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Abstract. We investigated the contribution of medium range
weather forecasts with lead times of up to 14 days to seasonal
hydrologic prediction skill over the conterminous United
States (CONUS). Three different Ensemble Streamflow Pre-
diction (ESP) based experiments were performed for the
period 1980–2003 using the Variable Infiltration Capacity
(VIC) hydrology model to generate forecasts of monthly
runoff and soil moisture (SM) at lead-1 (first month of the
forecast period) to lead-3. The first experiment (ESP) used a
resampling from the retrospective period 1980–2003 and rep-
resented full climatological uncertainty for the entire forecast
period. In the second and third experiments, the first 14 days
of each ESP ensemble member were replaced by either ob-
servations (perfect 14-day forecast) or by a deterministic 14-
day weather forecast. We used Spearman rank correlations of
forecasts and observations as the forecast skill score. We esti-
mated the potential and actual improvement in baseline skill
as the difference between the skill of experiments 2 and 3
relative to ESP, respectively. We found that useful runoff and
SM forecast skill at lead-1 to -3 months can be obtained by
exploiting medium range weather forecast skill in conjunc-
tion with the skill derived by the knowledge of initial hydro-
logic conditions. Potential improvement in baseline skill by
using medium range weather forecasts for runoff [SM] fore-
casts generally varies from 0 to 0.8 [0 to 0.5] as measured by
differences in correlations, with actual improvement gener-
ally from 0 to 0.8 of the potential improvement. With some
exceptions, most of the improvement in runoff is for lead-1
forecasts, although some improvement in SM was achieved
at lead-2.

1 Introduction

Droughts are among the most expensive natural disasters
(Ross and Lott, 2003). Proactive risk-based approaches to
drought management that include better monitoring, early
warning and prediction are essential for mitigating drought
losses (Schubert et al., 2007). Seasonal hydrologic and
drought prediction systems, such as the NOAA Climate
Prediction Center’s (CPC) seasonal drought outlook, derive
their skill from knowledge of initial hydrologic conditions
(IHCs) and weather/climate information during the forecast
period. The contribution of IHCs and climate forecast skill
in seasonal hydrologic prediction varies seasonally, spatially
and with lead time. Over the conterminous United States
(CONUS), Shukla and Lettenmaier (2011) found that IHCs
generally dominate at short leads (i.e. 1–2 months), while
climate forecast skill dominates for longer leads; although,
IHCs can account for a substantial part of the total hydrologic
forecast skill under some conditions for leads of as long as 6
months.

Macro-scale land surface models (LSMs) provide a rea-
sonably accurate estimate of IHCs at the time of fore-
cast initialization for seasonal hydrologic prediction. For
example, seasonal hydrologic/drought prediction systems,
such as The National Centers for Environmental Predic-
tion’s (NCEP) drought monitor (http://www.emc.ncep.noaa.
gov/mmb/nldas/forecast/TSM/prob/) and the University of
Washington’s Surface Water Monitor (http://www.hydro.
washington.edu/forecast/monitor/outlook/index.shtml), use
IHCs generated by LSMs. Within the multi-institutional
North American Land Data Assimilation System project
(Mitchell et al., 1999, 2004), a suite of large scale hydrologic
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models have been developed and tested over the CONUS
for their ability to simulate various hydrometeorological pro-
cesses (Cosgrove et al., 2003; Luo et al., 2003; Pan et al.,
2003; Schaake et al., 2004; Sheffield et al., 2003; Xia et al.,
2011a, b)

Simultaneously, major strides have been made toward un-
derstanding the sources of predictability of seasonal precipi-
tation and temperature in the US (Higgins et al., 2000), and
improving climate forecasts (O’Lenic et al., 2008). Statistical
and physical modeling approaches can exploit predictabil-
ity in the climate system primarily via the thermal inertia
present in sea surface temperatures (Barnston et al., 1999),
especially during strong El Niño/La Niña-Southern Oscilla-
tion years. Otherwise, precipitation forecast skill beyond a
month or so is quite limited (Quan et al., 2006; Wilks, 2000).
Precipitation forecast skill is generally lower than the skill of
forecasts for temperature or atmospheric circulation patterns
for the same location and time (Barnston et al., 2010; Gong
et al., 2003; Lavers et al., 2009; Wilks and Godfrey, 2002).
Since precipitation is the major driver of drought conditions,
seasonal drought prediction skill is severely limited by the
lack of precipitation forecast skill under most conditions. The
difficulty of forecasting rainfall, mainly during summer, has
been a major stumbling block for the CPC’s seasonal drought
outlook as well (Hayes et al., 2005).

