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Abstract. We use three methods to identify power-law scal-
ing of multi-scale log air permeability data collected by Tid-
well and Wilson on the faces of a laboratory-scale block of
Topopah Spring tuff: method of moments (M), Extended
Self-Similarity (ESS) and a generalized version thereof (G-
ESS). All three methods focus onq-th-order sample struc-
ture functions of absolute increments. Most such functions
exhibit power-law scaling at best over a limited midrange of
experimental separation scales, or lags, which are sometimes
difficult to identify unambiguously by means of M. ESS and
G-ESS extend this range in a way that renders power-law
scaling easier to characterize. Our analysis confirms the su-
periority of ESS and G-ESS over M in identifying the scal-
ing exponents,ξ(q), of corresponding structure functions of
ordersq, suggesting further that ESS is more reliable than
G-ESS. The exponents vary in a nonlinear fashion withq

as is typical of real or apparent multifractals. Our estimates
of the Hurst scaling coefficient increase with support scale,
implying a reduction in roughness (anti-persistence) of the
log permeability field with measurement volume. The find-
ing by Tidwell and Wilson that log permeabilities associated
with all tip sizes can be characterized by stationary vari-
ogram models, coupled with our findings that log permeabil-
ity increments associated with the smallest tip size are ap-
proximately Gaussian and those associated with all tip sizes
scale show nonlinear variations inξ(q) with q, are consistent
with a view of these data as a sample from a truncated ver-
sion (tfBm) of self-affine fractional Brownian motion (fBm).
Since in theory the scaling exponents,ξ(q), of tfBm vary lin-
early withq we conclude that nonlinear scaling in our case

is not an indication of multifractality but an artifact of sam-
pling from tfBm. This allows us to explain theoretically how
power-law scaling of our data, as well as of non-Gaussian
heavy-tailed signals subordinated to tfBm, are extended by
ESS. It further allows us to identify the functional form and
estimate all parameters of the corresponding tfBm based on
sample structure functions of first and second orders.

1 Introduction

The literature indicates (Neuman and Di Federico, 2003) that
hydrogeologic variables exhibit isotropic and directional de-
pendencies on scales of measurement (data support), obser-
vation (extent of phenomena such as a dispersing plume),
sampling window (domain of investigation), spatial correla-
tion (structural coherence), and spatial resolution (descrip-
tive detail). Attempts to explain such scale dependencies
have focused in part on observed and/or hypothesized power-
law behaviors of structure functions of variables such as hy-
draulic (or log hydraulic) conductivity (e.g. Painter, 1996;
Liu and Molz, 1997a,b; Tennekoon et al., 2003), space-
time infiltration (Meng et al., 2006), soil properties (Caniego
et al., 2005; Zeleke and Si, 2006, 2007), electrical resis-
tance, natural gamma ray and spontaneous potential (Yang
et al., 2009) and sediment transport data (Ganti et al., 2009).
Power-law behavior means that a sample structure function
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of order-q (for simplicity we limit our mathematical expo-
sition to one dimension and our analysis of data to non-
negative values ofq) scales according to

S
q
N (s) ∝ sξ(q) (2)

whereY (x) is the variable of interest (assumed to be defined
on a continuum of pointsx in space or time),1Yn(s) is a
measured increment1Y(s) =Y (x + s) − Y (x) of the vari-
able over a separation distance (lag)s between two points on
the x-axis, andN(s) is the number of measured increments.
When the scaling exponent (power)ξ(q) varies linearly with
q, Y (x) is interpreted to form a self-affine (mono-fractal) ran-
dom field and the slopeH of the corresponding line is termed
Hurst exponent. When the scaling exponentξ(q) is a nonlin-
ear function ofq, Y (x) has traditionally been taken to form a
multifractal field. A semi-empirical “universal” multifractal
model due to Schertzer and Lovejoy (1987) relatesξ(q) to
the Hurst exponent viaH = ξ(1), as explained and illustrated
by Seuront et al. (1999); some approximateH by dξ/dqnear
q = 0.

Neuman (2010a, 2011) has shown theoretically and Neu-
man (2010b) and Guadagnini et al. (2011) have demonstrated
numerically that signals derived from additive processes sub-
ordinated to a truncated version (tfBm) of additive, self-
affine fractional Brownian motion (fBm) scale in a manner
similar to multifractals even as they differ from such mul-
tiplicative constructs in a fundamental way. Truncation is
caused by lower and upper cutoff scales, proportional to data
support (measurement scale) or resolution and domain size
(sampling window scale), respectively. Their work suggests
that nonlinear variations inξ(q) with q need not represent
multifractal scaling but could instead be an artifact of sam-
pling from tfBm or fields subordinated to tfBm.

Power-law scaling is typically inferred from measured val-
ues of earth and environmental variables by the method of
moments (M). This consists of calculating sample structure
functions Eq. (1) for a finite sequence,q1, q2, ..., qn, of
q values and for various separation lags. For each orderqi

the logarithm ofSqi

N is related to logs by linear regression
and the powerξ(qi) set equal to the slope of the regression
line. Linear or near-linear variation of logSqi

N with log s is
typically limited to intermediate ranges of separation scales,
sI < s < sII , wheresI andsII are theoretical or empirical lower
and upper limits, respectively. Breakdown in power-law scal-
ing is attributed in the literature to noise at lags smaller than
sI and to undersampling at lags larger thansII (Tessier et al.,
1993). Yet noise-free signals subordinated to tfBm gener-
ated by Neuman (2010b) and Guadagnini et al. (2011) show
power-law breakdown at small and large lags even when
sample sizes are large. This breakdown is caused by cut-
offs which truncate the fields at small lags proportional to the
measurement and/or resolution scale of the data, and at large
lags proportional to the size of the sampling domain, regard-
less of noise or undersampling. Though nonlinear variation
of ξ(q) with q is also reproduced by the fractional Laplace

model of Meerschaert et al. (2004) (see Kozubowski et al.,
2006; Ganti et al., 2009), the latter does not include cutoffs
and thus fails to reproduce observed breakdown in power-law
scaling at small and large lags.

