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Abstract. Evaporation is an essential reference to the man-
agement of water resources. In this study, a hybrid model
that integrates a spatial neural fuzzy network with the kring-
ing method is developed to estimate pan evaporation at un-
gauged sites. The adaptive network-based fuzzy inference
system (ANFIS) can extract the nonlinear relationship of ob-
servations, while kriging is an excellent geostatistical inter-
polator. Three-year daily data collected from nineteen me-
teorological stations covering the whole of Taiwan are used
to train and test the constructed model. The pan evapora-
tion (Epan) at ungauged sites can be obtained through sum-
ming up the outputs of the spatially weighted ANFIS and the
residuals adjusted by kriging. Results indicate that the pro-
posed AK model (hybriding ANFIS and kriging) can effec-
tively improve the accuracy ofEpan estimation as compared
with that of empirical formula. This hybrid model demon-
strates its reliability in estimating the spatial distribution of
Epan and consequently provides preciseEpan estimation by
taking geographical features into consideration.

1 Introduction

Evaporation is one of the main elements that affect water
storage and temperature in the hydrological cycle. An ac-
curate estimation of evaporation is crucial for the manage-
ment of agricultural irrigation, water balance and soil con-
servation. However, it is difficult to effectively simulate its
variation due to the complex interactions between land and
atmosphere systems. In previous hydrological applications,
a number of direct and indirect methods were applied to

the measurement and estimation of evaporation. One direct
method was to use evaporation pans to accumulate the total
amount of evaporation at a specific location during an obser-
vation period, while indirect methods such as mass transfer
and empirical equations had difficulty in identifying the most
suitable equation that best fits the wide range of data types.
Those problems should be explored through better models
that could satisfy inherently nonlinear systems.

Artificial neural networks (ANNs) are an adaptive system
that adjusts its structure according to the given input-output
patterns. The nonlinear characteristics of ANNs often serve
as a viable tool for physical or stochastic models in vari-
ous hydrological fields (Antar et al., 2006; Chen and Chang,
2009; Chiang and Chang, 2009; Chang et al., 2005; Kim and
Barros, 2001). In recent years, the applications of ANN to
evaporation estimation were presented in many studies (Tra-
jkovic et al., 2003; Keskin and Terzi, 2006; Kisi, 2006; Kisi
and Ozturk, 2007; Gonzalez-Camacho et al., 2008; Chang
et al., 2010). In general, those applications of ANN-based
models could only produce point estimates. Therefore, how
to extend the applicability of ANN models from point esti-
mation to spatial estimation would be an important scientific
issue because ANNs are not distributed models but lumped
models. Therefore, it will be of great help if ANNs can com-
bine geostatistical methods such as kriging for estimating the
spatial distribution of evaporation. In addition, Choudhury et
al. (1994), Xu et al. (2006) and McVicar et al. (2007) had
discussed the relationship between reference evapotranspi-
ration (ET0) and pan evaporation (Epan) to obtain the pan
coefficient (Kpan) in spatial interpolation issues.
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Fig. 1. Architecture of an ANFIS model with seven fuzzy rules for evaporation 

estimation. W, S, R, T, H and D are wind speed, sunshine hour, radiation, 

temperature, humidity and dew point temperature, respectively.   
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Fig. 1. Architecture of an ANFIS model with seven fuzzy rules
for evaporation estimation.W , S, R, T , H and D are wind
speed, sunshine hour, radiation, temperature, humidity and dew
point temperature, respectively.

The aforementioned research provided evidences of the
estimation and/or prediction of evaporation only at gauged
sites using ANNs. In this study, a hybrid computational
model is proposed by combining the ANN and kriging for
estimating the evaporation at ungauged sites. Kriging has
been recognized as a geostatistical tool for interpolating the
value at a random location based on nearby information and
has been applied to problems in hydrological fields (Schuur-
mans et al., 2007; Chen, 2008; Neuman and Jacobson, 1984;
Legleiter, 2008). A number of studies have investigated the
applicability of neural networks with geostatistics to envi-
ronment, such as fallout (Kanevsky et al., 1996), tempera-
ture (Koike et al., 2001), etc. Nevertheless, all of the above-
mentioned studies merely performed the spatial estimations
through two-dimensional coordinate (latitude and longitude).
The spatial estimation of evaporation developed in this study
was achieved by using three-dimensional information includ-
ing latitude, longitude and elevation. Moreover we specifi-
cally take the meteorological variables related to evaporation
for estimating the pan evaporation at ungauged sites by in-
tegrating kriging into ANN which never been investigated
previously.

