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Abstract. Malaria is a geographically widespread infectious
disease that is well known to be affected by climate vari-
ability at both seasonal and interannual timescales. In an ef-
fort to identify climatic factors that impact malaria dynamics,
there has been considerable research focused on the develop-
ment of appropriate disease models for malaria transmission
driven by climatic time series. These analyses have focused
largely on variation in temperature and rainfall as direct cli-
matic drivers of malaria dynamics. Here, we further these ef-
forts by considering additionally the role that soil water con-
tent may play in driving malaria incidence. Specifically, we
hypothesize that hydro-climatic variability should be an im-
portant factor in controlling the availability of mosquito habi-
tats, thereby governing mosquito growth rates. To test this
hypothesis, we reduce a nonlinear ecohydrological model to
a simple linear model through a series of consecutive as-
sumptions and apply this model to malaria incidence data
from three South African provinces. Despite the assumptions
made in the reduction of the model, we show that soil wa-
ter content can account for a significant portion of malaria’s
case variability beyond its seasonal patterns, whereas neither
temperature nor rainfall alone can do so. Future work should
therefore consider soil water content as a simple and com-
putable variable for incorporation into climate-driven disease
models of malaria and other vector-borne infectious diseases.

1 Introduction

The World Health Organization estimates that 250 million
clinical episodes of malaria occur annually, resulting in at
least one million disease-associated deaths (World Health
Organization, 2008). Malaria incidence is especially high in

developing countries, where it is a leading cause of mor-
bidity and mortality, in particular among children and preg-
nant women. Since the pioneering work by Ross (1910) and
MacDonald (1957), progress in understanding malaria dy-
namics has been made through the development of mathe-
matical models and their statistical inference with incidence
data (e.g.Bailey, 1982; Hay et al., 2002; Depinay et al.,
2004; Zhou et al., 2004; Pascual et al., 2008; Chaves et
al., 2012; Bhadra, 2011; Laneri et al., 2010, among others).
A subset of these models has considered the role that ex-
ternal forcing plays in generating patterns of seasonal and
interannual case variability. Despite these advances, early
warning systems for malaria have still only limited ability
(and thereby efficacy) to predict outbreaks, and the factors
contributing to malaria case variability still require more
thorough investigation (Pascual et al., 2008; Craig et al.,
2004a,b).

Two climatic variables that have long been known to influ-
ence malaria’s seasonal and interannual dynamics are tem-
perature and rainfall. Temperature is known to affect the
development time of mosquito larvae, the probability of
mosquito survival, and the development time of the malaria
parasite Plasmodium falciparumin infected mosquitoes
(Bayoh and Lindsay, 2003; Hoshen and Morse, 2004). Rain-
fall is hypothesized to affect malaria incidence through the
creation of mosquito breeding sites during wet periods and
the reduction of their availability during droughts (Patz et
al., 1998). Although a moderate level of rainfall appears to
have a positive effect on mosquito recruitment, intense rain-
fall events may destroy mosquito habitats and thereby reduce
malaria incidence shortly following their occurrence (Briet et
al., 2008).
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Due to the multiple effects of temperature and rainfall
on the malaria parasite and its mosquito vector, previous
work linking malaria incidence to climate forcing has fre-
quently focused on the direct impacts of temperature and
rainfall on the risk of malaria (Craig et al., 2004a; Lindasy et
al., 2000). Several studies have found a correlation between
malaria incidence and either minimum, mean or maximum
temperatures (Hay et al., 2002; Zhou et al., 2004; Devi and
Jauhar, 2007; Gomez-Elipe et al., 2007), while others have
instead considered the effects of diurnal temperature fluctua-
tions (Paaijmans et al., 2009) and indices of the upper atmo-
spheric circulation combined with sea-surface temperatures
(Jury and Kanemba, 2007) on the disease. At regional spa-
tial scales, malaria incidence has been correlated with rain-
fall amounts (Pascual et al., 2008; Craig et al., 1999; Hay
et al., 2001), interestingly with time lags of several months,
consistent with the presence of a physical “buffering” mecha-
nism that dampens rainfall fluctuations. These latter findings
hint at the fundamental role that soil water content dynam-
ics may play in malaria outbreaks. Recent work has moved
in this direction, with the role of surface hydrology being
more fully recognized and explicitly included in mechanis-
tic models. Some of these models have focused on water
level fluctuations in small reservoirs and the effect of these
fluctuations on malaria prevalence (Porphyre et al., 2005;
Shaman et al., 2002). In an effort to predict the number of
malaria cases, several statistical models have also considered
vegetation density (which depends on soil water availabil-
ity) and distances between water bodies and human popula-
tions (Gomez-Elipe et al., 2007; Kleinschmidt et al., 2001).
Finally, detailed models linking hydrology with entomology
have recently been proposed and tested for a semi-arid re-
gion (Bomblies et al., 2008; Yamana et al., 2011). The role of
hydrologic processes in the dynamics of other vector-borne
infectious diseases is also starting to become more fully rec-
ognized (Bertuzzo et al., 2008).