Various statistical and dynamical methods of seasonal hy-
drologic forecasting have been developed and are being used
operationally (see e.g. Day, 1985; Wood et al., 2002; Luo et
al., 2007; Wang et al., 2009; Wood and Lettenmaier, 2006).
Most previous studies have found that due to limited sea-
sonal climate forecast skill, seasonal hydrologic forecast skill
comes in substantial part from IHCs (Wood et al., 2002,
2005; Lavers et al., 2009, Lettenmaier and Wood, 2009).
One potential means for improving seasonal hydrologic pre-
diction is to better exploit medium range weather forecasts
(MRWFs) for the first 14 days of a seasonal forecast pe-
riod. MRWFs have greatly improved in the last two decades
as increased computer power and more integrated observa-
tion systems have allowed general circulation models to run
at finer resolutions with improved initializations (Pappen-
berger et al., 2005). MRWFs have been coupled with LSMs
to provide flood and streamflow forecasts for lead times of
up to 2 weeks, using both deterministic and probabilistic ap-
proaches (Clark and Hay, 2004; Hou et al., 2009; Thielen et
al., 2009; Voisin et al., 2011; Werner et al., 2005). Werner
et al. (2005) found that incorporating 14-day precipitation
and temperature forecasts from a MRWF model into the Na-
tional Weather River Forecast System’s traditional ESP fore-
cast system generally improved the streamflow forecast skill
for up to 18 days. Hou et al. (2009) evaluated the Global
Ensemble Forecast System of NCEP coupled with the Noah
LSM for its ability to provide useful streamflow forecast
skill. They concluded that the coupled system had some pos-
itive streamflow forecast skill at lead times varying from 1–3

days for smaller basins and more than 7–10 days for large
river basins.

The use of MRWFs has been mostly limited to up to two
weeks in lead time, and their value in improving hydrologic
prediction at seasonal scale is largely unexplored so far. By
merging MRWFs (∼ 14 day lead) with seasonal climate fore-
casts, seasonal hydrologic prediction skill could potentially
be (i) improved at short lead times (∼ 1–2 months) and (ii)
extended in time beyond what is derived solely from the
IHCs, particularly in those cases when climate forecasts at
even short lead times have skill that is no better than clima-
tological.

The goal of this study is to assess the contribution of MR-
WFs in seasonal hydrologic prediction. Specifically, we eval-
uate the potential of MRWFs to improve seasonal hydro-
logic forecast skill relative to that achievable by the Ensem-
ble Streamflow Prediction (ESP) approach. ESP (Day, 1985;
Franz et al., 2003) is a method that involves running an LSM
up to the forecast initialization date using observed forcings,
and then producing ensembles by resampling time sequences
of forcings from years in the historic record. Hence, its skill
is derived solely from knowledge of IHCs. We evaluate the
additional forecast skill derivable from MRWFs in the con-
text of hydrologic ensembles of monthly runoff and mean
monthly soil moisture (SM) at leads from one to several
months.

2 Approach

Three ESP-based experiments were conducted. The basic
framework for each experiment was the same: IHCs were
derived by running an LSM using observed meteorologi-
cal forcings until the date of forecast initialization, i.e. on
the first of each month in the 1980–2003 period. In fore-
cast mode, the LSM was forced with 3-month long observed
meteorological forcings resampled from the historical period
(23 ensemble members from 1980–2003) using a leave-one-
year-out approach and starting on the day of the forecast, i.e.
on the first of each month. The experiments differed in the
forcings for the first 14 days of the forecast periods as fol-
lows:

– The first experiment (hereafter referred to as ESP) used
the conventional ESP framework (Fig. 1a; as in Wood
and Lettenmaier 2006, 2008; Wood et al., 2002; Li et
al., 2009; Shukla and Lettenmaier, 2011). It defines the
baseline seasonal hydrologic prediction skill.