In this study, a novel approach that combines a spatial
neural fuzzy network with kriging is implemented to im-
prove the accuracy of evaporation estimation and to extend
its capability for displaying the spatial distribution of evapo-
ration. Evaporation was measured by Class A Pan (pan evap-
oration), and the collected data contained invariant informa-
tion including geographical coordinates and elevation. More-
over, the relation between the ANN and kriging is that the
ANN is assigned to extract knowledge only from changeable
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Fig. 2. Flowchart of the constructed AK model for estimating the spatial distribution 

of evaporation.  

Fig. 2. Flowchart of the constructed AK model for estimating the
spatial distribution of evaporation.

parameters (evaporation and meteorological variables). The
outputs of the spatially weighted ANN can then be combined
with the residuals adjusted by simple kriging for producing
evaporation estimation at ungauged sites. Another scientific
issue raised in this study is that the hybrid model can reliably
reflect the impacts of topographical features on evaporation.
Section 2 presents the hybrid methodology that integrates the
spatially weighted ANFIS and simple kriging method (here-
inafter called the AK model). Section 3 addresses the study
area, data sets, the model construction procedure and the em-
pirical formula. Section 4 shows the results of the proposed
hybrid model which are compared with those of the empiri-
cal equation. The contribution and findings in this study are
given in Sect. 5. Finally, the conclusion of this study is drawn
in Sect. 6.

2 Methodologies

In the following sub-sections, the ANFIS, spatial weight
method, kriging method and model construction process are
introduced.

2.1 Adaptive network-based fuzzy inference system
(ANFIS)

The adaptive network-based fuzzy inference system (AN-
FIS), initially introduced by (Jang, 1993), has been success-
fully applied to many problems (Chang and Chang, 2001,
2006; Chen et al., 2006; Shu and Ouarda, 2008). The ANFIS
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uses neural network learning algorithms coupled with fuzzy
reasoning to map an input space onto an output space. The
architecture of the constructed ANFIS model with a brief
description is shown in Fig. 1.

The ANFIS is usually trained by a hybrid supervised learn-
ing algorithm to optimize both linear and nonlinear param-
eters. Furthermore, it is common to adopt the subtractive
fuzzy clustering algorithm when establishing the fuzzy rules
between input and output variables. The subtractive fuzzy
clustering algorithm determines the minimum number of
rules to discriminate the fuzzy quality associated with each
cluster. Therefore, this algorithm determines the fuzzy rules
of the constructed ANFIS model in this study.

2.2 Spatial weight method

Owing to great uncertainties in spatial distribution, evapora-
tion at different locations is usually affected by various fac-
tors. Daly (2006) had an overview of commonly used inter-
polation techniques. The inverse distance weighting method
is introduced to integrate the results given by the point es-
timator (ANFIS), and then the evaporation at specific un-
gauged sites of interest will be computed in this case study.
The implementation procedure of this method is described
as follows:

1. identify the TWD67 (Taiwan Datum 1967) coordinates
(x and y) and elevation (z) of two sites (gauged and un-
gauged sites) and calculate the distanced between the
two sites using Eq. (1), where subscriptso andi repre-
sent gauged and ungauged sites, respectively. Because
elevation is a key factor for evaporation and the eleva-
tion difference (less than 2000 m) is much smaller than
the distance (less than 300 km) between gauged and un-
gauged sites. Based on a great number of trial-and-
error process, the emphatic weight is set as 1000, which
can also refer to Hutchinson (1995) that indicated that
the weighted values of elevation and distance should be
approximately equal.

doi
=

√
(xo −xi)2+(yo −yi)2+((zo −zi)×1000)2 (1)

2. Define the inverse square ratiof as Eq. (2)

f (doi) =
1

d2
oi

(2)

3. Compute the weightw by calculating the distance be-
tween everyEpan and every grid cell of the ungauged
site as Eq. (3):

wi =
f (doi)
n∑

i=1
f (doi)

(3)
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Fig. 3. Location of meteorological stations in Taiwan.  

 
Fig. 3. Location of meteorological stations in Taiwan.

