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Abstract. An exploratory analysis on the variability of flood
occurrence rates in 10 Portuguese watersheds is made, to as-
certain if that variability is concurrent with the principle of
stationarity. A peaks-over-threshold (POT) sampling tech-
nique is applied to 10 long series of mean daily stream-
flows and to 4 long series of daily rainfall in order to sample
the times of occurrence (POT time data) of the peak values
of those series. The kernel occurrence rate estimator, cou-
pled with a bootstrap approach, was applied to the POT time
data to obtain the time dependent estimated occurrence rate
curves,λ̂(t), of floods and extreme rainfall events. The re-
sults of the analysis show that the occurrence of those events
constitutes an inhomogeneous Poisson process, hence the oc-
currence rates are nonstationary. An attempt was made to
assess whether the North Atlantic Oscillation (NAO) casted
any influence on the occurrence rate of floods in the study
area. Although further research is warranted, it was found
that years with a less-than-average occurrence of floods tend
to occur when the winter NAO is in the positive phase, and
years with a higher occurrence of floods (more than twice the
average) tend to occur when the winter NAO is in the nega-
tive phase. Although the number of analyzed watersheds and
their uneven spatial distribution hinders the generalization of
the findings to the country scale, the authors conclude that the
mathematical formulation of the flood frequency models re-
lying on stationarity commonly employed in Portugal should
be revised in order to account for possible nonstationarities
in the occurrence rates of such events.

1 Introduction

Nowadays, there seems to be a consensus among the scien-
tific community that, due to climate change, there is an in-
tensification of the hydrological cycle (Bates et al., 2008),
assumably leading to more frequent and more intensive ex-
treme hydrological phenomena, like floods and droughts.
Milly et al. (2008) argue that such climate change under-
mines stationarity – a basic assumption that historically has
assisted practice and research in the fields of hydrology
and water resources management.Clarke(2007) questions
the widespread assumption of stationarity in hydrological
practices and argues that the next few decades should see
an increase in understanding the processes causing climate
changes and variability, not only for the purpose of forecast-
ing the development of such changes, but also for predicting
the frequency of occurrence of events of a certain magnitude.

In Portugal, however, the generality of research on hydro-
logical modeling relies on the principle of the stationarity of
hydrological time series (Quintela and Portela, 2002), includ-
ing recent academic works on flood hydrology (Portela and
Dias, 2005; Delgado, 2007; Portela and Delgado, 2009), al-
though general circulation models (GCMs) based on some
scenarios of greenhouse gas emissions show an expected
trend for an aggravation of extreme precipitation events in
northern Portugal (Santos et al., 2002, p. 167). In such
framework it is important to carry out research that could
ascertain whether or not the hydrological time series that are
used in the design of water resources systems exhibit definite
signs of nonstationarity. If they do, the mathematical formal-
ism applied to the planning and management of such struc-
tures must be revised, namely the statistical analyses that are
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usually employed in studies on extreme hydrological phe-
nomena, such as extreme rainfall events and floods.

According to Ramos and Reis(2002), floods were the
deadliest natural disasters during the 20th century in Por-
tugal, followed by earthquakes. Those authors differentiate
rain-induced floods in Portugal into two types:progressive
floods, which are caused by prolonged heavy rainfall associ-
ated with a westerly zonal circulation that may persist for
weeks; and, in contrast,flash floods, which are triggered
by heavy and concentrated rainfall related to convective de-
pressions (e.g.: active cold pools, depressions caused by in-
teraction between polar and tropical circulations, and, very
rarely, tropical depression). Progressive floods mainly affect
larger watersheds such as the international Tejo (Tagus) and
Douro river basins, which are heavily regulated with reser-
voirs and flood control systems, while flash floods mainly
affect smaller watersheds. Due to the small size of most of
the national watersheds (with times of concentration lower
than one day), Portugal is particularly prone to flash flood
events, which pose a great danger for human populations.

The North Atlantic Oscillation (NAO) is a prominent
and recurrent pattern in climate variability of the Northern
Hemisphere, which refers to a redistribution of atmospheric
masses between the Arctic and the subtropical Atlantic (Hur-
rell et al., 2003). Studies carried out byHurrell (1995) and
Trigo et al.(2002a) have established links between the NAO
phase and precipitation in western Europe. Although the
NAO is evident throughout the year, its activity and impact
on European surface climate is greater during the winter sea-
son (Osborn et al., 1999; Morán-Tejeda et al., 2011). There
are also a number of studies on the influence of the NAO on
precipitation and river flow in the western Iberian Peninsula
in winter months (Rodŕıguez-Puebla et al., 2001; Corte-Real
et al., 1998; Trigo et al., 2002b, 2004; Morán-Tejeda et al.,
2011; Lorenzo-Lacruz et al., 2011), which have shown that
when the NAO is in its negative phase precipitation and river
flows tend to be above normal.Trigo et al.(2005) studied the
influence of the NAO on monthly and seasonal precipitation
on an area prone to landslides located north of the capital of
Portugal, Lisbon, and concluded that the large inter-annual
variability of winter precipitation in that region is largely
modulated by the NAO mode.