Motivated by these previous efforts, here we test the hy-
pothesis that soil water content is an important driver of
malaria dynamic. To test this hypothesis, we develop a
minimalist ecohydrological model of coupled surface water
malaria dynamics and use it to describe malaria incidence in
three South African provinces (Fig.1). Although the ecohy-
drological model we derive makes a series of simplifying as-
sumptions, our results show that variability in soil water con-
tent is significantly correlated with variability in malaria inci-
dence, whereas neither rainfall nor temperature alone shows
this correlation (beyond their seasonal associations). Future
work should therefore focus on soil water content as a simple
and computable environmental variable that can be incorpo-
rated into more mechanistic models of malaria transmission
that include internal feedbacks.

Limpopo

KwaZulu-Natal

Malaria risk:

low 

intermediate

none

South Africa

Mpumalanga

BOTSWANA

MOZAMBIQUE

ZIMBABWE

SWAZILAND

weather stations

Fig. 1. Map of the investigated provinces in South Africa, col-
ored by level of malaria risk. The locations of the weather sta-
tions for each province are marked with black triangles (see:http:
//www.malaria.org.za/MalariaRisk/Risk Maps/riskmaps.html).

2 Materials and methods

2.1 Malaria data

Monthly malaria incidence data over the period July 1996–
March 2007 were obtained from the South African De-
partment of Health (http://www.health-e.org.za/resources/
statistics.php, last access: February 2012) for three South
African provinces: Limpopo, Mpumalanga and KwaZulu-
Natal (Figs.2–3). Implementation of malaria control strate-
gies, mainly due to the Lumbobo Spatial Development Ini-
tiative, resulted in a steady decrease in the number of re-
ported malaria cases in the provinces of Mpumalanga and
Limpopo starting in 2005 and in the province of KwaZulu-
Natal starting in 2002. To neglect this transient and consider
a time series driven only by climate variability, we there-
fore limited our analysis to incidence data before June 2005
for Mpumalanga and Limpopo and before July 2001 for
KwaZulu-Natal (Figs.2–3).

2.2 Climate data

The meteorological data consisted of daily rainfall and daily
minimum and maximum temperature records collected from
weather stations managed by the South African Weather
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Fig. 2.Monthly malaria cases (solid grey line) and rainfall levels (dashed black line) for(A) Mpumalanga,(B) Limpopo, and(C) KwaZulu-
Natal provinces. Insets describe seasonal averages of malaria cases and rainfall rates (time proceeds according to the arrows).

Service. We restricted our analysis to datasets with less than
20 % missing meteorological data that were obtained from
stations in areas with high population densities and inter-
mediate to high malaria risk (Fig.1). For each province,
spatially integrated daily time series were first obtained by
averaging across the selected weather stations. Finally, to
have the same temporal resolution for the malaria and cli-
mate datasets, we computed monthly meteorological data
from these spatially integrated daily time series (Figs.2–
3). A preliminary inspection of monthly malaria data along-
side the meteorological data highlighted different responses
to temperature and rainfall. We observed that months char-
acterized by one or more days with daily maximum temper-
atures above 39◦C tended to be followed by a decrease in
the number of malaria cases, most likely resulting from the
effect of heat-stress on mosquitoes (Craig et al., 1999). Pe-
riods of moderate to high precipitation had a positive and
delayed effect on malaria incidence, presumably because of
the increased availability of mosquito breeding sites (Wyse
et al., 2007). The few instances of anomalously high daily
precipitation were followed by a rapid decrease in malaria
incidence, presumably a result of mosquito habitat destruc-
tion (Briet et al., 2008). Moreover, Limpopo province shows

a shorter delay in malaria occurrence with respect to the
provinces of Mpumalanga and KwaZulu-Natal (insets of
Figs.2–3).

