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Abstract. Drought in East Africa is a recurring phenomenon
with significant humanitarian impacts. Given the steep cli-
matic gradients, topographic contrasts, general data scarcity,
and, in places, political instability that characterize the re-
gion, there is a need for spatially distributed, remotely de-
rived monitoring systems to inform national and international
drought response. At the same time, the very diversity and
data scarcity that necessitate remote monitoring also make
it difficult to evaluate the reliability of these systems. Here
we apply a suite of remote monitoring techniques to charac-
terize the temporal and spatial evolution of the 2010–2011
Horn of Africa drought. Diverse satellite observations al-
low for evaluation of meteorological, agricultural, and hy-
drological aspects of drought, each of which is of interest
to different stakeholders. Focusing on soil moisture, we ap-
ply triple collocation analysis (TCA) to three independent
methods for estimating soil moisture anomalies to charac-
terize relative error between products and to provide a ba-
sis for objective data merging. The three soil moisture meth-
ods evaluated include microwave remote sensing using the
Advanced Microwave Scanning Radiometer – Earth Observ-
ing System (AMSR-E) sensor, thermal remote sensing us-
ing the Atmosphere-Land Exchange Inverse (ALEXI) sur-
face energy balance algorithm, and physically based land
surface modeling using the Noah land surface model. It
was found that the three soil moisture monitoring methods
yield similar drought anomaly estimates in areas character-
ized by extremely low or by moderate vegetation cover, par-
ticularly during the below-average 2011 long rainy season.
Systematic discrepancies were found, however, in regions of

moderately low vegetation cover and high vegetation cover,
especially during the failed 2010 short rains. The merged,
TCA-weighted soil moisture composite product takes advan-
tage of the relative strengths of each method, as judged by the
consistency of anomaly estimates across independent meth-
ods. This approach holds potential as a remote soil moisture-
based drought monitoring system that is robust across the di-
verse climatic and ecological zones of East Africa.

1 Introduction

The 2010–2011 Horn of Africa drought affected over
13 million people (Ledwith, 2011). The failure of the Octo-
ber to December 2010 “short” rains and delayed arrival of the
April to June 2011 “long” rains caused crop failures across
Somalia, Ethiopia and Kenya. The price of food reflected the
effect of crop failures on a food-insecure region; the price of
maize in Kenya, for example, rose 246 % over the span of a
year (Funk, 2011). On 7 June 2011, the Famine Early Warn-
ing System Network (FEWS NET) issued a statement declar-
ing the crisis to be “the most severe food security emergency
in the world today”. Over the course of the next two months,
the crises worsened and the United Nations declared famine
in five regions of Somalia (United Nations, 2011).

In broad terms, the drought and subsequent famine were
anticipated by forecasters. The emerging La Niña event in
summer 2010, occurring on top of steady Indian Ocean
warming that has been associated with reduced precipitation
in the Horn of Africa, and combined with weakened social
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resilience due to poor harvests and rangeland conditions in
recent years were recognized as a significant risk to the re-
gion (Funk, 2011). Given such warnings – albeit warnings
that come with substantial uncertainty – national govern-
ments and international actors were in position to respond
quickly when the rains failed. The failure to muster adequate
disaster mitigation can be attributed largely to political in-
stability and to the limitations of what can be accomplished
in reactive drought response. At the same time, adequate
emergency intervention is also limited by inadequate access
to reliable, spatially distributed drought monitoring informa-
tion available in near real-time. In situ monitoring networks,
though critical to drought planning and response, are limited
in this regard, both practically and inherently. While the Horn
of Africa has limited networks and is affected by political in-
stability, even if measurements were available, it would be
difficult to capture the spatial variability of drought impacts
using point monitoring stations alone.

For this reason, there has been considerable interest in de-
veloping East African drought monitoring systems based on
remotely sensed and model-derived analyses. The most ad-
vanced of these systems is the Famine Early Warning Sys-
tem Network (FEWS NET), which operates throughout East
Africa, Afghanistan, and Central America. A United States
Agency for International Development (USAID) project in
operation since 1985, FEWS NET combines local socio-
economic information with agricultural production and pre-
cipitation information to predict food security conditions
(Funk, 2009). Satellite data feed into the system in the
form of remotely sensed vegetation indices and precipita-
tion estimates, while a Water Requirements Satisfaction In-
dex (WRSI) model is used to gauge crop conditions. Ad-
ditional remote drought monitors covering East Africa in-
clude the Experimental African Drought Monitor maintained
by the Land Surface Hydrology Group at Princeton, which
provides near real-time drought monitoring for all of Africa
using the variable infiltration capacity (VIC) hydrological
model and a long-term retrospective meteorological reanaly-
sis (Sheffield et al., 2008) to quantify current drought condi-
tions across the continent1. The International Research Insti-
tute for Climate and Society Map Room2 serves regional pre-
cipitation anomaly maps derived from the Climate Anomaly
Monitoring System Outgoing Longwave Radiation Precipi-
tation Index (CAMSOMI; Janowiak and Xie, 1999), while
the Global Drought Monitor provides drought monitoring
that includes coverage of Africa at a spatial resolution of
∼ 100 km and at monthly intervals3. The Global Drought
Monitor is based on the Standardized Precipitation Index
(SPI) and the Palmer Drought Severity Index (PDSI).

Outside of Africa, there are numerous examples of experi-
mental and operational drought monitoring systems that rely

1http://hydrology.princeton.edu/monitor
2http://iridl.ldeo.columbia.edu/maproom/
3http://drought.mssl.ucl.ac.uk

on either remote sensing or hydrological models. In the US,
these include the Vegetation Drought Response Index (Veg-
DRI), which monitors drought conditions for the continen-
tal US by combining climate-related variables with satellite-
derived vegetation condition information obtained using Ad-
vanced Very High Resolution Radiometer (AVHRR)-based
vegetation indices (Brown, 2010), and the University of
Washington Experimental Surface Water Monitor (Wood,
2008), based on a multi-model monitor employing VIC
(Liang et al., 1994), Sacramento Soil Moisture Account-
ing (SAC-SMA; Burnash, 1995), Community Land Model
(CLM; Dai et al., 2003; Lawrence et al., 2011), Catchment
(Koster et al., 2000), and Noah (Chen et al., 1996; Ek et
al., 2003; Koren et al., 1999) land-surface models (LSMs).
Other AVHRR-derived drought indices include the Vege-
tation Condition Index (VCI), derived from AVHRR Nor-
malized Difference Vegetation Index (NDVI) data and the
Temperature Condition Index (TCI), which is calculated us-
ing AVHRR thermal data (Kogan, 1990, 1995), as well as
the Vegetation Health Index (VHI) which combines the VCI
and TCI (Kogan, 1997). Remotely sensed land-surface tem-
perature and vegetation cover information have also been
combined within the Atmosphere-Land Exchange Inverse
(ALEXI) surface energy balance algorithm (Anderson et al.,
1997, 2007a) to generate an Evaporative Stress Index (ESI),
quantifying anomalies in the ratio of actual to potential evap-
otranspiration (Anderson et al., 2011a,b).

