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Abstract. Estimation of peak flow quantiles in ungauged
catchments is a challenge often faced by water profession-
als in many parts of the world. Approaches to address such
problem exist, but widely used techniques such as flood fre-
quency regionalisation is often not subjected to performance
evaluation. In this study, the jack-knifing principle is used
to assess the performance of the flood frequency regional-
isation in the complex and data-scarce River Nile basin by
examining the error (regionalisation error) between locally
and regionally estimated peak flow quantiles for different
return periods (QT ). Agglomerative hierarchical clustering
based algorithms were used to search for regions with simi-
lar hydrological characteristics. Hydrological data employed
were from 180 gauged catchments and several physical char-
acteristics in order to regionalise 365 identified catchments.
The Generalised Extreme Value (GEV) distribution, selected
usingL-moment based approach, was used to construct re-
gional growth curves from which peak flow growth factors
could be derived and mapped through interpolation. Inside
each region, variations in at-site flood frequency distribution
were modelled by regression of the mean annual maximum
peak flow (MAF) versus catchment area. The results showed
that the performance of the regionalisation is heavily depen-
dent on the historical flow record length and the similarity of
the hydrological characteristics inside the regions. The flood
frequency regionalisation of the River Nile basin can be im-
proved if sufficient flow data of longer record length of at
least 40 yr become available.

1 Introduction

Estimation of the peak flow quantiles (usually referred to
as design floods) is required in many civil and water engi-
neering applications. Estimation of the peak flow quantiles
in ungauged catchments is a challenge often faced by wa-
ter professionals in many parts of the world mainly due to
the absence of peak flow quantiles at ungauged catchments
and insufficient record length of stream flow observations at
other catchments. One prevalent approach for obtaining such
estimates is the regionalisation method (e.g., Das and Cun-
nane, 2011; Sarhadi and Modarres, 2011; Bernardara et al.,
2011; Nezhad et al., 2010; Micevski and Kuczera, 2009; Li
et al., 2010;Özçelik and Benzeden, 2010; Ouarda and Shu,
2009; Ellouze and Abida, 2008; Aronica and Candela, 2007;
Merz and Bl̈oschl, 2005; Northrop, 2004; Kumar et al., 2003;
Cunnane, 1988; Parida et al., 1998; Kjeldsen et al., 2001;
Alexander, 1990; Schmidt and Schulze, 1997). Regionali-
sation applied in flood frequency analysis is the identifica-
tion (delineation) of groups of catchments with similar hy-
drological and physical characteristics; hence the search for
regions with similar flood frequency distributions. The sim-
ilarity can be used to estimate (design) peak flows for given
return periods at any location in the region. The information
on similarity is inferred from the sample of available peak
flow data at the gauged sites. It is obvious that the regional
flood frequency estimates improve when that sample is larger
and/or more representative of the whole population of site
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peak flows in the studied region (Chebana and Ouarda, 2009;
Luboḿır, 2005; Northrop, 2004).

Regional flood frequency analysis using physical catch-
ment characteristics have been shown to produce reliable re-
sults if the physical catchment characteristics, chosen objec-
tively, influence the spatial variability of hydrological char-
acteristics (Kjeldsen et al., 2001; Kachroo et al., 2000; Parida
et al., 1998; Zrinji and Burn, 1996; Kim and Hawkins, 1993;
LeBoutillier and Waylen, 1993; Cunnane, 1988; Wiltshire,
1986; Acreman and Sinclair, 1986; Mosley, 1981). One of
the key steps in such analysis is the delineation of the study
area into homogeneous regions. Despite increasing research,
there is no consensus on a common objective method for de-
lineating homogeneous regions for the purpose of flood fre-
quency estimation.

1.1 Clustering

One of the prevalent approaches for delineating homoge-
neous regions is based on clustering techniques (Clarke,
2011; Guse et al., 2010; Everitt, 2001; Zrinji and Burn,
1996; Aldenderfer and Blashfield, 1984; Roger, 1980) and
have been applied in many flood frequency analysis studies
(e.g., Clarke, 2011; Ramachandra Rao and Srinivas, 2005;
Kachroo et al., 2000; Kim and Hawkins, 1993; Acreman and
Sinclair, 1986). However, application of the different clus-
tering techniques to the same dataset, normally leads to dif-
ferent results (Luboḿır, 2005). The relative performance of
the clustering can be improved by application of an ensem-
ble of clustering algorithms (Ramachandra Rao and Srini-
vas, 2005). Hierarchical Clustering (HC) is one of the widely
used methods in hydrology (LeBoutillier and Waylen, 1993;
Mosley, 1981) and consists of four different cluster algo-
rithms. Once the homogeneous regions are delineated they
can be tested for homogeneity (Wiltshire, 1986). Several ap-
proaches such as the one based on the homogeneity index
(H1) (Hosking, 1994; Hosking and Wallis, 1993), theS1-
statistic based homogeneity test (Alila, 1990) and the graph-
ical test (GT) (Mkhandi et al., 1996) can be used for that
purpose. In case of acceptable homogeneity (similarity in the
peak flow properties), a unique flood frequency distribution
(also called growth curve) can be assumed for each region
after scaling of the discharge values by the local specific
mean peak flow. Scaled peak flow estimates (also called flood
growth factors =QT /MAF) for each region can be obtained
from the growth curve for the desired return periods and can
be converted to real life flood magnitudes (at specific site) by
the local mean peak flow. Estimation of the local mean peak
flow for the ungauged catchment is typically done using a
regional regression model derived from the relationship be-
tween the mean peak flow and catchment characteristics. The
relationship is derived from the data at the gauged stations
(Ellouze and Abida, 2008; Merz and Blöschl, 2005; Castel-
larin et al., 2005; Wagener et al., 2007).