2.3 Model description

We assessed the association between climatic drivers and
malaria cases in three ways: (i) standard linear regression be-
tween climate anomalies and malaria case anomalies, at time
lags of zero and one month; (ii) an ecohydrological model
of malaria dynamics; and (iii) a transfer function model ac-
counting for delayed climate effects on malaria dynamics.
The first approach (i) provided a baseline to quantify the im-
provement of models (ii) and (iii). We chose not to consider
the monthly maximum temperature data as an explanatory
variable for malaria cases, because it did not have signifi-
cant explanatory power in preliminary analysis. Instead, we
focused our analysis on monthly data of both minimum tem-
perature and precipitation anomalies.

The full ecohydrological model explicitly coupled a model
of malaria transmission dynamics with a hydrologic model
describing soil water content. Through a series of assump-
tions, detailed below, this full ecohydrological model was re-
duced to a minimal, linear model that describes the expected
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Fig. 3. Monthly malaria cases (solid gray line) and minimum temperature (dashed black line) for(A) Mpumalanga,(B) Limpopo, and
(C) KwaZulu-Natal provinces. Insets describe seasonal averages of malaria cases and minimum temperature (time proceeds according to the
arrows).

relationship between precipitation levels in previous months
and current malaria incidence.

The full model of malaria transmission is given by the
following equations, whereM is the population size of the
Anophelesmosquito vector,MI is the population size of in-
fected mosquitoes,HS is the population size of susceptible
individuals, andHI is the population size of infected individ-
uals (Ross, 1910; Porphyre et al., 2005; Kermack and McK-
endrick, 1927; Smith and McKenzie, 2004; McCallum et al.,
2001):

dM(t)

dt
= 90[w(t),T (t)]M(t − τM) − δM(t) (1)

dMI(t)

dt
= αHI(t − τI)M(t − τI) − δMI(t) (2)

dHS(t)

dt
= µHTOT + γ [HTOT − HS(t) − HI(t)] +

− η0MI(t)
HS(t)

HTOT
− µHS(t) (3)

dHI(t)

dt
= η0MI(t)

HS(t)

HTOT
− (υ + µ)HI(t) (4)

The number of individuals recovered and immune to malaria
infection at timet is not explicitly modeled, but given by
HTOT − HS− HI whereHTOT is the constant total host pop-
ulation size.

The dynamics of the mosquito population, given by
Eq. (1), are modeled by a delay differential equation where
90 is the mosquito growth rate (a function of soil mois-
ture, w, and temperature,T ), 1

δ
(∼10 days) is the average

lifespan of a mosquito, andτM (∼10 days) is the time de-
lay between oviposition and mosquito emergence (Chitnis et
al., 2008). The number of infected mosquitoes, governed by
Eq. (2), increases through feeding on infected hosts at a rate
α (whose unit is (months· number of infected individuals)−1

as we assumed a temporal resolution of 1 month), with
τI being a time delay (in months) representing the incu-
bation period for malaria parasites, and decreaseing with
background mortality at a rateδ. The number of suscepti-
ble hosts increases with births (µHTOT) and loss of immu-
nity (γ (HTOT−HS−HI), whereγ is dimensionless) and de-
creases with background mortality(µHS) and malaria trans-
mission via infected mosquitoes (η0MIHS

HTOT
, Eq.3). Finally, the

number of infected hosts increases with transmission and

Hydrol. Earth Syst. Sci., 16, 2759–2769, 2012 www.hydrol-earth-syst-sci.net/16/2759/2012/
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decreases with background mortality and recovery from in-
fection (υHI). µ, η0 and υ are all quantities expressed in
terms of (months)−1.