The aim of the present study was to carry out an ex-
ploratory analysis on the variability of the streamflow regime
in 10 mainland Portugal watersheds, in what concerns the
occurrence rate of floods, and ascertain if that variability is
concurrent with the hypothesis of nonstationarity.

This paper focuses primarily on mean daily streamflow
data at 10 gauging stations geographically spread over main-
land Portugal. Long series of daily rainfall records at rain
gauges located in 4 of the studied watersheds were also uti-
lized. The peaks-over-threshold (POT) sampling technique is
applied to extract the dates (POT time data) and peak values
(POT value data) of flood events and extreme rainfall events,
respectively, from the streamflow and rainfall samples.

A nonparametric method for analyzing nonstationarities in
the occurrence rateλ(t) of floods and extreme rainfall events
was applied to the POT time data – thekernel occurrence
rate estimationmethod, orkernel technique(Diggle, 1985;
Mudelsee et al., 2003).

Given the aforementioned evidence of the role of the NAO
in modulating rainfall and river flows in western Iberian wa-
tersheds, an exploratory analysis was conducted on the rela-
tionship between flood occurrence in the studied watersheds
and the NAO.

Following this Introduction, in Sect.2, the utilized data
sets as well as the methods used to sample POT data and
to detect nonstationarities are presented. Section3 presents
and discusses the results of the study, and, finally, in Sect.4,
the most relevant conclusions of the article are drawn and
opportunities of future research are presented.

2 Data and methods

2.1 Streamflow and rainfall data and characteristics of
the studied watersheds

As mentioned in Sect.1, this paper focuses primarily on
flood occurrence rates in 10 unregulated Portuguese catch-
ments. For that purpose, two types of hydrological time se-
ries – identified in Table1 – were analyzed: (i)mean daily
streamflowseries at 10 stream gauging stations that define
the analyzed catchments, geographically spread over main-
land Portugal; (ii)daily rainfall at rain gauges located in 4
of the studied watersheds. The data were acquired by the
Portuguese Water Institute, INAG, and made available via
the SNIRH database (Sistema Nacional de Informações so-
bre Recursos H́ıdricos, http://snirh.pt), which has high data
quality standards and is the main source of Portuguese hy-
drological and hydrometeorological data used by researchers
and practitioners of water resources engineering and science.
The mean daily streamflow samples were selected based on
two main criteria: (1) the rivers must have no significant
regulation that could influence the watershed’s response to
floods, and (2) the data series should span over a sufficiently
long time (at least 30 yr). A few missing values were filled in
using corroborated methods for Portugal (Pulido-Calvo and
Portela, 2007). It should be mentioned that the period of
records and number of years shown in Table1 refer to hy-
drological years, which in Portugal begin on 1 October.

The daily rainfall data were utilized for the purpose of
checking whether there are significant discrepancies between
peaks in rainfall and streamflow, which would eventually
suggest that the behaviour exhibited by the streamflows was
under a significant anthropogenic influence. Such analysis
allowed to consider that the flood regime in the studied wa-
tersheds is nearly pristine.

Figure1b shows the location of the streamflow and rain
gauging stations as well as the drainage divides of the
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Table 1. Mean daily streamflow and daily rainfall data. Sample code, name and periods of records of the samples; mean annual flow
depth, MAFD (mm), and area of the catchments; mean annual rainfall, MAR (mm); POT sampling threshold values,u (m3 s−1 and mm,
respectively).

Mean daily streamflow samples
Code Name Period of records (no. of years) MAFD (mm) Catchment area (km2) u (m3 s−1)

S1 Castelo Bom 1957/58–2003/04 (47) 348 897 69.1
S2 Castro Daire 1945/46–2003/04 (59) 738 291 47.6
S3 Cunhas 1949/50–2005/06 (57) 824 338 61.7
S4 Ermida Corgo 1956/57–2005/06 (50) 888 291 57.3
S5 Fragas da Torre 1946/47–2005/06 (60) 992 660 145.3
S6 Monte da Ponte 1959/60–1991/92 (33) 132 701 20.4
S7 Odivelas 1934/35–1966/67 (33) 178 431 17.0
S8 Ponte Juncais 1918/19–1974/75 (57) 492 604 65.9
S9 Ponte Sta. Clara-D̃ao 1921/22–1972/73 (52) 455 177 17.8
S10 Quinta das Laranjeiras 1942/43–2005/06 (64) 246 3464 188.8