Combined satellite/model drought monitoring tools are
also becoming more common. Data assimilation systems
merge observations with physically based models, using the
model to provide spatially and temporally complete esti-
mates of all drought-relevant hydrologic variables and the
observation record to correct for model error. Examples in-
clude the North American Land Data Assimilation System
(NLDAS; Sheffield et al., 2012; Xia et al., 2012) and Grav-
ity Recovery and Climate Experiment (GRACE) Data As-
similation System4 Drought Monitors. The NLDAS Drought
Monitor covers the continental US and is based on output
from the Mosaic (Koster and Suarez, 1996), VIC (Liang
et al., 1994), Sacramento Soil Moisture Accounting (SAC-
SMA; Burnash, 1995), and Noah (Chen et al., 1996; Ek et
al., 2003; Koren et al., 1999) LSMs. These models are un-
coupled and forced mainly by observational data to avoid
numerical weather prediction forcing biases. Anomalies and
percentiles in soil moisture, stream flow and runoff are com-
puted for each individual model and for ensemble averages
with respect to climatological normal conditions computed
for 1980 to 20075 (Sheffield et al., 2012; Xia et al., 2012).
The GRACE Data Assimilation System Drought Monitor
produces weekly updated soil moisture and drought indi-
cators. Terrestrial water storage observations from GRACE

4http://drought.unl.edu/MonitoringTools/
NASAGRACEDataAssimilation.aspx

5http://www.emc.ncep.noaa.gov/mmb/nldas/drought/
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satellite data are integrated with additional meteorological
measurements using an ensemble Kalman filter within the
Catchment Land Surface Model (Zaitchik et al., 2008). Cur-
rent hydrologic conditions are expressed as percentiles rela-
tive to baseline measurements from 1948 to 2009.

For all of the value that these satellite- and model-based
drought monitors provide, a monitoring system based on a
single algorithm or observational record is prone to system-
atic and/or transient error. This is a particular concern in data
poor regions like East Africa, where it is not possible to eval-
uate a remote drought monitor comprehensively against in
situ observations. In this context, it is desirable to apply mul-
tiple, independent methods to remote drought monitoring in
order to characterize systematic differences between meth-
ods, to identify and address limitations in particular tech-
niques, and to generate consensus drought indices. Merging
independent methods to generate a consensus drought index
will help reduce the random and systematic error components
of the input datasets.

In this paper, we examine the 2010–2011 Horn of Africa
drought using remotely sensed estimates of soil moisture,
evapotranspiration, precipitation, and terrestrial water stor-
age. The relative merits of each observational technique are
discussed in qualitative terms, and soil moisture estimates
are then assessed quantitatively and merged into a consen-
sus drought monitor product by applying a least squares al-
gorithm that depends on triple collocation analysis (TCA)-
based errors associated with soil moisture anomalies derived
from ALEXI, AMSR-E, and the Noah LSM. TCA is a sta-
tistical method for characterizing consensus and discrepan-
cies across multiple independent datasets. Though developed
originally for oceanographic applications (Stoffelen, 1998),
the method has recently been applied successfully to the
problem of estimating soil moisture variability at regional
to global scale (Scipal et al., 2008; Hain et al., 2011; Pari-
nussa et al., 2011; Yilmaz et al., 2012). TCA is of particu-
lar value in regions that lack in situ soil moisture monitoring
networks, as consensus anomaly estimates derived from mul-
tiple independent datasets can be interpreted as a measure of
confidence in the absence of adequate in situ evaluation data.
The least squares-based merging technique applied to these
TCA-based error estimates was chosen as an objective offline
merging method, because it requires minimal assumptions be
made about the input datasets and their error characteristics.

2 Methods

2.1 Soil moisture estimates

2.1.1 AMSR-E passive microwave sensor

The Advanced Microwave Scanning Radiometer for EOS
(AMSR-E) is a passive microwave-radiometer system
mounted on the Aqua satellite. From July 2002 to

September 2011, AMSR-E retrievals of microwave bright-
ness temperature were used to derive estimates of surface soil
moisture with near-daily coverage. The instrument is cur-
rently experiencing an antenna malfunction that may be ter-
minal, but similar microwave measurements are available on
existing and planned satellite missions. Several algorithms
have been developed to estimate soil moisture on the basis
of AMSR-E retrievals. In this application, we use the soil
moisture product derived using the Land Parameter Retrieval
Model (LPRM) developed by Vrije Universiteit Amsterdam
(VUA) and the National Aeronautics and Space Adminis-
tration (NASA). The LPRM algorithm relies on C-band ob-
servations and can utilize X-band observations under condi-
tions of radio frequency interference in the C-band (Owe et
al., 2008). The LPRM product was chosen over other avail-
able AMSR-E soil moisture products on the basis of pre-
viously published comparisons (Rudiger et al., 2008; Wag-
ner et al., 2007; Draper et al., 2009; Hain et al., 2011). The
product produces daily ascending and descending estimates
at 01:30 a.m. and 01:30 p.m. (local time). To avoid compli-
cations such as sun glint and strong temperature gradients,
which are more prevalent in the ascending passes when using
the VUA algorithm, only descending passes (01:30 a.m. LT)
of the AMSR-E measurements were used (Kerr and Njoku,
1990; Crow et al., 2010).

While the temporal resolution of AMSR-E is relatively
high, the spatial resolution remains coarse at∼ 25 km with
a sensing depth of only∼ 1 cm. The native spatial resolution
of AMSR-E and the remapping used in the LPRM algorithm
are further discussed in Sect. 2.3.

2.1.2 ALEXI thermal infrared model

The Atmosphere-Land Exchange Inverse (ALEXI) model
is a thermal infrared-based diagnostic model that employs
the two-source energy balance (TSEB) model of Norman
et al. (1995), representing the land surface as a composite
of soil and vegetation cover, while coupling with an atmo-
spheric boundary layer model to internally simulate land-
atmosphere feedback on near-surface air temperature (An-
derson et al., 1997, 2007a). ALEXI solves the surface en-
ergy balance for latent and sensible heat components us-
ing time-differential land surface temperature measurements
taken from geostationary satellites between∼ 1.5 h after lo-
cal sunrise and∼ 1.5 h before local noon. The morning sur-
face temperature rise is largely governed by soil moisture
conditions and available energy. Wet conditions in the sur-
face layer increase latent heat flux and therefore decrease
morning temperature amplitude, while dry conditions lead
to increased sensible heat flux and therefore higher morning
temperature amplitudes. Anderson et al. (2007b) and Hain et
al. (2009, 2011) detail a method of relating latent heat fluxes
retrieved by ALEXI to soil moisture conditions by applying
a soil moisture stress function between the fraction of actual
to potential evaporation (fPET) and the fraction of available
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water. A relation betweenf PET and retrieved soil moisture
values based on ALEXI estimates offPET may be derived
that is of the following form:

θALEXI =
(
θfc − θwp

)
· fPET + θwp (1)

whereθALEXI is the soil moisture value reported by ALEXI,
θfc andθwp are the soil moisture at field capacity and wilting
point, respectively, andfPET is the fraction of actual to po-
tential evapotranspiration. Note that while Eq. (1) requires
information about SM at field capacity and wilting point,
these values drop out during the computation of standard-
ized grid cell anomalies describing the deviation from mean
conditions for each 8-day composite period at each pixel in
the study period. Hain et al. (2009) validated this relationship
by comparing soil moisture observations from the Oklahoma
Mesonet to ALEXI soil moisture retrievals.

