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Abstract. Drylands cover about 40 % of the terrestrial land
surface and account for approximately 40 % of global net
primary productivity. Water is fundamental to the biophys-
ical processes that sustain ecosystem function and food pro-
duction, particularly in drylands where a tight coupling ex-
ists between ecosystem productivity, surface energy balance,
biogeochemical cycles, and water resource availability. Cur-
rently, drylands support at least 2 billion people and comprise
both natural and managed ecosystems. In this synthesis, we
identify some current critical issues in the understanding of
dryland systems and discuss how arid and semiarid environ-
ments are responding to the changes in climate and land use.
The issues range from societal aspects such as rapid popu-
lation growth, the resulting food and water security, and de-
velopment issues, to natural aspects such as ecohydrological
consequences of bush encroachment and the causes of de-
sertification. To improve current understanding and inform
upon the needed research efforts to address these critical is-
sues, we identify some recent technical advances in terms of
monitoring dryland water dynamics, water budget and veg-
etation water use, with a focus on the use of stable isotopes
and remote sensing. These technological advances provide
new tools that assist in addressing critical issues in dryland
ecohydrology under climate change.

1 Introduction

Drylands are regions with relatively low precipitation, long
dry spells (e.g., dry seasons), and frequent occurrence of wa-
ter scarce conditions. They are typically located in areas of
prevalent divergence in the patterns of atmospheric circula-
tion, on the lee side (“rain shadow”) of mountain chains, in
arid continental regions, or in the proximity of cold ocean
surfaces. The drylands definition is often based on total an-
nual precipitation being low relative to potential evapotran-
spiration (ET). To this end an aridity index (AI), defined as
the ratio between precipitation and potential ET, is used to
classify drylands as regions where the AI is smaller than 0.65
(e.g., sub-humid dryland, semi-arid dryland).

Drylands collectively cover about 40 % of the terrestrial
land surface (Table 1) and contribute approximately 40 % of
global net primary productivity (Grace et al., 2006). Veg-
etation dynamics exert a strong control on the water cycle
in drylands, due in part to the tight coupling that exists be-
tween the water, energy, and biogeochemical budgets in these
systems (Noy-Meir, 1973; Austin et al., 2004; Wang et al.,
2009a; Tietjen et al., 2010). For example, in the Mojave
desert of the southwest United States, elevated winter precip-
itation stimulated a rapid increase in vegetation productivity,
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Table 1. The classification, percentage of global land area and percentage of global population of each dryland type. Data are from United
Nation’s Millennium Ecosystem Assessment (2005) and Gilbert (2011).

Dryland Classification Aridity Index (AI) Global Land Area (%) Global Population (%)

Dry subhumid 0.50< AI < 0.65 9.9 % 15.3 %
Semi-arid 0.20< AI < 0.50 17.7 % 14.4 %
Arid 0.05< AI < 0.20 12.1 % 4.1 %
Hyper-arid AI< 0.05 7.5 % 1.7 %

which in turn reduced soil water storage by half – compared
to a paired unvegetated site – and precluded deep drainage
below the root zone (Scanlon et al., 2005). A converse ex-
ample would be the conversion of perennial vegetation to an-
nual crops, which is typically associated with an increase in
groundwater recharge, and – in some cases – the rise of shal-
low water tables and salt accumulation at the ground surface,
as observed in many drylands around the world, including
the case of south western Australia.

Besides the strong linkage between water, energy and bio-
geochemical fluxes, across-scale hydrological connectivity is
another important feature of arid and semiarid landscapes.
Hydrological connectivity is a system-level property that re-
sults from the linkages in the networks of water transport
through ecosystems, by which feedbacks and other emergent
system behavior may be generated (Miller et al., 2012). Be-
cause of the low hydraulic conductivity of dry soils, the sub-
surface connectivity of arid and semiarid landscapes is gener-
ally low when compared with their wet and subhumid coun-
terparts (Grayson et al., 1997). The connectivity provided by
surface waters is often intermittent or ephemeral and limited
to wet periods or seasons when surface overland flow occurs
and the stream network is active. Hydrological connectivity
is not well characterized in most systems and the challenge
of modeling hydrological connectivity lies in the poor un-
derstanding of cross-scale interdependencies of the processes
controlling water fluxes from the soil to the plant and the at-
mosphere (e.g., Loik et al., 2004). Representing and synthe-
sizing hydrological connectivity, from the point to the land-
scape scale, will require enhanced knowledge of connections
among hydrologic conditions, climate, vegetation, soil pro-
cesses, and landscape morphology. Recent efforts have been
focusing on better characterizing hydrological connectivity.
For example, Wang et al. (2012a) developed a conceptual
framework for upscaling ecohydrological and biogeochem-
ical processes from point to watershed scales using electri-
cal circuit analogies and Thévenin’s theorem, highlighting its
utility to represent concomitant processes at both small and
large spatial scales.

Water is fundamental for biological processes responsible
for ecosystem function and food production, and for abi-
otic processes controlling the land-atmosphere interactions.
Dryland ecohydrology describes the hydrologic mechanisms
that underlie ecological patterns and processes in water-

limited ecosystems (Rodriguez-Iturbe, 2000; D’Odorico et
al., 2010a). Currently, drylands support more than 2 billion
people and comprise both natural and managed ecosystems
(MEA, 2005; Gilbert, 2011). Growing global populations
are expected to increase the pressure on these ecosystems,
thereby further exacerbating the already tight limitations im-
posed by water availability and food security. Thus, there is
an urgent need for better management strategies to avoid the
emergence of potential conflicts resulting from poor under-
standing of the underlying ecohydrological processes. With
increasing anthropogenic influences on hydrological cycles,
research in ecohydrology is moving towards more human-
dominated landscapes (Jackson et al., 2009). Future envi-
ronmental and socio-economic changes, such as rising CO2
and temperature, changing rainfall patterns and even dietary
shifts are likely to have profound impacts on dryland ecosys-
tem dynamics. Many dryland savannas and mixed crop-
ping systems have a combination of different plant phys-
iognomies, including both C3 and C4 plants (Wang et al.,
2009b, 2010a). Since C3 and C4 plants respond to CO2 en-
richment and temperature increase differently (Morgan et al.,
2011), the combination of plant physiognomy increases the
complexity of managing and predicting dryland responses to
future environmental changes.

Not unique to drylands, but equivalently important in arid
and semiarid landscapes, scale and scaling is another impor-
tant issue in understanding and predicting ecohydrological
processes (Seyfried and Wilcox, 1995; Becker and Braun,
1999). Scale is perceived differently by different researchers
and for different research purposes. From the perspective of
a small lysimeter study, a catchment of the size of 1 km2

may be considered large and heterogeneous, whereas a sev-
eral thousand km2 basin may be considered small and ho-
mogeneous for global simulations (Bergström and Graham,
1998). In reality, processes are often observed at short time
scales and small spatial scales and predictions are made for
long time scales and large spatial scales. To make this link,
it is essential to understand how the nature of spatial vari-
ability affects hydrological response over a range of scales,
how to link the small-scale and large-scale observations and
where the uncertainty lies. Upscaling typically consists of
two steps: distributing the small-scale parameter over the in-
terested area and aggregating the spatial distribution of the
parameter into one single value; downscaling, on the other
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hand, involves disaggregating and singling out (Blöschl and
Sivapalan, 1995). Scaling can be conducted either in a deter-
ministic or a stochastic framework and scaling methods de-
pend on the characteristic of the interested parameters. Scale
and scaling issues have been discussed comprehensively in
other reviews and syntheses (Blöschl and Sivapalan, 1995)
and it is still an active area for ecohydrological research
(Wilcox et al., 2003; Wang et al., 2012a).