– In the second experiment (hereafter referred to as
OBS MergedESP), the first 14 days of each ESP en-
semble member were replaced with observations (i.e.
perfect MRWF). For example, as shown in Fig. 1b, the
forcings used for days 1 to 14 were the observations dur-
ing that period (deterministic perfect forecast), beyond
which the forecast ensemble members were the same
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Figure 1: Schematic showing the climate forecast framework for (a) Experiment-1 (ESP) 3 

(b) Experiment-2 (OBS_Merged_ESP) and (c) Experiment-3 (MRF_Merged_ESP). 4 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Fig. 1. Schematic showing the framework for(a) Experiment 1
(ESP) (b) Experiment 2 (OBSMergedESP) and(c) Experiment
3 (MRF MergedESP).

as in ESP. OBSMergedESP defines the maximum im-
provement in seasonal hydrologic prediction skill that
can be obtained if perfect knowledge of the LSM forc-
ings could be extended to 14 days in the future.

– The third experiment (hereafter referred to as
MRF MergedESP) is similar to the second exper-
iment, but observations for the first 14 days in each
ensemble member were replaced with a deterministic
MRWF (Fig. 1c). This experiment defines the actual
improvement in seasonal hydrologic prediction skill
that can be derived from use of realistic weather
forecasts over those 14 days. The skill contributed
by these forecasts may also be limited by the need to
downscale the MRWF to the spatial resolution of the
hydrologic model (one-half degree in the case of our
experiments).

The skill of each experiment was estimated with respect to
the “simulated observed” values (hereafter referred to as ref-
erence values) of runoff and SM, which were treated as surro-
gates for observations. The reference runoff and SM were ob-
tained from a consistent long-term (1980–2003) simulation
of the Variable Infiltration Capacity (VIC) LSM (Sect. 2.1.1)
forced with observed gridded station data (see Sect. 2.1.2).

2.1 LSM and forcing data

2.1.1 The Variable Infiltration Capacity (VIC) model

The VIC macro-scale hydrology model (Liang et al., 1994;
1996; Cherkauer et al., 2003) was run at a daily time step
and 1/2 degree latitude-longitude spatial resolution. The VIC
model includes a parameterization for spatial variability of
the infiltration capacity (and hence variability of runoff) and
evaporation from different vegetation types, as well as bare
soil evaporation. It provides for non-linear dependence of the

partitioning of precipitation into infiltration and direct runoff
as determined by soil moisture in the upper layer and its spa-
tial heterogeneity. The subsurface is partitioned into three
layers. The first layer has a fixed depth of∼ 10 cm and re-
sponds quickly to changes in surface conditions and precip-
itation. Moisture transfers between the first and second, and
second and third soil layers are governed by gravity drainage,
with diffusion from the second to the upper layer allowed in
unsaturated conditions. Base flow is a non-linear function of
the moisture content of the third soil-layer (Liang et al., 1994;
Todini, 1996). The model was run in water balance mode;
which means that the surface temperature is assumed equal
to the surface air temperature, and is not iterated for energy
balance closure (this also implies zero ground heat flux). The
VIC model represents the snowpack as a two-layer medium
(a thin surface, and a thick deeper layer), and solves an en-
ergy and mass balance as part of its computation of pack ab-
lation (Andreadis et al., 2009).

2.1.2 Retrospective simulation (Control Run)

Given the lack of observed spatially distributed runoff (a
variable produced by the model, in contrast to streamflow,
which is an observed variable) and the absence of spatially
distributed soil moisture observations (note that satellite ob-
servations of soil moisture do exist, but they do not fully co-
incide with our period of analysis and furthermore are limited
to the upper few cm of the soil column), we chose to use a
historic reference VIC model simulation as the basis for eval-
uation of both runoff and soil moisture. Maurer et al. (2002)
have shown that hydrologic variables and fluxes derived from
the VIC model generally are in good agreement with avail-
able observations across the CONUS domain.

A consistent data set of runoff and mean monthly SM
over the analysis period (1980–2003) to be used as the ref-
erence was generated by forcing the VIC model with ob-
served gridded meteorological forcings over the analysis pe-
riod. This simulation also included a lengthy model spinup
to remove the effects of initial conditions. The model forc-
ings (daily precipitation, and maximum (Tmax) and minimum
(Tmin) temperature) were taken from Cooperative Observer
Program stations, and gridded at 1/2 degree spatial resolu-
tion using methods outlined in Maurer et al. (2002). Addi-
tional model forcings (downward solar and longwave radia-
tion, and humidity) were estimated from the daily air tem-
perature and temperature range following methods outlined
in Maurer et al. (2002). Surface wind was taken from the
lowest level of the NCEP/NCAR reanalysis (Kalnay et al.,
1996). The IHCs for each forecast initialization day used in
the experiments were provided by this control run.

