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Abstract. This study addresses the problem of combining
radar information and gauge measurements. Gauge measure-
ments are the best available source of absolute rainfall inten-
sity albeit their spatial availability is limited. Precipitation in-
formation obtained by radar mimics well the spatial patterns
but is biased for their absolute values.

In this study copula models are used to describe the de-
pendence structure between gauge observations and rainfall
derived from radar reflectivity at the corresponding grid cells.
After appropriate time series transformation to generate “iid”
variates, only the positive pairs (radar> 0, gauge> 0) of
the residuals are considered. As not each grid cell can be
assigned to one gauge, the integration of point information,
i.e. gauge rainfall intensities, is achieved by considering the
structure and the strength of dependence between the radar
pixels and all the gauges within the radar image. Two differ-
ent approaches, namelyMaximum ThetaandMultiple Theta,
are presented. They finally allow for generating precipita-
tion fields that mimic the spatial patterns of the radar fields
and correct them for biases in their absolute rainfall inten-
sities. The performance of the approach, which can be seen
as a bias-correction for radar fields, is demonstrated for the
Bavarian Alps. The bias-corrected rainfall fields are com-
pared to a field of interpolated gauge values (ordinary krig-
ing) and are validated with available gauge measurements.
The simulated precipitation fields are compared to an opera-
tionally corrected radar precipitation field (RADOLAN). The
copula-based approach performs similarly well as indicated
by different validation measures and successfully corrects for
errors in the radar precipitation.

1 Introduction

For many hydrological analyses, spatially distributed
precipitation information is indispensable.

Whenever gauge data alone is the basis to derive a pre-
cipitation field, a wide range of interpolation methods is in
use. Some examples include nearest neighbour (e.g.Isaaks
and Srivastava, 1989), inverse distance weighting, regres-
sion models (e.g.Bourrough and McDonell, 1998), trend sur-
face analysis (e.g.Collins and Bolstadt, 1996), splines (e.g.
Hutchinson, 1998a,b; Bourrough and McDonell, 1998) and
kriging, for which a large set of sub-methods has been de-
veloped (e.g.Isaaks and Srivastava, 1989; Bollerlslev, 1986;
Goovaerts, 2000; Haberlandt, 2007). There has been also use
made of mixed methods such as regression combined with
kriging (e.g.Erxleben et al., 2002) and others. Some meth-
ods attempt to assimilate additional information such as ele-
vation of the terrain or additional measurements such as radar
or from remote sensing (e.g.Haberlandt, 2007).

Even though the methods are different in nature, they have
one thing in common: the performance is highly dependent
on the density of the observation network and on the com-
plexity of the underlying terrain. This is problematic insofar
as especially in regions with large height gradients usually
the number of available meteorological stations, providing
reliable rainfall measurements, is limited. Radar precipita-
tion fields are supposed to be a good supplement as they are
also covering areas with complex terrain in a high spatio-
temporal resolution and the patterns of rainfall are assumed
to be realistically reproduced.
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There are multiple sources of errors when precipitation is
derived from radar reflectivities such as the empirical (Z/R)
reflectivity-rainfall relationship and errors induced by the
radar measurement itself such as backscatter or shadowing
effects (e.g.Joss and Lee, 1995). Whenever radar fields are
used to drive meteorological or hydrological models, these
errors have to be taken into account (e.g.Cole and Moore,
2008; Singh, 1997) as they will directly propagate into the
predicted variables. The uncertainty propagation in hydro-
logical equations that directly propagate the probability den-
sity functions of uncertain model input parameters into the
corresponding probability density functions of model out-
put is studied e.g. byKunstmann and Karstens(2006). There
have been many attempts to quantify the uncertainty of the
radar measurement (e.g.Mandapaka et al., 2009; AghaK-
ouchak et al., 2010a). To reduce the uncertainties in the radar-
derived precipitation fields, many different approaches ex-
ist. It is very common to assimilate gauge information to the
radar field (e.g.Brandes, 1975; Krajewski, 1987; Mazzetti
and Todini, 2004; Ehret, 2003) to correct for errors in the
absolute values. Usually, the existing approaches follow two
steps: first the available gauge data are used to generate an
interpolated precipitation field, and in the second step radar
and interpolated field are combined.

The underlying assumption of Gaussian behaviour is re-
stricting the performance of standard approaches, as many
studies showed that the interdependence in hydrologi-
cal or meteorological datasets is usually more complex
(e.g. Gomez-Hernandez and Wen, 1998; Bárdossy, 2006;
Bárdossy and Li, 2008).

