipita-
tion product is based on ground observations from more than
70 000 rain gauge stations worldwide (Fuchs et al., 2009).
Its quality depends on the density of rain gauges used to
prepare the product. The GPCC network is relatively dense
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in Europe and in North America (Decharme and Douville,
2006b). Figure 1 presents the mean number of rain gauges
per grid cell (0.5◦ × 0.5◦) used to generate the GPCC pre-
cipitation data set in the area considered in this study over
the 1991–2008 period. Over the considered area, 11 263 rain
gauges are used. While many rain gauges are used in Eu-
rope (especially in Germany), large parts of Russia, North
Africa, Turkey, and the Middle East present a low density
of in situ observations. Szczypta et al. (2011) showed that
while ERA-I-R underestimates precipitation by 13 % over
France, GPCC underestimates precipitation by 5 % only. In
this study, the GPCC product is used to correct the systematic
biases in the ERA-I and ERA-I-R 3-hourly reanalyses. The
ERA-I and ERA-I-R 3-hourly spatial and temporal distribu-
tions of precipitation are preserved, while the biases with the
monthly GPCC climatology are reduced. The hybridization
of the two data sets with GPCC is performed as in Decharme
and Douville (2006b):

P 3 h
hybrid = P 3 h

ERA-I × P month
GPCC

/
P month

ERA-I . (1)

In arid/semi-arid regions and/or during the dry seasons, the
ERA-I (or ERA-I-R) monthly precipitation can be equal to
zero. In this case, no correction is done, and the correspond-
ing ERA-I-G (or ERA-I-RG) 3-hourly precipitation remains
equal to zero during the considered month, even if the corre-
sponding GPCC monthly precipitation is not equal to zero.

Hereafter, the bias-corrected ERA-I and ERA-I-R precip-
itations based on the GPCC monthly product are referred to
as ERA-I-G and ERA-I-RG, respectively (see Table 1).

2.2 The GRDC river discharge data base

The Global Runoff Data Center (GRDC, Koblenz, Germany,
2012) database is a collection of river discharge data at a
daily or monthly time steps from more than 8000 stations
worldwide. In this study, the GRDC daily data are selected
over the domain presented in Fig. 1, for the 1991–2008 pe-
riod, for sub-basins with drainage areas of at least 10 000 km2

and with a minimum observed period of 5 yr. This results
in 150 gauging stations, mainly located in Central, Eastern
and Northen Europe and in France (hereafter referred to as
“CNF”), as shown by Fig. 2 (red dots). Only one of these sta-
tions is located in North Africa (Algeria). For Southern Eu-
rope, the Middle East, and North Africa, i.e. for areas close
to the Mediterranean Sea and to the Black Sea (hereafter re-
ferred to as “MBS”), GRDC data from 46 gauging stations
are available over a past period (Fig. 2). The first time series
starts in 1912 and for these stations, no data is available after
1994. Moreover, about half of the time series are available
at a monthly time step only. Therefore, the MBS stations are
used in this study to build a monthly climatology. Only sub-
basins with drainage areas of at least 5000 km2 and with a
minimum observation period of 10 yr are considered, except
for the time series of the Po basin in Italy, which covers a
6-yr period (1980–1985) only.

2.3 The SURFEX modelling platform

The SURFEX (SURFace EXternalisée) modelling platform
(Le Moigne, 2009) includes the ISBA and the ISBA-A-
gs LSMs, coupled with the TRIP river routing model. The
LSMs simulate soil moisture and the associated surface
runoff and deep drainage. The latter two variables are used
by TRIP for the simulation of river flow.

2.3.1 The ISBA LSM

ISBA uses the force–restore method of Deardoff (1977,
1978) to calculate the time variation of the surface energy
and water budgets (Noilhan and Planton, 1989). The soil hy-
drology is represented by three layers: a thin surface layer
with a uniform depth, a root-zone layer, and a deep soil layer
(Boone et al., 1999) contributing to evaporation through cap-
illarity rises. Also, the model simulates the water interception
storage and the snow pack evolution based on a simple one-
layer scheme (Douville et al., 1995). The deep drainage is
computed according to Noilhan and Mahfouf (1996).

ISBA also includes a comprehensive parameterization of
sub-grid hydrology to account for the heterogeneity of pre-
cipitation, infiltration, topography and vegetation within each
grid cell. A TOPMODEL approach (Beven and Kirkby,
1979) has been used to simulate a saturated fraction
where precipitation is entirely converted into surface runoff
(Decharme et al., 2006). Infiltration over frozen and un-
frozen soils is computed via two sub-grid exponential dis-
tributions of rainfall intensity and soil maximum infiltration
capacity. Finally, a tile approach, in which each grid cell is
divided into a series of sub-grid patches, is used to repre-
sent land cover and soil depth heterogeneities. Distinct en-
ergy and water budgets are computed for each tile within a
grid cell and the relative fractional coverage of each surface
type is used to determine the grid-cell average of the vari-
ous output variables. More details can be found in Decharme
and Douville (2006a). The stomatal resistance of the veg-
etation is computed with a multiplicative model based on
Jarvis (1976), where a minimum stomatal resistance is di-
vided by stress functions representing the effect of solar ra-
diation, soil moisture stress, air humidity and air temperature.
The ISBA LSM uses a satellite-derived seasonal climatology
of LAI provided by the ECOCLIMAP look-up tables.

2.3.2 The ISBA-A-gs LSM

On the basis of ISBA, Calvet et al. (1998) developed ISBA-
A-gs, which is a CO2-responsive version of ISBA. This
model accounts for photosynthesis and its coupling with
stomatal conductance at the leaf level. According to the
model classification framework set out in Arora (2002), the
photosynthesis model within ISBA-A-gs is based on a soil–
vegetation–atmosphere transfer biochemical approach. The
representation of photosynthesis is based on the model of
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Fig. 2. (Left) overview of the available GRDC station locations over the considered area, for the 1991–2008 period in the CNF area and for
a past period in the MBS area (red and green dots, respectively); and (right) the stations for which the river discharge is presented in Figs. 7
and 11.

