
Hydrol. Earth Syst. Sci., 16, 2547–2565, 2012
www.hydrol-earth-syst-sci.net/16/2547/2012/
doi:10.5194/hess-16-2547-2012
© Author(s) 2012. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Modifying a dynamic global vegetation model for simulating large
spatial scale land surface water balances

G. Tang1 and P. J. Bartlein2

1Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA
2Department of Geography, University of Oregon, Eugene, OR 97403, USA

Correspondence to:G. Tang (tangg2010@gmail.com)

Received: 13 November 2011 – Published in Hydrol. Earth Syst. Sci. Discuss.: 23 January 2012
Revised: 27 June 2012 – Accepted: 8 July 2012 – Published: 7 August 2012

Abstract. Satellite-based data, such as vegetation type and
fractional vegetation cover, are widely used in hydrologic
models to prescribe the vegetation state in a study region.
Dynamic global vegetation models (DGVM) simulate land
surface hydrology. Incorporation of satellite-based data into
a DGVM may enhance a model’s ability to simulate land
surface hydrology by reducing the task of model parameter-
ization and providing distributed information on land char-
acteristics. The objectives of this study are to (i) modify a
DGVM for simulating land surface water balances; (ii) eval-
uate the modified model in simulating actual evapotranspi-
ration (ET), soil moisture, and surface runoff at regional or
watershed scales; and (iii) gain insight into the ability of
both the original and modified model to simulate large spatial
scale land surface hydrology. To achieve these objectives, we
introduce the “LPJ-hydrology” (LH) model which incorpo-
rates satellite-based data into the Lund-Potsdam-Jena (LPJ)
DGVM. To evaluate the model we ran LH using histori-
cal (1981–2006) climate data and satellite-based land cov-
ers at 2.5 arc-min grid cells for the conterminous US and for
the entire world using coarser climate and land cover data.
We evaluated the simulated ET, soil moisture, and surface
runoff using a set of observed or simulated data at differ-
ent spatial scales. Our results demonstrate that spatial pat-
terns of LH-simulated annual ET and surface runoff are in
accordance with previously published data for the US; LH-
modeled monthly stream flow for 12 major rivers in the
US was consistent with observed values respectively during
the years 1981–2006 (R2 > 0.46, p<0.01; Nash-Sutcliffe
Coefficient> 0.52). The modeled mean annual discharges
for 10 major rivers worldwide also agreed well (differences
< 15 %) with observed values for these rivers. Compared to

a degree-day method for snowmelt computation, the addi-
tion of the solar radiation effect on snowmelt enabled LH
to better simulate monthly stream flow in winter and early
spring for rivers located at mid-to-high latitudes. In addition,
LH-modeled monthly soil moisture for the state of Illinois
(US) agreed well (R2

= 0.79, p<0.01) with observed data
for the years 1984–2001. Overall, this study justifies both the
feasibility of incorporating satellite-based land covers into a
DGVM and the reliability of LH to simulate land-surface wa-
ter balances. To better estimate surface/river runoff at mid-to-
high latitudes, we recommended that LPJ-DGVM considers
the effects of solar radiation on snowmelt.

1 Introduction

Evapotranspiration (ET), soil moisture, and surface runoff
are three major components of the hydrologic cycle at the
land surface, and affect many important processes in the
soil-vegetation-atmosphere system (Lu et al., 2003; Murphy
and Lodge, 2004). For example, changes in actual and po-
tential ET have implications for nutrient flux, forest func-
tion, plant productivity (e.g. Kosugi and Katsuyama, 2007),
and the global carbon cycle (Engstrom et al., 2006). Soil
moisture can influence near-surface atmospheric variabil-
ity (Arora and Boer, 2006) and atmospheric circulation on
seasonal-to-interannual time scales (Shukla and Mintz, 1982;
Manabe and Delworth, 1990). Soil-moisture deficits can also
restrict the respiration and the productivity of plants, and thus
influence species composition as well as type and structure of
vegetation (Evans and Trevisan, 1995; Brabson et al., 2005).
Shifts in surface runoff influence the ability of regional water
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supply and demand as well as the cycling of nutrients glob-
ally. The importance of ET, soil moisture, and surface runoff
for human well-being, terrestrial ecosystems, and agricul-
tural sustainability requires that we be able to simulate land-
surface water balances, especially given that the global hy-
drological cycle is expected to intensify in response to ongo-
ing climate change (e.g. Murray et al., 2011).

Dynamic global vegetation models (DGVM) – such as the
Lund-Potsdam-Jena (LPJ) DGVM (Sitch et al., 2003; Gerten
et al., 2004), LPJmL (e.g. M̈uller et al., 2006; Rost et al.,
2008), and LPX (e.g. Murray et al., 2011) – that also simu-
late hydrology have illustrated a general ability to simulate
land surface water balances at the global scale. Nevertheless,
hydrological evaluations of DGVMs at the global scale have
suggested that improvements are still needed for DGVMs to
more accurately simulate land surface water balances. For
example, Gerten et al. (2004) suggested that LPJ-DGVM
tended to underestimate surface runoff at high latitudes in
the Northern Hemisphere. In addition, DGVMs focus mainly
on biogeographic and biogeochemical dynamics of terrestrial
vegetation. The application of a DGVM requires users to de-
fine and parameterize the bioclimatic, biogeochemical, and
physiological attributes of plants. Parameterization of model
parameters is always challenging and affects the reliability
of model results (e.g. Zaehle et al., 2005; Wramneby et al.,
2008; Brovkin et al., 2012). Generalization of plants into a
few functional types in DGVMs may not be adequate to rep-
resent the true variation of land-cover characteristics, which
in turn could affect the accuracy of modeled water flux dy-
namics among soil, vegetation, and the atmosphere. The in-
adequacy of water routing among simulated units also chal-
lenges DGVM’s ability to simulate the timing and conver-
gence of surface water in rivers (e.g. Döll et al., 2003; Mur-
ray et al., 2011). Nevertheless, DGVMs integrate roles of
climate variation, vegetation, soil features, and atmospheric
composition (i.e. CO2) in controlling ET, soil moisture, and
runoff at the land surface. Because DGVMs specifically sim-
ulate processes like the non-water-stressed stomatal control
of plant transpiration and the effects of changes in CO2 con-
centration on plant water use efficiency, they offer distinct
advantages in modeling the role of vegetation in the land-
surface water balance under various global-change scenarios
(e.g. Milly and Shmakin, 2002; Betts et al., 2007).

Satellite data provide distributed information about hydro-
logical surface states and the parameters needed for cali-
bration and evaluation of water-balance models (Campo et
al., 2006). Compared to traditional land-cover data, satel-
lite data are often at higher spatial and temporal resolu-
tions (O’Donnell et al., 2000). In fact, satellite-based data
are widely used in hydrologic models to predefine land char-
acteristics in a study region or obtain necessary informa-
tion about vegetation parameters (e.g. Glenn et al., 2007;
Montzka et al., 2008; Khan et al., 2011). To simulate land
surface hydrology, incorporation of satellite-based data into
a DGVM would thus have the following advantages: (i) to

help simplify model structure by making the explicit rep-
resentation of mechanistic processes, such as plant growth,
carbon allocation, and soil respiration, unnecessary when
satellite-based data are available (e.g. leaf area index); (ii) to
reduce model parameterization associated with plant biocli-
matic, biogeochemical, and physiological attributes; and (iii)
to contribute to the reliability of model results because satel-
lite data are generally thought to be of high spatial accuracy
in representing land characteristics. Montzka et al. (2008)
found that the introduction of satellite-based land cover can
enhance the reliability of water-balance models and produce
thematically more accurate and spatially more detailed local
water balances. Boegh et al. (2004) suggested that the dis-
tributed information from satellite data on land use and veg-
etation parameters is significant for the correct prediction of
the ET rate and soil-water balance.

The objectives of this study were to (i) modify LPJ-
DGVM (Sitch et al., 2003; Gerten et al., 2004) for sim-
ulating regional scale land surface water balances under
satellite-specified land cover; (ii) evaluate the application of
this model, named LH (LPJ-hydrology), in the contermi-
nous US and elsewhere; and (iii) gain insight into improving
both LH’s and LPJ-DGVM’s performance in modeling land-
surface water balances. We selected the US as a study region
because it has relatively rich data required for model evalu-
ation. Given that LPJ-DGVM was originally developed for
simulating global-scale vegetation and hydrology, we also
ran LH globally to further evaluate its reliability.