Daily rainfall samples
Code Name Period of records (no. of years) MAR (mm) u (mm)

R1 Almod̂ovar 1959/60–1999/00 (61) 591 19.4
R2 Alturas do Barroso 1946/47–1995/96 (50) 1660 54.5
R3 Campẽa 1959/60–1994/95 (36) 2229 73.2
R4 Castro Daire 1916/17–2000/01 (85) 1692 55.6
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Fig. 1. Mainland Portugal. (a) Countour map of the mean annual rainfall. Source: Portuguese Environmental Agency (APA,
http://sniamb.apambiente.pt/webatlas/), based on the climatological normals of reference, corresponding to the period 1931–1960, using
a network of 334 stations (CNA, 1983). (b) Location of the rainfall and streamflow gauging stations, as identified by the codes presented in
Table1. The shaded areas correspond to the catchments under study.
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Fig. 2. Peaks-over-threshold sampling technique applied to sample S5 – Fragas da Torre. (a) Mean daily

flow sample; (b) autocorrelation function (ACF) of the exceedances with a 95 % confidence band; (c) mean

number of exceedances in a year, (d) mean exceedance over the threshold with a 95 % confidence band; and

(e) empirical distribution function of the times of the events. The selected threshold is identified by the dashed

lines in panels (a), (c) and (d). In panel (e), the vertical ticks show the points in time associated with the

flood occurrences, the dotted diagonal line shows the uniform distribution and the solid diagonal lines show

significance for a Kolmogorov-Smirnov statistic at 5 % and 1 %.
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Fig. 2. Peaks-over-threshold sampling technique applied to sample S5 – Fragas da Torre.(a) Mean daily flow sample;(b) autocorrelation
function (ACF) of the exceedances with a 95 % confidence band;(c) mean number of exceedances in a year,(d) mean exceedance over the
threshold with a 95 % confidence band; and(e)empirical distribution function of the times of the events. The selected threshold is identified
by the dashed lines in panels(a), (c) and(d). In panel(e), the vertical ticks show the points in time associated with the flood occurrences,
the dotted diagonal line shows the uniform distribution and the solid diagonal lines show significance for a Kolmogorov-Smirnov statistic at
5 % and 1 %.

catchments under study, whose areas are shown in Table1.
It should be commented, that the criteria for selection of
data series resulted in a small number of studied watersheds
which are, moreover, unevenly distributed in the Portuguese
territory, as made evident in Fig.1b: most of the studied
watersheds are in the North of Portugal, only two are in
the South and the central region is not represented. Con-
sequently, it is clear that the results obtained from this data
set should not be unquestionably generalized for the whole
country.

As shown in Fig.1a, in Portugal, the mean annual rainfall
(MAR) varies from more than 2800 mm, in the northwestern
region, to less than 400 mm, in the southern region, follow-
ing a complex spatial pattern (N–S/W–E). Table1 shows the
mean annual flow depth, MAFD, and mean annual rainfall,
MAR, of the streamflow and rainfall samples respectively.
Those values show the diversity of hydrological regimes rep-
resented in the data set, the driest catchment being S6 –
Monte da Ponte, in the South, and the wettest being S5 –
Fragas da Torre, in the North. As for the represented hy-
drometeorological regimes, Fig.1a and Table1 show that,
while the three rain gauging stations in the North are in very

humid regions (R2, R3 and R4), the R1 station, in the South,
is in a relatively dry region.

2.2 Peaks-over-threshold (POT) sampling and data

The peaks-over-threshold(POT) approach to hydrological
frequency analysis, consists of applying a sampling tech-
nique to a time series that retains the peak values that exceed
a given truncation level usually calledbase levelor thresh-
old (Lang et al., 1999). Todorovic and Zelenhasic(1970)
andTodorovic(1978) introduced the marked point model for
flood analysis that relies on the POT sampling technique.

Conventional analysis by the POT sampling technique
consists of the following: from a continuous time seriesxt ,
with t running continuously fromt0 to tn, thei-th peak value
x′

i corresponds to the largest value among those exceeding
the thresholdu, in the time interval [t0 + ti , t0 + ti +1t ], com-
prised in [t0, tn]. Formally,

{x′

i} = max{xt |xt > u }
t=t0+ti+1ti
t=t0+ti

(1)
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If the time of occurrence ofx′

i is denoted byTi ∈ [t0, tn]
and if there arem flood episodes of this kind,{Ti, x′

i}
m
i=1

represents a marked point process for the variableX.
Usually, the peak values,x′

i , are supposed identically in-
dependently distributed (i.i.d.) variables. The time of occur-
rence ofx′

i , that isTi , is associated with a Poisson process,
with the number of occurrences in a given interval (e.g. a
year) being a Poisson variate with parameterλ (Cunnane,
1979). In the context of POT sampling of hydrological vari-
ables, the time series discretized in daily intervals, such as
those employed here, though not rigorously continuous, con-
form to the general requirements of a Poisson point process,
as previously defined.