Goudriaan et al. (1985) modified by Jacobs (1994) and Ja-
cobs et al. (1996). This parameterization is derived from the
set of equations commonly used in other land surface mod-
els (Farquhar et al., 1980, for C3 plants, and Collatz et al.,
1992, for C4 plants), and it has the same formulation for
C4 plants as for C3 plants, differing only by the input pa-
rameters. Moreover, the slope of the response curve of the
light-saturated net rate of CO2 assimilation to the internal
CO2 concentration is represented by the mesophyll conduc-
tance,gm. Therefore, the value of thegm parameter is re-
lated to the activity of the Rubisco enzyme (Jacobs et al.,
1996), while in the Farquhar model this quantity is repre-
sented by a maximum carboxylation rate parameter,VC,max.
The model also includes an original representation of the soil
moisture stress. Two different types of the plant response
to drought are distinguished, for both herbaceous vegetation
(Calvet, 2000) and forests (Calvet et al., 2004). The plant
response to drought is characterized by the evolution of the
water use efficiency (WUE) under moderate stress: WUE in-
creases in the early soil water stress stages in the case of
the drought-avoiding response, whereas WUE decreases or
remains stable in the case of the drought-tolerant response.
This is achieved through the parameterization of the impact
of soil-moisture ongm and on other parameters of the photo-
synthesis model. The approach for carbon allocation and for
phenology is specific to the ISBA-A-gs model and is based
on a simple growth model driven by photosynthesis (Calvet
et al., 1998; Calvet and Soussana, 2001). The leaf biomass is
supplied with the carbon assimilated by photosynthesis, and
decreased by a turnover and a respiration term. LAI is in-
ferred from the leaf biomass multiplied by the specific leaf
area ratio, which depends on the leaf nitrogen concentration
(Calvet and Soussana, 2001; Gibelin et al., 2006). A more
complex version of the model is able to describe the wood
biomass and carbon storage (Gibelin et al., 2008). The latter
is not used in this study as is has no impact on the LAI and on

the plant transpiration simulated by the simpler version. Note
that LAI can be either simulated by the model or prescribed
to the model using the ECOCLIMAP look-up tables.

2.3.3 The TRIP river routing model

TRIP was developed at the Tokyo University by Oki and
Sud (1998) and was recently coupled to the SURFEX sys-
tem (Decharme et al., 2010). TRIP converts the daily runoff
simulated by ISBA or ISBA-A-gs into river discharges. It
is a simple linear model based on two prognostic equations
for the water mass within each grid cell of the hydrological
network (Decharme et al., 2010). TRIP takes into account a
simple groundwater reservoir, which can be seen as a sim-
ple soil-water storage, and a variable stream flow velocity as
proposed by Arora and Boer (1999). The groundwater out-
flow is linearly related to the groundwater mass,G, through
a uniform and constant time delay factor,t . Changes in the
G reservoir do not represent the groundwater dynamics, but
permit the representation of the lagged contribution of the
groundwater flow to the surface river reservoir within a par-
ticular grid cell: while the surface runoff produced by ISBA
directly supplies the rivers, the deep drainage produced by
ISBA is first injected into the groundwater reservoir. In this
study, the latter supplies the rivers with a time delay fac-
tor of t = 30 days. The TRIP river parameters (slopes, river
width and length, etc.) are provided at a spatial resolution of
0.5◦. They are the same as those described in Decharme et
al. (2010) at a 1◦ grid cell resolution.

2.3.4 Experimental design

The simulations performed in this study are produced by
SURFEX version 6.2. SURFEX is driven by the 3-hourly
meteorological data described in Sect. 2.1, for the 1991–2008
period, at a 0.5◦ grid resolution. The year 1991 is run three
times in order to spin up the simulations. The simulations
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are based on the ECOCLIMAP-II (Faroux et al., 2009) land
cover map. The ERA-I-RG precipitation data are used to
force the three configurations of the ISBA LSM. Hereafter,
the simulations performed by the standard version of ISBA
are referred to as “STD” (see Table 1). ISBA-A-gs is used in
the two following configurations (Table 1):

– The annual cycle of LAI is provided by ECOCLIMAP-
II as a fixed satellite-derived climatology, as for STD
simulations. This simulation is referred to as “AST” (A-
gs and the enhanced soil moisture stress option).

– ISBA-A-gs simulates daily LAI values. This simulation
is referred to as “NIT” (with a nitrogen dilution-based
representation of leaf biomass, in addition to the AST
capability).

The used global river channel network of the ISBA-TRIP
system has a spatial resolution of 0.5◦

× 0.5◦. The compar-
ison between AST-TRIP and NIT-TRIP permits the assess-
ment of the impact of differences in the seasonal and in-
terannual variability of LAI on the river discharge simula-
tions. Indeed, the same representation of biophysical pro-
cesses and the same tiling approach are used in AST and NIT
simulations, except for constrained and unconstrained LAI.
On the other hand, the comparison between STD-TRIP and
AST-TRIP permits the benchmarking of ISBA and ISBA-
A-gs evapotranspiration fluxes, because the two simulations
use the same LAI climatology and the same tiling approach.
As a component of the hydrological cycle, evapotranspira-
tion influences the soil moisture dynamics and the water flux
from the LSM to the TRIP river routing scheme. Therefore,
while comparing the GRDC observations with the TRIP river
discharge simulations forced by STD and AST permits the
assessment of the contrasting transpiration parameterization
used in ISBA and in ISBA-A-gs, the use of NIT allows the
evaluation of the LAI simulated by ISBA-A-gs.

2.4 Comparison between observed and simulated river
discharges

In this study, river discharge simulations are obtained from
(1) NIT-TRIP driven by the four different precipitation data
sets (ERA-I, ERA-I-R, ERA-I-G, ERA-I-RG) described in
Sect. 2.1.2, and (2) STD-, AST-, NIT-TRIP driven by ERA-I-
RG. The simulations are compared with the available GRDC
river discharge observations.

The comparison of the various precipitation data sets per-
mits the determination of:

– the precipitation impact on the river discharge simula-
tions (a model sensitivity study);

– the best precipitation data set to drive the coupled LSM-
TRIP model; and

– the usefulness of rescaling ERA-I twice (first with
GPCP and second with GPCC) vs. rescaling ERA-I
once with GPCC.

Observed and simulated river discharge (Q) data are gen-
erally expressed in m3 s−1. As the observed drainage area
may differ slightly from the simulated one, scaled Q-values
in mm d−1 (the ratio ofQ to the drainage area) are used in
this study. This permits the direct comparison ofQ with pre-
cipitation and evaporation values, both expressed in mm d−1.