Benzi et al. (1993a,b, 1996) discovered empirically that
the rangesI < s < sII of separation scales over which ve-
locities in fully developed turbulence (where Kolmogorov’s
dissipation scale is assumed to controlsI) scale according
to Eq. (2) can be enlarged significantly, at both small and
large lags, through a procedure they called Extended Self-
Similarity (ESS). ESS arises from the observation that struc-
ture functions of different orders,n andm, computed for the
same separation lag are related by

Sn(s) ∝ Sm(s)β(n,m) (3)

whereβ(n, m) = ξ(n)/ξ(m) is a ratio of scaling exponents.
Benzi et al. (1996) introduced, and Nikora and Goring (2001)
employed, a generalized form of ESS (G-ESS) according to
which

Gn,p(s) ∝ Gn,q(s)ρ(p,q,n) (4)

where

Gn,p(s) =
Sp(s)

Sn(s)p/n
Gn,q(s) =

Sq(s)

Sn(s)q/n

ρ(p, q, n) =
ξ(p) − (p/n) ξ(n)

ξ(q) − (q/n) ξ(n)
. (5)

The exponentρ(p, q, n) is a ratio between deviations of
structure functions of orderp and q, respectively, from
linear (monofractal or self-affine) scaling. Chakraborty et
al. (2010) cite the success of ESS in extending observed scal-
ing ranges, and thus allowing more accurate empirical deter-
minations of the functional exponentξ(q) for turbulent ve-
locities. ESS has been reported to achieve similar results
for diffusion-limited aggregates, natural images, kinetic sur-
face roughening, fluvial turbulence, sand wave dynamics,
Martian topography, river morphometry, gravel-bed mobil-
ity and atmospheric barometric pressure, low-energy cos-
mic rays, cosmic microwave background radiation, metal-
insulator transition, irregularities in human heartbeat time se-
ries, turbulence in edge magnetized plasma of fusion devices
and turbulent boundary layers of the Earth’s magnetosphere
(Guadagnini and Neuman, 2011). In all cases, ESS has re-
vealed nonlinear variation ofξ(q) with q. Whereas the liter-
ature has interpreted this to imply that ESS applies to mul-
tifractals, Guadagnini and Neuman have shown that Eq. (3)
works equally well when applied to signals derived from ad-
ditive processes subordinated to tfBm. As the latter are not
multifractal, neither must be processes revealed by ESS (or
any other method of analysis) to yield nonlinear variations in
ξ(q) with q.

In this paper we use three methods to identify power-law
scaling of log air permeability data collected by Tidwell and
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Wilson (1999) on the faces of a laboratory-scale cube of
Topopah Spring tuff: method of moments (M) and extended
power-law scaling via ESS and G-ESS. Most published anal-
yses of extended power-law scaling concern time series or
one-dimensional transects of spatial data associated with a
unique measurement (support) scale. We use instead data
measured on diverse support scales and distributed in two or
three dimensions across several faces of the cube. Our aim
is to infer the scaling behavior of these data using all three
methods, compare results among the methods and explore
the dependence of corresponding scaling exponents on sup-
port scales and direction.

“In spite of several attempts to explain the success of
ESS” cited by Chakraborty et al. (2010) the authors note
that “the latter is still not fully understood and we do not
know how much we can trust scaling exponents derived by
ESS. It would be nice to have at least one instance for which
ESS not only works, but does so for reasons we can ratio-
nally understand.” Chakraborty et al. (2010) provide such a
theoretical reason in the special context of one-dimensional
Burgers equation. In contrast, they consider “the multifrac-
tal description of turbulence,” with which ESS is commonly
associated, to be “quite heuristic and arbitrary.” Kozubowski
and Molz (2011) note that Eq. (3) is obtained from Eq. (2)
simply upon rewriting the latter asSn(s) =C(n)sξ(n) and
Sm(s) =C(m)sξ(m), solving the first of these expressions for
s and substituting into the second. Kozubowski and Molz
point out further that whereas Eq. (2) implies Eq. (3) the re-
verse is generally not true, Eq. (3) being equivalent instead to

Sq(s) ∝ f (s)ξ(q) (6)

wheref (s) is some, possibly nonlinear, function ofs. This
is seen upon rewriting Eq. (6) asSn(s) =C(n)f (s)ξ(n) and
Sm(s) =C(m)f (s)ξ(m), solving the first forf (s) and substi-
tuting into the second.

After showing that our data behave as a sample from tfBm
(a truncated self-affine process) we demonstrate in Appendix
A that this process is consistent with Eq. (6) at all separa-
tion scales (lagss) and with Eq. (2) at intermediate scales
(sI < s < sII ), as are most of our data. We thus explain why
and how ESS works for our data at all scales. At interme-
diate scales where our data are consistent with both Eqs. (6)
and (2), the definition ofβ(n, m) in Eq. (3) applies and al-
lows us to computeξ(n) uniquely and unambiguously upon
obtainingξ(1) independently from the data by the method of
moments. Similarly, the definition ofρ(p, q, n) in Eq. (5)
applies and allows us to computeξ(n) uniquely and unam-
biguously for anyn upon obtaining two of its values,ξ(p)

and ξ(q) for somep and q, independently from the data
by the method of moments. On the other hand, since our
data are consistent with Eq. (6) but not with Eq. (2) at small
(s < sI) and large (s > sII ) scales, they are inconsistent with
multifractals or fractional Laplace motions (Meerschaert et
al., 2004; Kozubowski et al., 2006; Ganti et al., 2009) which
theoretically scale according to Eq. (2) at all lags. In other

Figure 1

z

x
y

Fig. 1. Scheme of block (size: 81× 74× 63 cm3) of Topopah
Spring tuff sample. Faces of size 30× 30 cm2 where MSP mea-
surements were taken are highlighted in gray.

words our data, being consistent with a truncated self-affine
process, exhibit apparent rather than actual multifractal scal-
ing at intermediate lags. The same likely holds true for other
Gaussian or heavy-tailed earth and environmental variables
(such as those listed earlier) that scale according to Eq. (2) at
intermediate lags and according to Eq. (3) over an extended
range of lags, a possibility noted earlier by Guadagnini and
Neuman (2011).

2 Previous analyses of experimental data

Tidwell and Wilson (1999) measured air permeabilities,k, on
six faces of a block of Topopah Spring tuff (Fig. 1), extend-
ing 30 cm on each side, with the aid of a Multisupport Perme-
ameter (MSP). Measurements were conducted at intervals of
1 = 0.85 cm on a grid of 36× 36 points along each face us-
ing four tip-seal sizes having inner radiiri = 0.15, 0.31, 0.63,
1.27 cm and outer radii 2ri . As the precise nature and size
of the support volume associated with each measurement is
the subject of debate (Goggin et al., 1988; Molz et al., 2003;
Tartakovsky et al., 2000; Neuman and Di Federico, 2003),
we consider the inner radius of the tip-seal to represent a
nominal measurement scale (data support) as proposed by
Tidwell and Wilson (1999). We conclude from their analy-
sis that measurements on face 6 of the block are less reliable
than the rest and therefore limit our analysis below to those
on faces 1–5.