1.2 L-Moment

In the development of the regional growth curves, selection
and calibration of the probability distribution that adequately
fits the scaled peak flow data is required. The available ap-
proaches to support such tasks include the maximum like-
lihood method (e.g., Prescotta and Walden, 1983), the re-
gression in quantile plots (Willems et al., 2007; Merz and
Blöschl, 2005) and theL-moment based method (Hosking,
1994, 1990; Hosking et al., 1985), hereafter referred to as
L-moment method. TheL-moment method makes use of
the L-coefficient of variation (L-CV), L-skewness (L-CS)
and L-kurtosis (L-CK), which are referred to as the sec-
ond, third and fourth orderL-moment ratios, respectively.
The ratios help in selecting appropriate probability distribu-
tions and estimating their parameters. Hosking (1990) devel-
opedL-moment ratio diagram based method and a measure
based on theL-CK (Z-statistic based) for selecting distri-
butions that adequately fit the sample flow data. The distri-
bution parameters are estimated based onL-moments and
it has been noted by Hosking (1990) thatL-moment esti-
mators, compared with other estimators, like the ones in the
maximum likelihood method, are reasonably more efficient.
The advantages ofL-moment estimators for distribution pa-
rameters are documented in Hosking et al. (1985), Hosking
and Wallis (1987a, b, 1995) and Hosking (1990). Stedinger
et al. (1993) provide models for the estimation of parameters
of several distributions in terms of sampleL-moments. More
details on this have been discussed by Hosking (1986, 1990)
and Vogel and Fennessey (1993).

1.3 Regionalisation performance

A prevalent approach for the assessment of the regionalisa-
tion performance is the jack-knifing technique (e.g., Merz
and Bl̈oschl, 2005; Sarhadi and Modarres, 2011). In the jack-
knifing approach, a gauged catchment is assumed ungauged
and the local (at-site) values of the peak flow quantiles for
different return periods are estimated based on the data of the
other gauged catchments in the same homogeneous region.
The estimates formerly obtained are compared with the same
values, but locally estimated and the difference is called, in
this paper, regionalisation error and includes the error due to
the at-site estimation. This process can be repeated for all the
gauged catchments in a homogeneous region and for all the
delineated homogeneous regions.

Some regional flood frequency analysis studies have been
carried out for the River Nile basin by Kim and Kalu-
arachchi (2008), Willems et al. (2005), Abdo et al. (2005),
but mainly focused on the sub-basin scale (Blue Nile, White
Nile, etc.). In this paper, results are shown of a study at-
tempting to regionalise the entire River Nile basin. The study
took part in a larger project aimed at enhancing cooperation
among the River Nile basin riparian countries in resolving
research-based hydrological problems. The feasibility and
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performance of the regionalisation of flood frequency distri-
butions were analysed, taking into account the huge basin
area, the strong differences in hydrological characteristics
across the basin and the limited availability of data. Differ-
ent HC techniques were applied. Best-fit probability distri-
butions for the regionalisation were selected and calibrated
using theL-moment approach. Estimates of the mean peak
flow were for each delineated region obtained using regres-
sion analysis. The performance of the tested regionalisation
approach was finally examined using the jack-knifing princi-
ple.

2 The Nile basin and data

The River Nile basin is situated between 8◦ S to 33◦ N
and 20◦ E to 42◦ E covering an area of approximately
3 762 000 km2 (Fig. 1). The climate is mainly tropical in
the upstream parts of the basin and arid and semi-arid in
the downstream parts. The elevation varies from less than
20 to 2150 m a.m.s.l. The mean annual rainfall varies from
1200 mm in the upstream parts to less than 10 mm in the
downstream parts. The main rivers in the basin are: Victo-
ria Nile, Albert Nile, White Nile, Blue Nile, Sobat, Atbara,
and Main Nile, each with several tributaries (Fig. 1). The
daily flow data, from a total of 227 flow gauging stations, and
from which the annual maximum flow (AMF) data were de-
rived, were obtained mainly from the River Nile basin Flow
Regimes from International, Experimental and Network Data
(FRIEND/Nile) project. The AMF data were analysed for
data errors and trends and the data found with anomalies or
trends screened out or detrended, respectively, using the re-
spective methods described in Khaled (2008), Kundzewicz
and Robson (2000) and Hosking and Wallis (1993). Data
screening resulted in flow series of 180 gauged catchments
with record lengths ranging from 4 to 116 yr. For these
180 stations, the AMF data were detrended for 12 stations.
The detrending was done because changes in uptake of water,
catchment land-use or river morphology might have caused
the trends. These influences have to be removed given that
regionalisation in flood frequency analysis mainly deals with
regional differences in river flow levels and variability due to
natural catchment runoff processes. Human influencing fac-
tors, however, change over time and should be dealt with
separately. For each dataset, the mean of the AMF data
(MAF) and the respective statistical properties of the coef-
ficient of variation (CV), coefficient of skewness (CS), co-
efficient of kurtosis (CK), and theL-coefficients, were esti-
mated. The mean annual rainfall (MAR) estimates were ob-
tained from observed precipitation data for a total of 584
rainfall gauging stations with record length ranging from 5
to 99 yr. The MAR estimates were spatially interpolated for
each sub-basin based on Theissen polygon method (Lins-
ley et al., 1949). The influence of the maximum annual
rainfall on charactering similar flood homogeneous region

Fig. 1. Location of the River Nile in Africa, the countries in which
the River Nile basin takes part, the major streams and major catch-
ments of the River Nile.

was compared with that of MAR and the findings showed
negligible difference. To support the digital delineation of
catchments, a Digital Elevation Model (DEM) for the study
area was built based on the 92 m grid resolution topograph-
ical data obtained from the Shuttle Radar Topog-raphy Mis-
sion website (http://srtm.csi.cgiar.org/; last access: Septem-
ber 2011). The watershed delineation was carried out using
the AVSWATX extension (Di Luzio et al., 2001) for ArcView
GIS (Geographical Information System) and resulted in an
automatic 365 subbasins (catchments) (Fig. 2) the result of
which was validated against previous studies. For each de-
lineated catchment (Fig. 2), several physical catchment char-
acteristics were extracted from the DEM data after watershed
delineation and some were objectively (e.g., use of correla-
tion coefficient) selected for cluster and regression analyses
(Table 1).