The following paper is organized into five sections: Sect. 2
introduces the LH model including calculation and parame-
terization of vegetation and soil water balance in LH; Sect. 3
introduces data used to run and evaluate LH’s performance
at different spatial scales; Sect. 4 describes model results and
evaluation at different spatial scales; Sect. 5 discusses model
results and the potential insights obtained from this study;
and Sect. 6 summarizes main findings from this study.

2 Methodology

2.1 The LH model

The stand-alone LH (LPJ-hydrology) model was developed
by modifying LPJ-DGVM (Sitch et al., 2003; Gerten et al.,
2004) and shares many of the original features. In general,
LH consists of the following three main sub-models: (i) a
potential-ET model that calculates pseudo-daily photosyn-
thetic active radiation flux, day length, and daily equilibrium
potential ET in each grid cell using climate data and latitude;
(ii) a summer phenology model that evaluates daily leaf phe-
nology for predefined land covers; and (iii) a water-balance
model coupled with plant photosynthesis that simulates ma-
jor components of water balance including soil evaporation,
plant transpiration, soil moisture, and surface runoff (Fig. 1).
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Fig. 1.A flowchart that describes the LH (LPJ-hydrology) model for
calculating several hydrologic variables using climate, land cover,
foliar vegetative cover (fvc), CO2 and soil data. PET and ET are
short for potential and actual evapotranspiration, respectively.

The input land cover data in LH is used (i) to initialize
some hydrologic and photosynthetic relevant parameters (Ta-
bles 1 and 2), (ii) to define phenological features of each pre-
defined land cover as one of four types (i.e. evergreen, sum-
mer green, rain green and other), and (iii) to specify the pho-
tosynthetic pathway of plants (i.e. C4 vs. C3). Foliar vegeta-
tive cover (fvc) is used to calculate plant-specific minimum
canopy conductance and the total amount of interception loss
of precipitation by plants. In this study, we assign land cover
in the conterminous US and worldwide to 11 types respec-
tively based on global land cover classification data (Hansen
et al., 2000). Five types are forest (two evergreen, two de-
ciduous and one mixed forest) and six are non-forest (one
woodland, one shrubland, one grassland, one cropland, one
bare and one urban) (Table 1). For each land cover type, the
fractional fvc in a cell varies from 0 to 1.

In addition to vegetation-related data, other data needed
to run LH include monthly mean temperature (◦C), precipi-
tation (mm), wet-day frequency (days), and percent cloudi-
ness or sunshine (%), as well as annual atmospheric CO2
concentration. The monthly time-step input climate data
were linearly interpolated into quasi daily values as in LPJ-
DGVM. The CO2 data are used to calculate non-water-
stressed canopy conductance and intercellular CO2 partial
pressure (Haxeltine and Prentice, 1996). The soil data used
in LH still consists of two layers with a fixed thickness (up-
per, 50 cm; lower, 100 cm). To better initialize some impor-
tant variables such as soil moisture content and fraction of
available water in two soil layers, the first year’s simulation
in LH was run twice. The one year spin-up simulation was
sufficient to correctly simulate land-surface water balances
for the first year because vegetation-related biogeochemical
processes are excluded in LH. Soil moisture of each layer
is updated at a daily time-step on the basis of the previ-
ous day’s soil moisture by balancing the amount of water
infiltrating into soil with that removed from two soil layers
through runoff, percolation, and actual ET.

2.2 Vegetation water balance in LH

The land-cover-related parameters (or attributes) in LH can
be classified into two categories: (i) parameters that govern

dynamics of water balance in the soil-vegetation-atmosphere
systems (Table 1); and (ii) parameters that are necessary for
simulating plant photosynthesis (Table 2). The first category
involves leaf longevity (LeL), the fraction of roots in two soil
layers (f1 andf2), the minimum water scalar value (Wmin) at
which leaves are shed by drought-deciduous vegetation, the
canopy conductance component (CaC) that is not associated
with photosynthesis, the maximum transpiration rate (Emax),
and the interception storage parameter of vegetation (Intc).

To be specific, the leaf longevity of each vegetation type
is used to calculate its specific leaf area (m2 g−1) based on
Reich et al. (1998). The fraction of roots in two soil layers
(f1 andf2 are dimensionless, andf1+f2 = 1) affects relative
soil mositure (wr, dimensionless) that is given by

wr = w1 × f1 + w2 × f2 (1)

wherew1 and w2 are the fractions of available water (di-
mensionless,< 1.0) in the upper and lower layer of soil, re-
spectively. The minimum water scalar (Wmin) adjusts daily
drought leaf phenology because drought-deciduous plants
shed their leaves when their water scalar falls below a spe-
cific threshold. The canopy conductance component, CaC
(mm s−1), is a part of total, non-water-stressed canopy con-
ductance, gp (mm s−1), averaged over a grid cell as follows
(Haxeltine and Prentice, 1996)

gp=
1.6× Dg

Ds× ca× (1− λ)
+ CaC (2)

whereDg (mm) is daily water vapor expelled from plant
leaves and derived from daytime net photosynthesis, ca is the
mole fraction of atmospheric CO2, λ is the optimal ratio of
intercellular to ambient CO2 concentration, andDs refers to
the length of daylight in seconds.

The maximum daily transpiration rate,Emax (mm), is used
to simulate the water supply function,S (mm), through the
following expression:

S=Emax×wr×phd×fvc (3)

where phd is daily leaf phenology (dimensionless) of a vege-
tation type and fvc is the fraction of foliar vegetative cover in
a grid cell. The vegetation-specific interception storage, Ints
(mm), is related to the interception storage parameter (Intc)
(dimensionless) and is calculated as follows (Kergoat, 1998):

Ints= min(Pr, Intc× LAI ×phd×Pr) (4)

where LAI (m2 m−2) is leaf area index and Pr (mm) is daily
precipitation.

Parameters needed for simulating plant photosynthesis in-
clude the maximum foliar N contentNmax (mg g−1), the low
(T1) and high (T2) temperature limits for CO2 uptake, and the
lower (Tl) and upper (Th) ranges of optimum temperature for
plant photosynthesis (Table 2). These parameters are used to
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Table 1.Hydrologic relevant parameters for predefined land covers.

LeL f1 Wmin CaC Emax Intc
Predefined land cover types (years) (mm s−1) (mm day−1)

Evergreen needleleaf forest 4.0 0.70 0.0 0.3 5.5 0.04
Evergreen broadleaf forest 2.5 0.80 0.0 0.5 5.5 0.02
Deciduous needleleaf forest 0.5 0.70 0.0 0.3 4.0 0.04
Deciduous broadleaf forest 0.5 0.70 0.0 0.5 4.0 0.02
Mixed forest 0.5 0.70 0.0 0.4 6.0 0.03
Woodland 0.5 0.80 0.0 0.3 4.0 0.02
Shrub land 0.5 0.83 0.1 0.4 5.5 0.02
Grassland 0.5 0.80 0.2 0.5 6.0 0.01
Cropland 0.5 0.80 0.2 0.5 4.5 0.01
Bare 0.5 0.75 0.0 0.0 1.0 0.00
Urban 0.5 0.75 0.0 0.0 0.0 0.00

LeL is short for leaf longevity;f1stands for fraction of roots in soil upper layer. Fraction of roots in soil bottom layer (f2)

equals one minusf1; Wmin stands for minimum water scalar at which leaves shed by drought deciduous biome; CaC
stands for canopy conductance component that is not associated with photosynthesis;Emax refers to maximum
transpiration rate; Intc stands for interception storage parameter. The specific value of each parameter refers to published
research (e.g. Sitch et al., 2003).

Table 2.Photosynthetic relevant parameters for predefined land covers.