In this synthesis, we aim to use ecohydrological principles
and published literature to identify current critical issues in
dryland research. Specifically, we will focus on some emerg-
ing issues in dryland research, including the relation between
agriculture and water use, dryland population growth, shrub
encroachment, desertification and dryland development. This
list may not be exhaustive, but it includes some of the most
challenging, emerging issues in dryland ecohydrology. Some
of these points have been widely discussed elsewhere, while
others are yet to draw the attention they demand. We will
also discuss some current technical advances and future chal-
lenges in the developments of new research tools, including
remote sensing and stable isotope monitoring tools, which
will assist in addressing these critical issues in dryland eco-
hydrology.

2 Critical issues in drylands

2.1 Dryland population growth, water demands and
dryland agriculture

Global water resources are inherently related to and affected
by population growth (V̈orösmarty et al., 2000). Developing
nations account for 90 % of dryland populations. Figure 1
shows that a large proportion of dryland countries (i.e., coun-
tries in which the dryland area exceeds 50 % of the total area,
based on the definition provided in the Introduction) exhibit
a much higher population growth compared with the global
average.

Water footprint is an indicator of water consumption that
includes both direct and indirect water use, and is defined as
the total volume of freshwater used to produce the goods and
services consumed by an individual or a community (Cha-
pagain and Hoekstra, 2004; Liu and Savenije, 2008). Most
of the human appropriation of freshwater resources is used
for food production (e.g., Falkenmark and Rockström, 2004).
Without accounting for any change in the per capita water
footprint, the ongoing demographic growth is expected to in-
crease the pressure exerted by humanity on the global water
resources. At the same time, however, it has been reported
that economic growth is allowing some populations to have
access to more water intensive food commodities; the shift
to more meat based diets will substantially increase the per
capita water use, further increasing the water footprint of hu-
man societies (Liu et al., 2008; Strzepek and Boehlert, 2010).
Changes in water consumption, induced by shifts to more
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Fig. 1. Average global population density growth and population
density growth for dryland dominated countries (defined as where
dryland areas are larger than 50 % of the total areas). The in-
set represents the same information but excludes India and Pak-
istan for better display of the other countries. The population
data is from the Department of Economic and Social Affairs
of the United Nations (2004).http://www.un.org/esa/population/
publications/longrange2/WorldPop2300final.pdf.

water intense diets, could be dramatic. For example, in China
and India, the per capita water footprint is currently 1071
and 1089 m3/person/year, respectively, while in the United
States it is 2842 m3/person/year (Hoekstra and Mekonnen,
2012). By 2050, the populations of China and India are pre-
dicted to reach 1.42 and 1.61 billion, respectively (the pop-
ulation data is from the State of World Population 2010). If
in these countries the per capita water footprint reaches the
levels of the United States (this may not be achievable in re-
ality due to the size of the population and low per capita eco-
nomic level in these countries), their freshwater consump-
tion would become at least three times larger than the current
rates. Since water resources are already under severe pres-
sure in both countries, meeting this future demand will be a
daunting challenge for the next generation.

Population growth in conjunction with an increase in per
capita water use is affecting a number of dryland countries
around the world. Food security is at risk when in these coun-
tries the available freshwater is not sufficient to produce the
food needed by their populations. Severe water stress condi-
tions are expected to cause malnourishment, famine, and so-
cial unrest. The United Nations Food and Agriculture Orga-
nization (FAO) predicts that by 2050 agriculture will have to
support additional 2.7 billion people (FAO, 2006a). To feed
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the increasing global population while eradicating malnour-
ishment, the human appropriation of freshwater resources
needs to double within the next 40–50 yr (Falkenmark and
Rockstr̈om, 2004). Our ability to meet such demand is con-
strained by the limited availability of accessible freshwater
resources on Earth. From the water perspective, an increase
in food production can – in principle – be achieved by (1) in-
creasing irrigated land, (2) expanding croplands at the ex-
penses of natural ecosystems, and (3) developing new tech-
nologies that enhance the water use efficiency of agricultural
production (“more crop per drop”) through genetically mod-
ified crops or water saving agricultural techniques. However,
theses options are not without constraints. In terms of the
first option, currently, 19 % of the global agricultural land is
irrigated and produces 40 % of the world’s food supply (Han-
jra and Qureshi, 2010). Meeting the projected food demand
solely by expanding irrigated areas is unfeasible (Falken-
mark and Rockstr̈om, 2004). Irrigation requires water with-
drawal from lakes, streams or groundwater. Globally, about
2600 km3 of water are already withdrawn every year for ir-
rigation (Strzepek and Boehlert, 2010). Agriculture accounts
for more than 66 % of the total human withdrawals. Most of
the rivers flowing through dryland regions are already inten-
sively exploited. Many of them (e.g., the Rio Grande or the
Colorado River) barely make it to the ocean. An expansion of
irrigation can contribute only in part to the projected increase
in food demand.

In terms of expanding croplands, there are only limited
opportunities to increase agricultural production by sustain-
ably increasing the arable land and the global agricultural
area is not expected to substantially increase (Fedoroff et al.,
2010). However, drylands are often considered as possible
candidates for cropland expansion (both for food and biofuel
production). For example, in 2009, the World Bank identi-
fied 600 million hectares of African savannas and woodlands
as the primary expansion opportunity to increase food pro-
duction in Africa (World Bank, 2009). However, the con-
version to agriculture of these drylands would not occur at
no cost if we account for the environmental services they
currently provide, including rangeland, firewood production,
carbon sequestration, maintenance of biodiversity, and pro-
vision of habitat for wildlife. Moreover, the conversion of a
grassland-dominated system to cropland has the potential to
reduce runoff dramatically (Twine et al., 2004) with impor-
tant impact on stream and fluvial habitats. One of the chal-
lenges in dryland ecohydrology is the disconnection of re-
search focusing on upland processes and studies on stream
biology. When some of the methods developed in humid re-
gions are applied to drylands, some distinctive ecohydrolog-
ical features of dryland streams need to be accounted for. For
instance, biotic indices (e.g., invertebrate taxa richness) can
be used as indicators of stream health and land use impacts
(Lenat and Crawford, 1994) and to characterize terrestrial-
aquatic interactions in drylands, but characteristics that are

uniquely associated with drylands (e.g., ephemeral streams)
need to be considered and further explored.

Regardless of a possible increase in arable area, dryland
agriculture is expected to be particularly vulnerable to the
effect of climate and land use change. The effect of climate
change on crop production is of considerable concern. Pre-
dictions for the US central Great Plains indicate that the neg-
ative effects of rising temperature on crop production will
offset the positive impacts of CO2 increase (Ko et al., 2012).
The effects of climate change are already being felt in the
global food markets, and are becoming particularly strong
in some dryland areas, where crops fail and yields decline
(FAO, 2006a). In the semiarid tropics, smallholder farmers
rely on extremely variable and uncertain rainfall regimes.
The vulnerability is also contributed by soil salinization and
other forms of human- or climate-induced land and water
degradation. Future climate projections in drylands are un-
certain but indicate a possible increase in climate variability,
a decrease in mean precipitation (Sheffield and Wood, 2007),
the occurrence of more frequent droughts, and increased tem-
perature extremes (Schlenker and Lobell, 2010). All of these
factors will further exacerbate the vulnerability of agricul-
tural production in the dry tropics. For instance, in the near
future (20–30 yr) climate change is predicted to threaten food
security in southern Africa (Lobell et al., 2008) and the Sahel
(Patricola and Cook, 2010), while in other areas (e.g., cen-
tral Africa), the uncertainty of these estimates is too large to
make informed decisions. In addition to changes in mean cli-
mate conditions, changes in climate variability pose further
challenges on farmers who may be able to adapt to long-term
changes but not to increases in interannual variability.