3 Methodology and results

3.1 Cluster analysis

The data matrix consisting of the physical and hydrological
catchment characteristics used in the clustering are indicated
in Table 1. Omission of landuse and soil types in the cluster-
ing was established to be insignificant for this study. Each
characteristic was standardised by its corresponding mean
value before use for clustering to give each characteristic
equal weight in the clustering (Kachroo et al., 2000). A two
case approach was adopted in the clustering. In the first case,
only the physical characteristics of the 365 automatic gener-
ated catchments (Fig. 2) were used to define similarity among
them using four HC algorithms (William and Edelsbrunner,
1984). This was done to ensure that each of the ungauged and
gauged catchments has equal representation in the clustering
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Fig. 2.Sub-catchments of the River Nile basin delineated using Ar-
cView GIS from which several catchment characteristics were ex-
tracted and used for cluster analysis.

process and to reflect the stability of the clusters. In the sec-
ond case, both the physical and hydrological characteristics
were used but only for the gauged catchments. In both cases,
an initial optimal number of 30 sub-clusters were defined as a
criterion for stopping the algorithms, starting from an initial
condition where the whole basin is defined as a single ho-
mogeneous region. The outcomes, from the two cases were
evaluated and compared until optimal clusters were achieved.
Dendrograms for each of the four HC algorithms were de-
rived and used to aid in the identification of groups of catch-
ments with similar properties and in the assessment of the
performance of the four HC algorithms.

Figure 3 shows the result of the delineation of the catch-
ments into possible homogeneous regions. The delineation
results for the river network are similar to the one devel-
oped for Africa by Sutcliffe and Parks (1999) and Karyab-
wite (2000). In the first case, where only the catchment phys-
ical characteristics were used for clustering, 30 regions were
obtained (dendrograms not shown); while in the second case,
where both the physical catchment characteristics and hydro-
logical properties were used, 15 regions were delineated. In
the second case, four regions (2 and 5; 1 and 14) obtained in
the first case, were delineated into only two separate regions.
This also indicated the level of stability of the identified

Fig. 3.Delineated regions of the River Nile basin showing different
homogeneous regions and their spatial distribution.

clusters. Further analysis was made by comparing weighted
regional values of the physical characteristics of regions 1
and 14, and regions 2 and 5. Regions 2 and 5 were found to
be similar and, hence, merged; regions 1 and 14 were found
different and kept separately. Region 14 was short of flow
data having record length greater than 5 yr. Further inter-
regional comparisons were made using only the weighted
physical properties and it was found that region 14 is physi-
cally similar to region 3. Delineated regions (Fig. 3) approxi-
mately match and overlap over the major catchments (Fig. 4).
This observation suggests that the results of the clustering
are highly influenced by the proximity among the catch-
ments and geographical characteristics although one catch-
ment may belong to a group of similar catchments, which
are not geographically connected. If the major catchments
(Fig. 4) are assumed homogeneous, it approximates the re-
sults of the clustering. However, the homogeneous regions
are not convincing because regions 1, 3 and 15 are highly in-
fluenced by regions 4, 5, 6 and other regions upstream. This
causes the dependency of the flow data in regions 1, 3 and 15.
If we take into account the total size of the River Nile basin
(∼ 3 762 000 km2) and the number of delineated regions, it
would mean that the average area of each homogeneous re-
gion is about 268 714 km2. Using expert judgment, the aver-
age size of each region is, thus, too big to be considered in
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Table 1.Physical and flow catchment characteristics considered paramount in influencing the magnitude of peak flows.

Vela Velocity [m s−1] MaxE Subbasin maximum elevation [m]
MAR Annual Areal rainfall [mm] MeanE Subbasin mean elevation [m]
MAF Mean annaul flood [m3 s−1] PointE Elevation at flow station point [m]
CV Coefficient of variation Area Watershed area [km2]
L-CV L-coefficient of variation RhLc Stream reach [m]
L-CS L-coefficient of skewness RhS Stream reach slope [–]
L-CK L-coefficient of kurtosis RhW Stream reach width [m]
Sol1 Basin slope RhHmin Minimum elevation of the stream reach [m]
Len1b Stream reach length [m] RhHmax Maximum elevation of the stream reach [m]

a We refer to MAF/catchment area as velocity.b Longest path within the catchment length.c Longest path within the
catchment width.
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Fig. 4.Map showing overlay of delineated regions onto major catch-
ments, and DEM based delineated river system of the Nile basin.

anyway homogeneous, despite the fact that the average num-
ber of gauged catchments per region is about 7, which from
the regionalisation point of view may be reasonable.