The selected peaks must meet the independence condition.
Several criteria has been presented in the literature in order to
verify this hypothesis (Lang et al., 1999). The criterion used
in the present study, for the mean daily flow series, (NERC,
1975; Cunnane, 1979) determines that peaks should be sep-
arated in time by three times the time to peak and, further-
more, that the flow between two consecutive peaks should
decrease below as much as two thirds of the first peak. Due
to the relatively small areas of the watersheds being ana-
lyzed (Table1), as most of the Portuguese watersheds, times
of concentration lower than 1 day are expected, except for
Quinta das Laranjeiras – S10. For that reason and given the
daily time-step of the data, we considered that for the pur-
pose of applying the forementioned independence criterion,
the time to peak equals approximately one day at the ana-
lyzed gauging stations.

The independence criterion applied to the daily rainfall se-
ries is similar to the one applied to the mean daily flow series,
the only difference being that the daily rainfall must decrease
to zero between two peaks.

The selection of the threshold,u, is a procedure that in-
volves a great level of subjectivity (Begueŕıa, 2005). Lang
et al. (1999) reviewed a number of systematic approaches
to carry out this selection.Lang et al.(1999) remark, how-
ever, that there is no universal and unequivocal method for
selecting the threshold, and that there is no unique threshold
value that must be selected but rather a range of appropri-
ate values. In the present study, in what concerns the mean
daily flows, the threshold adopted equals 7 times the long
term mean daily flow, or modulus, which according toQuin-
tela (1984) provides a lower limit to identify the flood oc-
currences. Figure3a shows the mean daily flows sample at
Fragas da Torre (S5) and the corresponding threshold. The
criterion adopted to determine the threshold, as applied to
the daily rainfall records, considered that the mean number
of over-threshold values should be similar to the one obtained
for the mean daily flows. Such criterion resulted in a thresh-
old equal to 12 times the mean daily rainfall. Table1 shows
the adopted threshold values for the mean daily streamflow
and the daily rainfall series.

After the thresholdu was defined, the correlation structure
of the peaks or exceedances was analyzed, namely the lag-
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Fig. 3. Winter NAO indices based on standardized sea-level pres-
sures differences from November to March – NAO (NDJFM) –
between Iceland and Gibraltar from 1900 to 2009 (the year corre-
sponds to November of each NDJFM average). The solid black line
is a smoothing LOWESS curve.

one and lag-two autocorrelation coefficients, as exemplified
in Fig. 3b. No significant serial correlation was found that
could invalidate the application of the selected thresholds.

Additionally, tests were carried out to evaluate the ade-
quacy of the thresholds. Those tests focused on the mean
number of over-threshold events in a year and on the mean
exceedance above threshold as a function of variable thresh-
old values, tests no. 1 and 2, respectively, as reviewed by
Lang et al.(1999). The application of such tests did not in-
validate the adopted threshold selection criterion, as it was
found that the thresholds were such that a convenient overall
number of events was sampled for the purpose of estimating
λ(t), and they were generally in a domain where the mean
exceedance above threshold is an approximately linear func-
tion of u. As an example, the results of the application of the
tests to sample S5 – Fragas da Torre are presented in Fig.3c
and d.

The inherent subjectivity regarding selection of the thresh-
olds remains a source of ambiguity in statistical analyses
based on POT data, despite the aforementioned efforts to val-
idate that selection. Therefore it is important, in practice, to
check if the results of such analyses are highly dependent
on the threshold. For that purpose, the procedure suggested
by Davison(2003, p.286), of imposing slight variations of
threshold levels, around the adopted ones, and repeating the
methods, did not cause any significant changes to the overall
results presented in Sect.3, and to the final conclusions as
well.

2.3 North Atlantic Oscillation (NAO) data

Traditionally, the NAO index has been defined as the differ-
ence in normalized surface pressure between Iceland (Stykk-
isholmur) and the Azores archipelago (Ponta Delgada). In
recent decades, however, researchers have found that, dur-
ing the winter season, stations located in the Iberian Penin-
sula could be used with some advantages over Ponta Del-
gada: Lisbon was used byHurrell (1995) as the southern sta-
tion, andJones et al.(1997) used Gibraltar. In this work it
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was decided to use the Iceland-Gibraltar index developed by
the Climate Research Unit (Jones et al., 1997; http://www.
cru.uea.ac.uk/cru/data/nao/), based on instrumental pressure
measurements in Gibraltar and SW Iceland back to 1821.
Also, the winter season has been defined as November to
March (NDJFM) in accordance withJones et al.(1997) and
Trigo et al.(2005), although other definitions of the winter
season could also be used (Osborn et al., 1999). Figure3
shows the winter NAO indices used in this study along with
a LOWESS (locally weighted regression) curve (Cleveland,
1979) fitted to the data using a smoothing parameterf = 0.1
in order to obtain an adequate inter-annual smoothing.