Furthermore, the response to climate change in drylands
not only depends on climate itself, but also on the social and
economic aspects of the society. For example, in pastoral
societies, changes in rainfall amount and arrival time will
change vegetation productivity. However, to translate pro-
ductivity consequences into livelihood and development im-
pacts requires additional levels of cross-disciplinary synthe-
sis to incorporate geographical, social, economic, and tech-
nological dimensions of the linked human-ecohydrology sys-
tem. In agricultural systems, we can also see the amplifica-
tion of meteorological impact by anthropogenic activities.
For example, recent work (e.g., Mwale, 2003; Falkenmark
and Rockstr̈om, 2008) has begun to show that in many cases
agricultural drought can be quite substantial (i.e., complete
crop failure), even when meteorological drought (i.e., rain-
fall deficit) is mild. Therefore, the frequency and severity of
a “drought year” depends heavily on both social and agri-
cultural factors, which are themselves strongly coupled to
spatial expressions of hydrological dynamics, land cover pat-
terns, and local coping behaviors. Although much progress
has been made in understanding changes in food security un-
der the threat of climate change (Hanjra and Qureshi, 2010),
it is still unclear how an intensification of climate fluctuations
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might affect food production and what policies could mediate
those impacts.

It has been noted that, despite water scarcity some soci-
eties are meeting their food demand through the importa-
tion of food commodities. International trade of food prod-
ucts has been associated with a virtual transfer of the wa-
ter required for their production (Allan, 1998). Virtual wa-
ter trade is, however, only a short term remedy: it does not
correct the imbalance existing between the growing global
population and the limited available water resources; it does
not promote equality in the access to freshwater (Seekell et
al., 2011); it reduces societal resilience (D’Odorico et al.,
2010b), and makes some societies (e.g., China) increasingly
dependent on water resources that they do not control (Carr
et al., 2012).

2.2 Dryland development challenges

By taking a broader view of drylands not just as ecosystems,
but as coupled human-environment systems, we can see the
pivotal importance of ecohydrology in the pursuit of human
development. In developing countries, the livelihoods and
well-being of rural dryland populations tend to be tightly and
directly linked to ecological processes, as societies in these
regions typically engage in household-scale, low-technology
livestock and/or crop production (Reynolds et al., 2007). Pas-
toral systems use natural dryland ecosystems extensively for
livestock production, with mobility, flexibility, and common
pool resource management institutions to track and access
shifting resource availability (Robinson et al., 2011). Dry-
land smallholder agriculture is typically rain-fed, or may uti-
lize localized sources or on-site catchment for limited ir-
rigation, making crop yields highly dependent on seasonal
rainfall and farming practices that affect the partitioning of
precipitation in the water balance equation (Falkenmark and
Rockstr̈om, 2008; Notenbaert et al., 2009).

Today, both systems, and hybrids thereof, are struggling
to support human livelihoods and maintain resilient ecolog-
ical processes in the face of growing populations, land use
pressures, and climate change. African drylands, which cover
40 % of the continent’s land area, epitomize these challenges
for poverty reduction, economic development and environ-
mental sustainability. Poverty itself limits choices for cop-
ing strategies, such as technological investments or adoption
of industrial or other livelihoods (Thornton et al., 2006). A
human-ecohydrology lens can be applied to help understand
how ecohydrologic conditions govern rural productivity, and
can point to appropriate, creative approaches to forge more
beneficial feedbacks between landscapes and livelihoods.

In pastoral systems, land degradation is part of a “dimin-
ishing resource syndrome”, in which increased livestock den-
sities and limited mobility feed back to degrade the capacity
of landscapes to capture and convert incoming rainfall into
primary production, while competing land uses and conver-
sion of higher productivity rangelands to agriculture reduce

the area available for livestock production. Rangeland reha-
bilitation research has shown that in many cases physical ma-
nipulations such as microcatchments can reinstate more pro-
ductive water-soil-plant relations. But additional, more holis-
tic assessments are needed to determine: (a) the extent to
which livelihood benefits from land rehabilitation can miti-
gate other stressors due to demographic and land use pres-
sures, and (b) the optimal location of rehabilitation efforts in
heterogeneous landscapes to generate the greatest impacts on
productivity and livelihoods.

Many smallholder dryland cropping systems in Africa
have also undergone suites of social and ecohydrological
changes. Demographic pressures have led to increased farm-
ing intensity, reduced fallow periods, and driven cropping
into increasingly marginal areas. Crop genetics, fertilizers,
and pest management have spurred the Green Revolution
in agricultural intensification in Asia and Latin America,
but not in rural Africa. Lack of water availability and irri-
gation infrastructure are key barriers to such development
(Rockstr̈om et al., 2007). While major aid organizations are
currently redoubling their efforts to create more efficient,
drought resistant crops for Africa, knowledge of dryland eco-
hydrology has inspired other approaches: Conservation Agri-
culture and the Green Water approach (FAO, 2006b; Falken-
mark and Rockstr̈om, 2008). With the mantra, “more crop
per drop,” these approaches seek to maximize the fraction
of precipitation (or irrigation) that is routed through produc-
tive plant growth (transpiration), by reducing losses to runoff,
evaporation, and deep drainage. With technologically simple
tactics like microcatchments, mulching, and strategic timing
of watering, crop yields per water input can increase several-
fold (FAO, 2006b; Falkenmark and Rockström, 2008). At
present, we lack coupled evaluations of plant-level (crop ge-
netics) and farm-level (conservation agriculture) approaches,
which assess the climatic, ecological, and social conditions
under which these approaches offer higher or more sustain-
able productivity gains.

2.3 Desertification and human vs. climate induced
desertification

Many drylands around the world are affected by rapid
change in vegetation cover and composition, hydrologic
conditions, and soil properties, which result in an overall
loss of ecosystem services and poses serious threats to sus-
tainable livelihoods. The process underlying these changes
is often termed “desertification” (D’Odorico et al., 2012).
The United Nations Convention to Combat Desertification
(UNCCD) (1994) defines desertification as land degradation
in arid, semi-arid or sub-humid areas resulting from vari-
ous factors that include climate variations and human ac-
tivities. About 10 % to 20 % of global drylands suffer from
desertification and are prone to a decline in land productiv-
ity (Reynolds et al., 2007; D’Odorico et al., 2012). A num-
ber of processes can contribute to this decline, including soil
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erosion (Li et al., 2007; Ravi et al., 2009), salinization, loss
of soil fertility or depletion of seed banks. These factors
have important impacts on vegetation density and species
composition. Desertification is commonly associated with
changes that persist for several decades and are presumably
irreversible, at least within the time scales of a few human
generations.

As recognized by the UNCCD (1994), dryland desertifica-
tion may be broadly associated with two underlying drivers,
namely changes in climate or human activities. These drivers
may cause an ecosystem shift to a “desertified” state, while
positive feedbacks stabilize the system in this new state
(D’Odorico et al., 2012). To effectively combat degradation,
we need to quantitatively assess the extent to which a region’s
degradation is caused by climate variations or human activi-
ties. Recent methods utilizing remote sensing and modeling
techniques to distinguish between human versus climate in-
duced desertification are presented in detail in the “technical
advances” section.

