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Abstract. We use three methods to identify power-law scal- is not an indication of multifractality but an artifact of sam-
ing of multi-scale log air permeability data collected by Tid- pling from tfBm. This allows us to explain theoretically how
well and Wilson on the faces of a laboratory-scale block of power-law scaling of our data, as well as of non-Gaussian
Topopah Spring tuff: method of moments (M), Extended heavy-tailed signals subordinated to tfBm, are extended by
Self-Similarity (ESS) and a generalized version thereof (G-ESS. It further allows us to identify the functional form and
ESS). All three methods focus enth-order sample struc- estimate all parameters of the corresponding tfBm based on
ture functions of absolute increments. Most such functionssample structure functions of first and second orders.

exhibit power-law scaling at best over a limited midrange of
experimental separation scales, or lags, which are sometimes

difficult to identify unambiguously by means of M. ESS and 1  |niroduction

G-ESS extend this range in a way that renders power-law

scaling easier to characterize. Our analysis confirms the suthe literature indicates (Neuman and Di Federico, 2003) that
periority of ESS and G-ESS over M in identifying the scal- hydrogeologic variables exhibit isotropic and directional de-
ing exponentsé (¢), of corresponding structure functions of pendencies on scales of measurement (data support), obser-
ordersq, suggesting further that ESS is more reliable thanvation (extent of phenomena such as a dispersing plume),
G-ESS. The exponents vary in a nonlinear fashion with sampling window (domain of investigation), spatial correla-
as is typical of real or apparent multifractals. Our estimatestion (structural coherence), and spatial resolution (descrip-
of the Hurst scaling coefficient increase with support scaletive detail). Attempts to explain such scale dependencies
implying a reduction in roughness (anti-persistence) of thehave focused in part on observed and/or hypothesized power-
log permeability field with measurement volume. The find- law behaviors of structure functions of variables such as hy-
ing by Tidwell and Wilson that log permeabilities associated draulic (or log hydraulic) conductivity (e.g. Painter, 1996;
with all tip sizes can be characterized by stationary vari-Liu and Molz, 1997a,b; Tennekoon et al., 2003), space-
ogram models, coupled with our findings that log permeabil-time infiltration (Meng et al., 2006), soil properties (Caniego
ity increments associated with the smallest tip size are apet al., 2005; Zeleke and Si, 2006, 2007), electrical resis-
proximately Gaussian and those associated with all tip sizesance, natural gamma ray and spontaneous potential (Yang
scale show nonlinear variationsgiy) with ¢, are consistent et al., 2009) and sediment transport data (Ganti et al., 2009).
with a view of these data as a sample from a truncated verPower-law behavior means that a sample structure function
sion (tfBm) of self-affine fractional Brownian motion (fBm).
Since in theory the scaling exponerit&y), of ttBm vary lin-
early withg we conclude that nonlinear scaling in our cas
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30 M. Siena et al.: Extended power-law scaling of air permeabilities measured on a block of tuff

of orderg (for simplicity we limit our mathematical expo- model of Meerschaert et al. (2004) (see Kozubowski et al.,
sition to one dimension and our analysis of data to non-2006; Ganti et al., 2009), the latter does not include cutoffs
negative values of) scales according to and thus fails to reproduce observed breakdown in power-law
quv(s) o E@ @) scgling .at small and large lags. . .
enzi et al. (1993a,b, 1996) discovered empirically that

whereY (x) is the variable of interest (assumed to be definedthe ranges; <s <s; of separation scales over which ve-
on a continuum of points in space or time)AY,(s) isa locities in fully developed turbulence (where Kolmogorov's
measured incrememY (s) =Y (x +s) — Y (x) of the vari- dissipation scale is assumed to contrgl scale according
able over a separation distance (ladjetween two points on to Eq. (2) can be enlarged significantly, at both small and
the x-axis, andV (s) is the number of measured increments. large lags, through a procedure they called Extended Self-
When the scaling exponent (powéx)y) varies linearly with  Similarity (ESS). ESS arises from the observation that struc-
q, Y (x) isinterpreted to form a self-affine (mono-fractal) ran- ture functions of different orders,andm, computed for the
dom field and the slopH of the corresponding line istermed same separation lag are related by
Hurst exponent. When the scaling expongt) is a nonlin-
ear function of, ¥ (x) has traditionally been taken to forma 5" (8) & S ()P0 3
multifractal field. A semi-empirical “universal” multifractal
model due to Schertzer and Lovejoy (1987) reldtgp to
the Hurst exponent viél =£(1), as explained and illustrated
by Seuront et al. (1999); some approximéatdy d& /dgnear
q=0.