Different hydrological skill scores (Krause et al., 2005)
can be used in order to assess to what extent the simulations
are close to the GRDC observations. Four scores are used in
this study:

– the annual discharge ratio criterion,Qsim/Qobs, where
Qsim and Qobs represent the mean simulated and ob-
served river discharges, respectively;

– the root mean square difference (RMSD) between
GRDC observations and the simulated Q-values, based
on scaled monthly anomalies (dimensionless); and

– the square correlation coefficient (r2), based on daily
time series, and the efficiency skill score (Eff) defined as
the Nash criterion (Nash and Sutcliffe, 1970) that mea-
sures the model ability to capture the daily discharge
dynamics.

The latter is defined as:

NASH = 1−

∑
(Qsim(t) − Qobs(t))

2∑
(Qobs(t) − Qobs)2

, (2)

whereQobs represents the observed mean Q-value. The best
Eff value is 1, for a perfect simulation. The Eff coefficient
can be negative if the simulatedQ is very poor and is above
0.5 for a fair simulation (Boone et al., 2004; Decharme et
al., 2006). A value of 0 indicates that the predictions of the
system are as accurate as using the mean of the observed
data. Negative values occur if the observed mean is a better
predictor than the system output.

The scaledQ anomalies used in the computation of the
RMSD score (or z-score) are defined as:

z(mo,yr) =
Q(mo,yr) − avg(Q(mo, :))

stdev(Q(mo, :))
, (3)

wherez (mo,yr) andQ (mo,yr) are, respectively, the anomaly
and the Q for the month mo and the year yr; and
avg(Q (mo,:)) and stdev(Q (mo,:)) are the average and the
standard deviation of theQ of the month mo, for all years,
respectively.

The various ISBA-TRIP simulations can be compared us-
ing average score values and their range. As the statistical
distribution of the scores may differ from one simulation
to another, and across stations, the analysis of the cumu-
lative distribution functions (CDF) of the scores is useful,
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also. Finally, the seasonal changes in the performance of a
given simulation can be assessed by calculating the scores
month by month, across the 18 yr, and the fraction of stations
presenting a score value within a predefined range. In this
study, we used [0.5,1] and [0.8,1.2] for Eff andQsim/Qobs,
respectively. The seasonal monthly scores of the stations (see
Figs. 8, 9, 10) are derived from daily values and determined
using a moving window of three months (the previous and
following months are included in the score calculation). The
number of daily Q-values used in the calculation of these
scores varies from 1602 to 1656 (3 months× 18-yr). It must
be noted that all the scores are based on daily values, ex-
cept for RMSD, which is based on monthly anomaly values
(Eq. 3).

3 Results

This section presents the impact of using different (1) pre-
cipitation fields and (2) versions of the ISBA LSM on the
quality of the river discharge simulations of ISBA-TRIP over
the CNF domain for the 1991–2008 period. The climatology
covering the MBS domain is used in the Discussion, Sect. 4.

3.1 Correction of ERA-I precipitation

Figure 3 shows a comparison of the original monthly ERA-I
and ERA-I-R precipitation estimates with the GPCC monthly
data product, in terms of bias and temporal correlation. The
r2 score calculation is based on 216 monthly precipitation
values corresponding to the 1991–2008 period. The corre-
lation between ERA-I and GPCC is good (r2 > 0.6) over a
large part of Europe, and poor or non-significant around the
Caspian Sea and (at the south of the domain) from the Sa-
hara arid areas to Irak. ERA-I-R correlates better with the
GPCC monthly product than the initial ERA-I precipitation
for a large part of the considered area and particularly over
Europe. Very good (r2 > 0.8) correlations are obtained over
a large part of the domain. Ther2 values tend to decrease in
coastal areas, and while good correlations are observed over
the Middle East and in North Africa, non-significant corre-
lations are still obtained close to the Caspian Sea and in the
Sahara desert where precipitation is close to zero. It can be
noted that these regions are characterized by a low station
cover (Fig. 1), affecting the quality of the GPCC product. An
attempt was made (not shown) to remove the annual cycle
from the precipitation time series. This had no impact on the
r2 maps. Regarding the biases, the GPCP rescaling of ERA-
I-R tends to increase the precipitation values, thus reducing
the marked precipitation underestimation of ERA-I. Over the
whole domain, the underestimation is about 20 % for ERA-
I and 6 % for ERA-I-R. However, the relative increase in
the ERA-I-R precipitation, relative to ERA-I, is excessive
for some coastal regions where a marked overestimation of
the precipitation is observed. In Northern Europe, and in a

Fig. 3. Monthly scores of the ERA-I and ERA-I-R precipitation
estimates with respect to GPCC, over the 1991–2008 period: (left
panel) ERA-I and (right panel) ERA-I-R in terms of (top panel)
temporal correlation (r2) and (bottom panel) mean bias.

number of mountainous areas (the Pyrenees, the Alps, the
French Massif Central, the Carpathians, the Caucasus Moun-
tains), the ERA-I-R precipitation is still underestimated in
comparison to the monthly GPCC product. It must be noted
that the hybrid 3-hourly ERA-I-G and ERA-I-RG products
are based on the GPCC monthly data (through Eq. 1) and as
such are completely bias-corrected and perfectly correlated
with GPCC on a monthly basis. However, the 3-hourly pre-
cipitation temporal distributions of ERA-I-G and ERA-I-RG
differ slightly. In the following section, the impact of differ-
ences in the precipitation forcing on theQ simulations of the
coupled ISBA-A-gs/TRIP model is investigated.

3.2 Impact of precipitation on the simulated CNF
river discharge

The verification of the daily discharge simulations is based
on the 150 GRDC stations of the CNF domain. Figure 4
presents the CDFs of the Eff score and of the departure of the
Qsim/Qobs ratio from 1 for the NIT-TRIP simulations forced
by ERA-I and for the three rescaled versions of the precipi-
tation forcing (Table 1). For both scores, the rescaled ERA-I
precipitation versions provide much better results than the
original ERA-I. In particular, the GPCC correction based on
Eq. (1) provides the best results. For ERA-I, ERA-I-R, ERA-
I-G, and ERA-I-RG, the fractions of the 150 CNF GRDC
stations presenting a Eff score greater than 0.5 are 11 %,
30 %, 50 % and 52 %, respectively. Similar results are found
(not shown) using STD-TRIP or AST-TRIP instead of NIT-
TRIP. Overall, the ERA-I-RG simulations provide the best
results, and the ISBA-TRIP simulations described below are
all based on the ERA-I-RG precipitation data.
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Fig. 4. Cumulative distributions of the (left) Eff score and (right)
| 1− Qsim/Qobs | values of daily river discharges simulated by the
TRIP model driven by the NIT LSM option for several input precip-
itation data sets. The black, green, turquoise blue and red lines rep-
resent the simulations obtained with ERA-I-RG, ERA-I-G, ERA-
I-R and ERA-I precipitation, respectively. These distributions are
computed from a dense observational network consisting of daily
discharges at 150 gauging stations in the CNF area.