2.4 Ecohydrological consequences of shrub
encroachment

Woody plant encroachment is the increase in the density and
cover of woody plants into open grasslands and woodlands,
and is a global phenomenon (Archer et al., 1995; Eldridge
et al., 2011). Encroachment is associated with a number of
ecosystem changes ranging from a change in the spatial dis-
tribution of soil nutrients, altered habitat value for wildlife,
and changes in the ability of the soil to redistribute water
vertically and horizontally (Schlesinger et al., 1990; Archer
et al., 2001; Bhark and Small, 2003; Zarovalli et al., 2007).
Changes in shrubland communities that alter the balance be-
tween precipitation, run-off, interception and infiltration are
likely to have marked effects on the structure and function
of shrubland ecosystems. The likely long-term effect is to
reinforce the persistence of shrublands at the expense of
grasslands (Reynolds et al., 2007).

Although water is a substantial driver of ecosystem pro-
cesses in semi-arid shrublands, relatively little is known
about run-off and infiltration processes and the hydrological
responses to encroachment. The dichotomy between shrub
canopy and interspace is a major determinant of ecosystem
productivity and diversity. The heterogeneous nature of the
vegetation in drylands is thought to be controlled by pro-
cesses of upslope water erosion and sedimentation, and com-
plex interactions among individual plants and the surround-
ing soil matrix (Puigdef́ebregas and Sanchez, 1996; Bochet
et al., 1999; Reid et al., 1999; Wang et al., 2007; Ravi et
al., 2008). Both the movement and storage of water within
shrublands is highly variable (e.g., Breshears et al., 2009).
These issues make it extremely difficult to model or predict
likely hydrological responses to changes in management or
climate.

2.4.1 The effects at plot scale

A number of knowledge gaps relate to the effect of woody
encroachment on soil hydrologic conditions in semi-arid sys-
tems, which hinder the prediction of climate change effects
on soil-vegetation interactions. Below we identify the main
knowledge gaps that relate to shrub encroachment, with an
emphasis on eastern Australia and the western United States:

1. Enhanced levels of infiltration surrounding the canopy
are a defining feature of arid zone shrub communities
(e.g., Bhark and Small, 2003). Soil porosity is greater
and macropores are present adjacent to the roots and
stem of woody plants, which also have well-developed
tap roots allowing the plants to access water from
greater depths (Archer et al., 2002). While the extent
of infiltration is known to decline with increasing dis-
tance from the canopy, the exact nature of this de-
cline is largely unknown for most woody species, and
has been studied in only a few arid zone shrubs (e.g.,
Atriplex spp., Dunkerley, 2000). Climate change predic-
tions show that the total precipitation amount will gen-
erally decrease in drylands (Solomon et al., 2007) with
a concurrent increase in storm amounts (Ohmura and
Wild, 2002). The intensified storms have been shown to
increase soil water holding by deeper infiltration. This
soil water is less susceptible to evaporation, thus the
increased storm intensity may increase the water avail-
ability for shrub/tree dominated microsites (Raz-Yaseef
et al., 2012), but this depends on soil texture and rainfall
intensity and needs further investigation for other areas.

2. The relative interception value of woody plants is poorly
known (e.g., Savenije, 2004; Gerrits et al., 2007). For
example, we are aware of only a few studies of inter-
ception of shrubs (e.g., Wood and Wood, 1986) and
there are few data on interception and stemflow for
woody plants in arid and semi-arid eastern Australia.
Limited data suggest that stemflow and interception for
box eucalypt communities are low (< 3 % of total rain-
fall) (Johns, 1981; Tunstall and Connor, 1981), sug-
gesting that the majority of precipitation passes directly
through the canopies. Thus, while this suggests that sur-
face hydrological conditions are more influenced by soil
characteristics than plant architecture, there are limited
studies to confirm this.

3. The degree to which woody and encroached communi-
ties increase water erosion (either through physical ef-
fects or by reducing infiltration) is poorly understood
(Eldridge et al., 2003). Hydrological models have been
used to study how the amount of rainfall reaching the
ground, and hence the risk of erosion, varies accord-
ing to changing cover of woody plant canopies (Wu et
al., 2001). As woody vegetation tends to intercept more
rainfall than understory vegetation (Thurow, 1991; Wu
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et al., 2001), it could be argued that woody vegetation
reduces the risk of erosion to a greater degree. However,
the situation is far more complex. As raindrops falling
from taller (> 2 m tall) canopies tend to be more erosive
(i.e., with higher kinetic energy) than those falling from
shorter heights (Moss and Green, 1978), canopy height
is likely to be an important driver of erosion risk. There
is an urgent need to test empirically some of the rela-
tionships between canopy cover and height for different
vegetation communities.

4. The relationship between woody plants and understory
herbaceous cover is complex, and likely mediated by
grazing intensity (Barger et al., 2011). While overgraz-
ing is likely to lead to reductions in ground cover, this
may be compensated for by increases in the cover of
other components such as litter. The interception capac-
ity of grasses is biomass- and cover-dependent (Crouse
et al., 1966), ranging from 0.3 to 2.5 mm of water (Bran-
son et al., 1972). However, litter also has the capacity
to intercept rainfall, depending on the type and depth
(Branson et al., 1972). Litter cover, origin and degree
of incorporation are known to be correlated with the
capacity of the soil to resist erosion and infiltrate wa-
ter (Tongway, 1995). However, the relationships among
litter depth, type and interception are not known.

5. Many studies have shown higher nutrient levels (e.g.,
Charley and West, 1975; Schlesinger et al., 1996; Ravi
et al., 2009; Wang et al., 2009b) and higher soil car-
bon concentrations (e.g., Wang et al., 2009c) under
the shrub/tree areas compared with open areas. In fact,
woody plant encroachments affect both soil moisture
and soil biogeochemical processes through physical
(e.g., shading effect to decrease evaporation) and bi-
otic factors (e.g., water uptake through deep rooting);
furthermore, soil moisture itself strongly control soil
biogeochemical cycles in water-limited systems (e.g.,
Austin et al., 2004; Wang et al., 2009a). How to separate
the woody plant and soil moisture effects on soil bio-
geochemical cycles is important to better understand the
dynamic differences between under canopy and open
canopy areas, and the tree-grass interactions. This in-
formation is also important to upscale the plot-scale ob-
servations to larger scales.

6. Runoff coefficients are thought to be much less in
woody communities than in the herbaceous communi-
ties that they replace. For example, run-off coefficients
reported by Harrington et al. (1981) for the semiarid
Australian woodlands were seven-times lower for thick-
ets of trees and shrubs than for the inter-thickets, sim-
ilar to results from the piñon-juniper woodlands in the
western United States (Reid et al., 1999). Data on the
differences in runoff coefficients across soil types and
vegetation communities are needed in order to param-

eterize runoff and erosion models for wooded commu-
nities. More importantly, there is limited understanding
in terms of the runoff coefficient change for the same
woody encroachment areas but under different precipi-
tation regimes.

7. There is a pressing need to separate out the direct
effects of woody plants on sub-surface flow, through
enhancement of macro-porosity, from the indirect ef-
fect of woody plantsvia their mediation of soil sur-
face condition. Increased shading under woody plants
is known to alter the richness and cover of understory
plants (Smit et al., 2007). Sub-canopy microsites are
also highly preferred by biocrusts; complex communi-
ties of mosses, lichens and cyanobacteria (Eldridge et
al., 2010). Biocrusts are known to have substantial ef-
fects on hydrology in the near-surface layers (Eldridge
et al., 2010), but the extent to which this is moderated by
shrubs, or by the herbivores that tend to graze under the
canopy, is largely unknown. New models of water flow
through soils, using different supply potentials, are cur-
rently being evaluated using systems-based approaches
(e.g., Eldridge et al., 2010).