Measured (natural) log permeability values,Y = ln k, were
found to have bi-modal frequency distributions particularly
at larger tip sizes (Fig. 2 of Tidwell and Wilson, 1999).
This was deemed by them to be consistent with the geologic
structure of the tuff sample within which regions of high
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Fig. 2. Increments,1Y (sx = 8.5 cm), versus position,x, along three transects on face 1 (y = 0, 10.16, 20.32 cm) for(a) ri = 0.15 cm and
(b) ri = 1.27 cm.

(associated with pumice fragments) and low (correspond-
ing to solid matrix) permeability could be visually identified.
Tidwell and Wilson were able to fit spherical models with
nuggets to sample variograms on all faces of the cube for
each tip radius. The variograms were found to be isotropic
in thexyplane of Cartesian coordinates on face 1 of the cube
but anisotropic in thexzandyzplanes on faces 2–5, with es-
timated ranges in thez direction about one half of those in
the x and y directions. Sill and range estimates decreased
and increased, respectively, with tip seal inner radius. For
additional details the reader is referred to the above authors.

3 Identification of power-law scaling

To evaluate sample structure functions for the experimental
data of Tidwell and Wilson (1999) according to Eq. (1) we
compute directional increments,1Y , of Y = ln k at various
separation lags (taken to be integer multiples of grid spacing,
1, for each tip size) parallel to the x, y and z-coordinates on
the faces of the cube. Figure 2 depicts variations in1Y as-
sociated with lagsx = 8.5 cm along selected transects in the
x direction on face 1 associated with the smallest and largest
tip radii, ri = 0.15 and 1.27 cm. Clearly, increasing the tip ra-
dius results in smoother and more persistent variability of the
increments. Figure 3 shows frequency distributions of sim-
ilar increments along all x-directional transects on multiple
faces and Maximum Likelihood (ML) fits of Gaussian prob-
ability density functions (pdfs) to these distributions. Both
frequency distributions are symmetric about zero with humps
reflecting the bi-modal distributions ofY identified by Tid-
well and Wilson. Increments corresponding to the smallest
tip size appear to be closer to Gaussian than those corre-
sponding to the largest tip size, consistent with their finding
thatY becomes increasingly bimodal with tip size.
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Fig. 3. Frequency distributions of1Y (sx = 8.5 cm) on multiple
faces andri = 0.15; 1.27 cm (symbols). ML fits of Gaussian proba-
bility density functions are also reported (lines).

3.1 Analysis of face 1 data by method of moments

As lag increases the numberN(s) of incremental data
along all transects of face 1 decreases from 1260 corre-
sponding tosx = sy =1 = 0.85 cm to 36 corresponding to
sx = sy = 35× 1 = 29.75 cm. Figure 4 depicts logSq

N (sx) as
functions of logsx along all transects for 0.1≤ q ≤ 2.5 at
each tip size. To identify a middle range of lags within which
these relationships are linear we have fitted regression lines
to the data within several such ranges and adopted those
that yield the highest coefficients of determination for each
tip size. These ranges, identified in Fig. 4 by dashed verti-
cal lines, are on the order of (sI = 21) ≤ sx ≤ (sII = 61) or
1.7 cm≤ sx ≤ 5.1 cm. The corresponding nonlinear variation
of ξ(q) with q for the largest tip size (based on data such as
those in Fig. 4d) is depicted in Fig. 5. The solid line has slope
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Fig. 4. Sample structure functions of absolute increments of various ordersq versus lag along x direction on face 1 and(a) ri = 0.15 cm,
(b) ri = 0.31 cm,(c) ri = 0.63 cm,(d) ri = 1.27 cm. Dashed vertical lines delineate ranges of lags within which power-law scaling is noted.

dξ/dq|q=0 = 0.74 which, if taken to represent a Hurst expo-
nentH , implies a persistent signal consistent with that de-
picted in Fig. 2b. Values ofξ(q) in Fig. 5 start deviating from
this solid line at aboutq ≈ 0.6 to become asymptotically lin-
ear in q at aboutq ≥ 3.5, as evidenced by the dotted line
obtained through regression against these values. Results for
other tip sizes and in the y direction (not reported) are qual-
itatively similar. Though such behavior would typically be
interpreted to imply that increments of lnk are multifractal,
we note that qualitatively similar scaling has been produced
synthetically by Guadagnini and Neuman (2011, their Fig. 4)
with a model in whichY is subordinated to tfBm, a truncated
version of self-affine (monofractal) fBm.

3.2 Analysis of face 1 data by extended power-law
scaling

Replotting the data in Fig. 4d (corresponding to the largest
tip size) as logSq

N versus logSq−1
N for 2.0≤ q ≤ 5.0 (at in-

tervals of 0.5) reveals much less ambiguous power-law scal-
ing over a much wider range of lags in Fig. 6. Equations of
corresponding curves (regression lines on log-log scale) in-
cluded in the figure are characterized by coefficients of deter-
mination,R2, that exceed 0.98 at all lags. Results of similar
quality (not reported) have been obtained for all tip sizes and
directions. The slopes of the regression curves, representing
β(q, q−1) in Eq. (3), decrease asymptotically withq toward
unity consistently with the asymptotic tendency ofξ(q) in

ξ (q)

y = 0.74 x

y = 0.09 x + 0.78

Figure 5
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Fig. 5. ξ(q) versusq evaluated forri = 1.27 cm on face 1 along x-
axis. Continuous line has slope similar toξ(q) nearq = 0. Dashed
line has slope similar toξ(q) for q ≥ 3.5.

Fig. 5 toward linear variation withq. In Appendix A we ex-
plain this behavior theoretically by demonstrating that tfBm
scales according to Eq. (2) at intermediate lags and according
to Eq. (3) at all lags. The fact that our data scale according to
Eq. (2) at intermediate lags allows us to follow an approach
patterned after Guadagnini and Neuman (2011): adopt the
value ofξ(1) from Fig. 5 as computed by the method of mo-
ments, fit straight lines by regression to logSq versus log
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for 2.0≤ q ≤ 5.0 andri = 1.27 cm evaluated
on face 1 along x-axis. Linear regression equations and relative
regression coefficients (R2) are also reported.

Sp values corresponding top =q − 1q where1q = 0.1 for
0.1≤ q ≤ 3 and1q = 0.5 for 3< q ≤ 5 in ascending orders
q = 1.1, 1.2, ... and descending ordersq = 0.9, 0.8, ..., set the
slopes of these lines equal toξ(q)/ξ(q −1q) according to
Eq. (3), then computeξ (1.1), ξ (1.2), ξ (1.3), ... in ascending
order andξ (0.9),ξ (0.8),ξ (0.7), ... in descending order from
these ratios. Resulting values ofξ(q) corresponding to the
x and y directions on face 1, identified as ESS, are plotted
versusq in Fig. 8.