Alternatively, a copula approach can be used to describe
the complex spatio-temporal dependence structure and as-
sess for non-linear behaviour (e.g.Genest and Favre, 2007;
Dupuis, 2007). The copula method is advantageous in several
respects and has e.g. been used successfully in risk assess-
ment (e.g.Embrechts et al., 2001; Frees and Valdez, 1998).
Over the past years, there has been a remarkable increase
in applications of copulas in hydrometeorology. Copula-
based models have been introduced for bi- and multivari-
ate frequency analysis, geostatistical interpolation and ex-
treme value analyses (e.g.De Michele and Salvadori, 2003;
Dupuis, 2007; Bárdossy, 2006; Genest and Favre, 2007;
Renard and Lang, 2007; Scḧolzel and Friederichs, 2008;
Bárdossy and Li, 2008; Zhang and Singh, 2008; Laux et
al., 2009). For rainfall modelling,De Michele and Salvadori
(2003) used copulas to model intensity duration of rain-
fall events.Favre et al.(2004) utilized copulas for multi-
variate hydrological frequency analysis.Zhang and Singh
(2008) carried out a bivariate rainfall frequency analysis us-
ing Archimedean copulas.Renard and Lang(2007) inves-
tigated the usefulness of the Gaussian copula in extreme
value analysis.Kuhn et al.(2007) employed copulas to de-
scribe spatial and temporal dependence of weekly precipi-
tation extremes.Serinaldi(2008) studied the dependence of
rain gauge data using the non-parametric Kendall’s rank cor-

relation and the upper tail dependence coefficient (TDC).
Based on the properties of the Kendall correlation and TDC,
a copula-based mixed model for modelling the dependence
structure and marginals is suggested. Recently,van den Berg
et al. (2011) developed a copula-based approach for sta-
tistical downscaling of precipitation fields obtained from
radar observations. Copula-based models for estimating er-
ror fields of radar information are described e.g. byVillarini
et al.(2008); AghaKouchak et al.(2010b,c).

Most of these studies are carried out in the bivariate
framework describing dependency between two variates, but
there are also few examples of multivariate applications.
Bárdossy(2006); Bárdossy and Li(2008); Bárdossy and Pe-
gram(2009) suggested a new method for geostatistical inter-
polation based on copulas. They used multivariate copulas to
describe the spatial variability of groundwater quality param-
eters and developed a methodology to spatially interpolate
these quantities. More information about applications of cop-
ulas in hydrometeorology can be found at the website of the
International Commission on Statistical Hydrology (ICSH)
atwww.stahy.org.

In this study, two new copula-based approaches for cor-
recting biases in radar precipitation fields are presented. In-
formation from rain gauges is assimilated by investigating
the dependence structure between rain gauges and radar
fields.

The article is structured as follows: in Sect. 2 the study
area and the database are introduced. Section 3 reviews
briefly the basic theory of copulas and the procedure of sim-
ulating data using conditional cumulative distribution func-
tions (CDFs). The new copula-based bias-correction ap-
proaches are introduced. Results of the application of the
methodology in the Alpine space are presented in Sect. 4,
followed by the discussion in Sect. 5 and the conclusions in
Sect. 6.

2 Study area and data

2.1 Domain

In regions where precipitation reveals high spatio-temporal
variability, such as alpine or prealpine terrain, it is a specific
challenge to estimate realistic rainfall fields. Therefore, the
study area is chosen to be the southern Bavarian Alps and
alpine forelands in Germany. There are large gradients in el-
evation across the domain with lowest values in the north.
Within the flat area of the domain, Munich lies at an altitude
of 519 m a.s.l. The highest location is the peak Zugspitze at
2962 m a.s.l. Due to the complex orography and heterogene-
ity in topography, the domain is characterized by strong north
southerly differentiations in soils, land-use, and climate. The
mean annual temperature is around 7–8◦C in the alpine fore-
lands and 4–5◦C in the southern part of the domain. The
mean annual precipitation ranges from about 1100 mm in the
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80 km southwest of Munich on Mount Hohenpeissenberg at
an altitude of 1000 masl. The radar installation covers a cir-
cular area with a radius of 256 km, producing a scan every
5 min. For the study area, a square region of 100 x 100 grid
cells with 1 km x 1 km resolution, centred at the radar station
at mount Hohenpeissenberg is selected. Preprocessing steps
include a clutter correction of the radar reflectivities, which
has been done by DWD. After that, hourly rainfall amounts
are derived by using the DWD standard Z (Reflectivity in
dbz) / R (Rainfall in mm/hour) relationship being