4. Calculate the evaporationE′ at every grid cell of the
ungauged site based on the data fromn gauged sites
(n = 16 in this case) by using ANFIS outputE instead
of measurements.

E′

i =

n∑
i=1

wiEi (4)

2.3 Kriging method

Kriging, synonymous with optimal prediction (Journel and
Huijbregts, 1981), is an interpolation method that uses a var-
iogram to express the spatial variation and predicts unknown
values from data observed at known locations, and therefore
is applied to analyzing the spatial information extracted from
the residuals by ANFIS. Compared with the other kriging
methods, the simple kriging method is mathematically the
simplest. The practical assumptions for the simple kriging
are a known constant trend, second-order stationary and a
covariance function.

2.4 Model construction

The hybrid AK model integrates the spatially weighted AN-
FIS and kriging method. The construction procedure of the
AK model is described below (see Fig. 2).

(a) Determining the optimal ANFIS structure
To determine a suitable structure for the ANFIS model,
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Table 1. Statistics of meteorological variables in training, validation and test subsets.

Wind speed Sunshine Radiation Temperature Humidity Dew point
(m s−1) hour (h) (MJm−2 day−1) (◦C) (%) temperature (◦C)

CC∗ 0.14 0.66 0.68 0.64 0.45 0.50
Training Max. 10.80 13.00 31.00 32.40 100.00 26.90

Min. 0.1 0 0 1.00 34.00 −10.10

CC∗ 0.19 0.63 0.64 0.60 0.45 0.44
Validation Max. 8.20 12.70 31.50 31.90 100.00 27.10

Min. 0.50 0 0 −0.20 37.00 −10.40

CC∗ 0.15 0.65 0.79 0.70 0.41 0.50
Testing Max. 6.80 12.90 29.50 31.90 100.00 26.20

Min. 0.30 0 0.03 7.90 37.00 0.90

∗ CC: Correlation Coefficient.

Table 2. Statistics of evaporation in training, validation and test
subsets.

Evaporation Standard
(mm day−1) Mean deviation Max. Min.

Training 3.04 1.90 11.4 0
Validation 3.39 1.98 16.0 0
Testing 3.15 1.80 9.8 0.1

a number of network combinations with different num-
bers of rule nodes are calibrated based on training
datasets, and then the optimal ANFIS structure is deter-
mined based on validation datasets (or “in the validation
phase”).

(b) Generating the residual covariance
To get the bias produced by the ANFIS outputs in spa-
tial distribution, residuals are calculated based on the
differences between the ANFIS outputs and the obser-
vations. The spatial coordinates corresponding to each
residual are given to develop the covariance.

(c) Developing the residual map
The residual map is developed by considering covari-
ance functions, residuals, spatial coordinates and eleva-

tion. As a result, the residuals
∧

Z(x0) at ungauged sites
can be interpolated according to spatial positions and
altitudes.

(d) Computing the evaporation at ungauged sites
First, the ANFIS outputs at gauged sites are taken into
account to compute the evaporation at ungauged sites
using the spatial weight method mentioned above. Sec-
ond, the kriging map can provide the residual with its

spatial coordinates and elevation. Finally, the spatial
distributionEsp of evaporation at any ungauged site can
be obtained by summing up the estimated evaporation

E′ and residual
∧

Z(x0), shown as Eq. (5).

Esp= E′

i +
∧

Z(x0) (5)

3 Application

3.1 Study area and datasets

Taiwan, an island situated in East Asia within the subtrop-
ical monsoon zone of northwestern Pacific Ocean, has an
area of 35 801 km2 and is known for its variable climate.
The observation data were collected from 19 meteorologi-
cal stations of Taiwan Central Weather Bureau. In general,
each weather station in Taiwan has installed a piston mercury
barometer, a sheathed thermometer, a propeller anemome-
ter, a tipping-bucket rain gauge, a class A pan, a hair hy-
grometer, a pyranometer, a solar-cell sunshine recorder and
a psychrometer for measuring pressure, temperature, wind
speed, rainfall, pan evaporation, humidity, global solar ra-
diation, sunshine hour and humidity, respectively. Figure 3
shows the locations of the meteorological stations in study
area. Nevertheless, the data collected at each station were
incomplete and/or inconsistent, and therefore data in the
same time scales will be arranged for spatial interpolation.
A total of 693 daily meteorological datasets were selected
from each of 19 meteorological stations during January 2007
and August 2009. Every dataset consists of Class A pan
(Epan: mm day−1), wind speed (W : m s−1), temperature
(T : ◦C), humidity (H : %), sunshine hours (S: h day−1), ra-
diation (R: MJ m−2 day−1) and dew point (D: ◦C). These
data are classified into three independent subsets: training,
validation and test subsets. The training subset consists of
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Fig. 4. Statistical features of the spatial distribution of daily pan evaporation in 526 