Nmax Tl T1 T2 Th LAI
Predefined land cover types (mg g−1) (◦C) (◦C) (◦C) (◦C) (m2m−2)

Evergreen needleleaf forest 100.0−4.0 20.0 30.0 42.0 5.1
Evergreen broadleaf forest 100.0 2.0 25.0 30.0 55.0 5.4
Deciduous needleleaf forest 100.0−4.0 20.0 30.0 38.0 4.6
Deciduous broadleaf forest 120.0−4.0 20.0 30.0 38.0 4.5
Mixed forest 100.0 −4.0 20.0 30.0 38.0 4.8
Woodland 100.0 −4.0 20.0 30.0 38.0 3.0
Shrub land 100.0 −4.0 15.0 30.0 45.0 2.1
Grassland 100.0 −4.0 15.0 30.0 45.0 2.5
Cropland 100.0 −4.0 15.0 30.0 45.0 4.2
Bare 0.0 −4.0 10.0 30.0 45.0 1.3
Urban 0.0 −4.0 10.0 30.0 45.0 0.3

Nmax is the maximum foliar N content;Tl andTh are the low and high temperature limits for CO2 uptake;T1 and
T2 are the lower and upper ranges of optimum temperature for photosynthesis; LAI is short for leaf area index. The
specific value of each parameter except for LAI refers to published work (e.g. Sitch et al., 2003). The LAI for each
predefined land cover type refers to the Global Leaf Area Index Data from field measurements compiled at the Oak
Ridge National Laboratory Distributed Active Archive Centre (DAAC)
(http://daac.ornl.gov/VEGETATION/laides.html).

calculate total daytime net photosynthesis of plants and con-
vert daytime net photosynthesis into water vapor using an
ideal gas equation (Haxeltine and Prentice, 1996), which is
later used to simulate canopy conductance (see Eq. 2). The
specific value of each parameter refers to published work
(e.g. Smith et al., 2001; Sitch et al., 2003).

2.3 Soil water balance in LH

The calculation of each hydrologic variable in LH is almost
the same as that described in Gerten et al. (2004). We briefly
introduce the calculation of major output variables (Fig. 1)
for reference. Daily equilibrium PET rateEeq (mm) is ex-
pressed as

Eeq=
1

1 + γ
×

Rn

L
(5)

whereRn (J m−2 d−1) refers to net radiation calculated from
latitude, day of the year, sunshine hours, and air tempera-
ture;1 is the rate of saturation vapor pressure increase with
temperature;γ (Pa K−1) and L (J Kg−1) are the psychro-
metric values of air and the latent heat of water vaporiza-
tion adjusted by daily temperature, respectively. To avoid
abrupt change in values of variables such as the ratio of ET to
PET in high latitudes, LH assigns dailyEeq a value of 10−6

when the calculatedEeq is zero. Because equilibrium poten-
tial evapotranspiration (Eeq) rarely occurs in the real world,
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the Priestley-Taylor coefficient (α) with values that may vary
from 1.26 (for well-watered land) to 1.4 (for dry land) is used
to estimate potential evapotranspiration (Ep) at different lo-
cations as follows:

Ep=Eeq×α. (6)

Actual ET is the sum of interception loss, vegetation tran-
spiration, and evaporation from soil. Daily interception loss,
L (mm), is a product of daily PET (Ep) and the fraction of
day-time,ω (dimensionless), when the canopy is wet is as
follows:

L =Ep×ω. (7)

The value ofω is related to the canopy interception storage
capacity. Vegetation transpiration is estimated based on the
comparison between an atmosphere-controlled demand func-
tion and a plant-controlled supply function (see Eq. 3).

Daily evaporationEd (mm) from soil follows Huang et
al. (1996) as

Ed=Epwr20(1− fvc) (8)

where wr20 (dimensionless) represents the relative moisture
in the evaporation layer (20 cm) of the soil column; fvc is
again the fraction of foliar vegetative cover in a cell, as in
Eq. (3).

Daily soil water content in both layers at dayi is updated
taking account of the water content from the previous day,
snowmeltMi (mm), throughfall Prt (mm), transpirationET,i

(mm), evaporationEd,i (mm), percolationp1,i (mm) through
two layers, and runoffR1,i (mm) during the current dayi:{

1SW1,i= 1SW1,i−1+Prt,i+Mi−β1,i×ET,i−Ed,i−p1,i−R1,i

1SW2,i= 1SW2,i−1+p1,i−β2,i×ET,i−R2,i−p2,i
(9)

where1SW1,i and1SW2,i (mm) are daily changes in soil
water content of both layers at dayi; β1 andβ2 represent
the fractions of water extracted for transpiration from each
layer (β1+β2 = 1). The surface runoff (R1,i) and subsurface
runoff (R2,i) are estimated from the excess of water over field
capacity of the two soil layers, respectively. The total runoff
in a grid cell is the sum of surface and subsurface runoff.

2.4 Snowmelt computation in LH

Unlike LPJ-DGVM (Sitch et al., 2003; Gerten et al., 2004)
which uses a degree-day method for snowmelt calculation,
LH combines both the effects of solar radiation and temper-
ature on snowmelt (mm) at dayi as follows (e.g. Kane et al.,
1997):

Mi =

{
c1× (1− Sal) × dri × dli if Tair < Tsnow

c1× (1− Sal) × dri × dli +c2× (Tair − Tsnow) × Pr

(10)if Tair >= Tsnow

where Sal is snow albedo; dri (W m−2 h−1) is downward net
shortwave radiation flux in dayi; dli (h) is day length in day
i; Tair (◦C) is daily air temperature;Tsnow (◦C) is tempera-
ture (0◦C) at which snow occurs; Pr (mm) is daily precipita-
tion; andc1 andc2 are empirical coefficients. The value of
c1 ranges from 0.0002 for grass, crop, and not well-forested
land to 0.001 for well-forested land.c2 is set at 0.065 level
in LH.

3 Data

3.1 Land cover and soil properties

The global land cover classification from the Global Land
Cover Facility (GLCF) at the University of Maryland (http:
//glcf.umiacs.umd.edu/data/vcf/) is used to define input land
cover at each grid cell that is most likely to exist in the conter-
minous US or worldwide. After excluding water, we grouped
the rest of 13 GLCF land cover classes into 11 types (Tables 1
and 2). These 11 land cover types were regridded onto both
the Parameter-elevation Regressions on Independent Slopes
Model (PRISM) 2.5-arc-min elevation points (Daly et al.,
2000, 2002) and CRU TS 0.5-degree climate points (Mitchell
and Jones, 2005), respectively. Following the same approach,
the GLCF Vegetation Continuous Fields (VCF) data (Hansen
et al., 2000, 2003) were used to define fraction of foliar veg-
etative cover of a GLCF-based land cover in a grid cell. The
VCF data contained proportional estimates for three cover
types: woody vegetation, herbaceous vegetation, and bare
ground. The total percentage cover for three cover types in
a cell is 100 percent (Hansen et al., 2000).

Our soil data for the conterminous US were derived from
the Miller and White (1998) soil texture classes that were
gridded at a 250 m spatial resolution. These soil texture
classes were based on the State Soil Geographic (STATSGO)
Database, distributed by the United States Department of
Agriculture Natural Resources Conservation Service. We re-
classified 16 standard soil classes in STATSGO data into
eight classes to match those defined in both LH and LPJ-
DGVM. The soil data were regridded onto 2.5 arc-min
PRISM elevation points. For the global application of LH,
we used soil texture data distributed with LPJ-DGVM at a
0.5-degree grid. Annual atmospheric CO2 concentrations for
both the US and globally were from Schlesinger and Maly-
shev (2001).

3.2 Climate data

To apply LH in the US, we used monthly mean tempera-
ture (◦C) and precipitation (mm) at 2.5 arc-min grid cells
developed by the PRISM Climate Group (Daly et al., 2000,
2002). Monthly percent sunshine (%) and wet-day frequency
(days) were derived from the CRU TS 3.0 data sets (Mitchell
and Jones, 2005). We interpolated 0.5-degree CRU wet-
day frequency data onto the PRISM 2.5-arc-min elevation
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points following the approach described in Tang and Beck-
age (2010), in which we first treated climatic value at each
CRU grid cell as a function of its latitude, longitude and el-
evation to estimate the local lapse rate of wet-day frequency.
The calculated local lapse rate was then used to interpolate
CRU data to PRISM 2.5 arc-min resolution considering ele-
vational differences between CRU and PRISM points. These
adjusted climatic values for CRU points were bilinearly in-
terpolated onto PRISM points. The CRU sunshine data were
downscaled by bilinear interpolation. To apply LH globally,
we directly used CRU TS 3.0 monthly mean temperature
(◦C), precipitation (mm), percent cloud cover (%), and wet
day frequency (days) data on its 0.5-degree grid.