2.1.3 Weather forecasts

We used the 1979–2005 15-day 12-hourly 2.5-degree
NCEP/Climate Diagnostics Center Medium Range Forecast
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Figure 2: Correlation between observed and forecasted (MRF) 14-day accumulated 3 

precipitation during each month.  4 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Fig. 2.Correlation between observed and forecasted (MRF) 14-day accumulated precipitation during each month.

(MRF) reforecast data set from Hamill et al. (2006). The
Hamill et al. (2006) data set uses a fixed version (1998) of the
NCEP global forecast model and hence should have nearly
consistent (aside from some differences in the data that were
available for assimilation) forecast skill over the period of
analysis. The reforecasts were downscaled from their native
resolution (2.5 degree) to the 0.5-degree scale of the hydrol-
ogy model and bias corrected to be consistent with the me-
teorological forcings used in the LSM spinup and reference
simulation. The downscaling was performed by first aggre-
gating the 12-hourly ensemble mean forecasts to 14 days,
then interpolating the ensemble averages using an inverse
squared distance interpolation scheme (Shepard, 1984). Fig-
ures 2 and 3 show the Spearman rank correlation between
the observed and downscaled forecasts (at 1/2 degree reso-
lution) of 14-day accumulated precipitation and 14-day mean
average daily temperature. In general, 14-day average daily
temperature forecast skill is much higher than the 14-day ac-
cumulated precipitation skill for any given month, and the
weather forecast skill (both precipitation and average tem-
perature) is lowest in summer months (June, July and Au-
gust). The precipitation forecast skill is highest over the Pa-
cific coastal regions and parts of the eastern US during win-
ter, a pattern that was observed by Clark and Hay (2004) and
Hamill et al. (2006) as well (however, for daily precipitation
totals for lead times of up to 5 days or so only).

The downscaled and accumulated 14-day weather fore-
casts were subsequently bias corrected by rescaling so that
the long term 14-day accumulated mean precipitation and av-
erageTmax andTmin matched the corresponding values from
the observed gridded forcings over the 1980–2003 period
(Wood et al., 2002; Voisin et al., 2010). We used all years in
the observed and forecast data sets to estimate the climatol-
ogy, notwithstanding that the year of forecast was included in
the probability distribution estimates (the small effect of re-
ducing the number of observations used to estimate the prob-
ability distributions by one year is not likely to have much
effect on the results). The 14-day spatially downscaled and
bias corrected forecasts were then temporally disaggregated
to daily forecasts using the observed sequencing of precipita-
tion and temperature. More elaborate weather pre-processors
could have been used (e.g. Schaake et al., 2007; Voisin et al.,
2010; Wu et al., 2011); however, given our focus on seasonal
hydrological forecasts, the daily sequencing of events is less
important than the aggregate quantities.

We chose to merge the 14-day ensemble mean forecasts,
rather than each ensemble member, into the post-day 14 ESP
ensembles to avoid complications in merging two sets of
ensembles (Clark et al., 2004). Furthermore, this limits the
impact of the calibration and downscaling approach on the
seasonal hydrologic ensemble forecast skill. Our approach
is similar to that of Clark and Hay (2004) and Werner et
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Figure 3: Correlation between observed and forecasted (MRF) 14 days mean average 4 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6 

Fig. 3.Correlation between observed and forecasted (MRF) 14-day mean average-temperature during each month.

al. (2005); however, unlike in those studies we use the ensem-
bles average, not the probabilistic MRF forecasts, to merge
with ESP forecasts. In contrast to the merged forecasts, the
ESP approach, which simply takes the first 14 days of the
forecast period from random resampling of past observa-
tions, derives its skill entirely from the knowledge of the
IHCs (whereas in MRFMergedESP some skill comes from
weather forecasts during the first 14 days).

The bias correction and statistical disaggregation approach
in general reduces or eliminates biases, but does not preserve
probabilistic information inherent in the ensemble forecasts
(Voisin et al., 2010). Here, we evaluate the potential improve-
ment in seasonal hydrologic prediction from merging MRF
with ESP, assuming that the information in the MRF ensem-
ble is not calibrated and only the ensemble mean forecast is
useful for our application.