Taiwan: (a) average of evaporation; and (b) standard deviation.  527 
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Fig. 4. Statistical features of the spatial distribution of daily pan evaporation in Taiwan:(a) average of evaporation; and(b) standard deviation.

all data from station Nos. 1–16 during 2007–2008, and the
validation subset consists of all data from station Nos. 1–16
during January 2009–August 2009. Being different from that
of the test subset, the determination of the training and vali-
dation subsets is dependent on the temporal criterion due to
the optimization of parameters. In other words, training data
should cover as much variability as possible. This is why the
training and validation subsets consisted of data from station
Nos. 1–16 and the ratio of the number of months in the train-
ing subset to the number of months in the validation subset
is approximately 3:1. To better understand the temporal and
spatial variability of evaporation, the estimation of evapora-
tion at any ungauged site should be provided. To achieve this
goal, all data from station Nos. 17–19 during January 2007–
August 2009 are used in test subset. Besides, the important
reasons for selecting station Nos. 17–19 are (1) these three
stations are separately located in northern, central and south-
ern Taiwan; (2) these three sites have relatively few meteo-
rological stations around them as compared with the other
sites, and therefore enhance the practicability of choosing
these three stations; and (3) these three sites are surrounded
by other sites. Cressie (1990) and Schiltz et al. (1998) pre-
sented that most errors in the simple kriging are attributable
to the spatial extrapolation.

Tables 1 and 2 show the statistics of meteorological vari-
ables and evaporation in training, validation and test subsets.
The properties of all variables are similar in three subsets,
which indicate the data structures of these three independent
subsets for model construction have the same characteristics.
Each of the first three variables (sunshine hour, radiation and

temperature; see Table 1) that are highly related to evapo-
ration has a correlation coefficient higher than 0.6. How-
ever, dew point temperature, humidity and wind speed have
been frequently suggested in the evaporation estimation lit-
erature, and therefore are adopted in this case study. Fig-
ure 4 displays the spatial distribution of the measured evap-
oration in the aspect of average and standard deviation. It is
obvious that the evaporation is less in northern Taiwan than
in southern Taiwan; however the variance of evaporation is
even larger in northern Taiwan than in central and southern
Taiwan, which indicates the climate and weather conditions
are more complicated and more variable in northern Taiwan.
This is another reason for selecting station Nos. 17–19 (lo-
cated in northern, central and southern Taiwan, respectively)
as test targets. In other words, the capability of model gener-
alization can be identified when the constructed estimation
model for evaporation performs well in the testing phase.
Data arranged in training and validation datasets are used
for building the model structure and optimizing the corre-
sponding parameters, and the test data are used for perfor-
mance comparison between the ANFIS-based model and the
empirical formula when estimating the spatial distribution
of evaporation.

3.2 Achievement comparison

The Penman equation is a popular empirical formula for
evaporation estimation, and its original version that de-
scribed evaporation from an open water surface was devel-
oped by Penman (1948). Donohue et al. (2010) indicated the
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Table 3. Performance of the ANFIS model in the training,
validation and testing subsets.

RMSE
(mm day−1) NDEI1 CE

Training 1.02 0.53 0.71
Validation 1.13 0.57 0.67
Testing 0.98 0.54 0.70

1 NDEI is defined as the ratio of the root mean square error to the standard deviation
of the target time series (Jang, 1993).
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Fig. 5. Covariance values obtained from the fitted and the experimental models 

based on the residuals from ANFIS.  
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Fig. 5. Covariance values obtained from the fitted and the experi-
mental models based on the residuals from ANFIS.