As ξ(q) in Fig. 5 starts deviating from the solid line at ap-
proximatelyq ≈0.6 we setn = 0.5 in Eq. (5) and plot in Fig. 7
log Gn,q+1(sx) versus logGn,q(sx) for q = 1.0, 1.5, 2.0, ...,
4.0 corresponding to the increments in Fig. 4d. Included in
Fig. 7 are equations of curves fitted to these log-log relation-
ships by linear regression and associatedR2 values. The fig-
ure reveals extended power-law scaling withR2

≥ 0.98 over
virtually the entire range of lags. As in the earlier case of
β(q, q − 1), the scaling ratiosρ(q + 1q, q, n) diminish
asymptotically toward unity asq increases. Similar behav-
ior is observed in the case of other tip sizes. Resulting values
of ξ(q) corresponding to the x and y directions on face 1,
computed in a manner analogous to that described in the pre-
vious paragraph and identified as G-ESS, are plotted versus
q in Fig. 8.

Figure 8 juxtaposes values ofξ(q) as functions ofq within
the range 0≤ q ≤ 5.0, in the x and y directions of face 1,
obtained for the largest tip size by the method of moments
and two methods of extended power-law scaling. We saw
earlier that the latter two methods are much less ambiguous
than the first in helping one to identify and quantify power-
law scaling of structure functions at various ordersq. As
ESS requires only one reference value,ξ (1), to computeξ(q)

on the basis ofβ(q, q − 1) for any orderq while G-ESS
requires two such reference values, we consider the former
more reliable than the latter.
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evaluated on face 1 along x-axis. Linear regression equations and
relative regression coefficients (R2) are also reported.
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Fig. 8. ξ(q) versusq evaluated forri = 1.27 cm on face 1 in x and
y directions.

Figure 9 shows that values ofβ(q, q −1q) and ρ(q +

1q, q, n) are relatively insensitive to tip size and direc-
tion. The same is not true for the scaling exponentξ(q)

which, as shown in Fig. 10, increases consistently with tip
size. Though these results correspond to the x direction on
face 1, they do not differ qualitatively from those correspond-
ing to x and y on all five faces. This behavior translates into
a consistent increase in the Hurst exponentH with tip size
(from H = 0.13 forri = 0.15 cm toH = 0.74 forri = 1.27 cm),
implying that averaging over larger and larger support vol-
umes smoothes a signal and renders it more persistent.

3.3 Analysis of multiple face data by extended
power-law scaling

Next we consider jointly the scaling ofY = ln k data from
all five faces 1–5 of the cube along each Cartesian direction
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Fig. 10. ESS estimates ofξ(q) versusq evaluated on face 1 in
x direction and variousri .

for each tip size, yielding 12 sets of three directional in-
crements for 4 tip sizes. Figure 11 depicts log-log plots of
S

q
N (sz) versus separation distance,sz, along the z direction

for 0.1≤ q ≤ 2.5 corresponding to each tip size. In neither
plot is it possible to identify an intermediate range of power-
law scaling, most likely due to the reduced range of the incre-
ments in this direction. We therefore omit incremental data
in the z direction from further consideration in this paper.
Structure functions in the x and y directions (not shown) dis-
play behaviors qualitatively similar to those noted earlier in
the x direction on face 1 (Fig. 4). Figure 12 compares values
of ξ(q) obtained by each method on all available data with x-
directional values obtained on face 1 via ESS. Whereas face 1
values in Fig. 8 show no significant difference between di-
rections x and y, the multiface values in Fig. 12 do suggest
a slight directional dependence revealed, most likely, by the
relatively large size of this sample. In general, multiface val-
ues ofξ(q) in Fig. 12 lie below the face 1 values in Fig. 8,
reflecting the impact of sample size on the quantification of
power-law scaling.

As in the case of face 1, multiface values ofβ(q, q −1q)

andρ(q +1q, q, n) are seen in Fig. 13 to be relatively in-
sensitive to tip size and direction.

We note that there is no conflict between the ability of Tid-
well and Wilson (1999) to characterizeY for any tip size by
means of a stationary variogram and our finding that order-q

structure functions ofY exhibit power-law scaling at inter-
mediate lags with exponents that vary in a nonlinear fashion
with q. Instead both, coupled with our finding that incre-
ments ofY associated with small tip sizes are approximately
Gaussian, are consistent with a view ofY as a sample from
tfBm (implying thatY is not multifractal). Such a sample is
characterized by a truncated power variogram (Di Federico
and Neuman, 1997) which is difficult to distinguish from
stationary variogram models (Neuman et al., 2008) and ex-
hibits power-law scaling with exponents that are nonlinear in
q at intermediate lags (Neuman, 2010a,b, 2011; Guadagnini
et al., 2011). The former implies that Gaussian samples
commonly characterized in the literature by stationary var-
iograms may in fact represent truncated self-affine fields, the
latter implies that such samples may in turn display apparent
multifractality as doesY in this paper.

3.4 Model identification and parameter estimation

As shown by Eq. (A2) in Appendix A theq-th order struc-
ture function of tfBm is completely defined byq and the
ensemble (theoretical) truncated power variogram (TPV)
γ 2(s; λl, λu). Since increments ofY associated with
the smallest tip size have a near-Gaussian distribution, one
should be able to estimate the parameters of this variogram
by fitting such theoretical structure functions to their sample
counterparts,Sq

N , for ri = 0.15 cm. As the number of dataN
needed to obtain stableSq

N values increases withq, we limit
our estimation of parameters to structure functionsS1

N and
S2

N of ordersq = 1, 2.
Equations (A4)–(A7) in Appendix A make clear that a

TPV is defined by four parameters: the Hurst exponentH ,
coefficientA, upper cutoffλu and lower cutoffλl . We found
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Fig. 12. ξ(q) versusq evaluated forri = 1.27 cm using all the avail-
able data in x and y directions. ESS estimates obtained in x direction
on face 1 are included for comparison.

earlier from the slope ofξ(q) at smallq that, for incremental
data on face 1,H = 0.13 in the x direction andH = 0.09 in
the y direction while, for incremental data on multiple faces,
H = 0.08 in the x direction andH = 0.09 in the y direction.
All four parameters are linked by the relationship

A =
2 H σ 2(

λ2H
u − λ2H

l

) (7)

whereσ 2 is the sill (asymptotic plateau) of the variogram
γ 2(s; λl, λu). We expect the estimate of this sill to not differ
significantly from the sample variance of theY data.