Z =256∗R1.42. (1)

Details about the DWD standard Z/R relationship are
given e.g. by Riedl (1986) and Seltmann (1997). The data
covers the summer months (June, July, and August) of the
years 2005-2009. Precipitation data of 31 gauges within the
chosen domain is retrieved from DWD, which covers the
same period as the radar data. Figure 2 shows a snapshot
of a radar based precipitation field measured at mount Ho-
henpeissenberg on 14/07/2008 (13:00).

In addition to the radar precipitation derived by a standard
Z/R relationship, operationally corrected radar-based hourly
rainfall time series are used. DWD developed a routine
method for the online adjustment of radar precipitation by
means of automatic surface precipitation stations (ombrom-
eter) of DWD. The correction of DWD (hereinafter refered
to as RADOLAN) includes a refined Z/R-relationship, con-
tains orographic shading correction, statistical reduction of
clutter, gradient smoothing and further preprocessing steps.
The precipitation amounts observed at surrounding obrome-
ter stations (more than 1000 for Germany) are interpolated

Fig. 1: Research area showing the position of the gauges and
the weather radar on Mount Hohenpeissenberg (red triangle).
The names of the gauge stations (black dots) can be found in
Table 1.

and assimilated resulting in a bias-corrected radar precipita-
tion field (Bartels et al., 2004).
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Fig. 2: Precipitation field [mm/h] derived from radar mea-
surements (standard Z/R relationship) at Mount Hohenpeis-
senberg on 14/07/2008 (13:00). The position of Hohenpeis-
senberg (Garmisch-Partenkirchen) is indicated by a white tri-
angle (circle).

Each of the 31 gauge stations used in this study is assigned
to its corresponding grid cell in the radar domain. As the ob-
servation network is very sparse there is no grid cell assigned
to more than one gauge station. Figure 1 shows the positions
of the available gauge stations and the position of the weather
radar at Mount Hohenpeissenberg.

2.2 Data preprocessing and availability

The data pairs are checked for plausibility and erroneous or
significantly anomalous values are removed. This procedure
consists of the following steps:

1. High gauge values are checked for plausibility by com-
paring with nearby gauges.

2. Radar rainfall values smaller than 0.1 mm/hour are set
to zero as these measurements are considered to be er-
roneous.

3. The differences between neighbouring radar grid cells
are calculated. Single values with absolute differences
exceeding a threshold of 25 mm/hour, revealing unreal-
istically large gradients in the radar field, are removed
(Marx, 2007).

4. Only the remaining positive pairs (radar and gauge) of
rainfall intensities are considered for further calcula-
tions in this study.

Fig. 1. Research area showing the position of the gauges and
the weather radar on Mount Hohenpeissenberg (red triangle). The
names of the gauge stations (black dots) can be found in Table1.

northern part to more than 2000 mm in the south. Figure1
shows an overview over the study area, highlighting the large
north-southerly gradient in altitude.

In this study, radar data from the Meteorological Obser-
vatory Hohenpeissenberg (MOHP) are used. The radar is
a C-Band research weather radar operated by the German
Weather Service (DWD). The observatory is located about
80 km southwest of Munich on Mount Hohenpeissenberg at
an altitude of 1000 m a.s.l. The radar installation covers a cir-
cular area with a radius of 256 km, producing a scan every
5 min. For the study area, a square region of 100× 100 grid
cells with 1 km× 1 km resolution, centred at the radar station
at mount Hohenpeissenberg, is selected. Preprocessing steps
include a clutter correction of the radar reflectivities, which
has been done by DWD. After that, hourly rainfall amounts
are derived by using the DWD standardZ (reflectivity in
dbz)/R (rainfall in mm h−1) relationship:

Z = 256∗ R1.42. (1)

Details about the DWD standardZ/R relationship are given
e.g. byRiedl(1986) andSeltmann(1997). The data cover the
summer months (June, July, and August) of the years 2005–
2009. Precipitation data of 31 gauges within the chosen do-
main are retrieved from DWD, which cover the same period
as the radar data. Figure2 shows a snapshot of a radar-based
precipitation field measured at mount Hohenpeissenberg on
14 July 2008 (13:00 CET).