Penman formula gives the most reasonable result on the esti-
mation of potential evaporation among five commonly used
empirical formulas. Numerous Penman equations have been
used to assess evaporation from water and lands. Specifi-
cally, the Food and Agricultural Organization of the United
Nations (FAO) suggests using the definition of the refer-
ence evapotranspiration from Smith et al. (1997), and the
FAO also recommends Penman-Monteith equation as a stan-
dard method for computing daily reference evapotranspira-
tioncrop (Allen et al., 1998; Chang et al., 2010). Moreover,
Xu and Singh (1998) indicated that the monthly values of the
Penman method agree most closely with the pan evaporation
values. The Penman-Monteith (PM) empirical formula as
shown in Eq. (6) is therefore compared with the AK model
in this study. The PM formula considers many physical con-
ditions such as crop canopy resistance and aerodynamic re-
sistance to replace the original wind speed function. To have
the same comparison standard, Yeh et al. (2008) is referred,
which analyzed reference evapotranspiration calculated by
Penman-Monteith formula and pan evaporation to determine
the pan coefficient (Kpan) based on 15-yr (1990–2004) mete-
orological data in Taiwan. The mean of 15-yrKpan in station
Nos. 17–19 are 0.82, 0.9 and 0.82, respectively, and theKpan
equation is shown in Eq. (7).

Table 4. Performance of the AK and PM models at individual me-
teorological station.

RMSE
(mm day−1) CE

No. 17 No. 18 No. 19 No. 17 No. 18 No. 19

AK 1.17 1.02 1.08 0.64 0.12 0.59
PM 1.59 1.25 1.14 0.35 −0.32 0.54
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Fig. 6. Residual map of the averages of daily evaporation residuals. 533 Fig. 6. Residual map of the averages of daily evaporation residuals.

The Penman-Monteith equation:

ET0 =
0.408(Rn −G)+γ 900

(T +273)u(es−ea)

1+γ (1+0.34u)
(6)

Kpan=
ET0

Epan
(7)

where ET0 is the reference evapotranspiration (mm day−1),
Rn is the global solar radiation (MJ m−2 day−1), G is the
soil heat flux density (MJ m−2 day−1), T is the mean daily
air temperature at a height of 2 m above ground (◦C),u is the
wind speed at a height of 2 m above ground (m s−1), (es−ea)

is the deficit of saturation vapor pressure (kPa),1 is the slope
vapor pressure curve (kPa◦C−1), γ is the psychrometric con-
stant (kPa◦C−1), andEpan is pan evaporation (mm day−1).
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(c) 

Fig. 7. Comparison between observations and model outputs in seasonal scale at 535 

stations (a) No. 17, (b) No. 18 and (c) No. 19 (three assumed ungauged sites).  536 
Fig. 7. Comparison between observations and model outputs in seasonal scale at stations(a) No. 17,(b) No. 18 and(c) No. 19 (three assumed
ungauged sites).
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Table 5. Test performance of the AK and PM models in daily,
monthly and seasonal scales.

RMSE
(mm day−1) CE

Day Month Season Day Month Season

AK 1.09 9.55 24.12 0.62 0.89 0.87
PM 1.34 22.27 61.39 0.44 0.40 0.17

3.3 Comparative performance

To compare and assess the performance and reliability be-
tween the AK model and the Penman-Monteith formula, the
Nash–Sutcliffe model efficiency coefficient (CE) and root-
mean-square error (RMSE) are used as performance criteria.
CE (Eq. 8) ranges from−∞ to 1, a CE of 1 means an ex-
cellent fit between measurements and model outputs. RMSE
(Eq. 9) is a quantitative statistics adopted to measure how
close the model simulations are to the observations and to
assess the total error of model outputs.

CE= 1−

n∑
i=1

(oi −ei)
2

n∑
i=1

(oi −o)2
(8)

RMSE=

√√√√√ n∑
i=1

[oi −ei ]2

n
(9)

whereoi , ei ando are the observed value, the predicted value
and the average of observed values, respectively, andn is the
number of data.

4 Results

To demonstrate the effectiveness of the AK model, the evap-
oration at ungauged sites is adopted as the target to test the
reliability and stability of the constructed AK model. The
number of fuzzy rules arranged in ANFIS is affected by the
radius of the cluster, and thus the determination of the ra-
dius is a crucial step when constructing an appropriate AN-
FIS structure. The error variations are associated with the
radiuses ranging from 0.35 to 0.6 with an increment of 0.05
each time, and therefore 11, 8, 7, 7, 5 and 4 fuzzy rules are
produced for corresponding radiuses, respectively. The crite-
rion adopted to determine a radius is based on RMSE, which
is a useful measure to illustrate the predictive capability of a
model. In general, the training error gradually increases as
the radius increases in the training phase, and the minimum
validation error will be obtained when the radius equals 0.5.