Soil water content,w, is described by a soil-moisture and
surface-water balance equation (Wyse et al., 2007; Porporato
et al., 2004):

dw(t)

dt
= P(t) − mw(t) (5)

whereP(t) is rainfall at timet , andmw(t) is a linearized soil
water loss function accounting for plant transpiration, sur-
face evaporation, and deep infiltration, wherem is a lumped
soil water loss rate (with units of months−1). The use of this
function is justified by the large spatial scale (Fig.1) and
relatively low temporal resolution (∼1 month) we are con-
sidering. In contrast to classical models of soil water con-
tent, we chose a form for Eq. (5) that does not saturate, so
as to account for both soil and surface water storage. By
surface water storage, we mean primarily soil moisture, but
also seasonal ponds and rivers that might be breeding sites
for mosquitoes. In the following, the assumptions employed
to reduce the full ecohydrological model (i.e., Eqs.1–4) for
malaria dynamics and Eq. (5) for surface hydrology to the
linear model are described.

– Assumption 1: Because the number of infected is much
smaller than the total population in the considered areas,
as a first approximation we can assume that the suscep-
tible fraction of the host population,HS

HTOT
, is relatively

stable through time. With this assumption, the dynamics
in the number of infected individuals are simplified to

dHI(t)

dt
= ηMI(t) − (υ + µ)HI(t), (6)

whereη = η0
HS

HTOT
is expressed in (months)−1.

– Assumption 2: Consistent with the available malaria
data, we focus on the monthly time scale and we as-
sume that both the time delay between mosquito ovipo-
sition and emergence, and the incubation period, can be
neglected. These assumptions yield

dM(t)

dt
= 90[w(t),T (t)]M(t) − δM(t), (7)

dMI(t)

dt
= αHI(t)M(t) − δMI(t). (8)

– Assumption 3a: when climate is the only limiting fac-
tor to mosquito emergence, the effect ofM(t) on the
growth rate can be neglected, effectively approximating
the exponential growth resulting from Eq. (7) with a lin-
ear growth with moisture- and temperature-controlled
rate, which can be expressed as

dM(t)

dt
= 9[w(t),T (t)] − δM(t). (9)

– Assumption 3b: alternatively, in the case that the
mosquito population exhibits logistic growth, with cli-
mate determining its carrying capacity, we can re-write
Eq. (7) as

dM(t)

dt
= r

[
1−

M(t)

K[w(t),T (t)]

]
M(t). (10)

wherer is the maximum growth rate andK the carrying
capacity of the mosquito population.

– Assumption 4: we assume that the total mosquito den-
sity M is approximately in equilibrium at the monthly
time scale dM(t)

dt
= 0, on the grounds that both the

soil water content (with a mean transit time of 1–3
months) and the size of the infected population (transit
time ∼10 months) fluctuate at longer time scales than
mosquito density (transit time�1 month) (Chitnis et
al., 2008). With Assumption 3a in place, the equilibrium
mosquito population,̂M, is found as

M̂(t) =
9[w(t),T (t)]

δ
. (11)

Alternatively, with Assumption 3b in place,

M̂(t) = K[w(t),T (t)]. (12)

– Assumption 5: since we are considering a large geo-
graphic area where spatial heterogeneity likely weak-
ens the nonlinear nature of the interaction between in-
fected humans and mosquitoes (as shown for other sys-
tems; see e.g.Katul et al., 2007b), we also assume that
the density of infected mosquitoes is proportional to the
total mosquito density:̂MI(t) ∼= γ M̂(t). With these as-
sumptions,̂MI(t) is given by

M̂I(t) = γ
9[w(t),T (t)]