2.2 Forecast skill score

For simplicity, daily spatially distributed runoff and SM fore-
casts and reference values (obtained from the control run)
were aggregated in time to monthly accumulations or aver-
ages, and to the spatial scale of 18 hydrologic sub-regions
across the CONUS domain (Table 1). These sub-regions
are the same as the sub-regions used in Shukla and Letten-
maier (2011) and were created by merging the 221 USGS

Table 1.List of USGS water resources regions.

Region 01 New England (NE)
Region 02 Mid-Atlantic (MA)
Region 03 South Atlantic-Gulf (SAG)
Region 04 Great Lakes (GL)
Region 05 Ohio (OH)
Region 06 Tennessee (TN)
Region 07 Upper Mississippi (UM)
Region 08 Lower Mississippi (LM)
Region 09 Souris-Red-Rainy (SRR)
Region 10 Missouri (MO)
Region 11 Arkansas-White-Red (AR)
Region 12 Texas-Gulf (TX)
Region 13 Rio Grande (RG)
Region 14 Upper Colorado (UC)
Region 15 Lower Colorado (LC)
Region 16 Great Basin (GB)
Region 17 Pacific Northwest (PNW)
Region 18 California (CA)

hydrologic sub-regions. Each of the sub-regions is named af-
ter the water resources region in which it is located (Table 1).

To evaluate the prediction skill of each experiment, we
estimated Spearman rank correlation coefficients (Wilks,
2006) between the ensemble mean forecasts (over years)
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Figure 4: Baseline skill (i.e., skill of ESP experiment) for runoff forecasts at leads 1-2 3 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Fig. 4.Baseline skill (i.e. skill of ESP experiment) for runoff forecasts at leads 1–2 months (dark grey color shows the sub-regions where the
baseline skill is not significant at the 95 % significance level).

and the reference simulations. The Spearman rank correla-
tion is a measure of monotonic associations (both linear and
non-linear) between forecasts and observations (Jolliffe and
Stephenson, 2003), unlike the Pearson correlation that is a
measure of linear associations only. Furthermore, the Spear-
man rank correlation is calculated using the ranks of the data
so outliers in the sample (and zeros in particular for the vari-
ables of interest) do not impact the Spearman rank correla-
tion coefficient (in contrast to the Pearson correlation coef-
ficient, Wilks, 2006). The skill (rank correlation) of the ESP
experiment is considered to be the “Baseline skill”. We con-
sidered the difference between the skill of OBSMergedESP
and the ESP experiment as the potential improvement, and
the difference between the skill of MRFMergedESP and
the ESP experiment as the actual improvement in baseline
skill.

3 Results

We present the results for a forecast period of 2 months only
(Figs. 4, 5, 6, 7, 8 and 9). Although in a few cases we ob-
served improvements in seasonal hydrologic prediction skill
due to use of MRWFs for three-month lead, generally the
improvement in skill was limited to lead-1 and lead-2.

First, we show the baseline skill (skill of the ESP experi-
ment). The sub-regions where the baseline skill is not signif-
icant at the 95 % significance level (i.e. given the degrees of
freedom of the sample, the correlation value is lower than it
would have to be to reject the hypothesis of the correlation
being different from 0 at the significance level of 95 %) have
been masked and are shown in dark grey (the critical value of
the Spearman rank correlation was estimated using the table
given in Zar (1972)). We then show the potential improve-
ment in the baseline skill (the difference between the skill
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Figure 5: Potential improvement in runoff forecast skills at leads 1-2 months.  (Dark grey 3 

color shows the sub-regions where the skill of OBS_Merged_ESP is not significant at 4 

95% significance level.) 5 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Fig. 5. Potential improvement in runoff forecast skills at leads 1–2 months (dark grey color shows the sub-regions where the skill of
OBS MergedESP is not significant at the 95 % significance level).

of OBS MergedESP and ESP experiments). Again, the im-
provement is shown over those sub-regions where the skill of
OBS MergedESP is significant at the 95 % level. Finally, we
show the ratio of the actual improvement in skill (difference
between the skill of MRFMergedESP and ESP experiment)
and the potential improvement in skill, to highlight the level
of the improvement in skill actually recovered by using real-
istic MRWFs. We show the actual improvement in skill over
those sub-regions only where the potential improvement in
skill is > 0.1, and the skill of OBSMergedESP is signifi-
cant at the 95 % level.