In addition to the radar precipitation derived by a stan-
dard Z/R relationship, operationally corrected radar-based
hourly rainfall time series are used. DWD developed a rou-
tine method for the online adjustment of radar precipitation
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Fig. 2. Precipitation field [mm h−1] derived from radar measure-
ments (standardZ/R relationship) at Mount Hohenpeissenberg
on 14 July 2008 (13:00). The position of Hohenpeissenberg
(Garmisch-Partenkirchen) is indicated by a white triangle (circle).

by means of automatic surface precipitation stations (om-
brometer) of DWD. The correction of DWD (hereinafter re-
ferred to as RADOLAN) includes a refinedZ/R-relationship,
which contains orographic shading correction, statistical re-
duction of clutter, gradient smoothing and further prepro-
cessing steps. The precipitation amounts observed at sur-
rounding ombrometer stations (more than 1000 for Ger-
many) are interpolated and assimilated resulting in a bias-
corrected radar precipitation field (Bartels et al., 2004).

Each of the 31 gauge stations used in this study is assigned
to its corresponding grid cell in the radar domain. As the ob-
servation network is very sparse, there is no grid cell assigned
to more than one gauge station. Figure1 shows the positions
of the available gauge stations and the position of the weather
radar at Mount Hohenpeissenberg.

2.2 Data preprocessing and availability

The data pairs are checked for plausibility, and erroneous or
significantly anomalous values are removed. This procedure
consists of the following steps:

1. High gauge values are checked for plausibility by com-
paring with nearby gauges.

2. Radar rainfall values smaller than 0.1 mm h−1 are set to
zero as these measurements are considered to be erro-
neous.

3. The differences between neighbouring radar grid cells
are calculated. Single values with absolute differences
exceeding a threshold of 25 mm h−1, revealing unreal-
istically large gradients in the radar field, are removed
(Marx, 2007).
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Table 1. Geographical location of gauges and the weather radar as well as statistical measures for gauge & radar (positive pairs only) for
period June, July, and August of 2006 and 2007.

ID Station Name Altitude Lat Long Gaugemean Gaugestd Radarmean Radarstd
[m] [◦] [◦] [mm h−1] [mm h−1] [mm h−1] [mm h−1]

1 Bernbeuren-Prachtsried 936 47.74 10.75 1.76 2.27 1.33 2.23
2 Diessen 658 47.96 11.01 1.51 1.96 1.15 1.74
3 Deisenhofen 585 48.04 11.58 1.62 2.12 1.25 1.60
4 Ettal 940 47.57 10.96 1.59 1.85 1.36 1.88
5 Garmisch-Partenkirchen 719 47.48 11.06 1.61 2.02 1.48 2.13
6 Gilching 550 48.11 11.28 1.56 2.25 1.25 1.75
7 Griesen 801 47.48 10.95 1.48 1.75 1.49 2.13
8 Halblech 780 47.65 10.81 1.68 2.27 1.15 1.42
9 Hindelang 1015 47.46 10.43 1.75 2.28 1.59 2.67
10 Hohenpeissenberg 977 47.80 11.01 5.03 4.10 0.16 0.01
11 Kaufbeuren 716 47.87 10.60 1.66 2.16 1.26 1.93
12 Kochel 805 47.57 11.30 1.51 1.87 1.22 1.60
13 Kohlgrub, Bad 740 47.67 11.08 1.82 2.27 1.25 1.91
14 Kraftisried 831 47.77 10.46 1.70 2.25 1.30 2.12
15 Kreuth 895 47.61 11.65 1.72 2.13 1.43 2.11
16 Krün 873 47.50 11.28 1.71 2.18 1.46 1.97
17 Lenggries 737 47.59 11.55 1.73 2.20 1.55 2.40
18 Maisach 530 48.21 11.20 1.55 2.04 1.19 1.69
19 Marktoberdorf 790 47.72 10.64 1.77 2.30 1.32 2.08
20 Munich 515 48.16 11.54 1.53 2.21 1.43 1.86
21 Oberammergau 835 47.60 11.06 1.58 2.11 1.10 1.88
22 Oberschleissheim 484 48.24 11.55 1.55 2.13 1.24 1.81
23 Oy 885 47.64 10.39 1.84 2.14 1.52 2.09
24 Schwangau 796 47.58 10.72 1.63 2.13 1.47 2.04
25 Seeg 802 47.67 10.63 1.67 2.19 1.36 1.95
26 Scḧaftlarn 557 47.98 11.47 1.58 2.01 1.24 1.59
27 Steingaden 761 47.76 10.86 1.72 2.18 1.16 1.83
28 Schwaben 538 48.20 10.73 1.54 1.91 1.18 1.67
29 Schlehdorf 609 47.66 11.32 1.76 2.12 1.41 1.82
30 Vilgertshofen 685 47.97 10.92 1.66 2.16 1.21 1.71
31 Wielenbach 550 47.88 11.16 1.45 1.89 1.10 1.44

4. Only the remaining positive pairs (radar and gauge) of
rainfall intensities are considered for further calcula-
tions in this study.