3.3 Impact of changes in the LSM configuration on
the simulated CNF river discharge

In this section, the simulated Q-values obtained with dif-
ferent versions of the ISBA LSM are compared to GRDC
gauging measurements. Figure 5 presents the CDFs of the
Eff score and of the departure of theQsim/Qobs ratio from
1, for the NIT-, STD- and AST-TRIP simulations. The NIT
curves of Fig. 5 correspond to the same simulation as the
ERA-I-RG curves of Fig. 4 (Table 1). Ther2 and RMSD
CDFs are not shown in Fig. 5 since the NIT, STD, and AST
curves are almost confounded (see the corresponding scores
in Table 2). The Eff andQsim/QobsCDFs present more vari-
ability, and show that the NIT- and AST-TRIP simulations
perform better than STD-TRIP. Most of the Eff improvement
is attributable to bias reduction. For both Figs. 4 and 5, dif-
ferences inQsim/Qobs CDFs are consistent with differences
in Eff CDFs. Ther2 CDFs are not shown as all the curves are
almost confounded.

Figure 6 shows the spatial distribution of the AST-TRIP
Eff score and of the differences between AST-TRIP and the
two other simulations over the entire 1991–2008 period. Val-
ues of the Eff score better than 0.5 are obtained for a large
fraction of the 150 stations: 44 %, 52 %, and 49 % for STD,
NIT, and AST, respectively. Inadequate simulations, charac-
terized by negative Eff values, are obtained for 16 %, 13 %,
and 13 % of the stations, respectively. For many regions,
STD, AST and NIT present similar Eff scores. While NIT
presents the best Eff scores over Scandinavia, AST tends to
outperform NIT in other regions, for 19 % of the stations (es-
pecially in France and in Germany). The AST simulations
outperform STD simulations more extensively, for 40 % of
the stations (e.g. in Scandinavia, in the Danube basin), while
the reverse is true for 2 % of the stations only.

Fig. 5. Cumulative distributions of (left) efficiency and (right)
| 1 − Qsim Qobs | values of daily river discharges simulated with
the TRIP model. The black, green and red lines represent the NIT-,
AST- and STD-TRIP simulations, respectively, driven by the ERA-
I-RG precipitation. These distributions are computed from a dense
observational network consisting of daily river discharges at 150
gauging stations in the CNF area.

Fig. 6. Comparison between (top panel) AST-TRIP and observed
GRDC river discharges in terms of (left panel) Eff scores and (right
panel)| 1− QsimQobs | values for the 150 gauging stations of the
CNF area, and (middle panel) differences between AST and NIT
scores and (bottom panel) AST and STD scores. Positive differ-
ence values correspond to (left panel) better and (right panel) poorer
scores. The scores are based on daily values over the 1991–2008 pe-
riod.
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Table 2.Scores obtained for 16 stations corresponding to the outlet of the largest CNF basins (> 20 000 km2). The Eff,Qsim/Qobs, andr2

scores are based on daily values. The RMSD score is based on scaled monthly anomalies. Mean annual cycles of each stations are given in
Fig. 7. The drainage area considered in the TRIP hydrological model is given together with the name of the river. For each score and each
simulation, the best score value is presented in bold.

Station
Eff Qsim/Qobs r2 RMSD (stdev units)

STD AST NIT STD AST NIT STD AST NIT STD AST NIT

Danube
810 966 km2 0.47 0.54 0.52 0.94 0.97 1.01 0.62 0.64 0.63 0.58 0.57 0.59
Rhone
68 377 km2 0.12 0.25 0.29 0.76 0.80 0.83 0.61 0.62 0.61 0.47 0.47 0.46
Chelif
42 727 km2

−5.92 −5.31 −6.07 8.36 7.66 8.42 0.35 0.33 0.34 0.78 0.84 0.78
Garonne
51 122 km2 0.62 0.65 0.67 0.70 0.72 0.74 0.65 0.66 0.65 0.45 0.45 0.45
Loire
112 167 km2 0.79 0.78 0.69 1.14 1.15 1.27 0.77 0.76 0.77 0.47 0.47 0.48
Seine
67 359 km2 0.66 0.67 0.64 0.98 1.00 1.02 0.80 0.80 0.79 0.39 0.38 0.41
Meuse
31 748 km2 0.71 0.69 0.64 1.07 1.12 1.18 0.69 0.68 0.67 0.53 0.54 0.54
Rhine
170 702 km2 0.33 0.36 0.32 1.01 1.05 1.09 0.48 0.48 0.47 0.53 0.53 0.54
Weser
40 101 km2 0.69 0.72 0.70 0.87 0.89 0.92 0.76 0.76 0.74 0.41 0.400.41
Elbe
133 895 km2 0.69 0.69 0.60 1.09 0.86 1.18 0.74 0.74 0.73 0.47 0.48 0.48
Oder
105 182 km2 0.37 0.40 0.44 0.80 0.81 0.86 0.64 0.65 0.63 0.56 0.54 0.54
Niemen
86 551 km2 0.52 0.56 0.51 1.00 1.02 1.09 0.69 0.70 0.67 0.64 0.60 0.64
Volga
1 353 811 km2 0.55 0.57 0.53 0.87 0.91 1.02 0.58 0.56 0.52 0.75 0.69 0.73
S. Dvina
382 746 km2 0.56 0.55 0.53 0.66 0.78 0.87 0.75 0.69 0.63 0.74 0.72 0.72
Kemijoki
55 632 km2 0.54 0.69 0.71 0.73 0.84 0.90 0.77 0.76 0.74 0.65 0.65 0.65
Glama
22 089 km2 0.42 0.51 0.52 0.91 0.96 1.00 0.66 0.67 0.69 0.54 0.53 0.52

Also, Fig. 6 presents the departure of theQsim/Qobs ratio
from 1 for the AST-TRIP simulations and the differences be-
tween AST-TRIP and the other simulations. While a majority
of stations (63 %, 61 % and 57 % for AST, NIT and STD,
respectively) present a good score (0.85< Qsim/Qobs<

1.15), a significant fraction of the stations (18 %, 19 % and
24 %, respectively) do not perform well (Qsim/Qobs< 0.7
or Qsim/Qobs> 1.3). Consistent with the Eff criterion, AST
tends to perform better than NIT in France and in Germany,
and better than STD in Scandinavia. For all the model ver-
sions, the median RMSD value is 0.57 (Table 2). The 10th
and 90th percentile values are 0.47 and 0.80, respectively.
The stations presenting RMSD values higher than 0.8 are

found in France, upstream of the Garonne, Loire, and Rhone
rivers, in Scandinavia, and in Algeria.