3.2 TheL-moment method

3.2.1 L-moments and theL-moment ratios

The first four sampleL-moments,l1to l4 (Hosking and Wal-
lis, 1997; Greenwood et al., 1979) of the AMF were used

to obtain theL-moment ratios (L-CV, L-CS andL-CK) as
follows: t2 = l2/l1 = L-CV, tr = lr /l2 (t3 = L-CS; t4 = L-
CK) for r = 3, 4, respectively, independent of the flow units;
wherel1 = b0, l2 = 2b1−b0, l3 = 6b2−6b1+b0, l4 = 20b3−

30b2 + 12b1 − b0 and

b0 =
1

n

n∑
j=1

Xj (1)

br =
1

n

n∑
j=r+1

(j − 1)(j − 2)...(j − r)

(n − 1)(n − 2)...(n − r)
Xj (2)

are unbiased sample estimators (br) of Probability Weighted
Moments (PWMs) andXj (j = 1, 2, . . . ,n) is the ordered set
of AMF values (x1 ≤ x2 ≤ x3 ≤. . .≤ xn). The L-moments
represent the location, dispersion (scale) and shape of the
data sample similar to the conventional moments. We used
the L-moments and theL-moment ratios to (1) carry out
regional heterogeneity tests, (2) select candidate probabil-
ity distributions and best-fit probability distribution for the
dataset, and (3) to calibrate the parameters of the candidate
probability distributions.

3.2.2 Homogeneity test

The methods based onH1, S1-statistic and GT were used for
testing the homogeneity of the delineated homogeneous re-
gions. The details of each of the test methods can be found
in the respective publication. A region is considered “ac-
ceptablyhomogeneous” (A) ifH1 < 1; “probablyhomoge-
neous” (P) if 15 H1 < 2; and “definitelyheterogeneous” (H)
if H1 = 2. The GT assumes that a group of catchments form
a homogeneous region if theL-CV values are similar to those
obtained from synthetic generated data of the assumed parent
probability distribution (Mkhandi et al., 1996).

Table 2 shows the homogeneity test results for the three
test methods. The first and the second columns contained
the region IDs and the average record length. The number of
gauged catchments in the region is presented in the third col-
umn and the implications of theH1, S1 and GT test results are
contained in columns 5, 7 and 8, respectively. Columns 10
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Table 2.The average record length, the number of gauged catchments, regional homogeneity test results, catchment characteristics used in
the regression for the MAF, the NME in estimating the MAF and the NMSE of the CV of the AMF per region.

Region Year No H1 HR S1 SR GTR SBCH NME NMSE

1 21 9 −1.69 P −2.74 P A MeanE −0.023 0.000
3 48 22 −0.26 A −0.06 A P Area 0.522 0.013
4 33 14 0.83 A −0.05 A H MAR 0.796 0.017
5 32 15 −0.12 A −0.06 A A MeanE 0.017 0.034
6 19 13 0.21 A 0.03 A A Area 0.382 0.059
7 36 15 0.21 A 0.04 A A Area −0.062 0.032
8 39 15 −0.28 A −0.30 A A Len1 0.013 0.031
9 32 7 −0.27 A −0.18 A A Len1 −0.101 0.006
10 16 20 −0.23 A −0.16 A P Area 2.500 0.055
11 40 18 −2.09 H −0.60 A A Area 0.053 0.051
12 32 10 −0.50 A −0.19 A P MAR 3.174 0.094
13 28 11 −0.32 A −0.11 A P MAR 3.585 0.007
15 27 12 −1.190 P −14.09 H A Len1 0.028 0.003

Year: average record length; No: number of gauged catchments in the region;H1: homogeneity index; HR: interpretation ofH1
results;S1: S1-statistic; SR: interpretation ofS1-statistic; GTR: interpretation of GT results; A: acceptably homogeneous; P:
possibly homogeneous; H: definitely heterogeneous; SBCH: catchment characteristic with stronger relationship with MAF;
NME: normalised mean error in MAF estimate. NMSE: normalised mean squared error in CV.

and 11 contain the values of normalised mean error (NME)
in MAF estimate and the normalised mean squared error in
CV (NMSE), respectively. It can be seen from Table 2 that
the homogeneity test results significantly differ for regions 4,
11 and 15, and it is not clear why such differences. The GT
method differs with theH1 andS1 based methods over eight
regions.H1 differs with GT andS1 over region 11, which has
the highestL-coefficient of variation. It is, however, observed
that there is an advantage of GT over the two other methods
because it allows identification of the outlier catchments that
may not be part of the homogeneous region. For a region
to be hydrologically homogeneous, the value of CV of the
AMF should insignificantly vary from their mean even if the
values of the corresponding catchment physical characteris-
tics vary significantly. The NMSE error in CV values should,
therefore, be zero for a region with perfect homogeneity. The
NMSE (Table 2) indicates that regions 1, 9, 13 and 15 are
hydrologically homogeneous though the test results indicate
that regions 1, 13 and 15 are probably homogeneous, and re-
gion 15 is actually heterogeneous. The NME values in esti-
mating the MAF for regions 3 and 4 are indications of hetero-
geneity of the regions. For regions 6 and 10 the higher values
of NME is probably due to the higher percentage of gauged
catchments with flow data of shorter record lengths. This ob-
servation cannot well be substantiated because regions 1 and
15, which consist of higher number of catchments with flow
data of shorter record length, have lower values of NME.
For regions 12 and 13, the higher values of NME is prob-
ably due to the lack of stronger correlations between the
catchment characteristics and the MAF. Our general obser-
vation, on the analysis of the homogeneity results for this
study, is that, for a large and complex River Nile basin, delin-
eating regions which are both hydrologically and physically

homogeneous may not be possible unless more stations with
longer records become available. Furthermore, if the number
of gauged catchments in each region is not optimally repre-
senting the entire region (e.g., skewed to one side of the re-
gion), as may be for the case of regions 4 and 9 (not spatially
shown), establishing whether or not a region is both hydro-
logically and physically homogeneous may also be difficult,
even if the size of the regions are reasonably smaller. Defin-
ing extremely large region as a result of lack of data may
not render the regionalisation as a valid option in estimating
the AMF for an ungauged catchment, especially for practi-
cal applications. For the River Nile basin, achieving a com-
promise between physical and hydrological homogeneity; as
well as between optimal data and regional homogeneity is in-
deed a difficult task. However, as noted by Cunnane (1988),
a small departure (not definite how small) from the homo-
geneity range does not negate the benefit of regionalisation.
Indeed, especially for the huge spatial scale of the River Nile
basin, and although we cannot consider the regions as “ho-
mogeneous”, they still might be helpful in the regionalisation
analysis.