2.4 Nonparametric occurrence rate estimation methods

2.4.1 General remarks

The kernel technique is applied to the POT time data sam-
pled from the original mean daily flow and daily rainfall time
series. After the estimated flood and extreme rainfall occur-
rence rate curves,̂λ(t), are obtained, a pointwise bootstrap
confidence band is constructed around them, allowing for a
more rigorous interpretation of the results.

In the framework of this paper,λ(t) denotes the occurrence
rate of flood events (Mudelsee, 2010, p. 249) when referring
to mean daily flow, and the occurrence rate of extreme rain-
fall events when referring to daily rainfall.

2.4.2 Kernel occurrence rate estimation

The kernel technique is a nonparametric method developed
by Diggle (1985) for smoothing point process data. For es-
timating the intensity of a point process such as the time-
dependent occurrence rate,λ(t), this technique may be for-
mulated as:

λ̂(t) = h−1
m∑

i=1

K

(
t − Ti

h

)
(2)

whereK is the kernel function andh is the bandwidth. A
Gaussian kernel was used as it can be efficiently calculated
in Fourier space and yields a smooth estimated occurrence
rate,λ̂(t) (Mudelsee et al., 2004, 2006):

K(y) =
1

√
2π

exp

(
−

y2

2

)
(3)

The units ofλ̂(t) ared−1, i.e. the number of occurrences
above threshold per day at a given point in time,t . However,
to facilitate the interpretation of the results,λ̂(t) was mul-
tiplied by 365.25, such that, for a given instant,t , the λ̂(t)

indicates the estimated number of occurrences above thresh-
old per year (yr−1)

The application of Eq. (2) may lead to a boundary bias
neart0 and tn consisting of an underestimation ofλ(t) due
to the nonexistence of data outside the interval [t0, tn]. This
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Fig. 4. Estimated flood occurrence rate at S8 – Ponte Juncais, with
(solid line) and without (dashed line) pseudodata generation; flood
dates (represented by vertical lines) obtained from the POT time
data.

boundary effect can be reduced by generatingpseudodata,
i.e. pseudo extreme events,pT, outside of the observation in-
terval, before estimatingλ(t). The straightforward method
of reflectionwas used to generate pseudodata (on the left
side, fort<t0: pT(i) = t0−[Ti − t0], covering an amplitude of
3 timesh beforet0; analogously on the right side, fort>tn).
Pseudodata generation is equivalent to the extrapolation of
the empirical distribution of events near the boundaries,
hence the estimation ofλ(t) near the boundaries of the ob-
servation period should be analyzed with caution (Mudelsee
et al., 2004; Mudelsee, 2010, p.251;Mudelsee, 2011). Con-
sideringT † as the original point data,T , augmented by the
pseudodata,pT, andm† as the total number of points inT †,
Eq. (2) can be rewritten as:

λ̂(t) = h−1
m†∑
i=1

K

(
t − T

†
i

h

)
. (4)

Figure4 shows the estimated occurrence ratesλ(t) for the
S8 – Ponte Juncais sample, with and without pseudodata gen-
eration, exemplifying the correction of the boundary bias via
pseudodata generation.

The selection of the bandwidth,h, determines the bias and
variance properties of the occurrence rate estimatorλ̂(t): a
too smallh results in fewer data points that effectively con-
tribute to the kernel estimation, which leads to a reduced bias
and a high variance; on the other hand, a too largeh leads to
anoversmoothingof the estimator, resulting in a small vari-
ance and increased bias. The selection of the bandwidth can
be seen as a compromise between those two cases. Further-
more, since there is a high seasonal variability of the hydro-
logic regime in Portugal and, as the objective is to describe
inter-annual variability ofλ(t), the bandwidth should be con-
siderably higher than the year to avoid the effect of the sea-
sonal variability.
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In this study the selection of the bandwidth used a straight-
forward method: Silverman’srule of thumb (Silverman,
1986, p.48). This rule definesh as:

h = 0.9 A−1/5 (5)

with:

A = min {STD, IQR} (6)

where STD and IQR are, respectively, the standard devia-
tion and the interquartile range of the POT time data.Sil-
verman(1986, p. 48) comments that this method produces
an adequate choice of bandwidth for many purposes. The
bandwidths obtained range from 1141 days (sample S6) to
2157 days (sample S9), which is adequate for describing
inter-annual variability, because it smooths out the within-
the-year seasonal variability.