Therefore, the optimal radius selected to build the best AN-
FIS structure is 0.5, which then produces seven fuzzy rules.
The fitted model is developed by the exponential function in
Eq. (10). The parameters of the exponential function are set
asc1 = 0.28 anda = 60 000, andr is the spatial variable. The
spatial effect between two sites occurs when the distance of
the two sites is less than 40 000 m (Fig. 5).

C(r) = c1exp(−
3r

a
) (10)

Figure 6 shows the spatial distribution of the averages of
residuals obtained from the differences between the ANFIS
outputs and the observations by kriging, where kriging inter-
polates values onto the residual map based on the differences
between the ANFIS outputs and the observations. The aver-
age of all residuals from the residual map is computed. First,
the higher variation of residuals that occurs in northern Tai-
wan is due to a denser deployment of stations (7 sites) and
the very complex terrain in this region. Second, it is obvi-
ous that the residual map follows a uniform distribution in
central Taiwan because fewer stations are set up in the Cen-
tral Mountain Range (see Fig. 3). Finally, the spatial residual
information is helpful when trying to realize the error pat-
tern of ANFIS outputs, thus reducing the spatial errors when
estimation is required at ungauged sites.

Results displayed in Table 3 below indicate that perfor-
mance obtained in the testing phase is comparable to that of
the training and validation phases, demonstrating the gener-
alization was well achieved by the proposed model.

Station Nos. 17–19, excluded from training and valida-
tion datasets, are assumed to be ungauged sites, and an AK
model is constructed to accurately estimate evaporation at
these locations. Table 4 illustrates the test performance of
the AK model and the empirical formula for evaporation es-
timation at three assumed ungauged sites. According to Ta-
ble 4, several conclusions can be drawn: (1) the AK model
effectively generates more precise and more consistent evap-
oration estimation than the PM model in terms of smaller
RMSE and higher CE; (2) as far as higher evaporation is
concerned, the AK model produces much better performance
(smaller RMSE) than the PM model; (3) for station No. 18,
the AK model highly improves the accuracy of evapora-
tion estimation over the PM model because the CE value
in PM is negative (−0.32). The reason for a smaller CE
value is mainly because that station No. 18 is located in a
mountainous area with an elevation of about 1000 m where
the weather type, geographical features and temperature are
quite different from those of the other two ungauged sites.

Figure 7 further shows the variation and tendency of evap-
oration at station Nos. 17–19 with daily evaporation accumu-
lated in a seasonal scale. It is clear that the variation of evap-
oration measured at station No. 18 is relatively flat and small
as compared with that of the other two stations. In addi-
tion, the maximum seasonal evaporation observed at station
No. 18 (191 mm) is much smaller than that at stations No. 17
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Fig. 8. Scatter plots of AK estimation versus observations in testing phase: (a) in daily 537 

scale; and (b) in seasonal scale.  538 
Fig. 8. Scatter plots of AK estimation versus observations in testing phase:(a) in daily scale; and(b) in seasonal scale.

(331 mm) and No. 19 (323 mm). This is the reason why both
models overestimate evaporation at station No. 18 and there-
fore results in smaller CE values. However, results displayed
in Table 4 and Fig. 7 demonstrate that the AK model provides
more accurate evaporation estimation at ungauged sites and
the improvement rates in terms of RMSE are 26 %, 18 % and
5 % in northern, central and southern Taiwan, respectively,
which shows that the kriging method actually improves the
capability of ANFIS in dealing with the targets related to
spatial distribution.

Table 5 illustrates the test performance of the AK and the
PM models in daily and seasonal scales. Because most of the
daily evaporation observations are less than 7 mm, the statis-
tics calculated from daily estimations are not conspicuous.
Therefore, these statistics are evaluated mainly in seasonal
scales by accumulating daily estimations. As far as the sea-
sonal scales are concerned, it is obvious that the accuracy
and efficiency of the AK model is much better than that of
the empirical formula, indicating that the AK model is ca-
pable of producing more stable and reliable evaporation es-
timation. Figure 8 shows the scatter plots of AK estimations
versus observations in the testing phase in daily and seasonal
scales, respectively. Results demonstrate that the AK model
fits the ideal line very well with slight underestimation only
in the vicinity of high values.