3.3 Reference data and evaluation approaches

Several existing sets of observed or simulated data generated
using different methods at different spatial scales were used
to test LH’s performance in simulating ET, soil moisture,
and surface runoff for the conterminous US (Table 3). The
German ET data for the Florida Everglades (US) (German,
2000) was evaluated on the basis of the Bowen-ratio energy
budget method (Bowen, 1926). All data needed for applica-
tion of the Bowen-ratio method, including net radiation, soil
temperature, water level, air temperature, and vapor pres-
sure, were measured at 15-min intervals spanning the year
from 1996 to 2001 and at nine sites ranging from 24.75◦ N to
26.25◦ N and from 79.75◦ W to 81.25◦ W (German, 2000).
The Vörösmarty et al. ET data (hereafter Vörösmarty ET,
Vörösmarty et al., 1998) were computed by a global-scale
water balance model that considered effects of wind speed
and vapor pressure on surface hydrology.

Illinois soil-moisture data consisting of total soil moisture
were measured at 19 stations in Illinois in the US. These
data span an interval from January 1981 to June 2004 and
were calibrated with gravimetric observations. We did not
use the first three years (1981, 1982 and 1983) for compar-
ison because the data have smaller variability than the rest
of the record (Hollinger and Isard, 1994). Iowa soil-moisture
data consisted of observations from two catchments located
at 41.2◦ N and 95.6◦ W. Each catchment had three sites where
soil-moisture observations were made. These observations
gave 23 yr of record spanning from 1972 to 1994, but obser-
vations were made mostly between April and October (Entin,
1998; Entin et al., 2000). Both Illinois and Iowa soil moisture
data are available from the Global Soil Moisture Data Bank
(Robock et al., 2000). When necessary, we converted mea-
sured soil moisture into millimeters to match LH-simulated
moisture levels. We only used soil moisture from the top
50 cm of soil layers because other information, such as soil
density for the rest of layers, was not available for unit con-
version.

The Global Runoff Data Centre (GRDC) composite runoff
fields (CRF) (Fekete et al., 2002) were used to evaluate the
spatial pattern of LH-simulated annual runoff for the conter-

minous US. The GRDC CRF was developed by combining
observed river discharge information with climate-driven wa-
ter balance model outputs. The observed discharge was de-
rived from selected gauging stations from the World Meteo-
rology Organization GRDC data archive. These station data
were coregistered to a simulated topological network at a 0.5-
degree land grid.

US Geological Survey (USGS) water data from 13 river
gage stations (Table 4) were used to test LH-simulated river
stream flow for the years 1981–2006. We selected only 13
rivers for comparison because (i) the derived watersheds
from 13 gage stations cover most of the conterminous US
(Supplement Fig. S1) and (ii) the observed discharge infor-
mation might not always be available for other rivers dur-
ing the study period. We converted simulated surface runoff
(mm) into cubic meters per second (m3 s−1) under the as-
sumption that modeled surface runoff at all grid cells inside
a watershed flows out of its gage station within the given
month. The conversion of modeled surface runoff into stream
flow (fLH,j ) in monthj is expressed as

fLH,j=
1

n

n∑
i=1

srfi,j×DA/(DSj×86400)/1000 (11)

where srfi,j is LH-simulated surface runoff (mm) at grid cell
iin monthj ; n is the number of grid cells inside a watershed;
DA is the drainage area (m2) for a gage station; and DSj is
the number of days in monthj . We also converted the USGS
stream flow data from cubic feet per second into cubic meters
per second for comparison.

We used observed river discharges for 10 large rivers
worldwide (Tables 3 and 4) to further evaluate LH’s reliabil-
ity, largely because the hydrological component from LPJ-
DGVM was originally developed for global-scale vegetation
and hydrology simulation. We used Cogley (1998) runoff
data on a 1-degree grid to evaluate the spatial pattern of LH-
simulated annual runoff for the world (Table 3). The global
0.5-degree annual runoff data based on field observations
from Fekete et al. (1999) were used to evaluate LH-simulated
magnitudes of annual runoff globally and in different latitu-
dinal zones (Table 3).

We used statistical measures such as R-squared (R2), root-
mean-squared-error (RMSE), and the Nash-Sutcliffe coeffi-
cient (Nr) (Nash and Sutcliffe, 1970) to quantify the agree-
ment between modeled and simulated/observed ET, soil
moisture, and surface runoff. For example, the Nash-Sutcliffe
coefficient was used to quantify the agreement between mod-
eled and observed stream flow for selected rivers in the con-
terminous US.

3.4 Experimental simulations

Two experimental simulations using LH were performed in
this study. The first was run using a degree-day method for
snowmelt computation and the second was run under high
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Table 3.List of observed and simulated data to test LH’s performance.

Testing data list Methods Temporal resolu-
tion

Size Data sources∗

(1) German ET
(2) Vörösmarty ET

Composite
Simulated

Monthly for
1996–2000
Monthly

Plots
0.5◦

German (2000)
Vörösmarty et al. (1998)

(3) Illinois soil
moisture

Observed Monthly for
1981–2004

Plots Hollinger and Isard (1994)

(4) Iowa soil moisture Observed Monthly for
1981–1994

plots Entin (1998), Entin et al.
(2000)

(5) The GRDC CRF Composite Annual 0.5◦ Fekete et al. (2002)
(6) The USGS water
data

Observed Monthly for
1981–2006

Plots http://waterdata.usgs.gov/

(7) Cogley runoff data Derived Annual 1◦ Cogley (1998)
(8) The Global River
Discharge Database

Observed Annual for
1961–1990

Plots http://www.sage.wisc.edu/
riverdata/

(9) Gridded Global
Runoff

Observed Annual 0.5◦ Fekete et al. (1999)

∗ Soil moisture data are available fromhttp://climate.envsci.rutgers.edu/soilmoisture/owned by Robock et al. (2000). The global runoff
data are available fromhttp://www.grdc.sr.unh.edu/html/Data/index.html.

Table 4.Details of river gage stations used for model evaluation in both the US and globally.

LH’s River names and states/country Gage number/ Location Drainage
evaluation name Long. (◦) Lat. (◦) area (km2)

1. Sacramento in Colusa, CA 11389500−122.00 39.21 31 313
2. Willamette in Portland, OR 14211720 −122.67 45.52 29 008
3. Snake near Anatone, WA 13334300−116.98 46.10 240 756
4. Missouri in Hermann, MO 06934500 −91.44 38.71 1 353 269
5. Mississippi in Chester, IL 07020500 −89.84 37.90 1 835 266

USa 6. Ohio in Metropolis, IL 03611500 −88.79 37.15 525 768
7. Connecticut in Thompsonville,CT 01184000 −72.61 41.99 25 019
8. Susquehanna in Marietta, PA 01576000 −76.53 40.05 67 314
9. Coolrado in Columbus, TX 08161000 −96.54 29.71 107 847
10. Wateree near Camden, SC 02148000−80.65 34.24 13 131
11. Alabama in Claiborne, ALc 02428400 −87.55 31.62 55 615
12. Apalachicola near Sumatra, FLc 02319570 −85.02 28.95 19 200
13. Arkansas near Haskell, OK 07165570 −95.64 35.82 75 473

1. Danube in Romania Ceatal Izmail 28.8 45.18 807 000
2. Congo in Congo Kinshasa 15.3 −4.3 3 475 000
3. Murray in Australia Lock9 Upper 141.6 −34.19 775 196
4. Yenisei in Russia Igarka 86.50 67.48 2 440 000
5. Mississippi in USA Arkansas City −91.24 33.56 2 903 428

Globallyb 6. Chang jiang in China Datong 117.61 30.76 1 705 383
7. Xi jiang in China Wuzhou3 111.3 23.48 329 705
8. Mackenzie in Canada Norman Wells −126.86 65.28 1 570 000
9. Amazon in Brazil Obidos −55.55 −1.91 4 618 746
10. Blue Nile in Sudan Khartoum 32.55 15.61 325 000

a The river gage stations are based on USGS National Water Information System (http://waterdata.usgs.gov/nwis/); b the river gage stations
worldwide are based on the Global River Discharge Database (http://www.sage.wisc.edu/riverdata/). c The Alabama and Apalachicola River
watersheds are combined together for reference as the Alabama River watershed.
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atmospheric CO2 concentration (650 ppm). Results from the
first simulation were compared to the simulation under the
consideration of both temperature and solar radiation ef-
fects on snowmelt and actual atmospheric CO2 concentra-
tion. Results from the second simulation were compared to
the simulation run under low atmospheric CO2 concentra-
tion (360 ppm). Such comparisons aimed to evaluate how the
addition of solar radiation effect on snowmelt impacts mod-
eled river stream flow and how increasing atmospheric CO2
concentration affects modeled actual evapotranspiration.