We estimate parameters on the basis of sample variograms,
γ 2∗(s; λl, λu), of Y data computed from sample structure
functions of first and/or second order, respectively, via

γ 2∗(s; λl, λu) =
π

4

(
S1

N (s)
)2

and/or γ 2∗(s; λl, λu) =
S2

N (s)

2
(8)

according to Eq. (A2). We estimate the sill,σ 2, by averag-
ing values ofγ 2∗(s; λl, λu) corresponding to large lags,s,
obtained fromS1

N and/orS2
N in this manner. We then es-

timate the cutoffs (andA) through a maximum likelihood
(ML) fit of γ 2(s; λl, λu) to γ 2∗(s; λl, λu) where the first
is a TPV model based either on Gaussian or on exponential
modes as defined in Eqs. (A4)–(A7). The ML procedure con-
sists of minimizing the log likelihood criterion (Carrera and
Neuman, 1986)

NLL =
J

σ 2
γ

+ n ln σ 2
γ + ln|V| + n ln 2 π;

J =

(
γ̂

2
− γ 2∗

)T

V−1
(
γ̂

2
− γ 2∗

)
(9)

with respect toλu andλl subject to Eq. (7). Herêγ 2 andγ ∗2

are vectors ofn discreteγ 2(s; λl, λu) andγ 2∗(s; λl, λu)
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Fig. 13. (a)β(q, q − 1q) and(b) ρ(q +1q, q, n = 0.5) versusq evaluated using all available data in x and y directions and variousri .

values, respectively,T denotes transpose,Cγ =σ 2
γ V where

Cγ is the covariance matrix of errors inγ ∗2 (resulting from
log permeability measurement errors),σ 2

γ is estimated during
inversion according to

σ 2
γ =

Jmin

n
(10)

whereJmin is the minimum ofJ , andVis a known symmetric
positive-definite matrix. For simplicity we take errors inγ ∗2

to be uncorrelated and setV equal to the identity matrix.
Applying the above procedure to face 1 yields a sill of 4.48

based onS1
N as well as onS2

N of increments parallel to the x-
axis, 3.64 based onS1

N and 3.88 onS2
N of increments parallel

to the y-axis, the variance of the correspondingY data be-
ing 4.06. Applying the above procedure jointly to faces 1, 2
and 4 (where incremental data in the x direction are available,
see Fig. 1) yields a sill of 3.52 based onS1

N and 3.77 based
on S2

N of increments parallel to the x-axis, the correspond-
ing variance ofY being 3.77; applying it to faces 1, 3 and 5
(where incremental data in the y direction are available, see
Fig. 1) yields 3.52 based onS1

N and 3.79 onS2
N of incre-

ments parallel to the y-axis, the corresponding variance ofY

being 3.91 while that of allY data on faces 1–5 is 3.79. We
conclude that to obtain consistent estimates ofσ 2 it is best to
consider jointly all data from faces 1–5 as we do below.

Due to the irregular behavior ofS1
N (s) andS2

N (s) at large
lags (Fig. 4a) we limit our ML estimation of cutoffs (andA)
to lags in the range1 ≤ s ≤ 131 so thatn = 13. Table 1 lists
parameter estimates and corresponding 95 % confidence in-
tervals for TPV models consisting of Gaussian and exponen-
tial modes obtained on the basis ofS1

N , S2
N and both with x-

and y-directional increments. The table also listsJmin, NLL,
the determinant|Q| of the covariance matrixQ of λu and
λl estimation errors, and the Bayesian model discrimination
criterion KIC (Kashyap, 1982)

KIC = NLL + M ln
( n

2 π

)
− ln|Q| (11)

whereM = 2 is the number of parameters. Values of quan-
tities obtained on the basis ofS1

N , S2
N and both are seen to

be mutually consistent. Though estimates ofλu in the x di-
rection exceed those in the y direction by about 25–30 %, we
hesitate to interpret this as anisotropy due to their relatively
large uncertainty. Figure 14a and b compare sample x- and
y-directional variogram values, respectively, based onS1

N ,
S2

N andS1
N andS2

N jointly with variogram models calibrated
against these values.

Whereas values of NLL corresponding to TPV models
based on Gaussian and exponential modes are similar, those
of KIC show a preference for exponential modes. Adopt-
ing the latter while consideringS1

N and S2
N jointly yields

λu = 1.65 cm in the x direction andλu = 1.31 cm in the y di-
rection with an average of 1.48 cm. These correspond to ra-
tios µ =λu/L of upper cutoff to block sizeL equal to 0.055
in the x direction and 0.044 in the y direction with an aver-
age of 0.049. Corresponding estimates of the lower cutoff
λl are 6.8× 10−2 cm in the x direction and 1.2× 10−1 cm in
the y direction with an average of 9.4× 10−2 cm. Adopt-
ing the suggestion of Di Federico and Neuman (1997)
that µ =λu/L =λl/lm yields support (measurement) scales
lm = 1.24 cm in the x direction and 2.69 cm in the y direction
with an average of 1.88 cm. The latter is about 12 times the
inner radius of the MSP. Albeit one should consider all the
approximations involved in this estimate, we note that it is
consistent with a definition of MPS support volume by Tar-
takovsky et al. (2000) as a region containing 90 % of total gas
flow (see their Fig. 6). Estimates ofµ andlm for all cases are
listed in Table 2.

4 Conclusions

Our work leads to the following conclusions:

1. Natural log air permeability data collected by Tidwell
and Wilson (1999) on the faces of a laboratory-scale
block of Topopah Spring tuff, at four scales of measure-
ment (support), exhibit power-law scaling at intermedi-
ate lags in two out of three Cartesian directions. Scaling
exponents vary in a nonlinear fashion with the orderq

www.hydrol-earth-syst-sci.net/16/29/2012/ Hydrol. Earth Syst. Sci., 16, 29–42, 2012



38 M. Siena et al.: Extended power-law scaling of air permeabilities measured on a block of tuff

Table 1. Calibration results, main statistics and Model quality criteria. The 95 % confidence intervals of the parameter estimates are reported
in parenthesis.

x-axis y-axis

Modes Gaussian Exponential Gaussian Exponential

Only S1
N

data

λu [cm] 2.82 (1.84–4.56) 1.65 (0.21–3.10) 2.15 (1.41–2.91) 1.27 (0.55–1.98)
λl [cm] 6.1× 10−4 (0–6.5× 10−3) 9.2× 10−2 (0–3.8× 10−3) 8.9× 10−3 (0–4.3× 10−2) 1.7× 10−1 (0–4.1× 10−1)
A [cm−2H

] 0.64 1.41 0.88 2.01
Jmin 0.12 0.12 0.04 0.04
σ2
γ 9.55× 10−3 9.49× 10−3 2.88× 10−3 3.25× 10−3