3.1 Monthly runoff forecasts

The correlations of ensemble mean monthly runoff forecasts
from ESP initialized (baseline skill) on day 1 of each month
with the reference runoff at leads 1 to 2 months are shown

in Fig. 4. In general, the baseline skill is highest at lead-
1. Overall, across the CONUS, the baseline skill for runoff
forecasts is highest during forecast periods starting in win-
ter months (i.e. December, January, and February (DJF)) and
lowest during forecast periods starting in fall months (mainly
September and October). During forecast periods starting in
spring (March, April, and May (MAM)) and early summer
months (June and July), the western US stands out with rel-
atively high runoff forecast skill up to lead-2 (and beyond,
not shown here). This is mostly attributable to the effects of
snow, which provides substantial IHC-related forecast skill
for forecast periods starting in late winter to early summer.

Figure 5 shows the potential improvement in baseline skill
of monthly runoff forecasts (i.e. the difference between the
skill score of runoff forecasts from OBSMergedESP and
ESP). Not surprisingly, the greatest improvement in runoff
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Figure 6: The ratio of actual improvement and potential improvement in baseline runoff 3 

forecast skill at leads 1-2 months. (Dark grey color shows the sub-regions where either 4 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Fig. 6. The ratio of actual improvement and potential improvement in baseline runoff forecast skill at leads 1–2 months (dark grey color
shows the sub-regions where either the potential improvement in skill is< 0.1 or the skill of OBSMergedESP is not significant at the 95 %
significance level).

forecast skill is at lead-1, and the effect decreases with lead
time. The largest improvement in skill for any given sub-
region at lead-1 is generally in those cases where the first
month of the forecast period is climatologically wet. This
is the case, for example, for sub-regions in the Great Plains
(i.e. the area of generally low relief east of the Rocky Moun-
tains and west of the Mississippi River), Midwest (most of
the Mississippi Basin) and Lower Mississippi sub-regions
for forecasts starting in April through October, and for the
Pacific coastal sub-regions for forecast periods starting in
November through the winter months (i.e. DJF). On the other
hand, the improvement in skill at lead-1 is small for sub-
regions for which the first month of the forecast period is cli-
matologically dry or the initial moisture variability is much
higher than the precipitation variability during the forecast
period (smallκ values according to the convention of Ma-

hanama et al., 2011); such conditions lead to high baseline
skill. This is the case for instance in the interior of the west-
ern US during spring and summer months.

In some cases, the improvements in skill due to use of per-
fect MRWFs persists into leads-2 and -3 (not shown). These
cases likely correspond to better knowledge of IHCs at the
end of the 14 days in the OBSMergedESP experiment than
in the ESP experiment.

The potential improvement in skill shown in Fig. 5 clearly
is optimistic relative to what is achievable in practice, be-
cause weather forecast skill is imperfect even for the small-
est (e.g. one day) leads, and declines thereafter throughout
the 14-day MRWF period.

Figure 6 shows the ratio of actual improvement in skill
(differences in correlations for runoff forecasts derived by
MRF MergedESP and ESP) to potential improvement in
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skill (as discussed above), and indicates the improvement
in runoff forecast skill that can be achieved realistically by
using MRF medium range weather forecasts for the first 14
days of the forecast period. (It should be noted that these
results may be slightly pessimistic as the MRF model has
been retired, and MRWF skill for current generation weather
forecast models may be slightly higher. However, the MRF
reforecast data set is unique in providing a consistent set
of reforecasts appropriate for the type of analysis we have
performed; a newer version of this data set is planned but
has not yet been released.) Two main factors control the
actual improvement in runoff forecast skill: (i) the poten-
tial improvement in skill (as shown in Fig. 5, derived from
the use of perfect MRWFs) and (ii) the forecast skill of the
MRWFs themselves. In other words, the improvement in
skill due to use of MRWFs will be highest when both the
potential improvement in hydrologic forecast skill and the
MRWF skill (primarily for precipitation) are high. Therefore,
in Fig. 6 we show the actual improvement over those sub-
regions only where the skill of OBSMergedESP is signifi-
cant at 95 % level and the potential improvement in baseline
skill is greater than 0.1.