4 Results

4.1 LH-simulated actual ET and its evaluation in the US

LH-simulated annual actual ET averaged 536 mm in the US
and varied from 0 to 1305 mm among grid cells (Fig. 2a). The
lowest ET was simulated in southeastern California where
annual precipitation is low (< 160 mm) and temperature is
high (> 21◦C) (Supplement Fig. S2). The highest ET was
simulated in coastal areas of the southern and southeastern
US where both annual precipitation (> 1400 mm) and tem-
perature (> 20◦C) are high. In the eastern US, annual ET
was simulated to decrease from south to north (Fig. 2a), a re-
sult of energy- and temperature-related latitudinal gradients
(Supplement Fig. S2). In the western US, annual ET was less
than 600 mm in most areas and did not vary much latitudi-
nally. In some mountain ranges of the western US, such as
the (Pacific) Coast Range, simulated annual ET ranged from
600 to 900 mm (Fig. 2a), attributed to high annual precipita-
tion (> 2600 mm) in these areas (Supplement Fig. S2).

The magnitudes of LH-simulated annual ET among grid
cells agreed well with those from V̈orösmarty ET data
(Vörösmarty et al., 1998). For example, the simulated mean
annual ET (533 mm) was close to 572 mm from Vörösmarty
ET. The range (0 to 1305 mm) of LH-simulated annual ET
was similar to the range of 53 to 1414 mm of Vörösmarty ET
data. The standard deviation of LH-simulated annual ET was
238 mm, close to the 269 mm from Vörösmarty ET data. The
spatial pattern of LH-simulated ET (Fig. 2a) agrees well visu-
ally with that depicted by the V̈orösmarty ET data (Fig. 2b).
In the eastern US, for instance, annual ET decreased from
more than 1200 mm in the south to below 600 mm in the
north in both the simulated and Vörösmarty ET data. In the
western US, annual ET varied from 0 to 600 mm in most ar-
eas except for mountain ranges (Fig. 2).

When averaged for all grid cells in a watershed, LH-
simulated monthly ET was strongly correlated (R2 > 0.72,
p<0.01) with values from V̈orösmarty ET data in 12 large
watersheds (Fig. 3 and Table 5), indicating that LH cap-
tured well the variation in monthly ET illustrated in the
Vörösmarty ET data. Average monthly ET (based on a 12-
month mean) under the LH simulation was close (difference
< 10 %) to those from V̈orösmarty ET data respectively in
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Fig. 2. (a) The LH-simulated 26-yr (1981–2006) average annual
actual ET at 2.5 arc-min grid cells;(b) annual actual ET from
Vörösmarty et al. (1998) at 0.5-degree grid cells. The white areas
in (a) and(b) are water excluded for simulation.

the Sacramento, Snake, Missouri, Mississippi, Ohio, Con-
necticut, Susquehanna, Colorado, and Arkansas watersheds
(Table 5). Major differences occurred in estimates of monthly
ET for the Willamette, Alabama, and Wateree watersheds,
in which LH-simulated monthly ET was 19 % higher, 16 %
lower, and 20 % lower than V̈orösmarty monthly ET, respec-
tively (Table 5). In more detail, LH-simulated ET in late
spring and early summer in most watersheds was smaller
than those from V̈orösmarty ET data (Fig. 3).

When compared to local ET data from the Florida ev-
erglades, LH-simulated monthly ET over the years 1996–
2001 corresponded well (R2

= 0.61, p<0.01) to the mea-
sured data (German, 2000) (Fig. 4). LH-simulated monthly
ET averaged 91 mm, approximating the 94 mm of German
ET. The standard deviation of LH-simulated monthly ET
was 24 mm, close to 25 mm in German ET data. In addi-
tion, LH-simulated monthly ET ranged from 47 to 144 mm,
within the range of German ET which varied from 29 mm
to 153 mm. The RMSE between LH-simulated and German
monthly ET was 18.5, less than 21 % of average monthly
ET for compared data. Nevertheless, LH under- and over-
estimated monthly ET in some specific months such as April
of 1998 (Fig. 4).
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Table 5.Comparison between LH-simulated and Vörösmarty et al. ET (V̈orösmarty et al., 1998) data in12 major river watersheds in the US.

Vörösmarty et al. ET (mm) LH-simulated ET (mm) Statistics

Rivers min max mean min max mean R2 1 (%)

1. Sacramento 6 90 37 12 64 38 0.72 0.6
2. Willamette 7 83 43 7 100 51 0.94 19.3
3. Snake 1 91 27 6 53 29 0.76 7.5
4. Missouri 0 118 41 6 69 37 0.88 −10.0
5. Mississippi∗ 0 132 55 6 108 51 0.88 −5.8
6. Ohio 0 125 61 8 116 58 0.88 −4.6
7. Connecticut 0 111 43 2 120 40 0.81 −6.3
8. Susquehanna 0 110 46 4 124 46 0.86 −0.6
9. Colorado 12 73 48 28 70 48 0.79 −0.4
10. Wateree 0 135 78 15 110 66 0.85 −15.8
11. Alabama 30 138 90 22 113 72 0.90 −20.1
12. Arkansas 0 104 47 13 71 44 0.86 −6.8

∗ The observed monthly stream flow subtracted that from the Missouri River in model comparison.
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Fig. 3. Comparison between LH-simulated (solid line) and Vörösmarty et al. monthly ET (V̈orösmarty et al., 1998) (dashed line) in the 12
river watersheds.
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Fig. 4. Comparison between LH-simulated (black line) to observed
(dashed line) monthly ET (German, 2000) during the years 1996–
2001 in Florida Everglades (US).

4.2 LH-simulated soil moisture and its evaluation in the
US

LH-simulated annual soil moisture averaged 107 mm over
the US and ranged from 0 to 325 mm among grid cells
(Fig. 5). Annual soil moisture was simulated to be high-
est in mountain areas, such as the Pacific Coast Ranges,
the Cascade Range of Oregon, and the Appalachian Moun-
tains in the eastern and northeastern US (Fig. 5). In these
areas, LH-simulated annual soil moisture exceeded 160 mm,
attributable to low regional annual temperature (< 9◦C) and
high precipitation (> 1500 mm). Annual soil moisture was
simulated to be low (< 100 mm) in most of the western
US. In these regions, annual precipitation was relatively low
(< 400 mm) while annual mean temperature can be more
than 9◦C (Supplement Fig. S2).
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Fig. 5.LH-simulated 26-yr (1981–2006) mean annual soil moisture
in the top 50 cm of soil layers.

When LH-simulated monthly soil moisture was compared
to Illinois soil moisture (Table 3), the statistics (R2

= 0.79,
p<0.01) suggest that LH captured well the variation in
monthly soil moisture in this region during the years 1984–
2001 (Fig. 6a). The LH-simulated monthly soil moisture av-
eraged 160 mm, equaling 160 mm from observed data. LH-
simulated monthly mean value ranged from 87 to 202 mm
during the period 1984–2001, resembling observed values
ranging from 86 to 201 mm. The standard deviation of LH-
simulated soil moisture was 29.3 mm, close to 28.9 mm from
the observations. The RMSE between LH-simulated and ob-
served values for 246 months was 14, indicating that LH
simulated well monthly soil moisture in this region though
it under- and overestimated soil moisture in some months
(Fig. 6a).