Neuman (2010a, 2011) has shown theoretically and NeuG”-? (s) «« G™(s)? (P-4 (4)
man (2010b) and Guadagnini et al. (2011) have demonstrated
numerically that signals derived from additive processes subwhere

whereB(n, m)=£&(n)/£(m) is a ratio of scaling exponents.
Benzi et al. (1996) introduced, and Nikora and Goring (2001)
employed, a generalized form of ESS (G-ESS) according to
which

ordinated to a truncated version (tfBm) of additive, self- SP(s) §9(s)
. . . . . n,p — n.q —
affine fractional Brownian motion (fBm) scale in a manner G777 (s) = ———— G™(s) = o ——
L : : S (s)r/ §n(s)e/
similar to multifractals even as they differ from such mul-
tiplicative constructs in a fundamental way. Truncation is £(p) — (p/n) EM)
caused by lower and upper cutoff scales, proportional to data p(p, q,n) = £q) — (¢/m) Emn)” ®)

support (measurement scale) or resolution and domain size
(sampling window scale), respectively. Their work suggestsThe exponenp(p, ¢, n) is a ratio between deviations of
that nonlinear variations i§(g) with ¢ need not represent structure functions of ordep and g, respectively, from
multifractal scaling but could instead be an artifact of sam-linear (monofractal or self-affine) scaling. Chakraborty et
pling from tfBm or fields subordinated to ttBm. al. (2010) cite the success of ESS in extending observed scal-
Power-law scaling is typically inferred from measured val- ing ranges, and thus allowing more accurate empirical deter-
ues of earth and environmental variables by the method ofninations of the functional exponeétq) for turbulent ve-
moments (M). This consists of calculating sample structurelocities. ESS has been reported to achieve similar results
functions Eq. (1) for a finite sequences, ¢2, ..., gu, Of for diffusion-limited aggregates, natural images, kinetic sur-
g values and for various separation lags. For each gjder face roughening, fluvial turbulence, sand wave dynamics,
the logarithm ofS?\;' is related to logs by linear regression Martian topography, river morphometry, gravel-bed mobil-
and the powek(g;) set equal to the slope of the regression ity and atmospheric barometric pressure, low-energy cos-
line. Linear or near-linear variation of Iogj”(;' with log s is mic rays, cosmic microwave background radiation, metal-
typically limited to intermediate ranges of separation scalesjnsulator transition, irregularities in human heartbeat time se-
s1 < s < s, wheres) ands); are theoretical or empirical lower ries, turbulence in edge magnetized plasma of fusion devices
and upper limits, respectively. Breakdown in power-law scal-and turbulent boundary layers of the Earth’s magnetosphere
ing is attributed in the literature to noise at lags smaller than(Guadagnini and Neuman, 2011). In all cases, ESS has re-
s1 and to undersampling at lags larger thanTessier et al., vealed nonlinear variation @f(¢) with ¢. Whereas the liter-
1993). Yet noise-free signals subordinated to tfBm gener-ature has interpreted this to imply that ESS applies to mul-
ated by Neuman (2010b) and Guadagnini et al. (2011) showifractals, Guadagnini and Neuman have shown that Eq. (3)
power-law breakdown at small and large lags even whenworks equally well when applied to signals derived from ad-
sample sizes are large. This breakdown is caused by cutditive processes subordinated to tfBm. As the latter are not
offs which truncate the fields at small lags proportional to themultifractal, neither must be processes revealed by ESS (or
measurement and/or resolution scale of the data, and at largany other method of analysis) to yield nonlinear variations in
lags proportional to the size of the sampling domain, regard<(g) with g.
less of noise or undersampling. Though nonlinear variation In this paper we use three methods to identify power-law
of £(g) with ¢ is also reproduced by the fractional Laplace scaling of log air permeability data collected by Tidwell and
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Wilson (1999) on the faces of a laboratory-scale cube of Z
Topopah Spring tuff: method of moments (M) and extended
power-law scaling via ESS and G-ESS. Most published anal-
yses of extended power-law scaling concern time series or
one-dimensional transects of spatial data associated with a
unigue measurement (support) scale. We use instead data
measured on diverse support scales and distributed in two or ~ 3
three dimensions across several faces of the cube. Our aim -
is to infer the scaling behavior of these data using all three
methods, compare results among the methods and explore
the dependence of corresponding scaling exponents on sup-
port scales and direction.

“In spite of several attempts to explain the success of
ESS” cited by Chakraborty et al. (2010) the authors note
that “the latter is still not fully understood and we do not 6 - y

tn

-~
know how much we can trust scaling exponents derived by X

ESS. It would be nice to have at least one instance for which

ESS not only works, but does so for reasons we can ratioi:_ 1 seh f block (s 8174 63cid) of T h
nall n r nd.” hakr r l. (201 rovi 9. 1. cneme o oC Size: X C ol Topopa
ally understand.” Chakraborty et al. (2010) provide such a pring tuff sample. Faces of size 380 cn? where MSP mea-

theoretical reason in the special context pf orle-dlmen_smnafurements were taken are highlighted in gray,.
Burgers equation. In contrast, they consider “the multifrac-
tal description of turbulence,” with which ESS is commonly

associated, to be “quite heuristic and arbitrary.” Kozubowskiysrds our data, being consistent with a truncated self-affine
and Molz (2011) note that Eq. (3) is obtained from Eq. (2) process, exhibit apparent rather than actual multifractal scal-
simply upon rewriting the latter as”(s) = C(n)s*™ and jng at intermediate lags. The same likely holds true for other
§" (s) = C(m)s*"), solving the first of these expressions for Gayssian or heavy-tailed earth and environmental variables
s and substituting into the second. Kozubowski and Molz (g ,ch as those listed earlier) that scale according to Eq. (2) at
point out further that whereas Eqg. (2) implies Eq. (3) the re-jyermediate lags and according to Eq. (3) over an extended
verse is generally not true, Eq. (3) being equivalent instead fQange of lags, a possibility noted earlier by Guadagnini and

S9(s) o f(s)5@ (6) Neuman (2011).