Figure 7 shows the mean monthly values of the observed
and simulated Q-values for the downstream stations of the
largest CNF basins (> 20 000 km2). In the case of the Rhone
river, the Viviers station is used instead of the downstream
Beaucaire station, as there is a great deal of water extraction
between Viviers and Beaucaire. Also, the Durance river is
a major tributary of the Rhone upstream Beaucaire and is
markedly influenced by dams (Boone et al., 2004).

The Russian Pechora and Mezen rivers are not shown be-
cause they present results very similar to those obtained for
the Severnaya Dvina river. Table 2 details the different scores
(Eff, Qsim/Qobsratio,r2, RMSD) of the STD, AST, and NIT
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Fig. 7.Comparison of the mean river discharge annual cycles, (coloured lines) simulated and (dark lines) observed (GRDC) at the outlets of
the main rivers of the CNF area (red dots in Fig. 1) over the 1991–2008 period. The NIT and ERA-I simulations correspond to NIT-TRIP
driven by ERA-I-RG and ERA-I, respectively. The STD and AST simulations correspond to STD-TRIP and AST-TRIP driven by ERA-I-RG,
respectively.

simulations for the 16 rivers of Fig. 7. Figure 7 shows that,
in general, ERA-I tends to underestimateQ, except for the
Chelif station (Algeria), which is influenced by dams. On the
other hand, NIT tends to simulate the largest Q-values, dur-
ing all seasons. At low water levels, STD produces the low-
est Q-values. Table 2 shows that the RMSD andr2 scores do
not vary much from one version of the LSM to another. The
differences in RMSD values between AST and NIT and be-
tween AST and STD are smaller than 0.02 for 85 % and 91 %
of the 150 stations, respectively. Differences higher than 0.03
are observed for 5 % of the stations only.

As Fig. 7 and Table 2 show that the Eff andQsim/Qobs
scores respond to changes in LSM and that the quality of the
simulations may vary from one season to another, a seasonal

analysis was performed using all the CNF stations. These
scores are also presented in Fig. 8 on a monthly basis for
a moving window of three months in order to highlight the
seasonal features. It is shown that the performance of a given
simulation with respect to the others varies from one month
to another. In March–April–May, STD presents good Eff and
Qsim/Qobs scores for a larger fraction of stations than the
AST and NIT simulations. For example, in May, STD, AST,
and NIT present Eff values higher than 0.5 for 36 %, 24 %,
and 19 % of the stations, respectively. This indicates that, in
spring, the unconstrained representation of LAI in NIT-TRIP
is detrimental to the river discharge simulation, and has more
impact than differences in the calculation of plant transpira-
tion. The opposite result is obtained from August to October,
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Fig. 8.Monthly percentage of river flow gauging stations presenting
(top panel) an efficiency score greater than 0.5 and (bottom panel)
a Qsim/Qobs ratio greater than 0.8 and smaller than 1.2, for NIT-,
AST- and STD-TRIP simulations (black, green and red lines, re-
spectively). These distributions are computed from a dense obser-
vational network consisting of daily river discharges over the 1991–
2008 period, at the 150 gauging stations of the CNF area.

with STD and NIT presenting the poorest and the best Eff
values, respectively. Also, AST performs nearly as well as
NIT during this period of the year, indicating that during the
autumn the calculation of plant transpiration in STD is detri-
mental to the river discharge simulation, and has more impact
than differences in LAI. TheQsim/Qobs ratio score is partic-
ularly good for NIT from August to December, with about
50 % of the stations presenting aQsim/Qobs ratio close to
one, against about 30 % or less for STD-TRIP. An attempt
was made (not shown) to reproduce Figs. 4, 5 and 8 consid-
ering only one station per basin (closest to the river mouth),
i.e. 56 stations instead of 150. For Figs. 4 and 5, exactly the
same results were found. For Fig. 8, the differences between
the ISBA versions were less marked, but overall the same
conclusions were obtained.

Figures 9 and 10 present the seasonal distribution of dif-
ferences in Eff scores in terms of maps and scatter plots,
respectively. The differences are shown for three periods,
corresponding to the March–April–May, June–July–August,
and September–October–November 3-monthly windows in
Fig. 8, and for three model pairs: AST vs. STD, AST vs.
NIT, and NIT vs. STD. Since AST and STD share the same
representation of LAI (derived from ECOCLIMAP-II), large
differences between AST and STD in Fig. 9 correspond to the
regions where changes in the description of the transpiration
processes impact the water balance and the Q-values. Over-
all, better results are obtained with AST, except for April,
with 85 stations presenting better results with STD. A large

fraction of the latter (79 %) is found in Germany. Since AST
and NIT share the same representation of plant transpira-
tion, the differences between AST and NITQ simulations
show the impact of LAI. More often than not, the impact
of constraining LAI with ECOCLIMAP-II is either moder-
ate or changes (from positive to negative or vice versa) from
one period to another. For the French Loire stations and one
Garonne station, AST presents systematically better results
than NIT. On the other hand, NIT always outperforms AST
in Norway. While NIT tends to outperform STD in July and
October, the reverse is true in April. For the French Loire and
Garonne stations, STD presents systematically better results
than NIT, across seasons. For a given river gauging station,
Fig. 10 shows both the Eff score values and their differences
from one simulation to another. This permits the analysis of
the impact of the quality of the simulations on the Eff dif-
ferences. In general, the few stations presenting the best Eff
scores do not present marked differences from one simula-
tion to another. Figure 10 shows that AST and NIT tend to
systematically outperform STD during the autumn.