2.4.3 Bootstrap confidence band

As previously described, a nonparametric method for esti-
mating a varying point process intensity, the kernel method
(Diggle, 1985), was used to characterize the occurrence rate
of floods in the watersheds analyzed in this study. Point es-
timates may be difficult to interpret without some measure-
ment of the uncertainties associated with those estimates.

For the purpose of quantifying the uncertainties associ-
ated with the results of Eq. (4), a pointwise confidence band
was constructed around̂λ(t), by means of bootstrap simu-
lations (Cowling et al., 1996; Mudelsee, 2011). This pro-
cedure consisted of drawing a set ofn flood dates from the
original POT data, augmented by pseudodata, with replace-
ment, and calculatinĝλ∗(t) after Eq. (4), using the resampled
data and the same bandwidth,h. The resampling-estimation
procedure was repeated until 2000 estimated curvesλ̂∗(t)

were obtained. Finally, an algorithm developed byCowling
et al. (1996) and used byMudelsee et al.(2003, 2004) and
Mudelsee(2011), namely the percentile-t type confidence
band was applied pointwise to the 2000λ̂∗(t) to construct
a 90 % bootstrap confidence band aroundλ̂(t).

3 Results and discussion

3.1 Preliminary data analysis

With the application of a POT sampling technique (Eq.1),
two types of data were obtained:time data, {Ti}

m
i=1, which

are the instants of occurrence of extreme events, andpeak
value data, {x′

i}
m
i=1, which relates the magnitude of the ex-

treme events themselves.
Although this study concerns primarily the forementioned

time data, an exploratory analysis was made concerning the
inter-annual variability of the peak values,{x′(i)}mi=1, for
both the mean daily flow and the daily rainfall data. This
analysis was performed by obtaining the series of running
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Fig. 5. Streamflow (top panel) and rainfall (bottom panel) data: run-
ning average exceedances above threshold over successive periods
of (the previous) 15 yr, and made dimensionless by the long term
mean.

average exceedances over successive periods of 15 yr. Fig-
ure 5 shows those series, made dimensionless by their re-
spective means, for both streamflow and rainfall data. In the
horizontal axis of that figure, the year marks refer to the first
trimester of the hydrologic year, which starts on 1 October
of yeark as previously mentioned. Although a visual analy-
sis of Fig.5 suggests that overall the samples do not exhibit
trends or a significant inter-annual persistences above or be-
low mean, linear relations were fitted to the running means
and the significance of the slope parameter,β, was tested,
and it was found that, out of the 10 series of running aver-
ages, only 3 of them have a slope that significantly differs
from zero: S6, S8 and S9. It should be stressed that the be-
ginning and the ending dates of the running averages vary
according to the sampling period of each case study.

A preliminary analysis was also carried out concerning the
parametersλ (occurrence rate) of the Poisson processes as-
sociated with the POT time data. Any counting process with
stationary independent increments, i.e. the distribution of the
number of events occurring in any interval depending only on
the length of the interval, is a homogeneous Poisson process
with parameterλ. With the introduction of a time depen-
dence in the process, the Poisson parameter becomes a time
function,λ(t). This time dependence is useful for studying
nonstationarities inλ(t).
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Fig. 6. Number of extremes in yeark, λk (bars). inter-annual variability described by a LOWESS curve fitted to data, with a smoothing
parameterf = 0.2 (solid lines).

When the process is homogeneous,λ is a constant and the
variablewi = (Ti − t0)/(tn − to) (normalized times of events
above threshold) is distributed as order statistics of random
sample from the uniform distribution in the interval [0, 1].
A graphical analysis of that hypothesis can be performed
by plotting the empirical distribution function ofwi , F̂ (w),
and checking if there are any significant departures from
the uniform distributionF(w) =w, 0≤w≤1 (Davison, 2003,
p. 277–278). Figure3e exemplifies the former graphical
analysis applied to sample S5 – Fragas da Torre where the
solid grey lines indicate the significance for a Kolmogorov-
Smirnov statistic at levels 5 % and 1 %. Such figure suggests
that the rate of the process may be non-uniform. It was ver-
ified that the generality of the samples exhibited significant
departures from the uniform distribution.

An additional evaluation of whether there was any signif-
icant increase or decrease in the intensity of those processes

focused on the number of extreme events per hydrologic year
k, a discrete variable denoted byλk. For each sample of both
streamflow and rainfall data sets,λk was smoothed by means
of a LOWESS (locally weighted regression) curve (Cleve-
land, 1979), using a smoothing parameterf = 0.2, which was
the smallestf that enabled an adequate smoothing of the
data. The former analysis is represented in Fig.6.