where f(s) is some, possibly nonlinear, function of This
is seen upon rewriting Eq. (6) &' (s)=C(n) f(s)*™ and 2 Previous analyses of experimental data
S™(s)=C(m) f ()5, solving the first forf (s) and substi-
tuting into the second. Tidwell and Wilson (1999) measured air permeabilitiesn

After showing that our data behave as a sample from tfBmsix faces of a block of Topopah Spring tuff (Fig. 1), extend-
(a truncated self-affine process) we demonstrate in Appendixng 30 cm on each side, with the aid of a Multisupport Perme-
A that this process is consistent with Eq. (6) at all separa-ameter (MSP). Measurements were conducted at intervals of
tion scales (lags) and with Eqg. (2) at intermediate scales A =0.85cm on a grid of 3& 36 points along each face us-
(s1 <s <)1), as are most of our data. We thus explain why ing four tip-seal sizes having inner radji=0.15, 0.31, 0.63,
and how ESS works for our data at all scales. At interme-1.27 cm and outer radii 2. As the precise nature and size
diate scales where our data are consistent with both Egs. (6)f the support volume associated with each measurement is
and (2), the definition of(n, m) in Eq. (3) applies and al- the subject of debate (Goggin et al., 1988; Molz et al., 2003;
lows us to computé (n) uniquely and unambiguously upon Tartakovsky et al., 2000; Neuman and Di Federico, 2003),
obtainingé (1) independently from the data by the method of we consider the inner radius of the tip-seal to represent a
moments. Similarly, the definition of (p, ¢, n) in Eq. (5) nominal measurement scale (data support) as proposed by
applies and allows us to compu§éz) uniquely and unam-  Tidwell and Wilson (1999). We conclude from their analy-
biguously for anyn upon obtaining two of its valueg,(p) sis that measurements on face 6 of the block are less reliable
and £(g) for some p and ¢, independently from the data than the rest and therefore limit our analysis below to those
by the method of moments. On the other hand, since ouon faces 1-5.
data are consistent with Eq. (6) but not with Eq. (2) at small Measured (natural) log permeability valu&ss Ink, were
(s < s1) and large £ > s11) scales, they are inconsistent with found to have bi-modal frequency distributions particularly
multifractals or fractional Laplace motions (Meerschaert etat larger tip sizes (Fig. 2 of Tidwell and Wilson, 1999).
al., 2004; Kozubowski et al., 2006; Ganti et al., 2009) which This was deemed by them to be consistent with the geologic
theoretically scale according to Eq. (2) at all lags. In otherstructure of the tuff sample within which regions of high
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Fig. 2. IncrementsAY (sx =8.5cm), versus position;, along three transects on face 150, 10.16, 20.32cm) fofa) r; =0.15cm and
(b) r; =1.27cm.

(associated with pumice fragments) and low (correspond- 1E+0
ing to solid matrix) permeability could be visually identified.

Tidwell and Wilson were able to fit spherical models with
nuggets to sample variograms on all faces of the cube for 1.E1 4
each tip radius. The variograms were found to be isotropic £ wf"(ﬁg
in thexy plane of Cartesian coordinates on face 1 of the cube Z

but anisotropic in thezandyzplanes on faces 2-5, with es- § 1E-2
timated ranges in the direction about one half of those in 3, 1
the x and y directions. Sill and range estimates decreasec§ ]
and increased, respectively, with tip seal inner radius. For ;T 1.E3 1 b
additional details the reader is referred to the above authors.™ !

r;=0.15 cm : Osample ---- ML
r;=1.27 cm : O sample ML

7’
= os O
v

C

1.E-4 T T T
3 Identification of power-law scaling 15 410 5 0 5 10 15

) , AY
To evaluate sample structure functions for the experimental

data of Tidwell and Wilson (1999) according to Eq. (1) we Fig. 3. Frequency distributions oAY (sx =8.5cm) on multiple

compute directional incrementaY, of Y =Ink at various  faces and; =0.15; 1.27 cm (symbols). ML fits of Gaussian proba-

separation lags (taken to be integer multiples of grid spacingbility density functions are also reported (lines).

A, for each tip size) parallel to the x, y and z-coordinates on

the faces of the cube. Figure 2 depicts variationain as-

sociated with lag, =8.5cm along selected transects in the 3.1  Analysis of face 1 data by method of moments

x direction on face 1 associated with the smallest and largest

tip radii, r; =0.15 and 1.27 cm. Clearly, increasing the tip ra- As |ag increases the numbev(s) of incremental data

dius results in smoother and more persistent variability of thealong all transects of face 1 decreases from 1260 corre-

increments. Figure 3 shows frequency distributions of sim-sponding tos, =5, =A=0.85cm to 36 corresponding to

ilar increments along all x-directional transects on multiple =5, =35x A=29.75cm. Figure 4 depicts loff, (s,) as

faces and Maximum Likelihood (ML) fits of Gaussian pI’Ob— functions of |Ogsx a|ong all transects for Oiq <25 at

ability density functions (pdfs) to these distributions. Both each tip size. To identify a middle range of lags within which

frequency distributions are symmetric about zero with humpsthese relationships are linear we have fitted regression lines

reflecting the bi-modal distributions df identified by Tid-  to the data within several such ranges and adopted those

well and Wilson. Increments corresponding to the smallesthat yield the highest coefficients of determination for each

tip size appear to be closer to Gaussian than those correip size. These ranges, identified in Fig. 4 by dashed verti-

sponding to the largest tip size, consistent with their findingcal lines, are on the order ofjE2A) <s, < (sy =6 A) or

thatY becomes increasingly bimodal with tip size. 1.7 cm<s, <5.1cm. The corresponding nonlinear variation
of £(q) with ¢ for the largest tip size (based on data such as
those in Fig. 4d) is depicted in Fig. 5. The solid line has slope
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Fig. 4. Sample structure functions of absolute increments of various ogdeessus lag along x direction on face 1 afa r; =0.15cm,
(b) r; =0.31cm,(c) r; =0.63 cm,(d) r; =1.27 cm. Dashed vertical lines delineate ranges of lags within which power-law scaling is noted.