In general, Fig. 6 shows that the actual improvement in
skill due to use of the MRF forecasts is highest for those
sub-regions and times of the year where the first month is
climatologically wet. Overall, the actual improvement in skill
is extensive over the Great Plains, Midwest, Texas-Gulf and
parts of the northern and southeastern US at lead-1 during the
forecast periods starting in spring (mainly April and May),
summer (mainly June and July) and fall (September, Octo-
ber, and November) months. Over the mountainous western
sub-regions, the actual improvement in skill is highest dur-
ing the forecast periods initialized on 1 November, Decem-
ber and January. Again, those are also the forecast periods
when the baseline skill is low over those regions (Fig. 4),
whereas during the forecast periods starting in spring and
summer months (when the baseline skill is high) both the po-
tential and actual improvement in skill is generally negligible
(Figs. 5 and 6). The sub-regions shown in white during each
forecast period show potential improvement but little or no
actual improvement, likely due to limited MRF precipitation
forecast skill.

3.2 Soil moisture (SM) forecasts

Figure 7 shows the baseline skill for SM forecasts for lead-
1 and lead-2. In general, the baseline skill for SM is much
higher than for runoff (Figs. 5 and 7). Shukla and Letten-
maier (2011) also showed that at lead-1 IHCs generally dom-
inate SM forecast skill.

Similar to the case of runoff forecasts across the CONUS,
baseline skill for SM is generally highest during forecast pe-
riods starting in the winter, with higher skill over the western
as compared with the eastern US. The baseline skill at leads-
2 (and -3, not shown here) is high over the interior of the

western US for forecast periods starting on day 1 of spring
(MAM) and summer (June, July, and August (JJA)) months.

The potential improvement in the baseline skill of SM
forecasts for each forecast period is shown in Fig. 8. Over-
all, the potential improvement in SM forecast skill at lead-1
is lower than the corresponding values for monthly runoff
forecast skill (Figs. 5 and 8). This appears to be a result of
the high baseline skill for SM at lead-1 (i.e. high contribu-
tion of IHCs in SM forecast skill), hence leaving less room
for improvement than for the case of runoff (since the max-
imum correlation value or the value of skill is 1). As for
runoff, the greatest potential improvement in skill is for sub-
regions and forecast periods where the lead-1 month is clima-
tologically wet. Improvements at lead-1 are mostly limited to
the southwestern and eastern US (and Great Plains in a few
cases), where the contribution of IHCs to SM forecast skill
is lower than for the western US. Mainly in the forecast peri-
ods starting in April, May, June and fall months (September
and October), relatively large potential improvements can be
seen over those regions. The potential improvement in skill
at lead-2, however, seems more extensive in the case of SM
forecasts than runoff. There could be a few explanations for
this pattern. First, more sub-regions show significant levels of
OBS MergedESP skill at lead-2 in the case of SM forecast
skill than in that of runoff skill (therefore fewer regions are
shown in dark grey at lead-2 in Fig. 8 than Fig. 5). Second,
the baseline skill for SM forecasts (i.e. skill of ESP experi-
ments) at lead-2 is smaller than at lead-1, leaving more room
for improvement in skill. Finally, the improvement in SM
forecast skill at lead-2 could be a result of persistence of the
contribution of MRWF skill at lead-1. Once again, the poten-
tial improvement in SM forecast skill at lead-2 is generally
prominent over the eastern half of the country.

The ratio of actual to potential improvement in SM fore-
cast skill is shown in Fig. 9. The actual improvement in
skill is shown only over the regions where potential improve-
ment in SM forecast skill is greater than 0.1 and the skill of
OBS MergedESP is significant at the 95 % level. Since the
baseline skill of ESP (and hence skill of OBSMergedESP)
is generally significant across the CONUS at lead-1, the sub-
regions shown in grey in Fig. 9 are mostly those regions
where the potential improvement in skill is lower than 0.1.
Overall, for the most part the actual improvement in skill
is limited to the sub-regions in the eastern half of the US,
mostly during the forecast periods starting in April, May,
June, September and October. Actual improvement in skill,
however, can be seen over Pacific coastal regions at lead-1 for
forecast periods starting in November and December. Again,
following the pattern of potential improvement, actual im-
provement at lead-2 in SM forecast skill also seems more
extensive than in runoff forecast skill. This could be due to
the persistence of the contributions of MRWFs at lead-1.
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Fig. 7. Baseline skill (i.e. skill of ESP experiment) for SM forecasts at leads 1–2 months (dark grey color shows the sub-regions where the
baseline skill is not significant at the 95 % significance level).