3.4 Impact of changes in the LSM configuration on the
simulated MBS river discharge

The monitoring of hydrological drought events over Mediter-
ranean regions is more challenging. Because no GRDC data
is available over the 1991–2008 period for the MBS domain,
no detailed study could be performed over this area. How-
ever, the modelled monthly climatology of river discharges
could be compared with the climatology derived from the
past in situ observations of the MBS domain. Figure 11
presents the mean monthly river discharge climatology over
the 12 MBS stations listed in Fig. 2, derived from the ISBA-
TRIP simulations over the 1991–2008 period and from the
GRDC derived climatology. The chosen MBS stations are
as close as possible to the outlet of the main hydrological
basins. In general, the three simulations are more similar than
for the CNF rivers of Fig. 7, particularly at low water lev-
els. In Italy (Po and Tiber) and in Spain (Ebro, Guadalquivir,
and Duero), the differences in simulated Q-values are more
marked in spring. The best simulations are obtained for the
Spanish rivers and for the Greek Aliákmon river. The ISBA-
TRIP simulations markedly underestimateQ for both spring-
time and summertime for the Po and Tiber rivers, and for the
Turkish Sakarya and Ceyhan rivers. On the other hand, the
modelledQ is overestimated for North African rivers (the
Tafna and Sebou rivers).

4 Discussion

4.1 Impact of changes in the LSM configuration on
LAI, evapotranspiration and total runoff

Figures 5–11 show that the impact of changes in LSM is
rather complex and varies from one region to another and
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Fig. 9.Seasonal and model breakdown of river flow Eff differences over the CNF area, over the 1991–2008 period. From left to right: spring,
summer and autumn. From top to bottom: AST minus STD, AST minus NIT, and NIT minus STD.

from one season to another. Overall, AST performs better
than STD, especially over Western Europe; NIT performs
better than AST at northern latitudes and over European
mountainous areas (Figs. 6 and 9). At summertime and dur-
ing the autumn only, NIT tends to perform better than the
other model options, except for the Loire and Garonne rivers.
This is the result of the interplay between the various repre-
sentations of LAI (either constrained by ECOCLIMAP-II or
predicted by the model) and stomatal conductance (either re-
lated to photosynthesis or based on the standard ISBA param-
eterization). In order to analyze these interactions, Fig. 12
presents the seasonal (spring, summer and autumn) differ-
ences of the three versions of ISBA, in terms of evapotranspi-
ration, total runoff, and simulated (NIT) or prescribed (AST
and STD) LAI. The total runoff represents the sum of the
surface runoff and of the deep drainage. Over the CNF do-
main, the prescribed ECOCLIMAP-II LAI values used by
AST and STD tend to be greater in spring (from March to
May) than the values produced by NIT, while the reverse is
observed for the MBS regions. The underestimation of the
modelled CNF springtime LAI is consistent with the delay
in the simulated leaf onset noticed by Brut et al. (2009) and
Lafont et al. (2012) over France. For the same period, the dif-
ferences in evapotranspiration between AST and NIT present

spatial patterns similar to those obtained for differences in
LAI. A direct consequence is that the AST total runoff is
smaller than the NIT one over the CNF domain (by about
0.1 mm d−1 on average), and more particularly in Ireland and
in the Alps (∼ 0.4 mm d−1). Therefore, the larger LAI values
used by STD and AST in spring tend to increase the evap-
otranspiration over the CNF domain, decrease total runoff
values, and produce low water levels more rapidly than NIT
(Fig. 7). The AST vs. STD difference in total runoff, which
is not affected by differences in LAI, is relatively small in
spring. On the other hand, AST presents markedly greater
values of the total runoff than STD at summertime and dur-
ing the autumn for northern latitudes and mountainous areas
covered by forests, in relation to a much lower evapotran-
spiration summertime flux, triggered by the different param-
eterization of the stomatal conductance and of the plant re-
sponse to the water stress. Figure 9 shows that the AST pa-
rameterization tends to improve theQ simulation over these
regions, especially during the autumn. At summertime, NIT
LAI values lower than ECOCLIMAP-II LAI values are ob-
served in Russia, in Scandinavia, in Italy and in Greece. On
the other hand, the NIT LAI is greater in the Pyrenees, the
Alps, the Carpathians, and in the Caucasus Mountains. These
differences do not have a marked impact on the total runoff,
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Fig. 10. Seasonal intercomparison of the various LSM-TRIP sim-
ulations over the CNF area through scatter-plots of river flow Eff
values over the 1991–2008 period: (top panel) AST vs. STD, (mid-
dle panel) AST vs. NIT, and (bottom panel) NIT vs. STD. From
left to right: spring, summer and autumn. Negative Eff values are
represented by 0.

except for the northern part of the CNF domain. Using a dif-
ferent hydrological model, Queguiner et al. (2011) have also
noticed the impact of a late leaf onset over the Alps on the
simulated discharges. Finally, Figs. 8 and 10 show that the
most significantly different Eff values are observed in au-
tumn, with poorer performance of STD. Deriving general
conclusions for the other vegetation schemes is more diffi-
cult, as the relative performance of AST vs. NIT vary from
one region to another (Fig. 9).

4.2 Interannual and seasonal variability of the river
discharge in the Mediterranean Sea and in
the Black Sea

The simulations performed in this study permit the estima-
tion of the seasonal and annual river freshwater input to the
Mediterranean Sea and to the Black Sea. A number of au-
thors have investigated historical Mediterranean river dis-
charge data and analyzed their variability (e.g. Mariotti et
al., 2002; Struglia et al., 2004; Ludwig et al., 2009; Sanchez-
Gomez et al., 2011). In particular, Ludwig et al. (2009) pro-
vide estimates of the river freshwater input to the Mediter-
ranean Sea and to the Black Sea, either observed or recon-
structed, for the 1960–2000 period based on a review of
the available data on water discharge, nutrient concentra-
tions and climatic parameters. Hereafter, these estimates are

Fig. 11. As in Fig. 7, except for the Mediterranean rivers of
the MBS area and historical GRDC climatologies (green dots in
Fig. 2). The drainage areas used by TRIP are Po (67 519 km2),
Tiber (15 926 km2), Aliakmon (5005 km2), Ebro (85 110 km2),
Guadalquivir (48 915 km2), Duero (62 097 km2), Tafna (7635 km2),
Sebou (15 392 km2), Euphrate (66 923 km2), Sakarya (52 509 km2),
Kizilirmak (71 347 km2), and Ceyhan (22 030 km2).