Additional comparison against observed soil moisture in
two Iowa catchments (Table 3) still suggested that LH can
capture the variation of monthly soil moisture at local scales
as indicated by the coefficient (R2

= 0.40,p<0.01) between
the two data sets (Fig. 6b). For the whole period 1981–2004,
LH-simulated monthly soil moisture averaged 149 mm, only
10 mm lower than the average from observed data (159 mm).
LH-simulated monthly soil moisture ranged from 76 to
208 mm, a slightly broader range than observed values (93 to
201 mm). Nevertheless, LH-simulated soil moisture in this
particular region was comparatively more variable than ob-
served values, as indicated by the standard deviations of
26 mm for LH and 34 mm for observation. The RMSE be-
tween LH-simulated and observed values for 91 points was
29, accounting for 18 % of observed mean monthly soil mois-
ture.

4.3 LH-simulated surface runoff and its evaluation in
the US

LH-simulated annual surface runoff averaged 234 mm in the
US and ranged between 0 and 6440 mm among grid cells,
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Fig. 6. Comparison between LH-simulated (black line) and ob-
served (dashed line) soil moisture in the top 50 cm of soil layers
in (a) Illinois in the US during the years 1984–2004 (Hollinger and
Isard, 1994), and(b) Iowa in the US during the years 1981–1994
(Entin, 1998; Entin et al., 2000). For Illinois soil moisture, only half
year (till June) data for 2004 are available. LH-simulated soil mois-
ture in Illinois was averaged for all grid cells ranging from 91.25◦ W
to 88.25◦ W and from 37.25◦ N to 42.25◦ N; a spatial extent that ap-
proximately matches the extent of Illinois soil moisture. Measured
soil moisture in Iowa was not available for some months and years,
but most records were available between April and October.

with a standard deviation of 307 mm (Fig. 7a). As was the
case for annual soil moisture, surface runoff was simulated to
be highest in mountain areas. In these regions, annual precip-
itation was comparatively high while annual mean tempera-
ture was comparatively low (Supplement Fig. S2). Annual
surface runoff was modeled to be low in most of the west-
ern US, attributed to low annual precipitation (< 400 mm).
Overall, LH-simulated surface runoff was more than 200 mm
in the eastern US but less than 200 mm in the western US
(Fig. 7a).

The magnitudes of LH-simulated surface runoff agreed
well with the GRDC CRF data (Fig. 7b). Annual surface
runoff averaged 215 mm in the GRDC CRF data, which was
only 19 mm lower than LH-simulated annual surface runoff
(234 mm) for the US. The spatial pattern of LH-simulated
annual surface runoff was consistent with that pictured by
the GRDC CRF data (Fig. 7a and b). For example, both data
showed that annual surface runoff is above 200 mm in the
eastern US but below 200 mm in the western US. In addi-
tion, annual surface runoff in both compared data sets was
relatively high in mountain areas, such as the Pacific Coast
Ranges and Appalachian Mountains in the eastern US. Over-
all, LH-simulated annual surface runoff was more variable
relative to the GRDC CRF data as illustrated by the standard
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Fig. 7. (a) The LH-simulated annual surface runoff at 2.5 arc-min
grid cells and(b) the GRDC composite annual runoff at 0.5-degree
grid cells (Fekete et al., 2002) for the conterminous US.

deviations of LH-simulated surface runoff (307 mm) and the
GRDC CRF data (278 mm).

Further comparison of LH-simulated monthly stream
flow to the USGS water data demonstrated that LH was
able to correctly simulate the variations in monthly stream
flow in most major rivers in the US (R2>0.50, p<0.01;
Nr > 0.51, Moriasi et al., 2007) (Fig. 8). Especially for water-
sheds where forest is the dominant land cover (Supplement
Fig. S3), the LH-simulated monthly stream flow agreed well
(R2 > 0.65,p<0.01; Nr> 0.52) with observed values for the
years 1981–2006. These rivers include the Willamette, Ohio,
Susquehanna, Connecticut, and Wateree (Fig. 8 and Table 6).
In contrast, for watersheds where grass, shrubs and/or crops
are dominant land covers, the agreement between compared
data was weaker (R2<0.65). These rivers include the Snake,
Missouri, Mississippi, and Colorado, but not the Arkansas
River for which the modeled monthly stream flow agreed
well with the observed stream flow (Fig. 8 and Table 6).

The magnitudes of LH-simulated mean monthly stream
flow for the years 1981–2006 were close (difference< 11 %)
to measured mean monthly stream flow for most of the 12
rivers, including the Willamette, Snake, Missouri, Missis-
sippi, Ohio, Connecticut, Susquehanna, Wateree, and Al-
abama (Table 6). Major difference occurred in estimates of
monthly mean stream flow for the Sacramento and Colorado
River. For these two rivers, LH-simulated average monthly

stream flow was 24.0 % higher and 19.6 % lower than
their counterparts from measured data, averaging 347 and
80 m3 s−1, respectively (Table 6). Although LH-simulated
mean monthly flow was similar to observed values in most
rivers, it was more variable than measured values for most
rivers during the years 1981–2006 as indicated by the min-
imum and maximum monthly stream flows between com-
pared data sets (Table 6).

4.4 LH-simulated river discharge and its evaluation
globally

For the global land surface as a whole, LH-simulated long-
term (1961–1990) mean annual surface runoff averaged
292 mm, only 30 mm less than that (322 mm) in the Cog-
ley (1998) annual runoff data. The standard deviation of LH-
simulated mean annual surface runoff among 59 199 grids
cells was 438 mm, almost equaling 442 mm from Cogley
runoff data. The spatial patterns of LH-simulated mean an-
nual surface runoff for the entire world visually agreed well
with those of Cogly runoff data (Fig. 9a and b). For exam-
ple, both data showed that mean annual surface runoff was
less than 100 mm in most parts of the western China, central
Asia, and the western US, where semi-arid and arid ecosys-
tems dominate. In contrast, both data sets showed that mean
annual surface runoff in the Amazon and Congo River basins,
southeastern Asia, and the eastern part of North America
were more than 500 mm (Fig. 9a and b).

The magnitudes of LH-simulated mean annual discharges
for 10 large rivers worldwide were generally in good agree-
ment with observed values for these rivers (Table 7). For ex-
ample, LH-simulated mean annual discharge almost equaled
(difference< 1 %) observed values for the Danube River
in Europe, the Mackenzie River in North America, and the
Amazon River in South America (Table 7). In addition, LH-
simulated mean annual discharge was only 8 %, 5 %, and
15 % less than observed values for the Yenisei River in Rus-
sia, the Xi Jiang River and Chang Jiang River in China, re-
spectively. It was only 6 % higher than the observed value
for the Mississippi River in the US. Large differences oc-
curred for the Congo River and Blue Nile River in Africa,
and the Murray River in Australia. For these large rivers,
LH-simulated mean annual discharge was about 60 % (for
the two African rivers) and 199 % higher (for the Murray
River) than observed values, respectively (Table 7). LH also
captured well (R2>0.37,p<0.01) interannual variations of
river discharges for most large rivers, including the Macken-
zie, Mississippi, Danube, Chang Jiang, Amazon, and Mur-
ray River (Fig. 10). When aggregated by 1◦ latitudinal zones,
LH-simulated mean annual surface runoff was in accordance
with previously published data (Fig. 11), but LH slightly
overestimated annual surface runoff between 0◦ S and 15◦ S
latitudinal zones and underestimated it between 25◦ N and
35◦ N latitudinal zones.
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Fig. 8. Comparison between LH-simulated (red line) and US Geological Survey observed monthly stream flow (SF) (black line) at 12 river
gage stations. Nr is the Nash-Sutcliffe coefficient.

Table 6.Comparison between LH-simulated and observed stream flow for 12 major rivers in the US.