δ
, (13)

and

M̂I(t) = γK[w(t),T (t)] (14)

from Eqs. (11) and (12), respectively. Equations (13)
and (14), together with Eq. (5) and (6), lead to a sys-
tem of two coupled linear equations driven by rainfall
P , water contentw, and temperatureT :

dw(t)

dt
= P(t) − mw(t) (15)

dHI(t)

dt
= ηγ ε[w(t),T (t)] − (υ + µ)HI(t) (16)

whereε[w(t),T (t)] is given by either9[w(t),T (t)] or
K[w(t),T (t)]. Equation (16) predicts a rapid growth in
the number of infected individuals when climate is fa-
vorable for mosquito emergence (largeε) or exponen-
tial decay in the number of infected individuals when

www.hydrol-earth-syst-sci.net/16/2759/2012/ Hydrol. Earth Syst. Sci., 16, 2759–2769, 2012
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climate is unfavorable (ε ≈ 0). At the time scale of a
month, malaria incidenceA is provided by the first term
of Eq. (16), A(t) = ηγ ε[w(t),T (t)].

– Assumption 6: the effects of environmental conditions
on mosquito growth rate are assumed to be linear, i.e.,
A(t) = a + bw(t)+ cT (t).

Under these assumptions, the minimalist model given by
Eqs. (15) and (16) is linear in both the state variables and the
climatic factors, allowing us to remove the seasonal compo-
nent of these dynamics, leaving the dynamics themselves in
terms of anomalies from the seasonal averages. This solution
is appropriate because the disease and climate time series are
both strongly seasonal, therefore hindering the identification
of how climate variability drives disease dynamics on an in-
terannual time scale (Hay et al., 2000; Briet et al., 2008).
Seasonal averages for malaria case incidence and for precip-
itation levels are shown in the insets of Figs.2–3 for each of
the three provinces.

Indicating the monthly anomalies with prime signs and
the seasonal monthly averages with an overbar, we have
P(t) = P +P ′(t), A(t) = A+A′(t) andH(t) = H +H ′(t).
Because the monthly temperature anomalies are negligible
in comparison to the anomalies in the hydrologic variables
(the maximum standard deviation of the anomalies of tem-
perature is 0.84◦C, recorded for the province of Limpopo,
and the maximum standard deviation of the temperature sea-
sonal average is 4.19◦C in the province of KwaZulu-Natal),
the effect of temperature anomalies onA can be neglected.
Accordingly, Eqs. (15) and (16) can be re-written as

dw′(t)

dt
= P ′(t) − mw′(t) (17)

dH ′

I (t)

dt
= A′(t) − (ν + µ)H ′

I (t) (18)

with

A′(t) = bw′(t) (19)

Given monthly malaria case incidence anomaliesA′ and
monthly precipitation anomaliesP ′, we sought to fit parame-
tersm andb. To this end, Eq. (17) was integrated numerically
with a given value ofm through a finite difference approach
to yield soil water content levels over time,w′(t), and param-
eterb was then estimated through linear regression (Eq.19).
Our expectation is thatb assumes positive values (anoma-
lously high water soil content should have a positive effect on
mosquito growth rate) and that the rate of soil water lossm

is on the order of 0.3–0.5 months−1 (Katul et al., 2007a). To
yield predictions of monthly malaria cases (Fig.4), malaria
case anomaliesA′ were first estimated (given the best fit pa-
rameter valuesb andm) and then added to the seasonal aver-
ages in malaria case numbersA.

By looking at the monthly series of malaria and precip-
itation, we realized that there is a high seasonality both in

the data per se and in their standard deviations. Therefore,
we developed the aforementioned ecohydrological model to
describe these high seasonal dynamics mainly looking at
the deseasonalized data by means of a physically based ap-
proach. However, it is interesting to assess the impact of
the seasonality of the standard deviation of the data as well.
To this aim, we developed a stochastic model, our third ap-
proach, to study the association between climatic drivers
and malaria cases. Specifically, we used a transfer function
model, i.e. a linear filter of the climatic variables to pre-
dict malaria cases. The model was conceived by mimick-
ing the relationship suggested by the ecohydrological model
(Eqs.17and19above).