dé&/dq|,—o=0.74 which, if taken to represent a Hurst expo- 2 o

nent H, implies a persistent signal consistent with that de- 18 1 yEREA

picted in Fig. 2b. Values df(g) in Fig. 5 start deviating from 16 ]

this solid line at aboug ~ 0.6 to become asymptotically lin- L4 Y2009 x+078

ear ing at aboutg > 3.5, as evidenced by the dotted line
obtained through regression against these values. Results for 2
other tip sizes and in the y direction (not reported) are qual- ¢ (@) 1 -
itatively similar. Though such behavior would typically be 0.8
interpreted to imply that increments of inare multifractal, 06 -
we note that qualitatively similar scaling has been produced
synthetically by Guadagnini and Neuman (2011, their Fig. 4)
with a model in whichy is subordinated to tfBm, a truncated

version of self-affine (monofractal) fBm. 0 S
0 1 2 3 4 5 6

q

3.2 Analysis of face 1 data by extended power-law

scaling Fig. 5. £(¢) versusg evaluated for; =1.27 cm on face 1 along x-
axis. Continuous line has slope similar&@;) nearg =0. Dashed

Replotting the data in Fig. 4d (corresponding to the largestine has slope similar tg(¢) for g > 3.5.
tip size) as logSy, versus IogSj{,_l for 2.0<¢ <5.0 (at in-
tervals of 0.5) reveals much less ambiguous power-law scal-
ing over a much wider range of lags in Fig. 6. Equations of Fig. 5 toward linear variation witg. In Appendix A we ex-
corresponding curves (regression lines on log-log scale) inplain this behavior theoretically by demonstrating that tfBm
cluded in the figure are characterized by coefficients of deterscales according to Eq. (2) at intermediate lags and according
mination, R?, that exceed 0.98 at all lags. Results of similar to Eq. (3) at all lags. The fact that our data scale according to
quality (not reported) have been obtained for all tip sizes andeq. (2) at intermediate lags allows us to follow an approach
directions. The slopes of the regression curves, representingatterned after Guadagnini and Neuman (2011): adopt the
B(gq, g—1)in Eq. (3), decrease asymptotically wifhoward  value ofé (1) from Fig. 5 as computed by the method of mo-
unity consistently with the asymptotic tendency&gfy) in ments, fit straight lines by regression to 16¢ versus log
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Fig. 6. S, versussj{,_1 for 2.0< ¢ <5.0 and; =1.27 cm evaluated

. . . X = n,q+1 n, — =
on face 1 along x-axis. Linear regression equations and relative 19- 7- G™47~ versusG"? forn=0.5, 1.0= ¢ <4.0,r; =1.27cm
regression coefficientsk@) are also reported evaluated on face 1 along x-axis. Linear regression equations and

relative regression coefficient&?) are also reported.

S? values corresponding tp=¢g — Ag whereAq =0.1 for 4T o
0.1<g <3 andAq=0.5 for 3<¢g <5 in ascending orders | 1 : §
g=1.1,1.2, ... and descending orders 0.9, 0.8, ..., set the ' g g s °
slopes of these lines equal 44q) /& (¢ — Agq) according to 1 g§§§§§
Eq. (3), then computg(1.1),£(1.2),£(1.3), ... in ascending @§§§§g“
order anc(0.9),£(0.8),£(0.7), ... in descending order from 08 ] mi’*x
these ratios. Resulting values &fg) corresponding to the ‘@ o mﬁgx
x and y directions on face 1, identified as ESS, are plotted ‘ 9*
versug; in Fig. 8. 04 1 9

As &(g) in Fig. 5 starts deviating from the solid line at ap- g eaxis: © Momethod 0 ESS 2 G-ESS
proximatelyg ~0.6 we set: =0.5 in Eq. (5) and plotin Fig. 7 021 gf -
log G™4%1(s,) versus logG™4(s,) for ¢ =1.0, 1.5, 2.0, ..., o & . . ‘y_amQM'fnethOdXEsf*G'ESS
4.0 corresponding to the increments in Fig. 4d. Included in 0 1 2 3 4 5 6
Fig. 7 are equations of curves fitted to these log-log relation- q

ships by linear regression and associakédralues. The fig-

ure reveals extended power-law scaling with>0.98 over ~ Fi9- 8. §(¢) versusg evaluated for; =1.27 cm on face 1 in x and
virtually the entire range of lags. As in the earlier case ofY directions.