ALEXI was executed at 6-km spatial resolution over the
Horn of Africa domain using hourly land-surface temper-
ature and insolation products developed by the Land Sur-
face Analysis Satellite Applications Facility (LSA SAF), us-
ing imagery from the primary Meteosat Second Generation
(MSG) geostationary satellite (landsaf.meteo.pt) (see Ander-
son et al., 2011b). ALEXI output was then aggregated to the
25-km grid associated with the AMSR-E product. As a ther-
mal remote sensing model, ALEXI is limited to cloud-free
sky conditions during the morning hours when the ground is
visible to the thermal satellite sensor.

2.1.3 Noah land surface model

Offline simulations of Noah LSM version 3.2 were per-
formed using Global Data Assimilation System (Derber et
al., 1991) meteorological forcing supplemented by the three
hourly precipitation estimates from the gauge-adjusted Trop-
ical Rainfall Measurement Mission (TRMM) Multisensor
Precipitation Analysis (TMPA), version 6 (product 3B42;
Huffman et al., 2007). Noah is a one-dimensional model
that evaluates the surface energy and water budgets to cal-
culate the distribution of soil moisture in the soil column.
Evapotranspiration is defined as the sum of canopy transpi-
ration, evaporation from the top soil layer, and evaporation of
canopy-intercepted water (Ek et al., 2003; Chen et al., 1996).
Soil moisture is a prognostic field for each of the model’s
four vertical soil layers, which allows for the diagnosis of
both near-surface and root zone soil moisture.

An LSM-based prediction of soil moisture offers the ben-
efit of providing continuous estimates under all weather
and surface cover conditions, as opposed to ALEXI and
AMSR-E, which are hindered by clouds and dense vegeta-
tion, respectively. Model output was stored and evaluated at
three-hour intervals, but only outputs aligned with the over-
pass times of AMSR-E retrievals were used in this anal-
ysis to ensure a consistent comparison. The AMSR-E de-
scending overpass time for the Horn of Africa is 04:30 GMT
which corresponds to the 03:00–06:00 GMT output interval

of Noah. Model simulations were run at a spatial resolution
of 25 km to match the spatial resolution of the AMSR-E mea-
surements. Noah simulations in this region are the subject
of ongoing evaluation, with early results indicating that sim-
ulations forced with GDAS meteorology supplemented by
TMPA precipitation provide reasonable results over much of
the Nile Basin and surroundings (Zaitchik et al., 2010).

2.2 Supplementary satellite-derived observations

Additional data sources were included in the anomaly anal-
yses to depict a more complete hydrologic picture. For all
datasets, we compiled gridded data for East Africa for the
period 2003–2011 and then calculated anomalies relative to
the 2003–2010 climatology:

– precipitation: three hourly TMPAv6 precipitation esti-
mates (25 km resolution), averaged over 8-day compos-
ite periods, were used to compare the 2010–2011 sea-
sonal rains to those from 2003–2010.

– vegetation index: 16-day, 0.05◦ resolution compos-
ited MODerate Resolution Imaging Spectroradiometer
(MODIS) NDVI estimates (product MOD13C1; Huete
et al., 2002) were used to evaluate drought impacts on
biomass production.

– terrestrial water storage: monthly estimates of terres-
trial water storage anomaly derived from GRACE were
used as an independent assessment of drought condi-
tions. GRACE anomalies for the area of interest were
extracted from the CSR level 2 GRACE gridded land
product, release 4, with a 300 km smoothing radius.
Land scaling factors were included in data extraction
(Swenson and Wahr, 2006)6.

2.3 Comparison and data merging

For TCA, the three independent soil moisture datasets
(LPRM, Noah and ALEXI) were standardized to a common
spatial resolution, depth, frequency, and unit of measure.

2.3.1 Resampling to a common grid

Each dataset was resampled using a nearest neighbor resam-
ple to match the 0.25× 0.25◦ flat grid of the LPRM data. The
ALEXI model was run with a 6 km spatial resolution, which
necessitated an aggregation of the data prior to resampling.
The Noah LSM was run at 25 km spatial resolution, requiring
only a resample to match the chosen grid.

6GRACE land data were processed by Sean Swenson, supported
by the NASA MEASURES Program, and are available athttp://
grace.jpl.nasa.gov.
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2.3.2 Creating composite time periods

Although each methodology is capable of producing daily
measurements for the domain of the analysis under favorable
conditions, the satellite-derived records suffered from data
gaps. LPRM gaps are a product of the overpass repeat cycle
of Aqua, which results in spatial swaths of missing data on
a regular repeat cycle, and of interference from precipitation,
dense vegetation, radio signals or frozen ground. Retrievals
that were flagged as poor quality due to such interference
were removed from the analysis. Missing values were present
in the ALEXI model, because the algorithm requires morning
observations of radiometric surface temperature, which can
only be observed for cloud-free regions. This creates season-
ally repeating areas of sparse data coverage in climatologi-
cally cloudy regions. Gap-filling algorithms for ALEXI have
been developed to generate daily ET estimates (Anderson et
al., 2007a), but they were not utilized in this study so as to
focus only on direct retrievals of soil moisture (rather than in-
terpolated values). Eight-day composites across the period of
study were created for each dataset to avoid oversampling in
the analysis due to seasonal weather events. All available ob-
servations were averaged within a given compositing period.

2.3.3 Estimating root zone soil moisture for all products

To standardize the depth of soil moisture estimate across
LPRM, ALEXI, and Noah, each dataset was converted to
an estimate of soil moisture through the root zone. For this
study, the root zone was defined as the top 1 m of the soil
column.

ALEXI provides a single column-integrated soil moisture
estimate that reflects soil moisture from the surface to the
rooting depth of the vegetation: surface soil wetness cools
the surface through direct evaporation, while root zone soil
moisture leads to cooling through plant transpiration. The
degree to which near-surface vs. deeper root zone soil mois-
ture influences the ALEXI signal is assumed to be related to
the observed green vegetation cover fraction (fc; Hain et al.,
2009, 2011), as described further below.

The Noah LSM produces a stratified soil moisture esti-
mate that is divided into four layers: 0–10 cm, 10–40 cm, 40–
100 cm and 100–200 cm. For the purposes of this study, the
first layer (0–10 cm) was considered the surface layer, while
the depth-weighted average of the first three layers (together
0–100 cm) was considered the root zone.

LPRM produces soil moisture estimates for only the top
layer of soil (∼ 1 cm). An exponential filter (Eq. 2) was used
to extrapolate these measurements and simulate infiltration
of surface soil moisture into the root zone. The filter used
was developed by Wagner et al. (1999) and has been em-
ployed by Ceballos et al. (2005), Albergel et al. (2008) and
Hain et al. (2011). The filter applies a two-layer water bal-
ance that estimates the root zone soil moisture using a sur-
face soil moisture measurement and a characteristic time of

variation between the surface and root zones (Wagner et al.,
1999):

θ (tn)LPRM rz =

∑
θ (ti)LPRM sf e

−
tn−ti

τ∑
e−

tn−ti
τ

, (2)

whereθ(ti)LPRM sf represents the soil moisture retrieval for a
past dayti , θ(tn)LPRM rz represents the root zone soil mois-
ture estimation for a given day (tn), andτ represents the char-
acteristic time of variation between the surface layer and root
zone in the soil profile. Optimal values forτ were calculated
as those that maximized the correlation between the Noah
LSM root-zone estimates and root-zone estimates computed
by running the Noah 0–10 cm soil moisture estimates from
2003–2011 through the exponential filter (Eq. 2).