referred to as LDG. The LDG data show that a significant re-
duction in the discharge of Mediterranean rivers, of at least
20 %, occurred during this period in response to climate long-
term variability and to the construction of dams. Since the
LDG data set overlaps with our simulations, a comparison
could be performed. Figure 13 presents the annual river in-
put to the Mediterranean Sea (except for the Nile river dis-
charge), and to the Black Sea, produced by the ERA-I, STD,
AST, and NIT simulations, together with the LDG data. Con-
sistent with the results found for the CNF area (Figs. 4 and
7), the ERA-I estimates ofQ are underestimated with respect
to the LDG 1991–2000 estimates by 40 % for the Mediter-
ranean Sea and by 19 % for the Black Sea. The NIT, AST
and STD simulations tend to underestimateQ by 1 %, 7 %
and 6 % for the Mediterranean Sea, and to overestimateQ by
15 %, 10 % and 9 % for the Black Sea, respectively. While,
over the 1991–2000 period, the LDG data correspond to Q-
values of 9895 m3 s−1 for the Mediterranean Sea (without
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Fig. 12. Seasonal differences in LAI, evapotranspiration and total
runoff (surface runoff + deep drainage) of the various LSM-TRIP
simulations over the CNF area over the 1991–2008 period. From
left to right: spring, summer and autumn. From top to bottom: LAI
(ECOCLIMAP-II climatology used in AST and STD minus NIT),
evapotranspiration and total runoff (first AST minus NIT, second
AST minus STD).

the Nile river) and of 12 512 m3 s−1 for the Black Sea,
slightly higher values are obtained with NIT: 10 066 m3 s−1

and 14 286 m3 s−1, respectively. The inter-annual variability
is represented well for the Mediterranean Sea, with a cor-
relation significant at the 1 % level. The square correlation
coefficients obtained between the LDG mean annual fresh-
water and the NIT, AST and STD mean annual values are
higher than 0.9 for the Mediterranean Sea, and 0.587, 0.582,
and 0.556 for the Black Sea, respectively. While the monthly
mean annual cycle of the discharges into the Mediterranean
Sea is simulated well, the maximum springtime discharges
into the Black Sea are markedly underestimated (Fig. 13).
The same weakness is found over the Volga basin (Fig. 7)
and is triggered by the difficulty in representing snowmelt
and thawing processes. It is well known that the wintertime
snowfall directly impacts the seasonal cycle of the Northern
Russian river discharges. In spring, the runoff triggered by
snowmelt over frozen soils is the major contributor to the
river stream flow, and simulating this process is not easy
(Grippa et al., 2005; Niu and Yang, 2006; Decharme and
Douville, 2007; Decharme, 2007). Therefore, the weakness

found in this study can be due to an underestimation of the
snowfall, a poor snowpack simulation, and/or a poor repre-
sentation of the surface runoff over frozen soil at the begin-
ning of spring (Niu and Yang, 2006; Decharme and Douville,
2007; Decharme, 2007).

The comparison of the simulations performed in this study
with the LDG data set over the 1991–2000 period is illus-
trated in Fig. 14 for the Ebro, Rhone, Po, and Danube rivers,
which represent large basins (of more than 80 000 km2) for
which LDG estimates are based on in situ observations. Con-
sistent with Fig. 7, the Danube discharge is represented rela-
tively well, while the TRIP simulations tend to systematically
underestimate the Rhone discharge. In the case of Rhone, the
incomplete representation of the topography of the Alps in
the low-resolution ERA-I air temperature fields (Szczypta et
al., 2011) may explain this result. The simulation of the snow
mantel is very dependent on air temperature, and the over-
estimation of air temperature in mountainous areas tends to
reduce the simulated fraction of snow and snow depth. For
the basins characterized by upstream mountainous regions,
snowmelt has a key influence on the river flow seasonality
(Boone et al., 2004; Immerzeel et al., 2009). For the Ebro
river, the results differ from those of Fig. 11, as the GRDC
data used in the latter correspond to past periods (1913–1935
and 1953–1987). This river is affected by a marked reduction
in Q-values. Significant trends for the Ebro river can be de-
rived from the GRDC climatology and from the more recent
LDG data:−0.0041 mm yr−1 and−0.0097 mm yr−1, respec-
tively. In Fig. 14, this negative trend tends to trigger the over-
estimation of the Ebro Q-values with respect to the LDG es-
timates (by 48 %, 39 % and 41 %, on average, for NIT, STD
and AST, respectively). The latter is related to the rapid de-
velopment of dams in the Ebro basin (Ludwig et al., 2009),
not represented in the TRIP simulations. In the case of Po,
the misrepresentation of snow in the Alps can explain the
underestimation of Q-values in Fig. 14 (by 22 %, 25 % and
26 % on average, for NIT, AST and STD, respectively), as
for the Rhone.

In Fig. 14, the inter-annual variability of the simulations
is represented well for the Danube, Rhone and Po rivers,
with r2 values of 0.88, 0.94, 0.57, respectively, correspond-
ing to significant correlations at the 1 % level for Danube and
Rhone, and at the 5 % level for Po. The lack of correlation ob-
served for the Ebro river can be explained by the high fraction
of the river discharge (about 40 % on average; Cabezas et al.,
2009) used for irrigation.

4.3 How could the ISBA-TRIP simulations
be improved?

4.3.1 A better use of land satellite-derived products

In Sects. 3.3 and 3.4, the importance of the description of
the LAI annual cycle is shown. The evapotranspiration at
springtime is governed by LAI to a large extent and monthly
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Fig. 13. Total (except for the Nile basin) river freshwater input to (top panel) the Mediterranean Sea, (bottom panel) the Black Sea, as
estimated by (dark solid lines) Ludwig et al. (2009) from 1960 to 2000 (LDG), and as simulated in this study (coloured lines) using ERA-I,
STD, AST, and NIT from 1991 to 2008: (left panel) annual time series, (right panel) mean annual cycle. The drainage areas used in LDG
and in TRIP estimations are given.

or 10-daily LAI time series derived from historical satellite
data would be very useful to either evaluate new versions of
NIT or force AST simulations. The latter simulations would
permit assessing the added value of accounting for the inter-
annual variability of LAI, as the ECOCLIMAP-II LAI data
used in this study consist of a fixed seasonal climatology.
Also, integrating satellite-derived LAI data in ISBA-A-gs
simulations coupled to TRIP, either directly (as in AST simu-
lations) or using more complex data assimilation techniques,
as described in Barbu et al. (2011), would be a way to cross-
validate the model and the satellite product, based on the
GRDC data. Such a satellite-driven modelling system would
be an interesting tool to monitor and to analyze droughts, for
example.