Figure6 shows that there is some variability in the occur-
rence rate of extremes in the observed samples. Most no-
tably, there seems to be an increase in the intensity of the
Poisson process in the period ranging from the late 1950s
to the late 1960s in all of the samples that cover this period,
though in some samples it is more pronounced than in others.

3.2 Nonstationarity of flood occurrence rates

The techniques described in Sects.2.4.2and2.4.3were ap-
plied to the POT time data sampled from the mean daily
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Fig. 8. Estimated occurrence rates of:(a) floods at S2 – Castro
Daire and S5 – Fragas da Torre and extreme rainfall events at R4
– Castr Daire; and(b) floods at S4 – Ermida Corgo and extreme
rainfall events at R3 – Campeã.

streamflow series and the daily rainfall series to obtain, re-
spectively, estimated flood occurrence rates at the streamflow
gauging stations, and, correspondingly, estimated extreme
rainfall events occurrence rates at the rain gauging stations.

The results are presented in Fig.7, which shows that the
occurrence rates of extreme events in both mean daily flow
and daily rainfall time series exhibit significant inter-annual
variability. For example: in graph S2 of Fig.7, the peak of
λ̂(t) in the 1960s is significantly higher than the upper limit
of the confidence band at 1990.

The results of Fig.7 also show that there are some trends
in the intensity of the inhomogeneous Poisson process that
are exhibited consonantly among the analyzed mean daily
streamflow samples, such as: (a) a peak inλ̂(t) in the early
1960s is visible in all the graphs with available data in those
years, which indicates a higher frequency of extreme events;
(b) in graphs S8, S9 there is a peak in the 1930s followed
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Fig. 9. Samples S1 to S10. Fluctuations ofλ̂(t)/λ for three different threshold definitions.

by a decrease in intensity until a minimum is reached in the
late 1940s (also visible in graph S7); (c) the graphs with data
until the late 1990s and 2000s exhibit lower occurrence rates
in the more recent years.

The fact that such trends are visible in mean daily flow
series from unregulated rivers that are geographically dis-
tributed (albeit unevenly) around the Portuguese territory
(Fig. 1), suggests that those trends are not due to possible
anthropogenic influences in the watersheds. Theλ̂(t) esti-
mates obtained for the rainfall data corroborate this hypoth-
esis since, although the correspondence is not perfect, they
exhibit some of the same trends that are visible in the flow

data of the catchments under the influence of those particu-
lar rainfall gauging stations. The rainfall-flow influence rela-
tionships are visible in Fig.1: the rainfall in station R1 has
influence in streamflows at S6, R2 at S3, R3 at S4, and R4
at S2 and S5. As a detail of Fig.7, Fig. 8 shows theλ̂(t)

estimates for 2 of the previous rainfall-flow influence rela-
tionships without bootstrap confidence bands.

As mentioned in Sect.2.2, the methods were repeated for
thresholds varying around the selected ones, and it was found
that, while selecting higher thresholds lead to a lowerλ, and
vice-versa, the fluctuations ofλ(t) aroundλ behave similarly.
Figure9 shows such fluctuations for threshold values of 6, 7
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Fig. 11. Samples S1 to S10. Number of floods in a hydrologic
year divided by the mean number,λk/λ, of all the mean daily flow
samples plotted together against the winter NAO (NDJFM) index of
yeark.

(the adopted ones), and 8 times the long term mean daily
flow, or modular flow,qmod.

3.3 Relationship between flood occurrence and the
North Atlantic Oscillation

The objective of this subsection is to ascertain whether or
not the phase of the NAO has an influence on the occurrence
rate of floods in the studied watersheds. By visually com-
paring Fig.3 and Fig.7 it is apparent that the peak in the
estimated occurrences rate in the 1960s corresponds to a pro-
longed NAO negative phase in the same years. However, in
the 1930s, where there are peaks inλ̂(t) in graphs S8 and
S9 of Fig.7, there is no similar negative phase in the winter
NAO indices.