The true depth of the soil moisture estimate produced by
ALEXI is related to the fraction of green vegetation cover
(fc). Over bare soil, the latent heat is dominated by the evap-
oration from the top layer of soil, similar to the sensing
depth of microwave sensors such as AMSR-E (Hain et al.,
2011; Crow and Zhan, 2007). Over densely vegetated areas
(fc > 75 %), ALEXI latent heat is dominated by the evapo-
transpiration from the canopy layer, which is indicative of
soil moisture in the root zone. This relationship is approxi-
mated by Eq. (3):

θALEXI = (1 − fc) θALEXI sf + fcθALEXI rz, (3)

whereθALEXI is the total profile soil moisture estimate re-
trieved from ALEXI,θALEXI sf andθALEXI rz are respectively
the surface and root zone soil moistures, andfc is the frac-
tional green vegetation cover. For this study,θALEXI sf and
θALEXI rz are not independently retrieved, but are included
in Eq. (3) to illustrate the process conceptually. LPRM and
Noah soil moisture measurements were scaled using the
same methodology so that the physical value being measured
remains consistent across all products:

θLPRM = (1 − fc) θLPRM sf + fcθLPRM rz (4)

θNoah = (1 − fc) θNoahsf + fcθNoahrz (5)

whereθLPRM sf is defined as the LPRM surface soil moisture
retrieval andθLPRM rz is the estimate produced by the expo-
nential filter.θNoahsf is the first Noah soil moisture output
layer (0–10 cm), andθNoahrz is the sum of the first through
third layers (0–10 cm, 10–40 cm and 40–100 cm).

The green vegetative cover of a pixel for LPRM and
Noah was determined using MODIS 16-day NDVI esti-
mates (MOD13C1) and the linear relationship of Gutman and
Ignatov (1998):

fc =
(NDVI − NDVI0)

(NDVI100 − NDVI0)
. (6)

NDVI0 refers to the minimum observed NDVI for the entire
area of study over the entire time period. In this case, NDVI0
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was calculated by averaging the five smallest observed val-
ues. NDVI100 refers to the maximum observed NDVI and
was calculated as the average of the five largest observed val-
ues. NDVI is the specific NDVI for a given pixel at a given
time. Small differences between MODIS-derivedfc and the
Meteosat-derivedfc used in the ALEXI processing stream
may have a small impact on estimates of relative error be-
tween the three soil moisture products.

2.3.4 Calculation of anomalies

Weighted sums of surface and root zone soil moisture were
generated for LPRM and Noah using the NDVIfc and the
method described in the previous Sect. 2.3.3. These depth-
matched datasets were then used in the anomaly analysis.
Two categories of anomalies were produced for this study:
time series anomalies averaged over the area of interest
(40.625 to 48.125◦ E, −3.1255 to 9.375◦ N; Fig. 1), and spa-
tially distributed anomalies for all of East Africa in hydro-
logic year 2010–2011. The area of interest was selected to
capture the area of maximum drought intensity, as identi-
fied through our own analyses and independent reports of
the drought. All anomalies were calculated relative to the
pre-drought baseline, 2003–2010. The ALEXI model was
not included in the anomaly analysis, because the dataset for
East Africa only dates back to 2007 due to limitations on the
LSA SAF product archive extent.

2.3.5 TCA and TCA-based data merging

Triple collocation analysis (TCA) is a method that can
be used to estimate the relative error variance associated
with three collocated datasets, provided that the datasets
are mutually linear and have independent error character-
istics (Janssen et al., 2007; Zwieback et al., 2012). TCA
is a powerful technique but only produces meaningful re-
sults if each dataset is measuring the same physical param-
eter (and are therefore mutually linear). To ensure that inde-
pendent datasets were, indeed, appropriate for TCA, cross-
correlations of the products were calculated. Pixels with
very low cross-correlations (r < 0.2) were interpreted as non-
analogous and were excluded from the TCA. All datasets
were converted to a single reference climatology to account
for variations in mean and standard deviation, following the
methods of Hain et al. (2011); in this case, Noah was chosen
to be the reference dataset for the TCA calculations, but the
choice of reference does not affect the results of the analysis.

As part of the data normalization process, a seasonal mean
(µ) and standard deviation (σ ) were computed for each eight-
day composite soil moisture estimate (θ ) of each dataset. The
seasonal mean and standard deviation were calculated for
the years 2007–2010 using a 24-day centered window (one
composite-week on either side of the composite of interest)
and used to convert the ALEXI and LPRM soil moisture esti-
mates into Noah climatology as outlined in Eqs. (7) and (8):

 

Fig. 1. Selected area of interest within the Horn of Africa (40.625,
48.125,−3.125, 9.375) [W, E, S, N].

θ ′

LPRM = µNoah + (θLPRM − µLPRM)

(
σNoah

σLPRM

)
(7)

θ ′

ALEXI = µNoah + (θALEXI − µALEXI )

(
σNoah

σALEXI

)
. (8)

Following the conversion to a single climatology, the normal-
ized seasonal composites (θ ′) were linearly rescaled and used
as input for TCA as described in Eq. (9) through Eq. (10).
A full discussion of these methods can be found in Stoffe-
len (1998). Each pixel from each dataset was analyzed over
the 2007–2010 time period to calculate TC values (ε2):

ε2
Noah =

〈(
θNoah − θ ′′

LPRM

) (
θNoah − θ ′′

ALEXI

)〉
(9)

ε2
LPRM =

〈(
θ ′′

LPRM − θNoah
) (

θ ′′

LPRM − θ ′′

ALEXI

)〉
(10)

ε2
ALEXI =

〈(
θ ′′

ALEXI − θ ′′

LPRM

) (
θ ′′

ALEXI − θNoah
)〉

(11)

whereθ ′′ represents the rescaled seasonal composites and
brackets indicate a temporal average taken over the study pe-
riod 2007–2010.

In areas above the correlation threshold set for the TCA,
TC error values were used as an objective measure for soil
moisture data merging. A least squares approach was used
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Fig. 2.TMPA 3B42 precipitation estimates from 2003–2011: blue = 2010–2011; gray = all other years.

to derive the weights for each product following the meth-
ods of Yilmaz et al. (2012). In order to produce an unbi-
ased merged product, the sum of the weights of all products
was constrained to one (wx +wy +wz = 1). The cost function
(J ) to be minimized in this case is the error variance of the
merged product obtained from the least squares-based merg-
ing method that depends on the TCA-based errors. The cost
function changes depending on the number of available soil
moisture datasets for a given time and location. If only two
datasets are available at a given pixel, the cost function is

J = ε2
m = wx ε2

x + (1 − wx) ε2
y . (12)

If all three datasets are available, the cost function becomes

J = ε2
m = wx ε2

x + (1 − wx − wz) ε2
y + wz ε2

z , (13)

and if only one dataset is available, it is given the full weight.
Applying the least squares approach to the cost functions in
Eqs. (12) and (13) yields the following weights.