4 Discussion

Not surprisingly, the OBSMergedESP experiment that used
observed forcings over the first 14 days showed the greatest
improvement in baseline skill, while the MRFMergedESP
experiment that used realistic weather forecasts (i.e. MRF
forecasts) showed smaller or no improvement. However, fur-
ther improvement in MRWF skill will presumably lead to
improvement in seasonal hydrologic prediction skill in those
sub-regions and forecast periods where the use of perfect
medium range weather forecasts yields most improvement
in seasonal hydrologic prediction skill. For example, during
summer months (JJA), when the potential improvement for
interior western US regions and much of the eastern US is
greater than 0.2, the actual improvement is limited due to the
limited MRWF skill (Figs. 2 and 3).

We used a simple bias correction and disaggregation ap-
proach in the MRFMergedESP experiment (Sect. 2.1.3).
Our focus was on the removal of bias in the 14-day accumu-
lated forecast. Our analyses were performed at the monthly
time scale for each grid cell (not routed), and as such the
daily sequencing should not change the monthly results sig-
nificantly.

5 Conclusions

Our analysis indicates the following:

1. There is potential to improve monthly runoff and SM
forecast skill beyond the IHC effect at lead-1 (and up
to 3 months in a few cases) by exploiting MRWF skill.
In general, the Great Plain regions, Midwest, parts of
the southwestern US (sub-regions in Texas) and eastern
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Fig. 8. Potential improvement in SM forecast skills at leads 1–2 months (dark grey color shows where the skill of OBSMergedESP is not
significant at the 95 % significance level).

US would benefit most during forecast periods starting
in April through November. On the other hand, sub-
regions in the mountainous western US would benefit
most during forecast periods starting in November and
the winter months (DJF).

2. The potential (and actual) improvement in runoff fore-
cast skill, as contrasted with SM skill, is larger at lead-
1, mostly due to high baseline skill for SM (i.e. stronger
IHC effect in SM), whereas the improvement at lead-2
is more extensive for SM forecasts than for runoff.

3. Potential improvement in baseline skill for runoff fore-
casts generally varies from 0 to 0.8, whereas for SM it
varies from 0 to 0.5. However, the space–time patterns
of improvements are similar for runoff and SM.

4. The actual improvement in skill due to use of MRF
forecasts is limited by modest forecast skill for precip-
itation. The ratio of actual skill to potential skill im-
provement generally varies from 0 to 0.8. Sub-regions in
the Great Plains, Midwest, Texas, and northeastern and
southeastern US could potentially benefit most from im-
provement in MRF skill during forecast periods starting
in the summer months (JJA).

Our findings could have significant implications for the im-
provement of seasonal hydrologic predictions at short lead
times (i.e. lead-1 to -3 months). Present protocols for gen-
eration of ensemble hydrologic forecasts from seasonal cli-
mate forecasts (e.g. Luo et al., 2007) make use of climate
forecast ensembles that are generated through use of tempo-
ral offsets. The temporal offsets are mainly used to exploit
predictability from different initial sea surface temperature
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Fig. 9.The ratio of actual improvement and potential improvement in baseline SM forecast skill at leads 1–2 months (dark grey color shows
the sub-regions where either the potential improvement in skill is< 0.1 or the skill of OBSMergedESP is not significant at the 95 %
significance level).

conditions. For example, real-time operational seasonal cli-
mate forecasts such as the International Research Institute’s
seasonal climate forecasts are generated using seven atmo-
spheric global circulation models (forced by the predicted
global tropical sea surface temperature). However, the fore-
cast integration occurs 3–4 weeks in advance of the seasonal
forecast period; hence, the models do not exploit the skill
from the observed atmospheric initial conditions (as well as
the land surface conditions) at the beginning of the forecast
period (Barnston et al., 2010). Likewise, the Climate Fore-
cast System’s (Saha et al., 2006) real-time seasonal forecasts
make use of initial conditions of the last 30 days. As a result,
the effects of MRWFs at the beginning of the forecast period
are not reflected in the seasonal climate forecasts. This could
be resolved either by (a) use of shorter temporal offsets or (b)

merging deterministic weather forecasts for the first 14 days
(or perhaps shorter, given that most forecast skill comes from
the first 5 days or so) with seasonal climate model forecasts
thereafter.

Finally, improvement in drought prediction skill at short
lead times could potentially help with decisions that involve
identification of regions with the potential for drought re-
covery. This often occurs over much shorter lead times than
drought onset; hence, better use of weather forecasts could
provide practical benefits in this arena as well.
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