2.4.2 The effects on regional hydrological processes

Shrub encroachment may also have dramatic effects on re-
gional hydrological processes. Encroachment can lead to
land-to-atmosphere feedbacks with possible impacts on rain-
fall and temperature regimes. Small and Kurc (2003) found
only limited potential feedbacks to precipitation in Creosote
bush (Larrea tridentata) shrublands in North America. How-
ever, it has been argued that reduced woody cover may re-
duce rainfall by altering surface roughness, ET and cloud
formation (McAlpine et al., 2009). Much of this is largely
unknown, however, and the exact magnitude of any regional
hydrological changes resulting from encroachment can only
be speculated upon. Shrub encroachment can affect the land
surface albedo, emissivity, and roughness with important im-
pacts on the near surface climate (Beltran-Przekurat et al.,
2008). Even though in some cases changes in albedo are
negligible, the increase in soil energy storage at encroached
area can modify the microclimate with a positive feedback on
vegetation (D’Odorico et al., 2010c; He et al., 2010). Recent
regional climate modeling activities that seek to change the
boundary conditions of the surface state may provide some
insight into the influence and strength of land-atmosphere
couplings as a response to changing surface conditions.

These effects are likely to change markedly with increases
in global temperatures, increases in the severity of high inten-
sity rainfall events, and greater spatial variability in ground-
cover and therefore the capacity of the soil to resist erosion.
The replacement of grassland by shrubland exposes more of
the surface to the action of raindrop impact resulting in accel-
erated erosion and potential sedimentation (Abrahams et al.,
1994). These regional studies reinforce the notion that more
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catchment-specific data are needed for both the ecological
(e.g., tree rooting depth, canopy architecture and structure,
depth of water intake) and hydrological (soil texture and hy-
draulic conductivity, soil moisture availability, hydrological
connectivity) components of these systems, in order to im-
prove our catchment wide modeling of the likely ecohydro-
logical effects of vegetation change.

The positive effects of woody plants on soils and under-
story vegetation needs to be balanced with their negative ef-
fects of competing directly for water and intercepting rain-
fall. Whilst the relationship between woody plants, under-
story plants and soil water is poorly understood, and the de-
gree to which one is offset by the other often depends on the
scale at which these effects are measured. Given the close
links between woody vegetation and water flow in these pat-
terned landscapes, removal of woody vegetation is likely to
have drastic impacts for the capture and utilization of water at
a landscape scale, but may increase short-term productivity
at a local scale. The situation is analogous to other patterned
landscapes worldwide where removal of vegetation results
in a reduced efficiency of water and nutrient capture in the
landscape and therefore reduced overall function and pro-
ductivity (Tongway et al., 2001). The impact of woody plant
encroachment on runoff and streamflow conditions has been
typically associated with a reduction in base flow (Chang,
2002) though some recent studies are showing that the oppo-
site might also happen (Wilcox and Huang, 2010).

3 Technical advances addressing dryland issues

As already noted, the variability and distribution of water
availability in the landscape is of paramount importance for
drylands. There are a number of exciting developments in
monitoring tools useful for ecohydrological research over
the last decade. For example, field deployable laser based
spectroscopy approaches that determine the ratios of hy-
drogen and oxygen isotopes (Lee et al., 2005; Wang et al.,
2009d, 2012b), cosmic-ray (Zreda et al., 2008) and electro-
magnetic imaging (i.e., EMI) based plot to watershed scale
in-situ soil moisture monitoring, development of distributed-
temperature sensing (DTS), and remote sensing based esti-
mates of key hydrological variables such as soil moisture, ET
and water level (Alsdorf et al., 2000) are revolutionizing the
scales and precision of information sources to inform eco-
hydrological measurement and investigation. The modeling
and conceptual advances in soil moisture (Rodriguez-Iturbe
et al., 1999; Guswa et al., 2002), scale and scaling (Blöschl
and Sivapalan, 1995; Rodriguez-Iturbe et al., 1995; Wilcox
et al., 2003) also enhance our understanding of dryland eco-
hydrolocial processes. It is impractical to exhaust all the ad-
vances and here we select remote sensing and stable isotopes
as examples and discuss three areas in details. First we dis-
cuss recent methodology advances to differentiate human vs.
climate induced desertification using remote sensing product

and time series analysis, corresponding to the critical issue
(2.3); the second and third parts focus on using remote sens-
ing and stable isotope based techniques to better characterize
the water budget at various scales, which apply to all the crit-
ical issues. Remote sensing has the advantage in temporal
and spatial duration and stable isotopes have the advantage
in detecting mechanisms.

3.1 Detecting human vs. climate induced desertification

Differentiating human vs. climate induced desertification is
a challenging task. Techniques to quantify the relative influ-
ence of each cause have been developed to identify regions
where land management options are likely to be most effec-
tive in stopping and remediating this degradation. One of the
earliest attempts to explicitly do this can be found in Evans
and Geerken (2004). In their methodology the first step was
to establish a relationship between inter-annual variations in
vegetation and precipitation. The satellite based Normalized
Difference Vegetation Index (NDVI) was used as a proxy for
vegetation. Evans and Geerken (2004) provide a generic way
of identifying the best linear correlation between the precip-
itation, accumulated over some period, and the annual maxi-
mum NDVI. This extends the work of many others who have
also investigated the relationship between the NDVI and cli-
matic variables (Hielkema et al., 1986; Yang et al., 1997;
du Plessis, 1999; Schmidt and Karnieli, 2000; Wang et al.,
2001). By removing this identified climate contribution from
the NDVI time series the influence of the climate variability
is removed, and any remaining trend in these residuals is then
ascribed to human activities (Fig. 2). This method is hereafter
referred to as RESTREND. Using this methodology Evans
and Geerken (2004) identified the regions undergoing sig-
nificant human caused degradation in the Syrian drylands,
which account for a large portion of the total degraded areas.

The RESTREND method has subsequently been used in
many studies to identify the contribution of climate vari-
ability and human activities to land degradation (Herrmann
et al., 2005; Wessels et al., 2007; Propastin and Kappas,
2008; Paudel and Andersen, 2010; Brinkmann et al., 2011).
Some studies have further shown the connection between
the identified degraded areas and a particular human activ-
ity such as over-grazing (Geerken and Ilaiwi, 2004; Paudel
and Andersen, 2010).

The RESTREND method has proven to be robust and ef-
fective in many studies. The RESTREND method is how-
ever, relatively simple and it contains several limitations. It
assumes there is a linear relationship between vegetation and
precipitation; that the identified relationship is not overly in-
fluenced by the presence of degradation; and that the vegeta-
tion measure (e.g., NDVI) can represent all forms of degrada-
tion of interest. Each of these limitations has been addressed
in various studies. The assumption of a linear relationship
between vegetation (NDVI) and precipitation appears ro-
bust within dryland systems, however the assumption breaks
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Fig. 2.Flowchart of RESTREND method to differentiate human vs.
climate induced desertification. First, climate (precipitation, tem-
perature) and vegetation (NDVI) time series are used to find the cli-
mate averaging window that produces the highest correlation. Using
this window, the linear regression is calculated. Then, this regres-
sion equation is used to calculate the climate caused NDVI compo-
nent. The difference between the observed NDVI and the climate
caused NDVI is the NDVI residual. The trend in this residual indi-
cates the human caused changes in the vegetation.

down in wetter environments. Wessels et al. (2007) applied
a log transform to the precipitation data to account for the
lower responsiveness of vegetation to precipitation in high
precipitation areas. With this change they found that the RE-
STREND method was successful in identifying the degrad-
ing regions across a large climatic gradient in South Africa.
Others found similar non-linear relationships between veg-
etation and precipitation when applied outside the drylands
(e.g., Paudel and Andersen, 2010).