For two available datasets scenario

wx =
ε2
y

ε2
x + ε2

y

(14)

wy =
ε2
x

ε2
x + ε2

y

. (15)

For three available datasets scenario

wx =
ε2
y ε2

z

ε2
x ε2

y + ε2
x ε2

z + ε2
y ε2

z

(16)

wy =
ε2
x ε2

z

ε2
x ε2

y + ε2
x ε2

z + ε2
y ε2

z

(17)

wz =
ε2
x ε2

y

ε2
x ε2

y + ε2
x ε2

z + ε2
y ε2

z

. (18)

Equations (14)–(18) were used to produce a weighting map
for each product in the domain of the TC analysis. Note

that these weights are stationary provided that the number
of datasets with available measurements remains constant.

In areas below the correlation threshold set for the TCA,
no TC error values were produced; however, that does not
mean that no useable data are available for the weighting
map. For the case in which a significant correlation was
observed between two of the methods in an area that was
screened out of the TCA, an equal weight was assigned to
each of the correlated methods.

3 Results and discussion

3.1 Anomaly analysis

TMPA precipitation measurements from June 2003 to
June 2011 were used to compare the magnitude and duration
of the 2010–2011 seasonal rains with those of the previous
seven years (Fig. 2). The precipitation data show a near com-
plete failure of the October–December rains as well as weak
April–June rains. In fact, FEWS NET determined that the to-
tal anomaly in precipitation during the 2010–2011 rainy sea-
sons was the most severe in the last 50 yr for parts of Kenya
and Ethiopia (USAID FEWS NET, 2011). The lack of pre-
cipitation is evident in modeled and remotely sensed esti-
mates of soil moisture, NDVI, and terrestrial water storage
(Fig. 3). For each of these variables, the 2010–2011 drought
was the most severe or close to the most severe negative
anomaly in magnitude and duration recorded during the pe-
riod of analysis. The drought is unique in that it was a two-
season drought of comparable magnitude to previous drying
events of shorter duration.

The datasets displayed in Fig. 3 represent the 2010–2011
droughts in similar but not identical ways. Soil moisture
anomalies (LPRM and Noah) have negative trends from the
very beginning of the negative anomaly in precipitation (Oc-
tober 2010), but they persist beyond the end of each failed
rainy season. This is to be expected, as soil moisture anoma-
lies reflect cumulative precipitation anomalies and are known
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Fig. 3. Anomaly analysis of TMPA precipitation, LPRM and Noah soil moisture estimates, MODIS NDVI and GRACE terrestrial water
storage using a January 2003 to June 2010 baseline.

to provide memory in the climate and hydrological system.
In the period between the 2010 short rains and the 2011 long
rains, TMPA anomalies return to near zero – true almost by
definition for the period between rainy seasons in this re-
gion – and LPRM, which is dominated by surface soil mois-
ture variability, notwithstanding thefc filter, nearly returns
to a zero anomaly as well. Noah soil moisture and MODIS
NDVI anomalies, both of which reflect dry conditions in the
root zone, remain negative between rainy seasons, illustrat-
ing how the agricultural drought carried over from the failed
short rains to the beginning of the long rainy season. A snap-
shot of NDVI or Noah root zone soil moisture anomalies
taken in March 2011, then, would indicate that the land had a
moisture deficit going into the planting season, where a snap-
shot of surface soil moisture or precipitation would not.

GRACE offers an entirely different perspective on the
drought. Interestingly, there was a negative anomaly in ter-
restrial water storage even at the “onset” of the 2010–2011
drought. Indeed, GRACE retrievals indicate that total water
storage in the area of interest has declined relatively steadily
since 2007 (data not shown). The relevance of this multiyear
decline in total water storage to drought impacts in 2010–
2011 has yet to be investigated.

3.2 Spatial anomalies

Figure 4 illustrates the spatial distribution of soil moisture
anomalies in the short and the long rainy seasons. LPRM,

ALEXI and Noah soil moisture anomalies all reflect that the
failure of the short rains (late September to December) was
greatest in southern Somalia, Kenya and east Ethiopia while
the long rain failures (April to July) extended further into
Kenya, Ethiopia and Sudan. In general the soil moisture es-
timates agree relatively well on the location and magnitude
of the drought, but there is some discrepancy in the observed
spatial extent, as Noah detects a more intense drying in cen-
tral Sudan during the long rains than either of the satellite-
based methods.

Figure 5 shows temporal cross-correlation of rescaled soil
moisture anomalies between ALEXI and Noah (Fig. 5a),
LPRM and Noah (Fig. 5b), and LPRM and ALEXI (Fig. 5c)
for the period 2007 to 2010. The difference in cross-
correlations is displayed in Fig. 6. For regions missing only
one dataset, the cross-correlation between the remaining two
methods is displayed, notwithstanding edge effects due to
differences in coastal definition. Previous work in the US
(Hain et al., 2011) has indicated that ALEXI and LPRM soil
moisture retrievals perform optimally in complementary re-
gions due to strengths and limitations of each retrieval tech-
nique. Passive microwave soil moisture retrievals, including
LPRM, are inherently limited to the top 1–2 cm of the soil
column. Use of the exponential filter softens this limitation,
assuming a correlation between surface and root-zone soil
moisture, and can capture the influence of deeper soil mois-
ture to some extent, but the LPRM soil moisture estimate is
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Fig. 4. Seasonal anomalies averaged over the 2010 short rains(A–C) and 2011 long rains(D–F) for LPRM (A, D), ALEXI (B, E) and
Noah(C, F). The short rains are defined as the period from 12 September–1 December, while the long rains span 28 March –30 June.

still highly sensitive to near-surface soil moisture variabil-
ity, which makes it most appropriate in sparsely vegetated
regions where vertical support of soil moisture is relatively
small. In addition, attenuation of the microwave signal in ar-
eas of dense vegetation disrupts the retrieval of soil mois-
ture measurements, potentially to the point of being unus-
able (Njoku et al., 2004; Owe et al., 2008). To ensure that the
observed patterns of cross-correlation are a result of the in-
formation present in the LPRM soil moisture estimates, and
not a result of the exponential filter applied to the original
data, a series of sensitivity analyses were conducted. When
the cross-correlations displayed in Fig. 5 were reproduced
using the LPRM data without the addition of the exponential
filter, the spatial patterns of correlation remained unchanged
and the magnitude of correlation changed only marginally for
a limited number of areas (results not shown). The similarity

of the cross-correlations with and without the exponential fil-
ter applied to the LPRM data underscores the sensitivity of
the microwave soil moisture estimates to near-surface soil
moisture variability.

The ALEXI thermal infrared model, in contrast, obtains its
measurements based on radiometric temperature partitioned
between the soil and vegetation. This means that, while the
physical depth of measurement may change as a function
of vegetation, the performance is not expected to deterio-
rate with increasing vegetation cover, as found by Hain et
al. (2011). Indeed, the fact that the thermally based soil mois-
ture estimate integrates the effects of surface evaporation and
plant transpiration makes it particularly valuable in densely
vegetated regions, where root zone soil moisture variability
can be significant.
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Fig. 5.Temporal cross-correlation of rescaled soil moisture anomalies for January 2007–June 2010 computed between(A) LPRM and Noah,
(B) ALEXI and Noah, and(C) ALEXI and LPRM.