Given that the time series of both monthly malaria cases
(A) and monthly rainfall rates (P ) showed a seasonal pat-
tern in their standard deviations, making the time series het-
eroscedastic and limiting robust parameter estimation, we
adopt a transfer function model of the following form:

w′′

i+1 = P ′′
i + nw′′

i (20)

A′′
i = dw′′

i (21)

where double prime signs indicate that the variablesP ′,
w′, and A′ are normalized with respect to their seasonal
standard deviation. Equation (20) describes soil moisture
anomaly at monthi as rainfall anomaly plus a portion of
the previous month anomaly, while Eq. (21) is analogous to
Eq. (19). Parametersd andn are conceptually similar tob
andm. Again, we expect thatd is positive. To obtain pre-
dictions of monthly malaria cases using this transfer func-
tion model (Fig.4), malaria case anomaliesA′′ were esti-
mated (based on the best fit parameter valuesd andn), de-
normalized with respect to standard deviations and, as be-
fore, added to the seasonal averages in malaria case numbers
A. To check statistical consistency, transfer function model
residuals were tested against Gaussianity, homoscedasticity,
and independence, using the Kolmogorov-Smirnov, Bartlett
and Portmanteau test, respectively.

Calibration for both models was performed by using the
differential evolution adaptive Metropolis (DREAM) algo-
rithm (Vrugt et al., 2008), yielding best fit values for the pa-
rameters along with their posterior probability density func-
tions. DREAM algorithm convergence is monitored through
the R-statistic ofGelman and Rubin(1992) and with a vi-
sual inspection of the likelihood behavior of each individ-
ual chain. To approximate the posterior probability density
functions of the model parameters, a total of 80 000 model
evaluations are performed with DREAM; the first 40 % of
the samples of each chain are discarded and considered as
burn-in, in order to evaluate the marginal densities of the
parameters from the samples whose likelihood is close to
convergence. Figure5 shows the posterior probability dis-
tributions for the parameters of both models applied to the
Mpumalanga data. It can be seen that calibration converged
to well-defined optimal values.

Hydrol. Earth Syst. Sci., 16, 2759–2769, 2012 www.hydrol-earth-syst-sci.net/16/2759/2012/
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Fig. 4. Observed and modeled monthly malaria incidence for(A) Mpumalanga,(B) Limpopo and(C) KwaZulu-Natal provinces. Observed
incidence is shown alongside seasonal averages, case estimates from the ecohydrological model, and case estimates from the transfer function
model. Insets are scatter plots of soil water content anomalies against malaria case anomalies for each province (dots, observations; solid
lines, modeled relationships using Eqs. (17) and (19)). Best fit parameters are reported in Table2.

3 Results and discussion

The seasonal component of malaria dynamics explained on
average 41 % of the variability in cases (Table1). None of the
linear regressions between deseasonalized climate forcing
and deseasonalized malaria cases explained significant vari-
ability in malaria case anomalies, resulting in at most a Nash
efficiency (Nash et al., 1970) of 14 % for the rainfall-malaria
correlation with a zero month time lag in the province of
KwaZulu-Natal (Table1). Introducing time lags improved
the results only for the case of Mpumalanga province when
one considers the rainfall-malaria correlation with one month
time lag. These results indicate that a direct and linear asso-
ciation between climatic variables and malaria dynamics is
not statistically supported, beyond seasonal effects.

We therefore considered whether soil water content dy-
namics may be associated with malaria case anomalies. The
ecohydrological model was able to explain a significant frac-
tion of the variation in malaria cases in all three provinces
(Fig. 4 and Table1). Furthermore, the parameter estimates of

the ecohydrological model, including the slope of the regres-
sion between soil water content anomalies and malaria case
anomalies, are biologically and physically interpretable (Ta-
ble2). Estimates of the parameterm, the rate at which surface
water is lost, yielded values between 0.1 and 0.44 months−1,
although the related 95 % confidence limits, also shown in
Table2, show the presence of significant parameter uncer-
tainty. The optimal values of parameterm translate into soil
water transit times of 2–10 months, which highlight the per-
sistence of perturbations induced in malaria cases by higher
than usual precipitation. 95 % confidence limits of the tran-
sit times do not allow one rejecting the hypothesis that they
are identical in all the three locations. Values of the soil wa-
ter loss ratem between 0.3 and 0.5 months−1 are compara-
ble with estimates from other systems (Katul et al., 2007a),
while the smaller estimate of this parameter for Limpopo
suggests the possible presence of a biological delay in the
disease dynamics not explicitly considered here (Pascual et
al., 2008; Hay et al., 2000) and might be further imputable
to Limpopo’s different climatic conditions. As a whole, from
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Table 1. Nash efficiencies for the seasonal component of malaria dynamics, the preliminary analysis, the ecohydrological model, and the
transfer function model for the three South African provinces of Mpumalanga, Limpopo and KwaZulu-Natal. In the preliminary analysis,
we examined the direct link between monthly data of malaria and rainfall, as well as malaria and minimum temperature applying linear
regressions to the data before the removal of the seasonality denoted by “Non-deseasonalized” in the table and after the deseasonalization,
considering only the “Anomalies” and taking into account the seasonal dynamics as well (Seasonal + anomalies).