The RESTREND method assumes that the relationship
seen in the observations between the vegetation (NDVI) and
precipitation contains the climate influence, while the resid-
uals of this relationship contain all other influences on the
vegetation. However, if an area has been degraded during the
observation record this will be evident as a smaller vegeta-
tion response to the same precipitation input, and the identi-
fied vegetation-precipitation relationship will embody some
of this response. That is, the RESTREND method neces-
sarily underestimates the degradation (or improvement) that
has occurred. This limitation has been addressed by esti-
mating the “potential” vegetation given the climate condi-
tions. This potential vegetation has been estimated in a num-
ber of ways. Wessels et al. (2008) used the 90th percentile
of net primary production (NPP) for each biophysical land
unit to define the potential production of the land. Xu et
al. (2010) used NPP calculated using the Carnegie-Ames-
Stanford Approach (CASA) model to determine the poten-
tial of an area, while Zhang et al. (2011) used this approach
with estimates from the Thornthwaite Memorial and Syn-
thetic models as well.

In drylands degradation may occur without any discernible
change in the vegetation measure, usually NDVI. Proba-
bly the most important of these changes is caused by over-
grazing. The livestock will preferentially graze on the most
palatable species which can result in the replacement of these
species by less palatable species. Such a change in vege-
tation composition may not produce any change in the ob-
served NDVI but may dramatically reduce the livestock car-
rying capacity of the land. It has been proposed that by uti-
lizing the phenological cycle as embodied in time series of
remotely sensed vegetation indices, such as NDVI, it is pos-
sible to differentiate vegetation species. Most conventional
studies only use particular phenologically relevant variables
such as green period, peaking time, or onset/end of green pe-
riod (e.g., Boyd et al., 2011). Others have used decision (re-
gression) tree techniques based on a collection of the above
variables (Hansen et al., 2000; Bradley and Mustard, 2008).
These approaches do not make full use of the information
available over the entire phenological cycle. One technique
used to extract information from the full time series is to treat
the multi-temporal data set as if it is a multi-spectral data
set and apply spectral-unmixing algorithms to it (Singh and
Glenn, 2009), another is to decompose the shape of the phe-
nological cycle using Fourier transforms and base the clas-
sification on the Fourier components, which is the approach
used in Geerken et al. (2005) and Evans and Geerken (2006).
Geerken et al. (2005) presents the Fourier Filtered Cycle
Similarity algorithm in which the user identifies optimum
weightings for Fourier harmonics calculated from a refer-
ence vegetation cycle. These optimum parameters are ap-
plied to the entire area of interest and pixels of similar shape
to the reference cycle are deemed to be the same vegetation
type. The measurement of similarity is based on a linear re-
gression between the reference cycle and the target cycle.
To overcome the high computational burden and subjective
nature of this algorithm, Evans and Geerken (2006) intro-
duced the Fourier component based shape similarity mea-
sure. This similarity measure is based directly on the Fourier
Components and is designed mathematically such that it is
invariant to modifications unrelated to the plants phenology,
that is, the similarity measure is invariant to vertical dis-
placements caused by different backgrounds (soils), tempo-
ral shifts caused by changes in the onset of the wet season
or across strong climate gradients, and magnitude variations,
which can be caused by changes in the coverage or vigour
of the vegetation. These techniques have been further devel-
oped by Geerken (2009). They have been found to provide
accurate vegetation type classifications down to the level of
differentiating shrub types. Geerken (2009) also introduced a
change detection algorithm that differentiates between cover-
age changes and vegetation type changes making these shape
similarity based approaches very promising as a means to
detect early stages of degradation in drylands such as the re-
placement of palatable shrubs by unpalatable ones.
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To date, attempts to differentiate between human-induced
and climate caused degradation have focused on precipita-
tion as representing the required climate variations. How-
ever, in cold dryland regions where temperatures reach below
zero celcius, temperature changes may also play an impor-
tant role. Liu et al. (2012) apply the RESTREND method to
the Mongolian Steppe and found that inter-annual changes in
temperature had a significant impact on the vegetation and so
must be included along with precipitation in order to account
for the full climate effect. As global warming continues, it
is likely that the long-term change in temperature will play
a larger role in many environments and should not be ne-
glected. Liu et al. (2012) found that once the climatic effects
had been removed, regions of degradation in the Mongolian
Steppe could largely be attributed to over-grazing due to the
increase in Cashmere goat population. The challenge now is
to determine what actions can be taken to stop, or even re-
verse, the degradation without damaging one of Mongolia’s
largest export markets and before the degradation becomes
irreversible.

3.2 Remote sensing of water budget components in
drylands

Remote sensing provides the capacity to bridge the point
scale focus of many ecohydrological investigations to the
larger spatial extents required for whole system assessment.
One of the key advantages of remote sensing platforms is the
availability of data to allow extrapolation not just in space,
but also across the temporal domain, offering insight into pat-
tern change and development through time. Recent advances
in hydrological remote sensing (Lettenmaier and Famiglietti,
2006) have seen research efforts that seek to address the out-
standing problem of observation based hydrological closure
(Sheffield et al., 2009). Such efforts to quantify the fluxes and
stores of water within the terrestrial system have relevance to
better understanding the hydrological implications of climate
change and also the coupling and feedback mechanisms that
directly impact upon ecohydrology studies.

Of considerable interest in large scale ecohydrological ap-
plications are hydrological related variables associated with
the estimation of soil moisture, precipitation, vegetation and
water stress, and the linked process of ET.

3.2.1 Soil moisture

Soil moisture sensing from space has been employed for a
variety of applications in the hydrological sciences, most reg-
ularly in updating the state parameter for land surface mod-
eling applications (Pauwels et al., 2001; Pan et al., 2008).
From an ecohydrological perspective, characterizing the an-
tecedent condition of a system along with the mean, range
and variability of soil moisture dynamics within it, are of
primary interest. Both active and passive sensor microwave
based systems are available for remote estimation of soil

moisture, with each representing a compromise between spa-
tial and temporal resolution. Microwave based soil moisture
retrieval is limited by the depth of measurement (on the or-
der of just a few centimetres). As such, sensors only have
the capability to inform upon the near surface soil moisture,
although techniques to extrapolate through the soil column
are used (Hoeben and Troch, 2000). Although routine daily
global scale estimation of soil moisture is possible, making
them ideal for large scale studies, a clear limitation of pas-
sive microwave sensing is the coarse resolution of retrievals
(McCabe et al., 2005). While active radar systems provide a
higher spatial resolution (up to a few kilometres), the repeat
time is generally on the order of a few days. Passive systems
on the other hand can provide sub-daily retrievals, but with
a coarser spatial coverage (approximately 25km). Efforts to
merge data sets from multiple systems and sensors have the
potential to offer improved insight for large scale ecohydro-
logical investigations (Liu et al., 2011a).

From an in-situ monitoring perspective, perhaps the most
important recent advance in soil moisture estimation is the
development of the COSMOS monitoring system (Zreda et
al., 2008). Based on the release of both fast and slow neu-
trons from interactions between water in the soil column and
a regular flux of cosmic rays from space, the COSMOS sys-
tem provides for the first time, a typical model resolution
(100’s of meters) estimate of the soil wetness in a system.
In addition, the hydrogen in the top layer will have more
sensitivity to the neutron counts, thus COSMOS has the po-
tential to discriminate soil moisture at the topsoil and soil
moisture in the subsoil, if combined with modeling to sepa-
rate the various hydrogen pools in the average measurement.
The COSMOS installations represent a revolution in terms
of bridging the spatial divide that often exists between re-
mote sensing and in-situ measurement approaches. Efforts to
develop a distributed network of these systems globally will
see an improved capacity to monitor ecosystem change and
development in ways not previously available.