Figures 5 and 6 allow us to explore this pattern, first us-
ing Noah, then ALEXI as a point of reference. Over the ma-
jority of extremely arid regions (e.g., Egypt, northern Su-
dan and portions of Saudi Arabia and the Horn), neither
LPRM nor ALEXI clearly correlates more strongly with
Noah. Similarly, Fig. 6b demonstrates that, when ALEXI
is used as the reference dataset, neither LPRM nor Noah
displays dominant correlation. Over semi-arid regions (e.g.,
central Sudan, portions of southern Ethiopia, Kenya and So-
malia), LPRM correlates more strongly with Noah than does
ALEXI, largely because LPRM errors are low for sparse veg-
etation cover while ALEXI errors are moderate across all
vegetation conditions. This relation is highlighted in Fig. 6b
by the comparable correlations of LPRM and Noah with
ALEXI in semi-arid regions. Some of the difference in per-
ceived skill between ALEXI and LPRM/Noah in such re-
gions may be related to the shorter repeat cycles of the

microwave sensors and LSM output as compared with the
thermal infrared method. Over areas of dense vegetation
(e.g., western Ethiopia and the Congo Basin), LPRM corre-
lates poorly with both Noah and ALEXI. This is in part due
to interference from vegetation and in part due to the fact that
LPRM soil moisture estimates, even when adjusted with an
fc filter, are dominated by near surface rather than root zone
variability.

These spatial patterns can be summarized by plotting the
difference between LPRM and ALEXI correlation with Noah
as a function of fractional vegetation cover (Fig. 6c and d).
In this application, the crossing point at which the sensors
are approximately equally correlated with Noah is at an
fc of 0.65. Above this threshold, ALEXI correlates more
strongly with Noah, while below it LPRM correlates more
strongly. The greatest divergence of the satellite-based soil
moisture estimates is in the extremes of vegetation density
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Fig. 6.Anomaly correlation difference using Noah(A, C) and ALEXI (B, D) as reference datasets. Areas shaded in brown or pink represent
a greater correlation between LPRM and the reference dataset.(A) and (B) show the spatial distribution of correlation differences, while
(C) and(D) show correlation differences as a function of the average fraction of green vegetation during the rainy seasons.

(fc < 0.35 andfc > 0.8). Using ALEXI as the reference
dataset reinforces these relations. At low to moderate vegeta-
tion density LPRM and Noah are comparably correlated with
ALEXI, while at moderate to high vegetation density Noah
correlates more strongly with ALEXI than does LPRM.

3.3 Triple collocation analysis and data merging

TCA was employed to quantify relative agreement across
the three soil moisture datasets and to provide an objective
basis for data merging. The chosen datasets display high
cross-correlations across the majority of the domain (indi-
cating highly linear relationships between products) and are

therefore suitable for a triple collocation analysis framework,
assuming that the products have independent error character-
istics. To evaluate whether the calibration of the exponential
filter violates this assumption, the TCA estimates obtained
using the exponential filter with a calibrated characteristic
time were compared to those obtained using exponential fil-
ters with uniform characteristic times set at 8, 16 and 24 days.
The results were TCA values that differed only marginally in
magnitude and not at all in structure (results not shown), in-
dicating that the use of a calibrated exponential filter does
not violate the assumption of independent error character-
istics required for triple collocation analysis. The final as-
sumption introduced during data processing to be evaluated
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Fig. 7.The variance of the triple collocation analysis-based errors in (m3 m−3)2 for each product juxtaposed with the annual average fraction
of green vegetation cover.(A) ALEXI TCA, (B) LPRM TCA, (C) Noah TCA,(D) mean fraction of green vegetation cover over the period
2007 to 2011. Gray areas in panels(A)–(C) indicate regions below the correlation threshold for the TC analysis (r < 0.2). Red boundaries in
panel(D) indicate bounding boxes for the analysis in Tables 1–4.

is the vertical support consistency of the three soil mois-
ture datasets, an issue extensively discussed in Yilmaz et
al. (2012). In their paper, Yilmaz et al. (2012) show that the
applicability of TCA using products that have different ver-
tical support information depends on the linear relationship
between soil moisture at different soil depths (i.e., surface,
vegetation-adjusted soil moisture, or root-zone). The depth
variations will pose a problem if they manifest themselves
in a nonlinear or a hysteric relationship; instead, if the rela-
tionship is linear, then it fits into the TCA framework. There-
fore, the impact of vertical inconsistencies will depend on
the linear relation between the soil moisture values of differ-
ent layers. Similar to what Yilmaz et al. (2012) have found
over US, we found a very high linear relation between the

representative soil depths of the products (results not shown);
hence, we expect the vertical support inconsistencies are ef-
fectively handled via the linear rescaling performed in TCA
equations. TCA was not applied, however, in some arid re-
gions both because of the low cross-correlations in these re-
gions and because drought monitoring in these persistently
dry regions is not a practical priority. These arid regions were
masked out of TCA on the basis of their low correlation co-
efficient between datasets (Fig. 7). It should be noted, how-
ever, that the TCA results reported in this paper are based on
a somewhat limited time series due to data availability, and
that, as additional data become available, they may be in-
corporated into the analytical framework outlined in this pa-
per. Given a longer time series, the TC error values would be
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Fig. 8.The variance of the triple collocation analysis-based errors in (m3 m−3)2 binned as a function of average fraction of green vegetation
cover during the rainy season, showing(A) TCA error values for each SM retrieval technique, and(B) differences in TCA between retrieval
techniques.

expected to vary seasonally. For example, the TC error val-
ues during the rainy season would be expected to be larger
simply because the magnitude of soil moisture during rainy
events is larger. For this study, however, the TC error values
were assumed constant in time due to the short time series of
available data.

As with the correlations between products, the spatial vari-
ability of the TC error values for each product was evalu-
ated as a function of the fraction of green vegetation (Figs. 7
and 8). LPRM has a clear dependence on the fraction of

green vegetation cover, with a marked increase in TC er-
rors abovefc = 0.75. As a passive microwave-based sensor,
it is expected that the accuracy of LPRM soil moisture re-
trievals would decrease over areas of dense vegetation (Hain
et al., 2011). The poor performance of LPRM in densely veg-
etated areas is reflected in the TC error values displayed in
Fig. 7, especially over the Congo Basin. In these regions,
valid LPRM soil moisture retrievals are often not available,
and are of relatively low accuracy when they are available.
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Fig. 9.TCA-based weight map for the case in which data are available from all products for(A) ALEXI, (B) LPRM and(C) Noah. The sum
of weights per location adds to unity.

ALEXI and Noah have a less pronounced dependence on
the fraction of green vegetation, but in general Noah main-
tains the constant TC error values across allfc, while the
TC error values of ALEXI decrease above moderatefc.
These trends are further confirmed in Fig. 8b, showing the
relative TC errors between retrieval techniques. LPRM has
the highest TC over high mean fraction of vegetation cover
(fc > 0.70), while for areas with a low to moderate fraction
of vegetation cover (fc < 0.70) ALEXI displays higher TC
error values than those of Noah or LPRM.