Equation Mpumalanga Limpopo KwaZulu-Natal

Seasonal cycle 0.496 0.388 0.337

Rainfall-malaria linear regression

Anomalies (0 month time lag) 0.117 0.027 0.140
Seasonal + anomalies (0 month time lag) 0.555 0.405 0.431
Non-deseasonalized (0 month time lag) 0.212 0.117 0.038

Anomalies (1 month time lag) 0.268 0.033 0.125
Seasonal + anomalies (1 month time lag) 0.631 0.408 0.420
Non-deseasonalized (1 month time lag) 0.434 0.111 0.148

Minimum temperature-malaria linear regression

Anomalies (0 month time lag) 0.016 0.005 0.026
Seasonal + anomalies (0 month time lag) 0.505 0.391 0.351
Non-deseasonalized (0 month time lag) 0.231 0.001 0.001

Anomalies (1 month time lag) 0.046 0.001 0.069
Seasonal+anomalies (1 month time lag) 0.519 0.389 0.383
Non-deseasonalized (1 month time lag) 0.414 0.241 0.114

Ecohydrological model (17)–(19) 0.351 0.160 0.313
Seasonal + ecohydrological 0.674 0.491 0.545

Transfer function model (20)–(21) 0.351 0.190 0.156
Seasonal + transfer function 0.752 0.454 0.569

a physical perspective, these results suggest that unusually
wet periods result in anomalously high surface and soil wa-
ter storage, and thereby higher mosquito densities, ultimately
yielding anomalously high malaria case numbers.

In our ecohydrological model, all the delays between fa-
vorable environmental conditions and malaria outbreaks are
assumed to be induced by soil water dynamics. This is con-
sistent with observed biological delays (in both the mosquito
population and in disease dynamics) that are shorter than a
month (e.g.Chitnis et al., 2008), while the memory induced
by surface water storage is generally longer (e.g.Katul et al.,
2007a). The proposed simplified model neglects compound
delays and nonlinear interactions that might result in long
delays between climatic forcing and malaria cases (Pascual
et al., 2008; Hay et al., 2000). Our results are therefore likely
to underestimate surface water loss ratesm to some degree,
since we attributed all physical and biological delays to soil
water content dynamics alone.

In the transfer function statistical model, we expect dif-
ferent parameter values, because deseasonalization of stan-
dard deviation was carried out. However, the resulting transit
times are consistent with those obtained with the ecohydro-
logical model. The results show that the hypotheses of Gaus-
sianity and homoscedasticity of the residuals cannot be re-

jected at the 95 % confidence level in the three time series,
therefore providing support for the assumption of model lin-
earity. On the other hand, all the residuals exhibited a slight
but still statistically significant autocorrelation (at the 95 %
confidence level). This outcome is due to the inability of the
model and the selected climatic determinants to fully account
for the persistence of the malaria case anomalies. Such per-
sistence could presumably be accounted for by other factors;
however, this would introduce more parameters and thus un-
certainties in their estimation. Alternatively, the residual au-
tocorrelation could be eliminated introducing a further au-
toregressive component in the regression model to account
for previous malaria cases, which would summarize the ef-
fects of the additional inputs above (see, for instance, the ap-
proach adopted byZhou et al., 2004). However, this solution
was not used here because it induces equifinality, therefore
hindering the efficient identification of the causal relation-
ship between rainfall/soil water content and malaria. Looking
at the statistical model performances (Table1), one can see
that they are comparable with those of the ecohydrological
model, with some differences depending on location.