3.2.3 Selection of the candidate probability
distributions

The selection of the candidate parent distributions was based
on theL-moment ratio diagram and theZ-statistic (Hosk-
ing and Wallis, 1993). Details of the computation of theZ-
statistic are explained by Hosking and Wallis (1993). All dis-
tributions whose absoluteZ-statistic values are less than 1.64
qualify for candidate probability distributions and the dis-
tribution with the lowest absoluteZ-statistic value qualifies
for the best-fit distribution. Five 3-parameter distributions,
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Fig. 5. L-moment ratio diagram for the at-site AMF data in the
River Nile basin.
GEV: Generalised Extreme Value distribution; GLO: Generalised
Logistic distribution; LN3: 3-parameter Log Normal distribu-
tion; GPD: Generalised Pareto Distribution; P3: Pearson type 3
distribution.

recommended by Yue and Wang (2004) for the study of ex-
treme events, were considered. These are Generalised Ex-
treme Value distribution (GEV), Generalised Pareto Distri-
bution (GPD), Generalised logistic distribution (GLO), Log-
normal 3-parameter distribution (LN3) and Pearson type 3
distribution (P3). Regional and at-site calibration of the dis-
tribution parameters were based on theL-moment parameter
estimators (Hosking and Wallis, 1997, 1987). TheL-moment
ratio diagram constructed using the AMF was applied in the
selection of the candidate distributions (Fig. 5).

3.2.4 Selection of the best-fit distribution and
construction of regional growth curves

Given that a single growth curve was envisaged for each re-
gion, the same type of the distribution was selected per re-
gion. The selection of the regional distribution was based on
the regionalL-moments ratio diagram and theZ-statistics
(Hosking and Wallis, 1993). RegionalL-moments were ob-
tained based on weighted sample points. The best-fit prob-
ability distribution was selected based on the observation
of the regional sample point. This was done by identifying
which selected distribution plots on or near the regional sam-
ple point (Fig. 6). The GEV came out as the best regional
distribution for most regions. The scaled regional sampleL-
moments (L-CV, L-CS andL-CK) were used for the regional
parameter estimation. The regional parameters of the GEV
distribution are provided in Table 3. The growth curve model
of the GEV, in function of the return period,T , is given in
Eq. (3).

Fig. 6.RegionalL-moment ratio diagram of the AMF for the River
Nile basin.
GEV: Generalised Extreme Value distribution; GLO: Generalised
Logistic distribution; LN3: 3-parameter Log Normal distribu-
tion; GPD: Generalised Pareto distribution; P3: Pearson type 3
distribution.

GfT = ξ +

(α

k

)[
1−

{
− ln(1−

1

T
)

}k
]

(3)

The ξ , α, andk are the distribution location, scale and the
shape parameters, respectively. The regional curve was plot-
ted versus the extreme value type one (EV1) or the Gumbel
reduced variate, given by [−ln (−ln (1−1/T ))]. If applicable
in practical application, it is possible to estimate a peak flow
quantile for a given return period by the use of the growth
curve model given in Eq. (3). The selection of the GEV dis-
tribution is consistent with the conclusions by Willems et
al. (2005) based on AMF data from 56 gauging sites in the
River Nile basin. The shapes of the growth curves (Fig. 7),
for most regions, indicate that the slope of the growth curve
generally becomes larger with increase in return periods ex-
cept for regions 1, 3, 4, 13 and 15. For regions 9, 11 and
12, the increase in the slope is very strong as the return pe-
riod increases. In contrast, strong decreasing slopes are in
regions 13 and 15. The shape of the growth curve for re-
gion 1 can be explained by its downstream location in the
basin, which has a very gentle topographical slope; it is in
the arid region and flow peaks are attenuated before reaching
region 1. The identified physical evidence to explain the be-
haviour of AMF for region 4 is that the topographical slope
is very gentle. Figure 7 and Table 3 indicate that the distri-
bution’s shape varies spatially, but for most regions the val-
ues are close to zero, indicating normal tail behaviour of the
growth curve, except for regions 1, 4, 13 and 9.
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Table 3.The average record length, the number of gauged catchments, regional homogeneity test results, catchment characteristics used in
the regression for the MAF, the NME in estimating the MAF and the NMSE of the CV of the AMF per region.

Region MAF CV L-CV L-CS L-CK ζ α k

1 2101 0.038 0.022 −0.062 0.052 0.989 0.041 0.410
3 4541 0.247 0.136 0.078 0.155 0.895 0.249 0.185
4 485 0.321 0.182 −0.033 0.087 0.940 0.299 0.554
5 4640 0.454 0.250 0.183 0.116 0.836 0.283−0.019
6 357 0.491 0.255 0.103 0.181 0.861 0.346 0.212
7 1007 0.405 0.222 0.226 0.154 0.842 0.240−0.083
8 428 0.499 0.298 0.059 0.185 0.931 0.498 0.681
9 242 0.449 0.253 0.354 0.224 0.755 0.267−0.268
10 246 0.396 0.214 0.197 0.179 0.886 0.167−0.099
11 102 0.664 0.345 0.247 0.188 0.686 0.373−0.218
12 212 0.633 0.307 0.224 0.109 0.663 0.402−0.217
13 132 0.427 0.244 −0.055 0.122 0.866 0.430 0.347
15 118 0.506 0.302 0.076 −0.081 0.760 0.458 0.060

MAF: regional MAF in m3 s−1; ξ , α andk are the location, scale and shape parameters, respectively; all the
regional moments and the distribution parameters shown have been scaled and are unitless.