NLL −23.58 −23.65 −39.16 −37.57
|Q| 1.24× 10−6 8.26× 10−4 4.27× 10−6 1.15× 10−4

KIC −8.53 −15.10 −25.34 −27.05

Only S2
N

data

λu [cm] 2.73 (1.04–4.43) 1.64 (0.21–3.07) 2.14 (1.27–2.99) 1.26 (0.47–2.04)
λl [cm] 2.3× 10−5 (0–5.6× 10−4) 4.8× 10−2 (0–2.5× 10−1) 2.5× 10−4 (0–3.0× 10−3) 8.4× 10−2 (0–2.8× 10−1)

A [cm−2H
] 0.61 1.29 0.74 1.70

Jmin 0.10 0.10 0.03 0.04
σ2
γ 7.97× 10−3 7.76× 10−3 2.68× 10−3 2.91× 10−3

NLL −25.93 −26.27 −40.10 −39.04
|Q| 6.26× 10−9 3.59× 10−4 3.44× 10−8 8.37× 10−5

KIC −5.58 −16.88 −21.46 −28.20

S1
N

andS2
N

data jointly

λu [cm] 2.78 (0.96–4.61) 1.65 (0.12–3.18) 2.19 (0.71–3.66) 1.31 (0–2.61)
λl [cm] 1.5× 10−4 (0–2.4× 10−3) 6.8× 10−2 (0–3.3× 10−1) 2.0× 10−3 (0–2.4× 10−2) 1.2× 10−1 (0–4.9× 10−1)
A [cm−2H

] 0.62 1.35 0.80 1.78
Jmin 0.63 0.63 0.60 0.61
σ2
γ 2.44× 10−2 2.43× 10−2 2.30× 10−2 2.33× 10−2

NLL −22.77 −22.91 −24.28 −23.97
|Q| 2.12× 10−7 9.42× 10−4 8.86× 10−6 1.16× 10−3

KIC −4.56 −13.11 −9.80 −14.37
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Table 2. Multiple faces data. Estimates ofµ =λu/L and the associated support scalelm.

µ lm [cm]

x-axis y-axis x-axis y-axis

Data Gauss Exp Gauss Exp Gauss Exp Gauss Exp

S1
N

0.094 0.055 0.072 0.042 0.01 1.68 0.00 4.10

S2
N

0.091 0.055 0.061 0.042 0.00 0.87 0.02 2.01

S1
N

andS2
N

jointly 0.093 0.055 0.073 0.044 0.00 1.24 0.03 2.69

of corresponding structure functions in a manner typical
of multifractals.

2. Identification of this nonlinear power-law scaling was
greatly enhanced by a method of analysis that extend
its range to virtually all lags (Guadagnini and Neuman,
2011) known as Extended Self-Similarity (ESS) and a
generalized version thereof (G-ESS).

3. Our estimates of the Hurst scaling exponent were found
to increase with support scale, implying a reduction
in roughness (anti-persistence) of the log permeability
field with measurement volume.

4. Tidwell and Wilson (1999) were able to characterize log
permeabilities associated with all tip sizes by stationary
variogram models. This, coupled with our findings that
log permeability increments associated with the small-
est tip size are approximately Gaussian and those asso-
ciated with all tip sizes scale in the manner of multifrac-
tals at intermediate lags, are consistent with a view of
the data as a sample from truncated fractional Brownian
motion (tfBm). Since in theory the scaling exponents,
ξ(q), of tfBm at intermediate lags vary linearly withq
we conclude, in accord with Neuman (2010a,b, 2011),
that nonlinear scaling in our case is not an indication of
multifractality but an artifact of sampling from tfBm.

5. Our demonstration in Appendix A that tfBm is consis-
tent with ESS scaling according to Eq. (6) at all sepa-
ration scales, and with power-law scaling according to
Eq. (2) at intermediate scales, explains why and how
ESS works for our data at all scales. The same ex-
plains how and why ESS worked for sub-Gaussian pro-
cessesW1G(s; λl, λu) considered by Guadagnini and
Neuman (2011).

6. The fact that our data are consistent with Eq. (6) but not
with Eq. (2) at small and large lags constitutes yet an-
other indication that, despite their nonlinear power-law
scaling at intermediate lags, the data are inconsistent
with multifractals or fractional Laplace motions, which
theoretically scale in this manner at all lags. The same

likely holds true for other Gaussian or heavy-tailed earth
and environmental variables (such as those listed in our
introduction) that scale according to Eq. (2) at interme-
diate lags and according to Eq. (3) over an extended
range of lags, a possibility noted earlier by Guadagnini
and Neuman (2011).

7. Since increments ofY associated with the smallest tip
size have a near-Gaussian distribution, we were able to
identify the functional form and estimate all parame-
ters of the corresponding tfBm based on sample struc-
ture functions of first and second orders. Our estimate
of lower cutoff is consistent with a theoretical support
scale of the data.

Appendix A

Analytical formulation of tfBm structure functions

Let G(x; λl, λu) be truncated fractional Brownian motion
(tfBm), a Gaussian process defined by Neuman (2010a)
wherex is a generic space (or time) coordinate andλl , λu
are lower and upper cutoff scales, respectively. As shown by
this author, centralq-th order moments of absolute values of
corresponding zero-mean stationary increments

1G(s; λl, λu) = G(x + s; λl, λu) − G(x; λl, λu) (A1)

of G(x; λl, λu) are given by

Sq
=
〈
|1G (s; λl, λu)|

q
〉

=

[√
2 γ 2(s; λl, λu)

]q

(q − 1)!!{√
2
π

if q is odd

1 if q is even
q = 1, 2, ... n (A2)

wheres is separation scale or lag, !! indicates double fac-
torial defined asq!! = q(q −2)(q −4) ... 2 if q is even and
q!! = q(q −2)(q −4) ... 3 if q is odd, andγ 2(s; λl, λu) is the
variogram ofG(x; λl, λu), i.e.

γ 2(s; λl, λu) =
1

2

〈
1G(s; λl, λu)

2
〉
. (A3)
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Fig. A1. Power variogram (dashed curves) and truncated power variogram (continuous curves) evaluated withA = 1, H = 0.3,λl = 10 and
λu = (a) 102 (b) 5× 102 (c) 103 (d) 104.