5 Discussion

Results obtained in this study demonstrate that the AK
model not only provides precise estimation of pan evapora-
tion but also enhances the applicability of ANNs to spatial-
related computation. The major difference between the AK
model and the single ANN model is that the AK model is

capable of estimating the spatial distribution of pan evapo-
ration at ungauged sites without using their meteorological
measurements, whereas the single ANN model is not able
to provide estimations at ungauged sites where meteorolog-
ical measurements are not available. The proposed hybrid
AK model extends the estimation of pan evaporation from
point scales to spatial scales. Therefore, the spatial distribu-
tion of the estimated pan evaporation on a seasonal scale is
achieved by implementing the AK method. The study area
is first divided into 80 000 grids (400× 200 with a resolu-
tion of 1 km× 1 km); then the seasonal evaporation during
January 2007–December 2008 is computed by accumulat-
ing the daily evaporation for each grid accordingly. Con-
sequently, two-year averages of seasonal evaporation for all
the grids are produced (Fig. 9). It is obvious that evapora-
tion is higher and more complex in summer than in the other
seasons. The distribution of evaporation is also more diversi-
fied in northern Taiwan than in southern Taiwan. Neverthe-
less, evaporation is lower in northern Taiwan than in southern
Taiwan no matter which season it is. Northern Taiwan with
mountainous terrains belongs to subtropical zones, whereas
southern Taiwan with plain topography belongs to tropical
zones. In addition, it is worth noting that evaporation is much
less in central Taiwan than in the other places, which is be-
cause most areas in this region are located within the Central
Mountain Range (high elevation area, see Fig. 3). This study
result can reflect the geographical features of Taiwan. Over-
all, the efficiency and precision of the proposed AK model
outperforms that of the traditional method. The AK model
also demonstrates its capability for producing accurate and
reliable evaporation estimation and for introducing spatial
relation to enhance the ANFIS when estimating evaporation
at ungauged sites, and therefore is a helpful technique for
hydrological applications such as precipitation estimation at
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Fig. 9. Spatial distribution of evaporation estimated by the AK model for(a) Spring,(b) Summer,(c) Fall and(d) Winter.

ungauged sites. In sum, the contribution of this study greatly
enhances the ANN-based model for displaying the spatial
distribution of pan evaporation, for reflecting the impacts of
geographical features on the estimation of pan evaporation,
and for estimating pan evaporation at ungauged sites, which
are difficult to be achieved by a single ANN model.

6 Conclusions

A hybrid AK model, which integrates a spatially weighted
ANFIS with kriging, is developed for accurately estimating
pan evaporation at ungauged sites. Results obtained from
the AK model are compared with those from the Penman
Monteith empirical formula when estimating evaporation at
ungauged sites. It is important to note that the AK model
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estimates evaporation without using meteorological variables
at ungauged sites, whereas the PM model uses meteoro-
logical variables directly. The role of ANFIS in the AK
model is to estimate evaporation at gauged sites and extend
its estimations to ungauged sites through the spatial weight
method; whereas the use of kriging is to adjust the spatial
error of ANFIS outputs. Once the AK model is well devel-
oped and trained, the operation of the AK model merely re-
quires coordinates and elevation data at ungauged sites and
coordinates, elevation data and the meterological variables at
gauged sites in practice. In addition, the daily estimation of
evaporation in the testing phase obtained from the AK model
provides an RMSE of 1.09 mm day−1, whereas the estima-
tion accuracy of the PM model only achieves 1.34 mm day−1.
In summary, the ANFIS provides more accurate point esti-
mation of evaporation at all stations than the Penman Mon-
teith empirical formula; and the AK model not only signifi-
cantly reduces the estimation errors but provides robust and
precise temporal and spatial distribution of evaporation by
integrating kriging into the spatially weighted ANFIS, which
can be effectively extended to cover the whole of Taiwan
in four seasons. We conclude that the proposed hybrid AK
model demonstrates good reliability when estimating evap-
oration at both gauged and ungauged sites and is an effec-
tive and efficient method for use in related fields that involve
temporal and spatial relationship management.
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