3.2.2 Precipitation

Spatial and temporal maps of rainfall distribution provide key
constraints on the health and development of ecohydrologi-
cal systems. While there is a wide range of satellite based re-
trievals that can provide enhanced characterization of ecosys-
tem condition or state, a number of these space based plat-
forms provide multi-decadal sequences of important terres-
trial variables. Remote measurement of precipitation has an
extensive history, with numerous hydrological investigations
being informed by the two decades long Tropical Rainfall
and Measurement Mission (TRMM) satellite system (Kum-
merow et al., 2000) and other related sensors.

Using both microwave based passive and active radar sys-
tems, together with infrared based sensors on board geosta-
tionary platforms, researchers have been able to provide im-
proved spatial and temporal detail on precipitation structure
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Fig. 3.Map of global evapotranspiration (in mm) distribution for the
year 2006. Data are from Global Land-surface Evaporation: Ams-
terdam Method (GLEAM).

and pattern. Over the coming years, the next generation of
satellite rainfall systems, referred to as the Global Precipi-
tation Mission (GPM), will provide a much needed update
to the space based rainfall monitoring capacity. With GPM,
the spatial and temporal resolution of rainfall retrievals will
eclipse previous incarnations, and offer the needed level of
detail to enable a range of hydrological and ecohydrological
investigations.

3.2.3 Evapotranspiration

Together with precipitation, ET represents the major water
flux exchanges occurring within the Earth system. Encom-
passing water loss from open water, bare soil and canopy
components (E) and plant water release through the pro-
cess of transpiration (T ), the two terms can routinely exceed
90 % of the water lost from dryland ecosystems. For this rea-
son, considerable effort has been directed at developing ap-
proaches for its accurate estimation at a range of spatial and
temporal scales (McCabe and Wood, 2006). Indeed, for dry-
land systems, a compromise between the spatial resolution of
measurements and the temporal frequency is often required,
given the rapid rate at which water is exchanged through the
system.

Numerous techniques for flux estimation exist, with the
recent review by Kalma et al. (2008) providing a good
overview of these different approaches. While many satel-
lite based algorithms rely on the use of surface temperature
and air temperature gradients to gauge heat flux potential, the
surface temperature itself is a useful proxy for surface condi-
tion and stress: particularly if the diurnal temperature range
can be retrieved (Sobrino and El Kharraz, 1999; Stisen et al.,
2008).

Recent efforts towards better understanding the global dis-
tribution of fluxes and variability in flux retrieval approaches
has been undertaken under the auspices of the Global Energy
and Water Cycle Experiment (GEWEX) Landflux project
(Jimenez, 2011; Mueller et al., 2011). Landflux is an effort
to provide the community with a climatological record of
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Fig. 4. Map of aridity index for the year 2006, using Global Pre-
cipitation Climatology Centre (GPCC) descriptions of rainfall at
0.5× 0.5 degree and the Global Land-surface Evaporation: Ams-
terdam Method (GLEAM) for evapotranspiration. Note that evap-
otranspiration rather than potential evapotranspiration values were
used in calculating the aridity index for this map.

land surface heat fluxes that can be used not only for global
climate model evaluation, but also more process and sys-
tem scale modeling and interpretation activities. Most im-
portantly, it will seek to be consistent with a suite of other
climate system product data sets, reducing the risk of intro-
duced bias as a response to independent forcing data sets.

These data have considerable utility in describing the long-
term variability and range of ecosystem behavior around
the globe, allowing intercomparison of climate regions (arid,
semi-arid, humid) with reduced bias as a result of data con-
sistency. Also, other GEWEX data streams such as radiation,
precipitation and ultimately soil moisture will allow further
ecosystem analysis to be undertaken in a consistent frame-
work, reducing one of the large uncertainties in mass and
energy flux assessments (McCabe et al., 2008), the inherent
variability in forcing data and subsequent response on model
simulations.

Figure 3 illustrates a recent example of a multi-satellite
Global Land- surface Evapotranspiration (GLEAM) product,
developed by the Vrije University of Amsterdam (Miralles et
al., 2011). The approach, along with a number of other global
ET data sets (see Jimenez et al., 2011 for further details), al-
low for the calculation of simple ecosystem and catchment
indices, such as the aridity index (P /potential ET) or evapo-
rative fraction, providing a baseline characterization of eco-
hydrological response across spatial and temporal domains
(see Fig. 4 for an example of such an index). Such data sets
provide a much needed source of information on global pat-
terns of evaporative response, and will prove useful in estab-
lishing change and trend detection in the hydrological cycle.

3.2.4 Vegetation and water stress

In addition to standard maps of land use and land cover which
provide insight into the (often slowly) changing nature of
the terrestrial surface (e.g., Domingues et al., 2007), there
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are a wide range of vegetation based indices that present
details on the state and condition of vegetation across the
globe. The range of available data can also include informa-
tion on plant phenology, density and distribution (McVicar
and Jupp, 1998; Badeck et al., 2004; White et al., 2009;
Simard et al., 2011). Through integration with microwave,
optical or infrared remote sensing data, the capacity to link
the sub-surface land condition with the state and health of
the overlying vegetation can be realized. While often empir-
ical in nature, relationships between vegetation stress and re-
mote sensing indices are commonly used in model and ob-
servation based studies – the most well recognized of these
being the NDVI. Recent efforts to produce a data set of
vegetation biomass from microwave based systems has a
range of useful implication for understanding the shifting
responses of ecohydrological systems. Unlike optical or in-
frared sensors, microwave remote sensing measures the total
water content of the vegetation and soil continuum. Differ-
entiating the strength of signal between these two land sur-
face components provides the potential to describe the total
above ground biomass. More importantly, using temporal se-
quences of these satellite systems provides a capacity to map
large-scale changes of biomass response in ways that tradi-
tional indices such as NDVI are incapable of capturing (Jones
et al., 2011; Liu et al., 2011b).

A number of remote sensing derived drought indices that
are generally independent of vegetation state and rely more
on meteorological or hydrological indicators, have also been
produced (Sheffield and Wood, 2008). These existing and
emerging data sets provide a near real-time capacity to un-
derstand the dynamic vegetation response to rapidly chang-
ing terrestrial conditions. Whether as a consequence of hy-
drological or other larger scale forcing to the system, such
data – in combination with other remote sensing based re-
trievals – also allow a capacity to examine system recovery
or ecosystem shift as a response to external drivers across
local, regional and global scales.

3.3 Evapotranspiration partition

As noted above, ET is a major term in the water budget and
accounts for up to 95 % of water input (e.g., precipitation)
in drylands (Huxman et al., 2005). At the same time, ET has
two distinct components (E andT ), which are controlled by
different mechanisms. Partitioning ET is important not only
for better understanding the water budget but also in predict-
ing the biogeochemical fluxes driven by hydrological varia-
tions (e.g., Wang et al., 2010b; Raz-Yaseef et al., 2012). To
efficiently use the limited water resources in drylands, we
need to maximize the productive water loss (T ) and mini-
mize the unproductive water loss (E) (Wang and D’Odorico,
2008). SeparatingE andT , however, has always been a dif-
ficult task, especially from the observational point of view at
larger scales (see modeling exercise in Liu, 2009).