The latter is given by (Neuman, 2010a)

γ 2(s; λl, λu) = γ 2
i (s; λu) − γ 2

i (s; λl);

γ 2
i (s; λm) = σ 2 (λm) ρi (s/λm) (A4)

where

σ 2(λm) = A λ2H
m /2H (A5)

ρ1(s/λm) =

[
1 − exp

(
−

s

λm

)
+

(
s

λm

)2H

0

(
1 − 2 H,

s

λm

)]
0 < H < 0.5 (A6)

ρ2(s/λm) =

1 − exp

(
−

π

4

s2

λ2
m

)
+

(
π

4

s2

λ2
m

)H

0

(
1 − H,

π

4

s2

λ2
m

)]
0 < H < 1. (A7)

A is a coefficient,H is a Hurst exponent (0< H < 1), i = 1
for tfBm with modes (defined in Neuman, 2010a) having ex-
ponential autocorrelation functions andi = 2 for modes hav-
ing Gaussian autocorrelation functions. Figure A1 compares
TPVs based on Gaussian modes withA = 1, H = 0.3,λl = 10
and four values ofλu ( 104, 103, 5× 102, 102) with a power
variogram (PV)γ 2(s) =A2s

2H whereA2 =A(π/4)H 0(1−

H)/2H . The slopes of the TPV and PV coincide in a

midrange of lags (labeled Zone II) but not in the outlying
ranges of small and large lags (labeled Zone I and III, re-
spectively). This break in power-law scaling at small and
large lags is due entirely to the presence of lower and upper
cutoffs, respectively, being unrelated to noise or oversam-
pling which play no role in Fig. A1 (Neuman, 2010a). It
follows that estimatingH as the slope of the variogram on
log-log scale is valid at intermediate lags but not at small and
large lags which would lead, respectively, to over- and under-
estimation of its value. Figure A2 complements this analysis
by juxtaposing the TPVs associated with Gaussian modes in
Fig. 14a with corresponding PVs.

For a PV Eq. (A2) takes the form

Sq
=
〈
|1G(s; λl, λu)|

q
〉

= (q − 1)!!
[√

2 Ai

]q
sqH

{√
2
π

if q is odd

1 if q is even
q = 1, 2, ... n (A8)

rendering a log-log plot ofSq versuss linear with constant
slopeqH. As in the case ofq = 2, the slopes of corresponding
truncated structure functions are similar in the midrange of
lags but larger and smaller, respectively, at small and large
lags.

From Eq. (A2) it follows that the ratio between structure
functions of orderq + 1 andq is

Sq+1

Sq
=

{√
π

q!!

(q−1)!!

√
γ 2(s;λl,λu) if q is odd

2
√

π

q!!

(q−1)!!

√
γ 2(s;λl,λu) if q is even

q = 1,2,...n (A9)
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1.E+0

1.E+1

γ2

Figure A2

1.E-1

1.E-3 1.E-2 1.E-1 1.E+0 1.E+1sx

Fig. A2. Power variogram (dashed curves) and truncated power
variogram with Gaussian modes (continuous curves) obtained with
the parameters estimated in Fig. 14a on the basis ofS1

N
(red curves),

S2
N

(blue curves), andS1
N

andS2
N

jointly (black curves).

which depends on the square root ofγ 2(s; λl, λu). Using
Eq. (A2) to expressγ 2(s; λl, λu) as a function ofSq and
substituting into Eq. (A9) yields, after some manipulation,

Sq+1
=


√

π
2

[√
π
2

1
(q−1)!!

] 1
q q!!

(q−1)!!

[
Sq
]1+

1
q if q is odd√

2
π

[
1

(q−1)!!

] 1
q q!!

(q−1)!!

[
Sq
]1+

1
q if q is even

q = 1,2,...n. (A10)

This makes clear thatSq+1 is linear inSq on log-log scale
regardless of what functional form doesγ 2(s; λl, λu) take.
The slope of this line decreases asymptotically from 2 at
q = 1 toward 1 asq → ∞. Equation (A10) and its asymptotic
behavior follow from the fact that Eq. (A2) is equivalent to
Eq. (6) in whichf (s) = [

√
2γ 2(s; λl, λu)]. As such it helps

explain how and why ESS works for our data. The same
explains how and why ESS worked for sub-Gaussian pro-
cessesW1/21G(s; λl, λu) considered by Guadagnini and
Neuman (2011).
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fractal scaling of soil spatial variability, Ecol. Model., 182, 291–
303,doi:10.1016/j.ecolmodel.2004.04.014, 2005.

Carrera, J. and Neuman, S. P.: Estimation of aquifer parameters un-
der transient and steady state conditions: 1. Maximum likelihood
method incorporating prior information, Water Resour. Res., 22,
199–210,doi:10.1029/WR022i002p00199, 1986.

Chakraborty, S., Frisch, U., and Ray, S. S.: Extended self-similarity
works for the Burgers equation and why, J. Fluid Mech., 649,
275–285,doi:10.1017/S0022112010000595, 2010.

Di Federico, V. and Neuman, S. P.: Scaling of random fields by
means of truncated power variograms and associated spectra,
Water Resour. Res., 33, 1075–1085,doi:10.1029/97WR00299,
1997.

Ganti, V., Singh, A., Passalacqua, P., and Foufoula-Georgiu,
E.: Subordinated Brownian motion model for sedi-
ment transport, Phys. Rev. E, 80, 011111, doi: 1539-
5663755/2009/80(1)/011111(8), 2009.

Goggin, D. J., Thrasher, R. L., and Lake, L. W.: A theoretical and
experimental analysis of minipermeameter response including
gas slippage and high velocity flow effects, In Situ, 12, 79–116,
1988.

Guadagnini, A. and Neuman, S. P.: Extended Self-Affinity of Sig-
nals Exhibiting Apparent Multifractality, Geophys. Res. Lett.,
38, L13403,doi:10.1029/2011GL047727, 2011.

Guadagnini, A., Neuman, S. P., and Riva, M.: Numerical
Investigation of Apparent Multifractality of Samples from
Processes Subordinated to Truncated fBm, Hydrol. Process.,
doi:10.1002/hyp.8358, in press, 2011.

Kashyap, R. L.: Optimal Choice of AR and MA Parts in Autore-
gressive Moving Average Models, IEEE T. Pattern Anal., PAMI-
4, 99–104,doi:10.1109/TPAMI.1982.4767213, 1982.

Kozubowski, T. J. and Molz, F. J.: Interactive discussion of the dis-
cussion paper “Extended power-law scaling of air permeabili-
ties measured on a block of tu?” by Siena, M., Guadagnini, A.,
Riva, M., and Neuman, S. P., Hydrol. Earth Syst. Sci. Discuss.,
8, 7805–7843, 2011,doi:10.5194/hessd-8-7805-2011, 2011.

Kozubowski, T. J., Meerschaert, M. M., and Podgorski, K.:
Fractional Laplace motion, Adv. Appl. Probab., 38, 451–464,
doi:10.1239/aap/1151337079, 2006.

Liu, H. H. and Molz, F. J.: Multifractal analyses of hydraulic
conductivity distributions, Water Resour. Res., 33, 2483–2488,
doi:10.1029/97WR02188, 1997a.