Fig. 7. Regional growth curves developed using GEV distribution
for the homogeneous regions in the River Nile basin.

3.3 Estimation of MAF using regression model

The growth curve provides estimates of scaled AMF quan-
tiles, QT /MAF, for given recurrence intervals or return pe-
riods,T , for the different regions. Regional regression mod-
els were developed for estimation of the MAF in each ho-
mogeneous region. In the first step, we assessed the corre-
lation of each of the available physical catchment charac-
teristics with the at-site MAF values by measure of corre-
lation coefficients, for the entire basin. The catchment char-
acteristics with higher correlation coefficients were selected.
In the second step, we repeated the correlation analysis per
region, but assumed one gauged catchment as an ungauged
catchment. We called this catchment the local catchment, and
left out the value of MAF of that local catchment. We then
developed a regression model for estimation of MAF as a
function of the catchment characteristics having the highest

correlation coefficient with the MAF for that region in the
form of Eq. (4).

MAF = aCb
1Cc

2... (4)

where,C1, C2, . . . , are the various catchment characteristics
considered. The physical/geographical characteristics used
in this study such as elevation, slopes and river morphology
were thought to be of primary influence and were, therefore,
considered in this study as compared to other physical char-
acteristics such as climatic indices. We then used the regres-
sion model to estimate the value of the MAF for the local
catchment.

Plots of the correlation coefficient versus the Len1, Area,
MeanE and MAR, for the entire data are shown in Fig. 8a.
The values of the correlation coefficient vary significantly
with these catchment characteristics; indicating that the be-
haviour of the MAF and also the AMF properties, is con-
trolled differently by the different catchment characteristics.
The slopes of the relationships between the catchment char-
acteristics and the moments/L-moment ratios decrease with
the order of the moments/L-moment ratios. The slopes are
steeper for the ordinary moments than for theL-moments ra-
tios. It is also observed that when the AMF moments are plot-
ted versus the different catchment characteristics, the scat-
ter of the data points around the mean value (or the mean
squared error) is less for the higher moments than for the
lower moments (not shown). Similarly, when theL-moment
ratios are plotted versus the different catchment character-
istics, and compared with the similar plots for the ordinary
moments, the respective scatter of the data points (or the
mean squared error) is higher for the ordinary moments than
for theL-moment ratios (not shown). Higher slopes, reflect-
ing higher values of correlation coefficient, means that the
catchment characteristics are better estimators of ordinary
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Fig. 8.Correlation coefficients between catchment characteristics and flood properties:(a) for the entire dataset of the basin(b) MAF values
per region(c) CV values per region(d) L-CS values per region. MeanE: catchment mean elevation (H); Len1: catchment average stream
reach length (L).

moments than estimators ofL-moments or their ratios. The
values of the correlation coefficient between the ordinary
moments and the catchment characteristics (Fig. 8b, c), and
between theL-moments or their ratios (e.g., Fig. 8d forL-
CS) and the catchment characteristics, per region, vary sig-
nificantly with the selected catchment characteristics. The
catchment characteristic which highly influences flow prop-
erty in one region is not necessarily the same in another re-
gion as shown in Fig. 8b–d and this is probably due to cli-
matic differences (wet and dry) between the regions. Iden-
tification of the most influential physical catchment charac-
teristics on flow properties was based on the use of correla-
tion coefficient. The catchment characteristic with the high-
est value of correlation coefficient was related in a power law
to the MAF to derive a regression model for estimation of the
local MAF. A possible advantage of using a simple regres-
sion model, as compared to the multiple regression model, is
that it eliminates the catchment characteristics which are not
strongly related with the MAF; and which can significantly
influence the accuracy of MAF estimates. The homogene-
ity test result may indicate departure from the homogeneity
range (Table 2), but it is still possible to identify a good re-
gional estimator for MAF as indicated by the values of the
NME and NMSE for regions 1, 11 and 15 (Table 2). In re-
gions where it is difficult to identify a reasonable estimator
for MAF, such as for regions 12 and 13 in this study (Ta-
ble 2), we included additional catchment characteristics in

the analysis. The estimated MAF was evaluated by compar-
ing with the local MAF. The estimated MAF together with
the growth curve model were used to estimate the AMF val-
ues for the return periods ranging from 2.3 to 500 yr. They
were compared with the quantiles obtained from the distribu-
tion of the local catchment estimated during at-site calibra-
tion for the same return periods. This process was repeated,
in turn, for each gauged station in the region and for all the
delineated regions. This procedure allowed us to obtain an
estimate of the regionalisation error. It is expected that the
performance of the regional estimators diminishes when ex-
tremely large regions are delineated on the account of the
increasing variance of the parameter estimates. When eval-
uating this variance, it is important to take into account the
huge spatial scale of the Nile basin considered, as well as the
strong climatic variations across the basin and the data limi-
tations. For the same reasons, flood frequency analysis may
not be as reliable as it is for other basins. The acceptability of
the accuracy of the regional flood frequency analysis should
be seen in light of this scale context. Despite the huge catch-
ment area and the low density of the stream gauge network,
water and civil engineering works require flood frequency
estimates to be made at ungauged locations through region-
alisation, with highest possible accuracy.
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Fig. 9.Variation in regional growth factor for 100 yr return period (Gf100) simulated using GEV distribution, and the regional shape parameter
(k) in the River Nile basin:(a) constant value of (Gf100) in a region(b) value of Gf100 varies over a region.