B(g, g —1), the scaling ratioo (g + Ag, g, n) diminish
asymptotically toward unity ag increases. Similar behav-
ior is observed in the case of other tip sizes. Resulting value 4. q, n) are relatively insensitive to tip size and direc-

of &(g) corresponding to the x and y directions on face 1’ti0n. The same is not true for the scaling exponat)

computed in a manner analogous to that described in the pr%ﬁ/hich, as shown in Fig. 10, increases consistently with tip

vpu;pa;agraph and identified as G-ESS, are plotted Verslgize. Though these results correspond to the x direction on
4 Ilr:]' '9. 8 xt | funct ithi face 1, they do not differ qualitatively from those correspond-
igure 8 juxtaposes values £fy) as functions of within ing to x and y on all five faces. This behavior translates into

thbet r_angef 05:{]5'5'0’ 'rl :.he X anbd 3t/hd|rectt|;)]n3 o]f face Lt a consistent increase in the Hurst expondantith tip size
obtained for he fargest tip size Dy the method ot MOmeNtSq, 1 = 0,13 forr; = 0.15 cm toH =0.74 forr; = 1.27 cm),

and two methods of extended power-law scaling. We saw ; .
: ) Implying that averaging over larger and larger support vol-
earlier that the latter two methods are much less ambiguou pying ging g g PP

than the first in helping one to identify and quantify power- Times smoothes a signal and renders it more persistent.

law scaling of structure functions at various ordgtsAs 33 Analysis of multiple face data by extended

ESS requires only one reference val§iel), to computé (¢) power-law scaling

on the basis of§(¢, ¢ — 1) for any orderq while G-ESS

requires two such reference values, we consider the formeNext we consider jointly the scaling df =Ink data from
more reliable than the latter. all five faces 1-5 of the cube along each Cartesian direction

Figure 9 shows that values @f(q, ¢ — Ag) and p(q +
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0.7 As in the case of face 1, multiface valuesaif;, ¢ — Aq)

O r;=0.15cm . . . .
Ar=031cm andp(q + Aq, ¢, n) are seen in Fig. 13 to be relatively in-
O r,=0.63cm sensitive to tip size and direction.
© r;=127cm We note that there is no conflict between the ability of Tid-
well and Wilson (1999) to characterizefor any tip size by

0.6 1

0.5 1

&@ 0.4 1 means of a stationary vario_gram and our findir_lg that_oqder-
03 1 structure functions o¥' exhibit power-law scaling at inter-
mediate lags with exponents that vary in a nonlinear fashion
0.2 1 with ¢. Instead both, coupled with our finding that incre-
01 ments ofY associated with small tip sizes are approximately

Gaussian, are consistent with a viewlofis a sample from
tfBm (implying thatY is not multifractal). Such a sample is
0 0.2 0.4 0.6 0.8 1 1.2 characterized by a truncated power variogram (Di Federico
q and Neuman, 1997) which is difficult to distinguish from
stationary variogram models (Neuman et al., 2008) and ex-
Fig. 10. ESS estimates of(q) versusq evaluated on face 1 in  hibits power-law scaling with exponents that are nonlinear in
x direction and various;. g at intermediate lags (Neuman, 2010a,b, 2011; Guadagnini
et al., 2011). The former implies that Gaussian samples
commonly characterized in the literature by stationary var-
iograms may in fact represent truncated self-affine fields, the
latter implies that such samples may in turn display apparent
multifractality as doeg’ in this paper.

for each tip size, yielding 12 sets of three directional in-
crements for 4 tip sizes. Figure 11 depicts log-log plots of
S,q\,(sz) versus separation distanog, along the z direction
for 0.1< ¢ < 2.5 corresponding to each tip size. In neither
plot is it possible to identify an intermediate range of power- 3.4  Model identification and parameter estimation

law scaling, most likely due to the reduced range of the incre-

ments in this direction. We therefore omit incremental dataAs shown by Eg. (A2) in Appendix A the-th order struc-

in the z direction from further consideration in this paper. ture function of tfBm is completely defined hy and the
Structure functions in the x and y directions (not shown) dis-ensemble (theoretical) truncated power variogram (TPV)
play behaviors qualitatively similar to those noted earlier in y2(s; A, Ay). Since increments o associated with
the x direction on face 1 (Fig. 4). Figure 12 compares valueghe smallest tip size have a near-Gaussian distribution, one
of £(g) obtained by each method on all available data with x- should be able to estimate the parameters of this variogram
directional values obtained on face 1 via ESS. Whereas face by fitting such theoretical structure functions to their sample
values in Fig. 8 show no significant difference between di-counterpartss?,, for ; =0.15cm. As the number of daté
rections x and 'y, the multiface values in Fig. 12 do suggesteeded to obtain stabl, values increases wit, we limit

a slight directional dependence revealed, most likely, by thegur estimation of parameters to structure functisfisand
relatively large size of this sample. In general, multiface val- g2 ordersg =1, 2.

ues ofé(g) in Fig. 12 lie below the face 1 values in Fig. 8, NEquations (A4)—(A7) in Appendix A make clear that a
reflecting the impact of sample size on the quantification ofpy/ 'is gefined by four parameters: the Hurst exporint
power-law scaling. coefficientA, upper cutoffi, and lower cutoffi;. We found
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Fig. 11. Sample structure functions of absolute increments of various ogdegssus lag in z direction an@) ; =0.15cm,(b) r; =0.31cm,
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Fig. 12.£(g) versuy; evaluated for; =1.27 cm using all the avail-

able datain x and y directions. ESS estimates obtained in x directio

on face 1 are included for comparison.

earlier from the slope df(¢) at smallg that, for incremental
data on face 1H =0.13 in the x direction and/ =0.09 in )
the y direction while, for incremental data on multiple faces, NLL = 52 +nlnoy + InV| +nin2mx;
H =0.08 in the x direction and/ =0.09 in the y direction.
All four parameters are linked by the relationship

2 Ho?

G

(7)

Hydrol. Earth Syst. Sci., 16, 2942, 2012

whereo? is the sill (asymptotic plateau) of the variogram
v2(s; A1, Au). We expect the estimate of this sill to not differ
significantly from the sample variance of thiedata.