USGS stream flow (m3s−1) Simulated stream flow (m3s−1) Statistics

Rivers min max mean min max mean R2 Nrb 1 (%)

1. Sacramento 109.3 1288.4 346.6 2.1 3964.6 429.6 0.59 −3.3 24.0
2. Willamette 195.4 4406.1 950.7 9.0 4872.7 951.0 0.85 0.74 0
3. Snake 276.5 3800.1 966.4 64.4 3796.7 985.5 0.64 0.52 2.0
4. Missouri 615.6 10 655.6 2612.3 347.8 17 298.3 2854.2 0.50 0.30 9.3
5. Mississippia 709.1 13 107.9 3732.4 504.3 12 184.6 3341.6 0.56 0.52 −10.5
6. Ohio 1225.8 29 421.2 8369.2 1227.3 33 323.5 7561.8 0.71 0.65 −9.6
7. Connecticut 88.4 2098.8 516.2 93.9 2658.4 532.5 0.67 0.56 3.2
8. Susquehanna 100.0 6657.3 1096.2204.3 5068.9 1052.2 0.69 0.68 −4.0
9. Colorado 7.2 957.1 79.9 1.8 1292.7 64.2 0.53 0.22 −19.6
10. Wateree 29.9 559.0 156.1 1.8 667.6 144.3 0.69 0.51 −7.5
11. Alabama 325.4 6232.0 1520.1 51.0 7369.6 1421.6 0.66 0.35 −6.5
12. Arkansas 6.2 2422.5 305.3 19.6 1763.9 276.8 0.59 0.58 −9.3

a The observed monthly stream flow subtracted that from the Missouri River in model comparison.
b Nr refers to the Nash-Sutcliff coefficients.
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Table 7.Comparison between LH-simulated and observed annual discharges for 10 large rivers worldwide.

Compare period Observed discharge (m3 s−1) Simulated discharge (m3 s−1) Diff (%)

Rivers Fist year Last year min max mean min max mean

1. Danube 1961 1984 5219 9293 6838 3314 9360 6790 −1
2. Congo 1961 1983 34 690 54 964 43 403 58 385 97 492 69 723 61
3. Murray 1965 1984 36 1108 257 283 1826 769 199
4. Yenisei 1961 1984 11 584 20 966 17 570 36 1108 16 232 −8
5. Mississippi 1961 1979 9884 25 993 16 574 9884 25 993 17 488 6
6. Chang jiang 1976 1979 23 728 31 770 25 032 17 000 26 049 21 255 −15
7. Xi jiang 1976 1983 6607 8311 7085 5905 7977 6735 −5
8. Mackenzie 1967 1984 7191 9662 8343 7433 10 185 8436 1
9. Amazon 1972 1982 138 608 176 067 165 615 145 992 207 499 176 073 0
10. Blue Nile 1976 1990 805 2436 1528 1695 3344 2539 66

4.5 Results of two experimental simulations

LH-simulated monthly stream flow in winter and early spring
with the addition of radiation effect on snowmelt was closer
than the degree-day method to observed values in the Snake,
Missouri, Mississippi, Ohio, Connecticut, and Susquehanna
watersheds (Fig. 12c–h). In these watersheds, heavy snow of-
ten occurs in winter and early spring. Because less snowmelt
was simulated under the degree-day method in winter and
early spring, the subsequent monthly stream flow was much
higher than observed values in late spring in these watersheds
where heavy snow occurs in winter and spring (Fig. 12c–
h). For the Alabama, Wateree and Colorado River (Fig. 12i–
k), the simulated stream flows under the two approaches
were almost identical because temperature is relatively high
(> 0◦C) in winter and heavy snow rarely occurs in these wa-
tersheds.

LH-simulated annual ET under high CO2 concentration
was about 30 to 75 mm lower than ET values simulated un-
der low CO2 concentration in watersheds where forests are
dominant land covers. The reason is because the higher CO2
concentration induced plant stomatal closure and thus de-
creased plant transpiration by a range of 33 to 73 mm in
forest-dominated watersheds, such as the Connecticut and
Susquehanna watersheds.

5 Discussion

Although model evaluation suggests LH performs well,
much effort is still needed to improve the accuracy in
simulating land-surface water balances. For example, LH-
simulated monthly ET in summer was less than the
Vörösmarty ET data in the Snake, Missouri, Mississippi and
Arkansas watersheds (Fig. 3). In the Midwestern and western
US, relative atmospheric humidity is comparatively lower
than watersheds in the eastern and southern US. Actual ET
is considered to increase as vapor-pressure deficit increases.
Vörösmarty et al. (1998) considered the effects of relative hu-
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Fig. 9. Long-term mean annual surface runoff (mm):(a) LH-
simulated runoff for the period 1961–1990,(b) observed runoff
(Cogley, 1998) for different time periods,(c) difference between
LH-simulated and Fekete et al. (1999) runoff data. The 10 large
river watersheds in(c) were derived from HydroSHEDS data
(Lehner et al., 2006). The geographic location of each gage station
was based on Global River Discharge Database (RivDis2.0), avail-
able fromhttp://www.sage.wisc.edu/riverdata/. For comparison, we
regridded 1-degree Cogley runoff data onto simulated 0.5-degree
grids using the nearest neighbor algorithm.
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Fig. 10.Comparison between LH-simulated (black dotted line) and observed (red dotted line) annual discharges for 10 large rivers worldwide.
The observed annual discharges are from RivDis2.0 database, available fromhttp://www.sage.wisc.edu/riverdata/.
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Fig. 11.Estimates of long-term mean annual surface runoff (mm),
aggregated into 1-degree latitude zones. LH-simulated data are 30-
yr (1961–1990) long-term mean. The Cogley (1998) runoff data
were at 1-degree land grid, and Fekete et al. (1999) runoff data were
at 0.5-degree land grid.

midity and vapor pressure deficit on land surface hydrology.
This explains why LH-simulated monthly ET in summer was
smaller than V̈orösmarty ET for those watersheds located in
the Midwestern and western US. The consideration of rela-

tive humidity and vapor-pressure deficit in Vörösmarty ET
algorithm also contributed to the higher ET estimates in the
Wateree and Alabama watersheds (Fig. 3j and k), in which
water is not limited but annual mean temperature is high. In
the Willamette River watershed, Vörösmarty ET peaked in
April and then tended to decrease throughout the rest of year
(Fig. 3b), resulting in lower ET simulation although water is
not limited in this region. At its current stage, LH considers
only radiative forcing while ignoring other meteorological
effects on actual ET. Meteorological factors, such as relative
humidity, play an important role in determining actual ET
(Brunel et al., 2006; Rim et al., 2008), which suggests that
they be considered in LH’s future development.

LH-simulated soil moisture in the top 50 cm of the soil
layer in US. Illinois and Iowa generally agreed well with ob-
served values (Fig. 6). This good agreement indicated that
LH has a strong ability to simulate soil moisture at the re-
gional or even local scale. In addition, we suspect that the
accuracy of input land covers, the 2.5 arc-min PRISM cli-
mate data, and the quality of STATSGO soil data, all con-
tributed to the good agreement between simulated and ob-
served soil moisture in these two regions. Illinois soil mois-
ture was monitored at grass-covered sites across Illinois, an
agricultural region (Hollinger and Isard, 1994). The GLCF
data defines land covers in Illinois as a mix of grass and crops

Hydrol. Earth Syst. Sci., 16, 2547–2565, 2012 www.hydrol-earth-syst-sci.net/16/2547/2012/

http://www.sage.wisc.edu/riverdata/


G. Tang and P. J. Bartlein: Modifying a DGVM for water-balance simulation 2561

 
 

 52

Figure 12 1054 

 1055 

Fig. 12.Monthly river runoff simulated by LH(a) under the addition of solar radiation for snowmelt computation (blue line), and(b) using
a degree-day method for snowmelt computation (green line), and(c) USGS observed average monthly runoff (red line) for 12 major rivers
in the US.

(Supplement Fig. S3). Finer-scale climate data can better rep-
resent the spatiotemporal variation of climate across a region.
Liu and Yang (2010) suggested that finer-scale climate data
are likely to better capture the spatial variation of hydrolog-
ical variables than those simulated at coarser resolution. Ac-
curate spatial representation of soil moisture is difficult for
large areas because it requires consideration of detailed soil
attributes such as soil texture and its water holding capacity
(Hollinger and Isard, 1994). The STATSGO soil texture data
were created by generalizing more detailed soil survey maps
and are often thought to be of high quality in representing soil
characteristics in the US. Anderson et al. (2006) found that
the hydrological simulation can be improved by combining
detailed land cover with STATSGO soil data to refine model
parameter estimates.