Liu, H. H. and Molz, F. J.: Comment on “Evidence for non-
Gaussian scaling behavior in heterogeneous sedimentary for-
mations” by Painter, S., Water Resour. Res., 33, 907–908,
doi:10.1029/96WR03788, 1997b.

www.hydrol-earth-syst-sci.net/16/29/2012/ Hydrol. Earth Syst. Sci., 16, 29–42, 2012

http://dx.doi.org/10.1209/0295-5075/24/4/007
http://dx.doi.org/10.1103/PhysRevE.48.R29
http://dx.doi.org/10.1016/0167-2789(96)00018-8
http://dx.doi.org/10.1016/j.ecolmodel.2004.04.014
http://dx.doi.org/10.1029/WR022i002p00199
http://dx.doi.org/10.1017/S0022112010000595
http://dx.doi.org/10.1029/97WR00299
http://dx.doi.org/10.1029/2011GL047727
http://dx.doi.org/10.1002/hyp.8358
http://dx.doi.org/10.1109/TPAMI.1982.4767213
http://dx.doi.org/10.5194/hessd-8-7805-2011
http://dx.doi.org/10.1239/aap/1151337079
http://dx.doi.org/10.1029/97WR02188
http://dx.doi.org/10.1029/96WR03788


42 M. Siena et al.: Extended power-law scaling of air permeabilities measured on a block of tuff

Meerschaert, M. M., Kozubowski, T. J., Molz, F. J., and Lu, S.:
Fractional Laplace model for hydraulic conductivity, Geophys.
Res. Lett., 31, L08501,doi:10.1029/2003GL019320, 2004.

Meng, H., Salas, J. D., Green, T. R., and Ahuja, L.
R.: Scaling analysis of space-time infiltration based on
the universal multifractal model, J. Hydrol., 322, 220–235,
doi:10.1016/j.jhydrol.2005.03.016, 2006.

Molz, F. J., Dinwiddie, C. L., and Wilson, J. L.: A phys-
ical basis for calculating instrument spatial weighting func-
tions in homogeneous systems, Water Resour. Res., 39, 1096,
doi:10.1029/2001WR001220, 2003.

Neuman, S. P.: Apparent/spurious multifractality of data sampled
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Geophys. Res. Lett., 37, L09403,doi:10.1029/2010GL043314,
2010b.

Neuman, S. P.: Apparent multifractality and scale-dependent distri-
bution of data sampled from self-affine processes, Hydrol. Pro-
cess., 25, 1837–1840,doi:10.1002/hyp.7967, 2011.

Neuman, S. P. and Di Federico, V.: Multifaceted nature of hydro-
geologic scaling and its interpretation, Rev. Geophys., 41, 1014,
doi:10.1029/2003RG000130, 2003.

Neuman, S. P., Riva, M., and Guadagnini, A.: On the geostatistical
characterization of hierarchical media, Water Resour. Res., 44,
W02403,doi:10.1029/2007WR006228, 2008.

Nikora, V. I. and Goring, D. G.: Extended self-similarity in geo-
physical and geological applications, Math. Geol., 33, 251–271,
doi:10.1023/A:1007630021716, 2001.

Painter, S.: Evidence for non-Gaussian scaling behavior in hetero-
geneous sedimentary formations, Water Resour. Res., 32, 1183–
1195,doi:10.1029/96WR00286, 1996.

Schertzer, D. and Lovejoy, S.: Physical modeling and analysis of
rain and clouds by anisotropic scaling multiplicative processes, J.
Geophys. Res., 92, 9693–9714,doi:10.1029/JD092iD08p09693,
1987.

Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D., and Lovejoy,
S.: Universal multifractal analysis as a tool to characterize mul-
tiscale intermittent patterns: example of phytoplankton distribu-
tion in turbulent coastal waters, J. Plankton Res., 21, 877–922,
doi:10.1093/plankt/21.5.877, 1999.

Tartakovsky, D. M., Moulton, J. D., and Zlotnik, V. A.: Kine-
matic structure of minipermeameter flow, Water Resour. Res.,
36, 2433–2442,doi:10.1029/2000WR900178, 2000.

Tennekoon, L., Boufadel, M. C., Lavallée, D., and Weaver, J.: Mul-
tifractal anisotropic scaling of the hydraulic conductivity, Water
Resour. Res., 39, 1193,doi:10.1029/2002WR001645, 2003.

Tessier, Y., Lovejoy, S., and Schertzer, D.: Universal mul-
tifractals: Theory and observations for rain and clouds,
J. Appl. Meteorol., 32, 223–250, doi:10.1175/1520-
0450(1993)032<0223:UMTAOF>2.0.CO;2, 1993.

Tidwell, V. C. and Wilson, J. L.: Upscaling experiments con-
ducted on a block of volcanic tuff: results for a bimodal
permeability distribution, Water Resour. Res., 35, 3375–3387,
doi:10.1029/1999WR900161, 1999.

Yang, C.-Y., Hsu, K.-C., and Chen, K.-C.: The use of the Levy-
stable distribution for geophysical data analysis, Hydrogeol. J.,
17, 1265–1273,doi:10.1007/s10040-008-0411-1, 2009.

Zeleke, T. B. and Si, B. C.: Characterizing scale-
dependent spatial relationships between soil properties
using multifractal techniques, Geoderma, 134, 440–452,
doi:10.1016/j.geoderma.2006.03.013, 2006.

Zeleke, T. B. and Si, B. C.: Wavelet-based multifractal analysis of
field scale variability in soil water retention, Water Resour. Res.,
43, W07446,doi:10.1029/2006WR004957, 2007.

Hydrol. Earth Syst. Sci., 16, 29–42, 2012 www.hydrol-earth-syst-sci.net/16/29/2012/

http://dx.doi.org/10.1029/2003GL019320
http://dx.doi.org/10.1016/j.jhydrol.2005.03.016
http://dx.doi.org/10.1029/2001WR001220
http://dx.doi.org/10.1002/hyp.7611
http://dx.doi.org/10.1029/2010GL043314
http://dx.doi.org/10.1002/hyp.7967
http://dx.doi.org/10.1029/2003RG000130
http://dx.doi.org/10.1029/2007WR006228
http://dx.doi.org/10.1023/A:1007630021716
http://dx.doi.org/10.1029/96WR00286
http://dx.doi.org/10.1029/JD092iD08p09693
http://dx.doi.org/10.1093/plankt/21.5.877
http://dx.doi.org/10.1029/2000WR900178
http://dx.doi.org/10.1029/2002WR001645
http://dx.doi.org/10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2
http://dx.doi.org/10.1029/1999WR900161
http://dx.doi.org/10.1007/s10040-008-0411-1
http://dx.doi.org/10.1016/j.geoderma.2006.03.013
http://dx.doi.org/10.1029/2006WR004957