Stable isotopes of water provide a useful tool to separate
E andT , asE andT carry distinct isotopic signatures. His-
torically water isotopes have been widely used in hydrology
to track the water movement and phase changes (Gat, 1996).
The water stable isotopic compositions are traditionally mea-
sured by the isotope ratio mass spectrometry (IRMS), while
the vapor phase measurements are usually based on cryo-
genic water vapor collection coupled with the IRMS method.
Such methods are labor intensive and time consuming, as18O
measurements require offline CO2-H2O equilibrium. The
typical vapor equilibrium takes about 24 h. Over the past
decade, a revolutionary change in water isotope measure-
ments has seen the appearance of spectroscopy based isotope
instruments capable of making continuous measurements of
water vapor isotopic compositions. This new type of instru-
ments does not usually require pretreatment and have preci-
sions similar to traditional cryogenic based mass spectrome-
try methods (Lee et al., 2005; Wen et al., 2008; Wang et al.,
2009d; Griffis et al., 2010). Recent research has indicated
that plant derived volatile compound induced spectral con-
tamination in leaf and stem water measurements could affect
the accuracy of water stable isotopic compositions signifi-
cantly (West et al., 2010; Zhao et al., 2011), limiting the
application of spectroscopy-based method to plant sample
measurements. There are studies which developed post cor-
rection method for modest spectral contamination of plant
tissues (Schultz et al., 2011), but this remains a topic requir-
ing further developments. Nevertheless, the continuous mea-
surement of water vapor isotope compositions allows for the
direct quantification of the water vapor and will expand the
capabilities of using stable isotopes for echohydrological re-
search.

To assess ET partitioning using stable isotopes, three iso-
topic end members need to be quantified: the isotopic compo-
sition of ET (δET), T (δT ) andE (δE). Recent efforts have fo-
cused on developing, refining and assessing estimation meth-
ods of all three end members.δET is typically measured us-
ing the Keeling plot approach coupled with traditional cryo-
genic methods (e.g., Yepez et al., 2005). With the develop-
ment of the new laser technique, Wang et al. (2012c) ex-
tended this technique to direct chamber measurements cou-
pled with laser instruments. Good et al. (2012) quantified
and compared the uncertainties using differentδET estima-
tion methods at tower scale and showed that the eddy covari-
ance method has the largest uncertainties, while the Keeling
plot and flux gradient methods have smaller and similar un-
certainties.

δE is typically calculated by the Craig-Gordon model
(Craig and Gordon, 1965), which describesδE as a function
of humidity, kinetic and equilibrium isotope fractionation,
the isotopic composition of water of the evaporation surface,
and atmospheric vapor. Soderberg et al. (2012) showed that
the traditional Craig-Gordon model could be improved by
adding water potential terms for dry soils.
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Fig. 5. An example of using laser-based stable isotope monitoring
techniques to partition evapotranspiration. The left panel showed
the experimental setup inside Biosphere 2 as well as the mass bal-
ance equation to calculate the evapotranspiration partition, and the
right panel showed the increased transpiration/evapotranspiration
ratio as vegetation cover increases, which was modified from Wang
et al. (2010b).

Typically, δT is assessed indirectly using stem water mea-
surements or leaf water measurements with leaf enrichment
corrections. The use of stem water measurements is based
on the assumption that leaves operate under isotopic steady
state, so thatδT is equal to the isotopic composition of
plant source water. The assumption that leaves are in iso-
topic steady state is generally valid during midday because
the magnitude ofT relative to the volume of leaf water is
large and there is a rapid turnover of water in transpiring
leaves. However, non-steady state isotopic enrichment is also
common in many natural systems, especially during the early
morning and late afternoon (e.g., Lai et al., 2005), whenT

fluxes are lower. Taking advantage of the new laser tech-
nique, Wang et al. (2010b) reported the first direct measure-
ments ofδT using a customized leaf chamber and off-axis
integrated cavity output spectroscopy water vapor isotope an-
alyzer with pure nitrogen as purging gas. This method, how-
ever, has two limitations: (1) the limited availability of ultra-
purity nitrogen gas makes this method unsuitable for many
field applications; (2) the water-free and CO2-free inline en-
vironment affects stomata openings since humidity and CO2
have opposite effects on stomata openings, which may al-
ter instantaneousδT values. Building on this configuration,
Wang et al. (2012b) developed a new framework to remove
the need for dry air by employing a mass balance approach
for both isotopes and water vapor inside the leaf chamber.
This direct and continuousδT quantification method has been
shown to effectively capture the fastδT responses to radiation
variations (Wang et al., 2012b).

Figure 5 presents an example of using laser-based iso-
tope monitoring technique to partition ET inside Biosphere 2
and assess theT /ET ratio changes with increasing vegetation
cover (Wang et al., 2010b). With these new developments on
the estimation of isotope end members, stable water isotopes
provide a promising tool for partitioning ET across a range of

spatial scales, which will significantly enhance water budget
estimation in drylands.

4 Summary and concluding remarks

In this synthesis, based on hydrological principles and pub-
lished literature, we highlight current critical issues in dry-
lands ecohydrology ranging from societal aspects such as
rapid population growth and the resulting food and water
security implications, development issues, to natural aspects
such as ecohydrological consequences of bush encroachment
and differentiation of human versus climate induced deserti-
fication. We identify a number of research priorities to better
address knowledge gaps. It should be noted that while some
of the issues identified are not necessarily unique to drylands
themselves (e.g., food and water security), the level of sever-
ity and urgency is certainly higher in drylands and deserves
focused attention.

To improve current understanding and inform upon the
needed research efforts to address these critical issues, we
identify some recent technical advances in terms of moni-
toring dryland water dynamics, water budget and vegetation
water use, with a focus on the use of stable isotopes and
remote sensing. Stable isotopes have proven to be a pow-
erful tool in tracing hydrological processes and vegetation
water sources. Recent developments in spectroscopy have
revolutionized the temporal and spatial resolution of isotopic
monitoring, providing foundations to use isotope-based tech-
niques to partition ET and characterize large-scale vegetation
water use. Similarly, rapid developments in remote sensing
based hydrological monitoring provide unprecedented tem-
poral and spatial coverage in estimates of soil moisture, ET,
water level and other important ecohydrological aspects of
the system. For example, both active and passive microwave
based systems are available for remote estimation of soil
moisture, with each representing a compromise between spa-
tial and temporal resolution. Combing microwave-based pas-
sive and active systems with infrared-based sensors allows
for the spatial and temporal resolution of precipitation struc-
ture and pattern to be significantly improved. In addition,
the capacity to monitor vegetation structure and vegetation
health provides additional benefits for ecohydrological mon-
itoring using remote sensing.

Due to inherent length limitations, there are a number of
related technical advances in in-situ measurements, such as
field portable 3D LIDAR systems for plant canopy analysis,
distributed temperature sensors (DTS) for soil heat flux and
connected water measurements, and electromagnetic imag-
ing (EMI) and cosmic ray soil moisture observing systems
(COSMOS) for soil moisture that were not covered in detail.
Further information of such advances can be found in a num-
ber of synthesis papers devoted to some of these techniques
(e.g., Robinson et al., 2008; Zreda et al., 2012).
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Overall, the analysis techniques, observation systems and
monitoring advances discussed herein can all help to address
some of the key ecohydrological issues of water and food
security, consequences of bush encroachment and differen-
tiation of human versus climate induced desertification. In-
evitably, development issues in drylands require a hydrologi-
cal, ecological and socio-economic understanding of the dry-
land ecosystem. An effective management of dryland sys-
tems demands that advances in monitoring, together with
informative techniques for data analysis, should be linked
within an interdisciplinary interpretive framework. Only then
will the capacity to address the myriad issues facing dryland
systems in the coming years be realized.
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