We estimate parameters on the basis of sample variograms,
y2(s: A1, Au), Of Y data computed from sample structure
functions of first and/or second order, respectively, via

* T 2
y? (s a0 = 7 (Sh)

5%()
2

and/or ¥ (s; A, hu) = ®)
according to Eq. (A2). We estimate the sit?, by averag-

ing values ofy2*(s; A1, Ay) corresponding to large lags,
obtained froms%, and/or$2 in this manner. We then es-
timate the cutoffs (andi) through a maximum likelihood
rgML) fit of 12(s; A1, Au) t0 ¥2*(s; A1, Ay) Where the first

is a TPV model based either on Gaussian or on exponential
modes as defined in Egs. (A4)—(A7). The ML procedure con-
sists of minimizing the log likelihood criterion (Carrera and
Neuman, 1986)

Y
~2 Z*T —1(r2 2%
J=(7—7)V(y—y)

with respect to., andi| subject to Eq. (7). Her,%2 andy*?
are vectors of: discretey?(s; A, Ay) andy2(s; A, Ay)

9)
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Fig. 13. (a)B(q, g — Aq) and(b) p(q + Aq, g, n =0.5) versug evaluated using all available data in x and y directions and varjous

values, respectively” denotes transpos€,,, :afv where  be mutually consistent. Though estimates.gfin the x di-
C, is the covariance matrix of errors i (resulting from  rection exceed those in the y direction by about 25-30 %, we
log permeability measurement error@},is estimated during  hesitate to interpret this as anisotropy due to their relatively

inversion according to large uncertainty. Figure 14a and b compare sample x- and
T y-directional variogram values, respectively, basedS;@n
2 _ min 10 2 1 2 - . . .
9 = 7 (10)  $2 andsy, andsSZ jointly with variogram models calibrated

against these values.
positive-definite matrix. For simplicity we take errorsy? Whereas valu_es of NLL corres_pondmg to TPV _models
based on Gaussian and exponential modes are similar, those

to be uncorrelated and sétequal to the identity matrix. of KIC show a preference for exoonential modes. Adoot-
Applying the above procedure to face 1 yields a sill of 4.48 . P P ) P

. . . l 2 . . .
based ors}, as well as ors2 of increments parallel tothe x- "9 the latter while consideringy and Sy, jointly yields

: based ot and 2 of lel Au=1.65cm in the x direction anél;=1.31cm in the y di-
aXIT; 3.64 _aseh ly an 3'8? %mN 0 mcrem;l?]ts pari €l rection with an average of 1.48 cm. These correspond to ra-
T[O the y-axis, t_e variance of the correspon glata be- tios u=Ay/L of upper cutoff to block sizé. equal to 0.055
ing 4.06. Applying the above procedure jointly to faces 1, 2

q here | | datain the x directi abl in the x direction and 0.044 in the y direction with an aver-
an 4_(W ere_mcremepta atain the x direction are availa eage of 0.049. Corresponding estimates of the lower cutoff
see Fig. 1) yields a sill of 3.52 based Sj‘;) and 3.77 based

5 o i A1 are 6.8x 10-2cm in the x direction and 1.2 10~ 1 cmin

on §3 Qf increments parallel to thg x-axis, the correspond- e y direction with an average of %410-2cm. Adopt-

ing variance oft being 3.77; applying it to faces 1, 3and 5 jng the suggestion of Di Federico and Neuman (1997)

(where incremental data in the y direction are available, segpat 1=xu/L=M/lm yields support (measurement) scales
; i 1 2 of i . L ) L

Fig. 1) yields 3.52 based ofly and 3.79 onS§ of incre- ;=1 24¢m in the x direction and 2.69 cm in the y direction

ments parallel to the y-axis, the corresponding variandé of - ith an average of 1.88 cm. The latter is about 12 times the
being 3.91 while that of all’ data on faces 1-5 is 3.79. We jnner radius of the MSP. Albeit one should consider all the
conclude that to obtain consistent estimates it is best to approximations involved in this estimate, we note that it is

consider jointly all data from faces 1-5 as we do below. consistent with a definition of MPS support volume by Tar-

: or osfl 2 . o

Due to the irregular behavior &y (s) and S, (s) atlarge  takovsky et al. (2000) as a region containing 90 % of total gas
lags (Fig. 4a) we limit our ML estimation of cutoffs (aa) oy (see their Fig. 6). Estimates pfand/n, for all cases are
tolags in the rangé <s < 13A so that: =13. Table 1 lists  |isted in Table 2.

parameter estimates and corresponding 95 % confidence in-

tervals for TPV models consisting of Gaussian and exponen-

tial modes obtained on the basis$¥, S3 and both with x- 4 Conclusions

and y-directional increments. The table also ligs, NLL, ) _

the determinantQ| of the covariance matriQ of A, and  Our work leads to the following conclusions:

A estimation errors, and the Bayesian model discrimination 1 Natural log air permeability data collected by Tidwell
criterion KIC (Kashyap, 1982) and Wilson (1999) on the faces of a laboratory-scale

whereJmin is the minimum of/, andVis a known symmetric

KIC = NLL + M In(i) — In|Q| (11) block of Topopah Spri.ng tuff, at four scgles of measure-
2r ment (support), exhibit power-law scaling at intermedi-

where M =2 is the number of parameters. Values of quan- ate lags in two out of three Cartesian directions. Scaling

tities obtained on the basis (S‘I}\, 512\, and both are seen to exponents vary in a nonlinear fashion with the order
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Table 1. Calibration results, main statistics and Model quality criteria. The 95 % confidence intervals of the parameter estimates are reported
in parenthesis.