It is not straightforward to provide a physical interpre-
tation of the spatial variability for model parameter val-
ues. Additional information on the topography and climate
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Table 2.Best set of model parameters (and 95 % confidence level) of the ecohydrological and transfer function models for the three provinces
illustrated in Fig. 1.

Model Parameter Units Mpumalanga Limpopo KwaZulu-Natal

Eco- m month−1 0.442 (0.164÷ 0.780) 0.107 (0.063÷ 0.359) 0.267 (0.180÷ 0.551)
hydrological model b cases mm−1 month−1 2.697 (1.394÷ 3.686) 0.673 (0.338÷ 1.135) 8.855 (5.457÷ 13.393)

Transfer function n - 0.916 (0.726÷ 0.945) 0.871 (0.698÷ 0.931) 0.745 (0.103÷ 0.864)
model d - 0.145 (0.108÷ 0.311) 0.242 (0.131÷ 0.362) 0.214 (0.074÷ 0.449)

Fig. 5. Posterior parameter distributions for(A) ecohydrological
and(B) transfer function models at Mpumalanga. 95 % confidence
bands for the parameters are given in Table2.

of the study area can be obtained from the maps provided
by the South African Department of Environmental Af-
fairs and Tourism (see:http://www.environment.gov.za/?q=
content/maps-graphics, last access: May 2012). The areas
prone to malaria risk are located mainly in the low-lying
parts of the three provinces where the climate is quite vari-
able, as it is possible to assess from the maps of mean annual
precipitation provided by the aforementioned department.
It is moreover possible to see from the insets of Figs.2–
3 that the seasonal incidence of malaria in the province of
KwaZulu-Natal is almost double with respect to the other
two provinces. This high incidence of malaria cases is in line
with the higher population counted in this province by the
2001 census (Statistics South Africa, 2003) and is also re-
flected by the results we obtained. In fact, parameterm is

relatively stable across the three provinces (Table2), indi-
cating relatively mild changes in soil and vegetation proper-
ties at the large scale we are considering. In contrast, the pa-
rameterb varies remarkably. In particular, a higher value is
obtained for the KwaZulu-Natal province. Becauseb quanti-
fies the sensitivity of malaria cases to rainfall, the higher val-
ues in KwaZulu-Natal province may be related to its coastal
proximity, which implies the presence of a more humid cli-
mate. Moreover, wetlands and water bodies are characteristi-
cally more frequent in the land cover map of this province, if
compared to what is depicted in Limpopo and Mpumalanga
maps. A previous work byKleinschmidt et al.(2001) carried
out in two districts located in the northern side of KwaZulu-
Natal province confirms the relevant role of wetlands and wa-
ter bodies. In line with our results, they stressed the impor-
tance played by proximity to permanent water bodies, which
are often surrounded by ephemeral mosquito habitats, as an
additional risk factor for malaria incidence.

4 Conclusions

Using time series of malaria cases from three South African
provinces, we showed through two sets of analyses – an eco-
hydrological model and a transfer function model – that soil
water content is an important driver of malaria dynamics.
These analyses required a series of consecutive assumptions
to be made in order to interface these models with available
climate and malaria data. Nevertheless, we found a statistical
association between modeled soil water content and malaria
cases in all three provinces, with parameter estimates that
were biologically and physically interpretable. Future work,
with more extensive time series, should therefore focus on
coupling soil water content dynamics to full epidemiologi-
cal models (Eqs.1–4), which require a larger number of pa-
rameters, but that maintain the non-linear feedbacks that are
known to be important for malaria dynamics in endemic re-
gions (Koelle and Pascual, 2004; Pascual et al., 2008; Laneri
et al., 2010). Further developments should consider satellite
soil moisture data as a possible alternative to direct estimates
of soil moisture.Using such data would provide high resolu-
tion maps without invoking a water balance model dedicated
to this purpose asBrugger et al.(2011) already proposed for
the study of the seasonal cycle ofCulicoidesspp. abundance.
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