A quantitative analysis of the relationship between the
winter NAO indices and the occurrence of floods was made
on a discrete annual time basis. Figure10 shows, for each
streamflow sample, the number of floods per hydrologic year,
λk (discrete POT time data, Fig.6), plotted against the win-
ter NAO indices of the corresponding years. Such results
suggest that years with positive NAO indices have a lower
number of floods than years with negative NAO indices.
Although that correlation does not seem to be particularly
strong, Fig.10clearly shows that for every analyzed sample:
(i) the majority of years without floods have positive NAO
indices, and (ii) the years with the highest flood occurrence
do not occur in positive NAO phases.
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Figure11 shows the same results as the previous analysis,
but hereλk data from all the samples were made dimension-
less by their respective mean valuesλ, and plotted together
against the winter NAO indices. In that figure, box plots were
drawn to represent the dispersion of the NAO indices for the
values ofλk that are lower than the mean (λk/λ<1); between
one and two times the mean (1≤λk/λ<2); and higher than
two times the mean (λk/λ≥2). The results clearly show that
(i) years with a less-than-average number of floods tend to
occur when the NAO is in a positive phase, and (ii) years
with a higher number of floods (more that twice the average)
tend to occur when the NAO is in a negative phase.

Although the relationship between the NAO and the oc-
currence of floods in Portuguese watersheds requires further
investigation, the results of Figs.10 and11, and the compar-
ison of Figs.7 and11, indicate that an increase in the rate
of flood occurrence might be related to a decrease of NAO
indices. That accordance is not strong enough to establish
a cause-and-effect type of relationship, as one could expect,
seeing that rainfall is strongly modulated by regional and lo-
cal factors. However it does merit to be scoped in future re-
search, namely on the possibility of establishing projections
of the flood occurrence rates if reliable long-range forecasts
of the NAO are made available (seeSutton and Allen, 1997;
Rodwell et al., 1999)

4 Conclusions and future research

The current consensus on the effects of climate change on the
hydrological cycle compromises the stationarity of hydrolog-
ical time series. The objective of the research underlying this
paper was to make an exploratory analysis on the variability
of flood occurrence rates in 10 Portuguese watersheds, and
to ascertain if that variability is concurrent with the principle
of stationarity.

For that purpose, a peaks-over-threshold (POT) sampling
technique was applied to 10 long series of mean daily stream-
flows and to 4 long series of daily rainfall in order to sample
the times of occurrence (POT time data) of the peak values
of those series. A preliminary analysis of the POT time data
suggested that the occurrence rates of those events were non-
uniform. The kernel occurrence rate estimator, coupled with
a bootstrap approach, was applied to the POT time data to
obtain the time dependent estimated occurrence rate curves,
λ̂(t), of floods and extreme rainfall events.

The achieved results clearly show that, in the studied wa-
tersheds, the occurrence of floods constitutes an inhomoge-
neous Poisson process, hence the flood occurrence rates are
nonstationary. There is a number of similarities in the be-
haviour of the estimated flood occurrence rates among the
various samples, such as a peak in flood occurrence rates
in the 1960s and the 1930s. Such peaks are also visible in
the results of the application of the kernel technique to the

daily rainfall data, from rain gauges located within 4 of the
analyzed watersheds. Notwithstanding the unfeasibility of
generalizing the results for the whole Portuguese territory,
due to the small number and uneven spatial distribution of
the samples, the similarities in the behaviour ofλ̂(t) among
different watersheds, and between rainfall and streamflow
suggests that the observed trends are inherent to the natural
inter-annual variation of the hydrological cycle, as opposed
to potential anthropogenic influence on the catchments them-
selves. Furthermore, the observed trends in the estimates of
λ(t) are robust against threshold selection in the POT sam-
pling of extreme value data.

An attempt was made to assess whether or not the NAO in-
dex casted any influence on the flood occurrence rates in Por-
tuguese watersheds. This was done by comparing the winter
(NDJFM) NAO index with the number of floods within the
hydrologic year,λk. The results of that analysis show that,
although the correlation is not particularly strong, the years
with less floods tend to happen when the winter NAO is in its
positive phase phase, and the years with a high flood occur-
rences tend to happen when the winter NAO is in a negative
or neutral phase. This subject does, however, merit further
research.

In conclusion, the results presented in this paper suggest
that the mathematical formulation of the flood frequency
models relying on stationarity, as those more commonly ap-
plied in Portugal, should be revised in view of accounting for
possible nonstationarities in the occurrence rate of floods and
extreme rainfall events.

Overall the obtained results lay the foundation for future
research on nonstationary hydrological modelling of floods
in Portuguese watersheds, such as a hybrid Poisson – ex-
treme value distribution model which encompasses a non-
parametric description of the time dependence via the inho-
mogeneous Poisson process and a parametric extreme value
distribution. Havingλ vary with time affects the flood quan-
tile associated with a given annual exceedance probability,
which is now allowed to change as a function of time, even if
the peak exceedances over a threshold prove to be stationary.
Such modelling of extreme hydrological phenomena, cou-
pled with a potential dependence on climate patterns such as
the NAO, could be of use to researchers and practitioners that
deal with uncertainty in water resources systems planning
and management, associated with hydrological extremes.
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tiva, vol. 2, Direcç̃ao-Geral dos Recursos e Aproveitamento
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