When considering the TC error values from a data merg-
ing perspective, higher relative TC error values correspond
to lower merging weights (see Eqs. 14–18). In an opera-
tional setting, these weights would be expected to change
with time as the TC error values vary. However, as previously

discussed, the assumption of TC error values constant in time
leads to weights that are also constant in time. Owing to the
heterogeneity of fractional vegetation and the complemen-
tary retrieval techniques, LPRM and ALEXI received low
merging weights in offsetting regions, while Noah received
fairly constant weights across the domain. This relation-
ship is best illustrated by selecting a number of specific re-
gions to analyze. For the purposes of this study, four re-
gions for which drought may be of concern but which dis-
play markedly different vegetation cover were chosen: the
Ethiopian Highlands, the Horn of Africa, northern Lake Vic-
toria and Darfur (see Fig. 7). As expected, in the areas dom-
inated by low fractional vegetation and an arid climate (Dar-
fur and the Horn of Africa), LPRM and Noah received a
higher merging weight and in general displayed lower TC
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Fig. 10.Individual and merged product anomaly maps for an 8-day period during the 2011 long rainy season (28 April–6 May).(A) LPRM,
(B) ALEXI, (C) Noah,(D) Merged product.

error values than ALEXI (Tables 1–4). However, over moder-
ate to dense fractional vegetation, the performance of LPRM
degraded (as TC error values increased), while ALEXI and
Noah on average had lower TC error values and therefore
received a higher merging weight.

Bearing in mind the predominantly arid conditions of the
study region, these results are also consistent with the cor-
relation analysis (Fig. 5 and Table 5), which indicates that
Noah has the highest cross-correlations and LPRM cross-
correlations are better than the cross-correlations of ALEXI.
However, the majority of the cross-correlation differences are
only marginal, especially the difference between the cross-
correlations of Noah and ALEXI, implying the weight dif-
ferences we find here are only due to small differences that
exist in the cross-correlations. Here the weights do not imply

any relation with the absolute magnitude of the errors, but
rather only give information about the relative magnitudes of
the errors regardless of the error differences.

The performance of the merged product was compared to
each individual method in Fig. 10, which compares estimates
of soil moisture during an 8-day period of the long rains in
2011. The merged product achieves a more complete spa-
tial coverage than either of the satellite methods while re-
flecting a consensus location and magnitude anomaly pat-
tern. The year-long progression of the 2010–2011 drought is
depicted in Fig. 11, which displays the monthly anomalies
of the merged product for July 2010–June 2011. This figure
highlights the spatial evolution of the two-season drought as
captured by the merged product.
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Fig. 11.Monthly anomaly maps of the progression of the 2010–2011 drought using the merged product. July–December 2010(A–F) and
January–June 2011(G–L).

Importantly, the merged product and all three indepen-
dent products generally agree on the seasonality and gen-
eral patterns of interannual variability in soil moisture in
the drought-affected region (Fig. 12). This suggests that the
independent products are capturing sufficiently similar pro-
cesses at seasonal and interannual timescales, and it indicates
that, within the drought-affected region, the merged prod-
uct provides a spatially complete, consensus-derived drought

monitor that is not overly influenced by discrepancies be-
tween datasets. This point is reinforced by the fact that there
is near total agreement in the rank order soil moisture deficit
conditions for long and short rainy seasons across LPRM,
ALEXI, Noah, and the merged product (Table 6). In all cases,
the 2010 short rains and 2011 long rains are identified as
the most anomalously dry rainy seasons in the 5-yr record.
This consistency in results offers some confidence that the
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Table 1. Average merging weight and TC error values for the
Ethiopian Highlands.

Ethiopian Highlands
(34.59, 40.21, 6.86, 13.53)[W, E, S, N]

Retrieval Average TCA Average
value merging

[(m3 m−3)2] weight

LPRM 4.312× 10−4 0.283
ALEXI 3.914× 10−4 0.331
Noah 2.822× 10−4 0.385

merged product for the drought region is informed by con-
sensus between all three products and is not disregarding
one product in favor of consensus between the other two.
The rainy season rankings of these soil moisture products is
also broadly consistent with rankings derived from vegeta-
tion index anomalies and GRACE water storage anomalies
(see Fig. 3). Relatively small discrepancies between prod-
ucts – for example, the relatively slow dry-down in ALEXI
observed in 2009 and 2011 (Fig. 12) – are interesting in their
own right and are the subject of further study. But they do not
strongly influence the seasonal rankings.

4 Conclusions

Remote sensing and physically based models are critically
important methods for monitoring drought in areas with lim-
ited in situ observation networks, particularly for countries
with food security concerns. As shown in this study, re-
motely sensed observations are valuable for their spatial and
temporal continuity as well as for their diversity – satellite-
derived observations of precipitation, soil moisture, vegeta-
tion condition and terrestrial water storage offer a range of
information on meteorological, agricultural, and hydrolog-
ical drought over space and time. An anomaly analysis of
satellite- and model-based drought indicators demonstrated
that the 2010–2011 drought stands out as an extreme event
according to all measures included in this study. But differ-
ent data records provide different perspectives on the onset
and progression of the drought. TMPA and LPRM capture
rapid-response anomalies associated with the failure of rains
in each rainy season, while ALEXI and Noah track the evo-
lution of the drought as it deepened from 2010 to 2011, and
GRACE captures the fact that the drought occurred against a
background of a multi-year deficit in the regional water bal-
ance. This diversity of information is valuable for tracking
the progression and severity of a drought and for anticipating
the impacts that an emerging drought may have on ecological
and human systems.

In addition to providing observations that capture di-
verse drought-related processes across time and space, earth

Table 2.Average merging weight and TC error values for Darfur.

Darfur
(23.89, 27.78, 9.82, 19.09)[W, E, S, N]

Retrieval Average TCA Average
value merging

[(m3 m−3)2] weight

LPRM 1.107× 10−4 0.351
ALEXI 1.561× 10−4 0.264
Noah 1.134× 10−4 0.384

Table 3.Average merging weight and TC error values for the Horn
of Africa.

Horn of Africa
(40.62, 48.12,−3.12, 9.37)[W, E, S, N]

Retrieval Average TCA Average
value merging

[(m3 m−3)2] weight

LPRM 3.023× 10−4 0.401
ALEXI 5.700× 10−4 0.212
Noah 2.793× 10−4 0.387

observing systems and models often provide complemen-
tary estimates of a single variable. In this study, independent
estimates of soil moisture derived from passive microwave
(AMSR-E; LPRM), thermal infrared (ALEXI), and model-
based (Noah) methods were cross-compared and merged
into a single consensus drought monitor product using triple
collocation analysis. It was found that ALEXI complements
the poor performance of LPRM under conditions of dense
vegetation, while LPRM and Noah provide more consistent
anomaly estimates under more sparse vegetation conditions.
This general pattern, which derives from the fact that vegeta-
tion interferes with LPRM soil moisture retrievals but does
not compromise thermally derived soil moisture estimates
from ALEXI, is consistent with findings of Hain et al. (2011)
for the contiguous US. The least squares-based objective data
merging technique that is built over the TCA-based error es-
timates utilizes the complementary strengths of each method
to generate soil moisture anomaly estimates across agrocli-
matic zones.