4.3.2 Better precipitation products

A number of past studies have shown the usefulness of
bias-corrected precipitation forcings (e.g. Syed et al., 2004,
and Decharme and Douville, 2006b). Using two years of
data from the North American Land Data Assimilation Sys-
tem (NLDAS) over the United States, Syed et al. (2004)
showed that precipitation dominates the temporal and spa-
tial variability of the hydrological cycle. Decharme and Dou-
ville (2006b) quantified the impact of precipitation on river
discharge simulations and presented efficiency CDF figures

similar to Fig. 4 over the Rhone basin. In Sect. 3.1, it was
shown that reducing the ERA-I or ERA-I-R precipitation un-
derestimation using the monthly GPCC data set produces
TRIP river discharge simulations as good as those obtained
from the hybrid ERA-I-RG precipitation. The ERA-I-RG
bias correction presents slightly better results than ERA-I-G.
This is due to the better preservation of small scale features
of precipitation provided by the GPCP rescaling method of
Balsamo et al. (2010). However, the monthly GPCP data set
is not available after 2009, and showing that a much sim-
pler bias correction produces nearly equivalent results is en-
couraging. Also, the downscaling of the GPCC precipita-
tion data, at a spatial resolution better than 10 km like in
the French SAFRAN analysis, could be extended to Europe.
Fine scale 2-D and 3-D reanalysis tools are being developed
(www.euro4m.eu) and could eventually be used over Europe.
Finally, over Northern Black Sea basins, reducing the uncer-
tainty in the snowfall rate estimation is critical. Indeed, the
observed snowfall rate is generally underestimated at high
latitudes (Adam and Lettenmaier, 2003). Using precipitation
gauge catch ratio corrections and accounting for gauge de-
sign, wind-induced undercatch and wetting losses would be
particularly relevant over Russian basins.

www.hydrol-earth-syst-sci.net/16/3351/2012/ Hydrol. Earth Syst. Sci., 16, 3351–3370, 2012
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Fig. 14.Comparison of the time series of river discharge simulated
in this study (coloured lines) by ERA-I, STD, AST, and NIT, with
the observed/reconstructed data set (dark solid lines) of Ludwig et
al. (2009), for (from left to right and from top to bottom) the Ebro,
Rhone, Po, and Danube large rivers. Note that the total drainage ar-
eas considered by TRIP at the outlet of these rivers are 85 110 km2,
92 733 km2, 82 905 km2, 81 3140 km2, respectively. These outlet
values may be higher than those given in Table 2 or in Fig. 11 for
the most downstream inland stations.

4.3.3 A better representation of the ISBA-TRIP
processes

The LAI values used by the LSM are not the only factors im-
pacting the total runoff. In particular, this study shows that
AST simulations, while using the same LAI, tend to perform
better than STD simulations, especially for basins covered
by forests (Fig. 12). Noilhan et al. (2011) have shown that
the evapotranspiration computed with ISBA-A-gs can be im-
proved compared to the standard version of ISBA, at least
for forests in southwestern France from April to September.
Therefore, efforts to improve the representation of the plant
transpiration have a noticeable impact on hydrological simu-
lations. It is likely that further refining the ISBA-A-gs param-
eterization (e.g. the light interception model) would impact
hydrological simulations, also. Another factor affecting the
total runoff is the representation of water infiltration and stor-
age into the soil. The force–restore model used in this study
is a relatively simple approach, and using the multi-layer soil
and snow models available in SURFEX (Boone et al., 2000;
Decharme et al., 2011) may impact the conclusions of this
study. This explicit approach could be particularly relevant to
improve the simulation of soil freezing and thawing and then
the discharges over the Northern Black Sea basins. These
models have to be implemented jointly, and in the context

of large scale river discharge simulations, this configuration
is still in the evaluation process. Lafaysse et al. (2011) have
shown that improving the sub-grid variability of the snow
cover, together with the glacier melt, and the retention of un-
derground water in mountainous areas has a positive impact
on hydrological simulations. The enhanced representation of
these processes in ISBA should improve the simulation of
snowpacks and the river discharge over mountainous areas
and high latitudes. Also, for many basins around the Mediter-
ranean Sea, the difficulty in representing the river discharge
is mainly due to the presence of dams and to extensive water
use for irrigation (e.g. Ebro, Chelif). Future progress in the
representation of irrigation and of agricultural practices in
ISBA (Calvet et al., 2008, 2012) together with the represen-
tation of dams in TRIP (Hanasaki et al., 2006) may help im-
prove the simulations further. Finally, at monthly to seasonal
timescales, TRIP can also contribute to systematic errors in
the phase and amplitude of river discharge. It could be im-
proved, accounting for large aquifer systems and river flood-
ing. Indeed, a number of studies (Miguez-Macho et al., 2007;
Decharme et al., 2010; Vergnes et al., 2012) have shown
that the explicit representation of aquifer processes, includ-
ing groundwater dynamics (storage and redistribution over
the whole basin) and the possible evaporation of the deep
water via diffusive exchanges with the land surface, impact
directly the simulated summer baseflow. In addition, the rep-
resentation of river flooding is particularly relevant over the
Danube basin, where seasonal floodplains are generally ob-
served (Papa et al., 2010). Floodplains contribute to increase
the continental evapotranspiration and then to decrease the
river discharges during spring and/or the autumn. They also
delay and attenuate the river peak flow when the floodplain
storage is significant (Decharme et al., 2012).

5 Conclusions

River discharge simulations by the coupled ISBA-TRIP sys-
tem were evaluated in this study. They were driven by surface
ERA-I atmospheric variables. The original ERA-I precipita-
tion data set was used together with bias-corrected versions,
and with different versions of the ISBA LSM. The river dis-
charge simulations were compared with in situ GRDC ob-
servations. Using the GPCC monthly precipitation product
to bias-correct the ERA-I precipitation had a pronounced
positive impact on the quality of the ISBA-TRIP simula-
tions. Overall, the use of the photosynthesis-based ISBA-A-
gs LSM options of SURFEX (AST and NIT) slightly im-
proved the river discharge simulations. However, the uncon-
strained LAI simulations (NIT) tended to reduce the sea-
sonal Eff score in spring. The use of satellite-derived LAI
estimates (AST) permitted mitigation of this effect. Over
forested mountainous areas and at high latitudes, the sum-
mertime evaporation simulated by ISBA (STD) was higher
than the evaporation simulated by ISBA-A-gs (AST), and
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tended to dry up the rivers too much in the corresponding
drainage areas. Finally, future improvements in the atmo-
spheric forcing and/or in the representation by ISBA-TRIP
of biophysical processes should increase the realism of the
simulated discharges, especially over northern basins.
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de donńees ECOCLIMAP-II sur l’Europe, Note du Groupe de
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