The good agreement between LH-simulated and observed
stream flow for major rivers in the US (Fig. 8) and large
rivers worldwide (Fig. 10) supports the utility and reliabil-
ity of incorporating satellite data into LPJ-DGVM to simu-
late land surface water balances. The LH-simulated spatial
pattern of mean annual surface runoff for the entire world
was also visually remarkably similar to that captured by LPJ-
DGVM (Fig. 2 in Gerten et al., 2004) because the core hy-
drologic components in two models are almost the same. On
average, LH-simulated global long-term (1961–1990) mean
annual surface runoff was 292 mm, only 14 mm less than
the LPJ-DGVM simulated runoff (≈ 306 mm) (Gerten et al.,
2004). However, LH-simulated global mean annual surface
runoff was much smaller than LPX-simulated surface runoff

(≈ 444 mm), which tended to overestimate surface runoff
magnitude in the tropics and throughout much of the North-
ern Hemisphere (Murray et al., 2011). Overall, LH captured
well the global runoff distribution (Fig. 9a and b) although
it over- and underestimated surface runoff in some areas
when compared to observed data from Fekete et al. (1999)
(Fig. 9c). For example, like LPJ-DGVM (Gerten et al., 2004),
LH tended to underestimate surface runoff in subarctic re-
gions. In addition, like LPJ-DGVM (Gerten et al., 2004) and
LPX (Murray et al., 2011), LH represented well interannual
variations in large river discharges (Fig. 10).

Vegetation and crops are far from static and have important
effects on land surface water balance (Arora, 2002). Different
vegetation and crops have varying physiological traits, such
as LAI and stomatal conductance, affecting plant transpira-
tion and soil evaporation due to changes in surface albedo.
The accuracy of land cover and soil representation may cause
LH-simulated water balances not to agree well with corre-
sponding observed values. For example, LH-simulated ET in
April of 1998 in the Florida Everglades decreased sharply
relative to March and was much lower than the measured
value (Fig. 4). Land covers in the Florida Everglades are
mostly wetlands that never dry or dry only during parts of
years (German, 2000). In contrast, LH (actually the GCLF
data) defines land cover in this area as grassland. As a result,
precipitation in April could be very low (average 14 mm)
while soil evaporation remains high resulting in a higher ET
measurement, which suggests the accurate representation of
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land characteristics is required in applying LH at the small
regional scale.

The type of land cover affects the accuracy of modeled
land-surface water balances. LH better captured the mag-
nitudes and variations of monthly stream flow in forest-
dominated watersheds relative to those watersheds domi-
nated by crops, grassland, or shrubs (Table 6 and Supplement
Fig. S3); largely because monthly precipitation was gener-
ally higher throughout the year and the hydrologic effects of
human activities such as irrigation were comparatively lower
in these watersheds. In contrast, for semi-arid and arid en-
vironments in the western US and other parts of the world,
precipitation is thought to be important for controlling snow
or rainfall dominated river hydrography. Excessive soil wa-
ter may percolate into deep ground water and then discharge
in valleys at lower elevations. As a result, actual river peak
flow could be lower than LH-simulated flow, such as in the
Colorado River through Texas (Fig. 8i).

Like LPJ-DGVM (Gerten et al., 2004), LH does not simu-
late human withdrawal of water from rivers and the reduction
of river flow by human water consumption (e.g. Döll et al.,
2003). It is not surprising, therefore, that the magnitudes of
LH-simulated monthly stream flow were much higher than
observed data for the Sacramento River (Fig. 8a). The Sacra-
mento River watershed has been intensely developed for wa-
ter supply and hydroelectric power generation. An earlier
study (Yates et al., 2009) that considered consumptive and
non-consumptive use of water in the Sacramento River wa-
tershed was able to correctly reproduce the water balance
and river hydrology in the watershed. Likewise, both LH
and LPJ-DGVM ignore evaporation loss from lakes, reser-
voirs, wetlands, and non-perennial ponds. These processes
contributed to overestimation of discharges for large rivers,
such as the Murray River and Blue Nile River, in arid regions
(Fig. 10) (Gerten et al., 2004). The exclusion of water evap-
oration from river channels and potential underestimation of
rainfall interception by tropic forest canopies (e.g. Murray
et al., 2011) contributed LH-simulated river discharges to be
higher than observed values for the Congo River in Africa
(Fig. 10d). In addition, the difference between satellite-based
land cover and the DGVM-simulated vegetation, the exclu-
sion and inclusion of vegetation-related biogeochemical pro-
cesses in the model’s construction, and the setup of model
running (e.g. the length of years used for spin-up simula-
tion) can affect the agreement between LH- and LPJ-DGVM-
simulated water balance in each basin. Further study is there-
fore required to explicitly examine how these differences af-
fect simulated water balances.

Despite a number of discrepancies that emerged when
comparing LH-simulated to observed values of three hydro-
logic values at different spatial scales, LH offers several ad-
vantages over the use of a standard DGVM for simulating re-
gional or global land-surface hydrology. First, LH predefines
land covers instead of simulating them as, for example, in
LPJ-DGVM. This greatly simplifies LH’s structure (Fig. 1)

but does not reduce LH’s ability to simulate land surface wa-
ter balances. This simplification of model structure makes
LH easier to grasp (e.g. Paola, 2011). Second, LH ignores
some vegetation-related biogeographical and biogeochemi-
cal dynamics. Vegetation-related parameters (Tables 1 and
2) are reduced by more than half compared to those in LPJ-
DGVM. The reduction of parameters makes LH easier to pa-
rameterize in practice. This in turn has potential to reduce the
uncertainty of model results resulting from model parame-
terization (e.g. Zaehle et al., 2005; Wramneby et al., 2008).
Third, the addition of solar radiation for snowmelt computa-
tion in LH greatly improved estimates of river stream flow
in winter and early spring in snow-dominated watersheds
(Fig. 12). Gerten et al. (2004) suggested that LPJ-DGVM
tended to underestimate surface runoff in winter at high lat-
itudes of the Northern Hemisphere. With the addition of the
solar radiation effect on snowmelt, LH-simulated mean an-
nual river discharges agreed well with observed values for
the Mackenzie and Yenisei Rivers (Fig. 10a and j). Fourth,
LH couples plant photosynthesis and phenology. It is there-
fore able to simulate the role of changes in atmospheric CO2
concentration in land-surface water balance (e.g. Leipprand
and Gerten, 2006; Robock and Li, 2006). The coupling of
plants photosynthesis and phenology is also crucial for study-
ing effects of land cover change on the land-surface water
balance because of the interactions between vegetation and
water (e.g. Kergoat et al., 2002; Rost et al., 2008).

6 Conclusions

LH is developed by incorporating satellite-based land covers
and proportional foliar vegetation covers into LPJ-DGVM
(Sitch et al., 2003; Gerten et al., 2004) for simulating land
surface water balances at the regional scale. LH’s perfor-
mance has been evaluated at different spatial scales using a
compilation of existing data sets. This study concluded the
following:

1. LH is able to accurately simulate ET, soil moisture, and
surface runoff at the regional scale. The incorporation of
satellite-based data into LH helps simplify the model’s
structure and thus makes LH easier to grasp. The reduc-
tion of model parameters enables LH easier to parame-
terize in practice than common DGVMs.

2. Compared to a degree-day method for snowmelt com-
putation in LPJ-DGVM, LH considered the effects
of both solar radiation and temperature on snowmelt.
The addition of solar radiation for snowmelt computa-
tion improved LH’s estimates of stream flow in win-
ter and early spring for rivers at mid-to-high latitudes.
The study suggested, therefore, that to better simu-
late surface runoff at mid-to-high latitudes, DGVMs
should explicitly consider the effect of solar radiation
on snowmelt.
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3. Hydrologic evaluation of LH at the regional scale indi-
cated that it also has a strong ability to simulate regional
scale land surface water balances, but accurate estimates
of regional scale land surface hydrology require both
LPJ-DGVM and LH to correctly and explicitly define
the land characteristics. In addition, human-related fac-
tors such as water withdrawal and consumption, meteo-
rological factors such as vapor pressure deficit, and the
routing of water among simulated units should be con-
sidered in LH’s future development.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
16/2547/2012/hess-16-2547-2012-supplement.pdf.
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