While the present study is limited by short satellite data
records and an absence of direct in situ soil moisture evalua-
tion data, the consistency of the results with studies in the US
and the coherency of independent satellite and model-based
analyses of the 2010–2011 Horn of Africa drought point to
the promise of the least squares-based merging approach that
utilizes TCA-based errors. ALEXI, AMSR-E, Noah, and the
merged product all credibly capture the major 2010–2011
drought event, the relative dryness rankings of each year, and
the expected seasonal cycles of soil moisture. In addition,
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Figure 12: Comparison of anomalies from individual and merged products using a Jan 
2007 – Jun 2010 baseline, averaged over the area of interest within the Horn of Africa 
(see Fig. 1). 

Fig. 12.Comparison of anomalies from individual and merged products using a January 2007–June 2010 baseline, averaged over the area of
interest within the Horn of Africa (see Fig. 1).

Table 4.Average merging weight and TC error values for northern
Lake Victoria.

Northern Lake Victoria
(28.71, 35.95,−0.25, 3.65)[W, E, S, N]

Retrieval Average TCA Average
value merging

[(m3 m−3)2] weight

LPRM 4.867× 10−4 0.273
ALEXI 5.187× 10−4 0.330
Noah 3.331× 10−4 0.396

Table 5.Average anomaly correlations.

Retrieval pair Darfur Ethiopian Horn of Northern
Highlands Africa Lake

Victoria

Noah – LPRM 0.848 0.737 0.828 0.689
ALEXI – LPRM 0.798 0.720 0.773 0.636
Noah – ALEXI 0.796 0.781 0.777 0.711

the TMPA precipitation product used to force Noah simu-
lations has demonstrated good performance in the drought-
affected portion of the study region, which lends additional
confidence to the Noah results. With the addition of a longer
ALEXI time series, the sampling errors that arise from short
satellite data records are expected to decrease relative to the
current study.

While data merging offers several advantages over a
single-source product – including improved spatial coverage
relative to single sensor techniques, the potential to down-
weight products with systematic biases in certain locations or

Table 6.Rank order of long and short rainy seasons based on sever-
ity of soil moisture deficit. ALEXI data are missing for the period
of the 2007 short rains.

ALEXI LPRM Noah Merged
product

2007
Long rains 6 7 7 7
Short rains NA 9 8 8

2008
Long rains 3 4 4 4
Short rains 7 6 6 6

2009
Long rains 4 3 3 3
Short rains 5 5 5 5

2010
Long rains 8 8 9 9
Short Rains 1 2 2 2

2011 Long Rains 2 1 1 1

Numbers in bold indicate the 2010–2011 drought.

environments, and the utilization of information from mul-
tiple independent data streams – merging on the basis of
consensus alone should properly be viewed as an experi-
mental, transitional approach pending confirmation with in
situ data. The merging technique would, for example, tend
to propagate any bias that exists in two or more products,
possibly degrading performance relative to a single-source
product that does not suffer from such bias. In the absence
of ground truth, the weighted merging technique proposed
in this paper is justified by the well-understood physical
processes that underlie general patterns in TCA values –
most notably the gradient towards degraded AMSR-E per-
formance in densely vegetated regions – and the expectation
that there issomeinformation in consensus between indepen-
dent products, such that a TCA-weighted merged value that
captures systematic deviations of one product from the others
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is, on the balance, better justified than a flat average across
products and is preferable to relying on a single product with
data gaps.

Pending further evaluation, the TCA-based data merg-
ing technique could form the foundation for a soil
moisture-based drought monitor in East Africa. Such a prod-
uct would complement existing drought analysis tools that
are based on precipitation anomaly, hydrological models, or
vegetation indices. Implementation of an operational TCA-
based system would, of course, entail a number of practical
challenges. First, data latency would need to be addressed.
The real-time TMPA 3B42-RT product is typically produced
with a 9 h latency, while LPRM data are produced with a
lag of 24 h. ALEXI data latency is currently a function of
the accessibility of Meteosat data (e.g., land surface temper-
ature, incoming solar radiation) and processing time for the
regional numerical weather prediction (NWP) model used to
generate necessary meteorological data fields. In an opera-
tional context, it should be possible to make use of opera-
tional NWP models (e.g., Global Forecast System or Euro-
pean Centre for Medium-Range Weather Forecasts) to pro-
vide the necessary meteorological fields facilitating a rapid
product turnaround on the order of 12–24 h. TCA analy-
sis itself can be automated to require minimal processing
time, and results can be disseminated through a web inter-
face or email alerts. As such, system latency represents a
surmountable challenge for operational monitoring. A sec-
ond challenge is that the analysis system currently makes use
of research-grade remote sensing products, including TMPA
precipitation and AMSR-E soil moisture, that are subject to
active algorithm development and – as was recently experi-
enced with AMSR-E – failure of one-of-a-kind sensors. The
challenge of evolving retrieval algorithms can be overcome
with regular recalibration of the analysis system – TCA anal-
ysis and data merging can readily be recalculated as data are
updated, provided that the updates are applied consistently
to the historical data archive. The problem of data continuity
in research-grade products is more difficult to address, and
points to the value of flexible analysis systems that can be
adapted to new satellite products (e.g., using SMAP in place
of AMSR-E for soil moisture) and, ultimately, the value of
transitioning application-oriented research sensors to opera-
tional status.

As demonstrated in this study, diverse satellite- and model-
based monitoring methodologies provide complementary in-
formation on the evolution and severity of drought. Ulti-
mately, East Africa – and other drought prone regions –
would benefit from an accessible and intuitive drought portal
that allows drought analysts and decision makers real-time
access to a range of drought monitoring products. As a com-
ponent of a much broader movement for drought prepared-
ness and response capacity in the region, such a monitor can
provide valuable information to inform early warning and
disaster response for future droughts.

Acknowledgements.This study was supported in part by NASA
Applied Sciences grant NNX09AT61G.

Edited by: B. van den Hurk

References

Albergel, C., R̈udiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Frois-
sard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From
near-surface to root-zone soil moisture using an exponential fil-
ter: an assessment of the method based on in-situ observations
and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337,
doi:10.5194/hess-12-1323-2008, 2008.

Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and
Mecikalski, J. R.: A two-source time-integrated model for esti-
mating surface fluxes using thermal infrared remote sensing, Re-
mote Sens. Environ., 60, 195–216, 1997.

Anderson, M. C., Normal, J. M., Kustas, W. P., Li, F., Prueger,
J. H., and Mecikalski, J. R.: A climatological study of evapo-
transpiration and moisture stress across the continental United
States: 1. Model formulation, J. Geophys. Res., 112, D11112,
doi:10.1029/2006JD007506, 2007a.

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. P., and
Kustas, W. P.: A climatological study of evapotranspiration and
moisture stress across the continental U.S. based on thermal re-
mote sensing: II. Surface moisture climatology, J. Geophys. Res.,
112, D11112,doi:10.1029/12006JD007507, 2007b.

Anderson, M. C., Hain, C., Pimstein, A., Mecikalski, J. R., and Kus-
tas, W. P.: Evaluation of Drought Indices Based on Thermal Re-
mote Sensing of Evapotranspiration over the Continental United
States, J. Climate, 24, 2025–2044,doi:10.1175/2010JCLI3812.1,
2011a.

Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R.,
Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammal-
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