3.4 Mapping and comparison of local and regional
growth factors

Two flood growth factor maps (Fig. 9) were produced based
on regional growth factors for a 100 yr return period. The
regional GEV parameters (Table 3) were used to calculate
the value of the growth factor corresponding to a return pe-
riod of 100 yr (Gf100). The first map (Fig. 9a) was produced
by representing each region with a constant value of Gf100.
The second map (Fig. 9b) was produced by interpolating the
value of the Gf100 to produce a continuous map based on or-
dinary Kriging method. The two maps were compared in the
context of the spatial variation of the value of the Gf100 and
the suitability for practical engineering application. The leg-
end of Fig. 9a consists of both the regional values of Gf100
and the shape parameter and Fig. 9b shows overlays of delin-
eated regions and the legend consists of ranges of the values
of Gf100. Considering the fact that it is very elusive to delin-
eate a homogeneous region for the River Nile basin, because
of the varying degree of the catchment characteristics among
catchments within a given region, the map produced by in-
terpolating regional growth factors may be more appropriate
in practice. Instead of using Gf100 value which is constant

over a region, Fig. 9b would take into consideration variabil-
ity of Gf100 over and across a given region. For most regions,
the peak flows are expected to at least double their respective
MAF values; meanwhile for region 1, the expected peak flow,
for the same return period, will be close to the regional MAF
value. Higher values are for the upper River Nile region (ex-
cept for region 13), the Sudd and Sobat major catchments,
and the Atbara catchments. This is explained by the higher
frequency of heavy rain storms in the regions.

The map shown in Fig. 9b can be seen as a “regional de-
sign map” giving regional growth factor values for the speci-
fied design return period and a given river (stream) location,
based on the regional growth curves. They can be transferred
to design flow values (QT ) by multiplying by the MAF esti-
mate at that location. The latter requires regional MAF esti-
mates, which have been discussed in previous sections. Prac-
tical application of this is found in the design of culverts,
bridges for roads, rail communications, hydraulic structures
for irrigation, reservoir spillways, as well as for flood risk
assessment and flood management in the River basin. The
shapes of the growth curves (Fig. 7) are largely affected by
the values ofk of the distribution. The regional values ofk

are in the range−0.269 to 0.421. The higher values of the
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Fig. 10.NME (a) in estimating AMF for the regionalisation, based onL-moment method for the threshold record length (t) ranges: asterisks
(t > 19: t = 20 to 116); circle (t > 29: t = 30 to 116); full circle (t > 39: t = 40 to 116); crosses (t > 59: t = 60 to 116). NMSE(b) in
estimating the MAF using the jack-knifing principle for record length ranging from 4 to 116 yr. GEV distribution andL-moments (and their
ratios) were used.

growth factors are related to lower values ofk and are found
in regions 5, 6, 7, 8, 9, 10, 11, 12 and 15. Higher values
of growth factors and negative/lower values ofk mean that
there is high variability of AMF in the region; they corre-
spond to heavy tail behaviour of the extreme value distribu-
tion. Values ofk greater than zero correspond to a light tail
behaviour, which means that extremes do not rise strongly
with increasing return period. The latter might be due to the
flooding influences, which bend down the tail of the distri-
bution, as observed for the cases of regions 13 and 15. The
trends in Fig. 9a are clearly affected by tropical humid and
subtropical arid or semi-arid conditions. The values ofk are
generally lower (in most cases negative) and growth factors
higher for the tropical humid area in the upstream parts of the
River Nile basin around Albert, Kyoga and Victoria Lakes.

3.5 Regionalisation error

Merz and Bl̈oschl (2005) indicated that for any modelling
application, the regionalisation error consists of a systematic
component, or bias, and a random error component. They
further state that the bias is a measure of whether a regionali-
sation method tends to overestimate or underestimate flood
quantiles in all the catchments considered. Non-negligible
bias is an indication of poor model structure or inappropri-
ate assumptions. In practical applications, biases, if known,
can be removed from the estimates using a bias removal tech-
nique. The random error is a measure of the scatter of the re-
gionalised values centred at the local values. Random errors
are related to how much information a method can extract
from the data and can be removed from the estimates. We
use the Normalised Mean Error (NME) as a measure of the
bias between regional and local estimates (Eq. 5a).

NME =

n∑
i=1

(
Qs

i − Qo
i

)
n∑

i=1
Qo

i

(5a)

whereQs
i andQo

i , respectively, are the regionalised and the
local values of the estimates of stationi out ofn stations. The
Normalised Standard Deviation Error (NSDE) was used as a
measure of the random error (Eq. 5b).

NSDE=

√
n∑

i=1

{(
Qs

i − Qo
i

)
− n−1

n∑
i=1

(
Qs

i − Qo
i

)}2

n∑
i=1

Qo
i

(5b)

NME can be positive or negative, while NSDE is always non-
negative. The performance of the regionalisation is consid-
ered perfect when both the values of NME and NSDE are
zero.

The regionalisation error is a function of both the NME
and NSDE, and we used the Root Mean Square Error
(RMSE), given in Eq. (6), as a measure of the total region-
alisation error. It was expected that the most homogeneous
regions and the catchments with longer record lengths would
produce the lowest error values.