X-axis y-axis

Modes Gaussian Exponential Gaussian Exponential

Only s%, data

Au [em] 2.82 (1.84-4.56) 1.65 (0.21-3.10) 2.15 (1.41-2.91) 1.27 (0.55-1.98)

A [em] 6.1x 1074 (0-6.5x 1073)  9.2x 1072 (0-3.8x 1073) 8.9x 1073 (0-4.3x 1072 1.7x 1071 (0-4.1x 10°1)
Alcm2H]  0.64 1.41 0.88 2.01

Imin 0.12 0.12 0.04 0.04

o? 9.55x 1073 9.49x 1073 2.88x 1073 3.25x 1073

NLL —23.58 —23.65 —39.16 —37.57

Q| 1.24x 106 8.26x 1074 4.27x 1078 1.15x 1074

KIC -8.53 ~15.10 —25.34 —27.05

Only §2, data

A [em] 2.73 (1.04-4.43) 1.64 (0.21-3.07) 2.14 (1.27-2.99) 1.26 (0.47-2.04)

A Lem] 2.3x 1079 (0-5.6x 1074 4.8x 1072 (0-2.5x 1071) 25x 1074 (0-3.0x 1073) 8.4x 1072 (0-2.8x 107}
Alecm™2H] 061 1.29 0.74 1.70

Jmin 0.10 0.10 0.03 0.04

o? 7.97x 1073 7.76x 1073 2.68x 1073 2.91x 1073

NLL —25.93 —26.27 —40.10 —39.04

Q] 6.26x 1079 3.59x 104 3.44x 108 8.37x 107°

KIC —5.58 —16.88 —21.46 —28.20

% ands? data jointly

Ay [cm] 2.78 (0.96-4.61) 1.65 (0.12-3.18) 2.19 (0.71-3.66) 1.31 (0-2.61)
A [em] 1.5x 1074 (0-2.4x 103) 6.8x1072(0-3.3x 10 1) 2.0x1073(0-2.4x1072) 1.2x10°1(0-4.9x 10°1)
Alem2H] 062 1.35 0.80 1.78
Jmin 0.63 0.63 0.60 0.61
o? 2.44x 1072 2.43x 1072 2.30x 1072 2.33x 1072
NLL —22.77 -22.91 —24.28 —23.97
Q] 2.12x 1077 9.42x 1074 8.86x 1076 1.16x 103
KIC —4.56 —13.11 —9.80 —14.37
41 ; @ Y ®
3.9 A x 39 1 o x
37 : T —~ 371 il x
N o = o [
<351 . T | " 351 o,
33 = 13
&l 60 Samp . . ?3.1
N ~(s,):0 Sample —— Gauss =-=-Exp
29 Y
Sx(s):x Sample —— Gauss --- Exp
271 27 A
Si(s,) and S;(s): — Gauss === Exp
25 ' ‘ ‘ ‘ ' 25 . ;
0 2 4 6 8 10 12 0 2 4 8 10 12
sx S

Fig. 14. Variograms obtained from multiple faces data(@) x (faces 1, 2, 4) an¢b) y (faces 1, 3, 5) directions, on the basis&;{f ©)
andslzV (x). Estimated variograms are also reported with continuous (Gaussian modes) and dashed (exponential modes) lines. Black lines
correspond to estimated variograms obtained on the baS% ahdsfv jointly.
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Table 2. Multiple faces data. Estimates pf=Ay/L and the associated support sdaie

M Im [em]
X-axis y-axis X-axis y-axis
Data Gauss Exp Gauss  Exp Gauss Exp Gauss Exp
S%, 0.094 0.055 0.072 0.042 0.01 1.68 0.00 4.10
SIZV 0.091 0.055 0.061 0.042 0.00 0.87 0.02 201
S% ands? jointly  0.093  0.055 0.073 0.044 0.00 1.24 0.03 2.69

of corresponding structure functions in a manner typical
of multifractals.

. Identification of this nonlinear power-law scaling was
greatly enhanced by a method of analysis that extend
its range to virtually all lags (Guadagnini and Neuman,
2011) known as Extended Self-Similarity (ESS) and a
generalized version thereof (G-ESS).

. Our estimates of the Hurst scaling exponent were found
to increase with support scale, implying a reduction
in roughness (anti-persistence) of the log permeability
field with measurement volume.

. Tidwell and Wilson (1999) were able to characterize log
permeabilities associated with all tip sizes by stationary

likely holds true for other Gaussian or heavy-tailed earth

and environmental variables (such as those listed in our
introduction) that scale according to Eq. (2) at interme-

diate lags and according to Eq. (3) over an extended
range of lags, a possibility noted earlier by Guadagnini

and Neuman (2011).