The remaining positive data pairs are divided into two sub-
sets. The first set containing data of June, July, and August
of 2006 and 2007 serves as calibration period. The second
dataset contains data from the same months of 2008. Mean
and standard deviation of gauge and radar (positive pairs) for
the calibration period are listed in Table1. Especially for sta-
tion Hohenpeissenberg, the number of positive pairs is lim-
ited. As the gauge station is located very close to the radar
observatory, the radar beam cannot capture the area above
this gauge. These are the reasons why mean and standard de-
viations of the positive pairs differ significantly from those
of the other stations.

3 Methodology

In the following section, the theoretical background of cop-
ula theory is briefly sketched including information about
marginal distributions, a description of the new bias correc-
tion algorithms and validation measures.

3.1 Marginal distributions

Modelling the joint dependence structure with copulas re-
quires fitting marginal distributions to the data. The structure
of the simulation technique allows to select a suitable dis-
tribution for each radar pixel and every gauge. In this study,
four different distribution functions are tested to identify the
best fit (see Table2).

To decide which univariate distribution is the best suit-
able for both radar and gauge data, the parameters are es-
timated using a standard maximum likelihood approach and
the goodness-of-fit is checked with standard goodness-of-fit
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Table 2.Marginal distributions.

distribution formula parameters

Normal distribution f (x) :=
1√
2πσ

e
−

1
2

(
x−µ

σ

)
meanµ, standard deviationσ ; µ,σ ∈ R

Exponential distribution fλ(x) :=

{
λe−λx if x ≥ 0,

0 else
λ ∈ R>0

Weibull distribution f (x) := αβxβ−1e−αxβ
α,β ∈ R>0

Gamma distribution fλ(x) :=

{
bp

0(p)
xp−1e−bx if x ≥ 0,

0 else

b,p ∈ R>0
0(p) : gamma function atp

tests, such as the Kolmogorov-Smirnov test or the Chi
Squared test. Additionally, the Akaike and the Bayesian in-
formation criteria are used:

AIC = 2k − 2ln(L) (2)

and

BIC = k ln(n) − 2ln(L), (3)

wherek denotes the number of the free parameters of the
model,n is the sample size andL is the maximized value of
the likelihood function of the estimated model. The smallest
value of AIC or BIC respectively suggests the best fitting
model/distribution.

For the application of a copula model, it is an indispens-
able prerequisite that the marginals are “iid” (independent
and identically distributed). If this is not the case, an appro-
priate transformation has to be applied to the data to generate
“iid” variates (Laux et al., 2011).

3.2 General introduction to copula theory

In the following, the basic definitions concerning copulas are
briefly reviewed.

Let (X1, . . . ,Xn) denote an-tuple of random variables and
(xi, . . . ,xn) a realization of it. Then. copulas are functions
that link the multivariate distributionF(x1, ...xn) to its uni-
variate marginalsFXi

(xi). Thus, they are often also called
dependence functions. Sklar (1959) proved that every multi-
variate distributionF(x1, ...xn) can be expressed in terms of
a copulaC and its marginalsFXi

(xi):

F(x1, ...xn) = C(FX1(x1), . . . ,FXn(xn)) (4)

C : [0,1]
n

→ [0,1]. (5)

In turn of linking multivariate distributions to their marginals,
copulas allow to merge the dependence structure from the
marginal distributions to form their joint multivariate distri-
bution. The copula function is unique when the marginals
are steady functions. As the copula is only a reflection of
the dependence structure itself, its construction is reduced to

the study of the relationship between the correlated variables,
giving freedom for the choice of the univariate marginal dis-
tributions. Further information about copulas can be found
e.g. inJoe(1997); Frees and Valdez(1998); Nelsen(1999);
Salvadori et al.(2007).