RMSE=

[
NME2

+ NSDE2
]0.5

(6)

We used the plot of the NME versus the return period, and the
NMSE versus the record length to assess the variation of the
error with the return period ranging from 2.3 to 500 yr and to
explicitly reveal the effect of the record length in estimating
the AMF. This was done by screening out data with record
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lengths less than 20, 30, 40 and 50 yr from the error anal-
ysis one at a time. We found that for shorter return periods
the random error will be smaller and represents the regional-
isation error alone, while for longer return periods both the
bias and the random error are likely to be important. Fig-
ure 10 shows the general performance of the regionalisation
by measure of biases in the values of the AMF and the lo-
cal MAF. It also illustrates how the record length affects the
results of the regionalisation. Figure 10a shows the plot of
NME versus return period with increasing threshold record
length, t , from 20 to 60 yr. Figure 10b shows the bar chart
of NMSE versus the threshold record length. The effect of
record length reduces as higher thresholds are selected. For
the value of the threshold record length of 20 (t > 19) years
(Fig. 10a), the values of the NME increase significantly with
increase in return period. The values of NME reduce when
the value of the threshold record length of 30 yr is selected.
In this case, the NME values reduce with increase in return
period. The difference in the values of the NME becomes
smaller when the threshold records of 40 yr or more are se-
lected (Fig. 10a:t > 39 andt > 59) and no longer change
significantly. The NMSE is also affected by the values of the
record length of the data used for the regionalisation. Most
of the catchments used have data with record length rang-
ing from 20 to 70 yr. Only one catchment has a record length
longer than 100 yr. It is clear from Fig. 10b that catchments
with record lengths less than 40 yr may not be good for re-
gionalisation, because of the high error they introduce in the
regionalisation, although a reasonable amount of regional in-
formation can still be extracted from such data. If such data
are used, a correction factor may be established and applied
to the resulting MAF in case of practical application provided
the interest is in the estimate of the AMF frequency estima-
tion for return period longer than the record length observed.
The correction factor can be thought of as a ratio between the
estimated and the true value of the MAF for the considered
catchment and can be obtained by analysing the values of the
NMSE. The factor is close to one as the average record length
of the regional data used increases. The peak flow quantiles
are, thus, often underestimated if shorter record lengths are
used. As the average record length of the regional data in-
creases, the estimated MAF is close to the true value, pro-
vided the region under consideration is both hydrologically
and physically homogeneous. This compromise is very diffi-
cult to achieve in regionalisation, especially for the complex
River Nile basin where flood data are limited.

4 Conclusions

In this study, we used agglomerative hierarchical cluster al-
gorithms to search for homogeneous regions in the complex
River Nile basin and regionalised 365 identified catchments
into groups of “homogeneous” regions. 180 flow data were
used; about 40 % of which have flow record length greater

than 30 yr (regions with similar characteristics used for the
regional flood frequency analysis). Several catchment phys-
ical characteristics were digitally extracted and used in the
clustering process and the regression modelling for estima-
tion of the MAF. Using theL-moment based method; the
GEV distribution was selected as the overall best-fit distribu-
tion for the data and was used to construct regional growth
curves for the estimation of the peak flow quantiles for se-
lected return periods, for all the regions. The performance of
the regionalisation was examined by analysing homogeneity
test results and the error between locally and regionally esti-
mated AMF values for the different return periods using the
jack-knifing principle.

The hierarchical clustering algorithms, applied in this
study, were reasonably efficient in the identification of catch-
ments with similar hydrological and physical characteristics,
but are not objective enough in establishing the optimal num-
ber of clusters. The three different hydrological homogeneity
test methods applied in the study lead to different homogene-
ity test results for a number of regions signifying complexity
in the flood frequency regionalisation. The selection of the
GEV as the best-fit distribution is consistent with the con-
clusions by Willems et al. (2005) based on flow data from
56 gauging sites in the River Nile basin. Catchment physical
characteristics were found to be better estimators of lower
moments/L-moments than higher moments/L-moments. The
performance of the regionalisation is strongly dependent on
the record length of the AMF data used and the physical
catchment characteristics used in the regression technique.

The performance of the regionalisation, however, can be
improved if the flow data used have record length longer
than 40 yr provided the catchments are considered to fall in
a homogeneous region. The compromise between availabil-
ity of flow data with longer record length and delineating
homogeneous region is very difficult to achieve in region-
alisation, especially for the complex and highly ungauged
River Nile basin where flow data are limited, both in avail-
ability and record length and where the types of climate vary
from humid in the upstream to arid in the downstream. Such
limitations will continue to constrain, and eventually affect
the applicability of the results of the regionalisation of the
River Nile catchments at basin scale. However, if sufficient
data would become available, the effect of record length
and regional size may be eliminated. In order to make bet-
ter conclusion on the physical homogeneity of the delin-
eated regions, a homogeneity test method that incorporates
the values of the physical catchment characteristics may be
required. Nevertheless, the reliability of the regionalisation
results would still have to be examined in the context of both
physical and hydrological homogeneity. Physical homogene-
ity may be difficult to establish because of the several phys-
ical catchment characteristics (whose values may be altered
by human activities) that have significant influence on the
basin’s response to hydrology. One more essence on the ap-
plicability of the regionalisation results is that the use of the
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flood growth factor map, derived by spatially interpolating
the regional flood growth factor, for the different return pe-
riods, may be more appealing and reasonable compared to
growth curves.

The performance of the regionalisation approach applied
to the River Nile at basin scale and where the AMF data are
used is considered satisfactory. Nevertheless, the applicabil-
ity of the results of the regionalisation for engineering prac-
tice would require updating and possible comparison with the
use of other methods such as peak over threshold or partial
duration series data if continuous flow series would become
available. In addition, a basin scale study may also be nec-
essary to investigate the rating curves used by each country
or water authority to validate the accuracy of the upper quan-
tiles predicted based on the rating curves of the hydromet-
ric stations. Improvements on the limitation of data would
definitely improve the accuracy of the growth curves or the
growth factor maps and eventually the regionalisation perfor-
mance. Overall, we believe this study has highlighted both
the significance of availability of longer record length data
and the importance of regionalisation in extremely data lim-
ited River Nile basin. We hope this study will invoke scien-
tific debate and methodological innovation in the River Nile
basin and elsewhere in similar challenging river basins for
better representation of similar region and enhance applica-
bility in design study.
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