. Since increments of associated with the smallest tip

size have a near-Gaussian distribution, we were able to
identify the functional form and estimate all parame-
ters of the corresponding tfBm based on sample struc-
ture functions of first and second orders. Our estimate
of lower cutoff is consistent with a theoretical support
scale of the data.

variogram models. This, coupled with our findings that Appendix A

log permeability increments associated with the small-

est tip size are approximately Gaussian and those assdinalytical formulation of tfBm structure functions

ciated with all tip sizes scale in the manner of multifrac-
tals at intermediate lags, are consistent with a view o

fLet G(x; A, Au) be truncated fractional Brownian motion

the data as a sample from truncated fractional Brownian(t'BM), & Gaussian process defined by Neuman (2010a)

motion (tfBm). Since in theory the scaling exponents,
&(q), of ttBm at intermediate lags vary linearly with

wherex is a generic space (or time) coordinate anda,,
are lower and upper cutoff scales, respectively. As shown by

we conclude, in accord with Neuman (2010a,b, 2011),this author, centraj-th order moments of absolute values of

that nonlinear scaling in our case is not an indication o
multifractality but an artifact of sampling from tfBm.

. Our demonstration in Appendix A that tfBm is consis-

fcorresponding zero-mean stationary increments
AG(s; My du) = G(x + 55 A, Aw) — G(x: AL Au) (AD)
of G(x; A1, Ay) are given by

tent with ESS scaling according to Eg. (6) at all sepa-S? = <|AG (s; A, Au)|‘/)

ration scales, and with power-law scaling according to
Eg. (2) at intermediate scales, explains why and how
ESS works for our data at all scales. The same ex-
plains how and why ESS worked for sub-Gaussian pro-
cesseV AG(s; A, Ay) considered by Guadagnini and
Neuman (2011).

q
= [\/2 y2(s: M, m} (g — D
2 . .
{\/;Ifqlsodd g =

1 ifgiseven

1,2 ..n (A2)

wheres is separation scale or lag, !! indicates double fac-

- The fact that our data are consistent with Eq. (6) but notyyyia| defined ag!'= q(qg —2)(g —4) ... 2 if ¢ is even and
with Eq. (2) at small and large lags constitutes yet an-11= ;(; —2)(g —4) ... 3if ¢ is odd, and/2(s; A, Au) is the
other indication that, despite their nonlinear power-law yariogram ofG (x; Aj, Ay), i.€.
scaling at intermediate lags, the data are inconsistent 1
with multifractals or fractional Laplace motions, which y?(s; A, Ay) = —<AG(s; Al Au)2>.
theoretically scale in this manner at all lags. The same 2

(A3)
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Fig. A1. Power variogram (dashed curves) and truncated power variogram (continuous curves) evaluated Wyithh=0.3,A; =10 and

Au=(a) 102 (b) 5 x 107 (c) 103 (d) 10*.

The latter is given by (Neuman, 2010a) midrange of lags (labeled Zone II) but not in the outlying
2 2 2 ranges of small and large lags (labeled Zone | and lIl, re-
Yo(ss Ay Au) = y(s5 A — v (s A); i i i i
v b i i A spectively). This break in power-law scaling at small and
2, . ) ' large lags is due entirely to the presence of lower and upper
vi (s Am) = 0% (hm) pi (s/Am) (A4) cutoffs, respectively, being unrelated to noise or oversam-
where pling which pla_y no role in Fig. A1 (Neuman, 2010a). It
) - follows that estimatingd as the slope of the variogram on
o(Am) = AAyL/2H (A5)  log-log scale is valid at intermediate lags but not at small and
large lags which would lead, respectively, to over- and under-
2H A ) : . .
_ $ S estimation of its value. Figure A2 complements this analysis
p1(s/Am) = [L—expl— ) + | — . . . . - -
Am Am by juxtaposing the TPVs associated with Gaussian modes in

Fig. 14a with corresponding PVs.
For a PV Eq. (A2) takes the form

§7 = (|AG(s; 4, a)l?) = (g — 1)!1[\/27\ir aH

2. .
{\/;ﬁqlsodd g=12 ..n (A8)

1 ifgiseven

F(l— 2 H, %)] 0<H <05 (A6)

m

T 52 x s2\"
p2(s/Am) = |1 — exp(—Z ; ) + (Z E)

r{1- #. T ﬁ 0< H < 1. (A7) rendering a log-log plot of¢ versuss linear with constant
4 35 slopegH. As in the case of =2, the slopes of corresponding

) . ) truncated structure functions are similar in the midrange of
A is a coefficient,H is a Hurst exponent (@ H <1),i=1 395 put larger and smaller, respectively, at small and large
for tfBm with modes (defined in Neuman, 2010a) having ex- lags.
ponential autocorrelation functions ahd 2 for modes hav- From Eq. (A2) it follows that the ratio between structure
ing Gaussian autocorrelation functions. Figure A1 comparesnctions of orde + 1 andg is
TPVs based on Gaussian modes witlk 1, H =0.3,1, =10
and four values of, (10%, 103, 5x 1%, 10%) with a power ~ 59*1 [ V7 45y vy2(sih, a0 if gisodd 1o (A9)
variogram (PV)y2(s) = A»s2# where Ay = A(zx/4)HT (1 — s | & gl VY26t ifgis even? = 7"
H)/2H. The slopes of the TPV and PV coincide in a

| “

3N
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