The copula approach allows to account for the fact that the
dependence structure between two variates(X,Y ) is more
complex than it can be modelled by the multivariate normal
distribution or ordinary dependence measures such as e.g. the
Pearson correlation coefficient. Another important property
of copula functions is the fact that they are invariant under in-
creasing monotonic transformations. In practice, this means
that data may be transformed (e.g. by taking the logarithm
or detrending) without changing their copula. More details
including the definition of the empirical copula and the the-
oretical copula functions used in this study can be found in
the Appendix A.

3.2.1 Copula parameter estimation

For two variates(X,Y ) and a given family of copulas
C2, the set of copula parameters2 can be estimated in
different ways, depending on whether2 = θ ∈ R or 2 =

(θ1, . . . ,θn) ∈ Rn. For one-parametric copulas, the functional
relationship between the classical dependence parameters
such as Kendall’sτ and Spearman’sρ and copula functions,
namely

ρ = 12
∫∫

[0,1]2

uv dCθ (u,v) − 3 (6)

and

τ = 4
∫∫

[0,1]2

Cθ (u,v) dCθ (u,v) − 1, (7)

can be used to estimate the copula parameter. This is espe-
cially useful for Archimedean copulas as for a copula with
generatorϕ that holds

τ = 1+ 4
∫

[0,1]

ϕ(t)

ϕ′(t)
dt. (8)
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Thus, for example for the Gumbel-Hougaard copula with its
generatorϕ(t) = (− ln(t))θ , it is found thatθ =

1
1−τ

. As θ is
an increasing function ofτ , this empirical link also enables
the interpretation of the copula parameter as a measure for
the strength of dependence: higher copula parameters reveal
a stronger dependence.

For a two dimensional copula parameter2 = (θ1,θ2) ∈ R2

as e.g. in the case of the Student-T copula, the method
of maximum pseudo-likelihood as described byGenest and
Favre(e.g.2007) can be used as an alternative. In this case,
the parameter is obtained by maximizing the rank-based log-
likelihood:

l(2) =

n∑
i=1

log

[
c2

(
ri

n + 1
,

si

n + 1

)]
. (9)

3.2.2 Copula goodness-of-fit tests

Goodness-of-fit tests for copulas are applied comparing the
empirical copulaCn(u,v) of a n-tuple of random variables
(Eq.A1) with the parametric estimate of a theoretical copula
modelCθ derived under the null hypothesis. There are dif-
ferent goodness-of-fit tests as e.g. reviewed byGenest and
Rémillard(2008); Genest et al.(2009). One of the tests used
in this study is based on the Cramér-von Mises statistic (Gen-
est and Favre, 2007):

Sn = n

n∑
i=1

{Cθ (ui,vi) − Cn(ui,vi)}
2. (10)

As the definition ofSn involves the theoretical copula func-
tion, the distribution of the test statistic depends on the un-
known value ofθ under the null hypothesis thatC is from the
classCθ (Grégoire et al., 2008).

Additional goodness-of-fit tests are based on Kendall’s
transform using K-functions (e.g.Barbe et al., 1996; Genest
et al., 2009), and for visual inspection K-plots (e.g.Genest
and Favre, 2007) are consulted.

3.2.3 Simulating from copula distributions

In practice, modelling random samples of realisations from
the dependence structure of a bivariate dataset consists of
several steps. First, the best copula model has to be deter-
mined according to the following algorithm:

1. Check the data whether the “iid” condition is valid or
not, and in case of violation, apply e.g. an ARMA-
GARCH transformation;

2. Transform the positive pairs of the data (or of the
ARMA-GARCH residuals)(xi,yi) to rank space(ri, si)
with i = 1, . . . ,n denoting the length of the dataset;

3. Calculate the empirical copulaCn(u,v) based on the
ranks(ri, si);

4. Estimate the copula parameters for different types of
theoretical (Archimedean) copula functions using max-
imum pseudolikelihood or Kendall’sτ ;

5. Apply different selection techniques (e.g. AIC) and suit-
able goodness-of-fit tests to choose the appropriate cop-
ula family.

With the calculated copula dependence function and the
marginal distributions – i.e. the copula model consisting in
FX(x), FY (y) and cθ (u,v) – conditional random samples,
called pseudo-observations in the sequel, can be generated
using the conditional probability density functions.

The steps for simulating pseudo-observation from ob-
served data are detailed as follows:

1. Computeu = FX(x), wherex is one realisation of the
variateX andFX(x) denotes its marginal distribution;

2. Generate random samples for the variatev∗ from the
conditional PDFcV |U (v|u) = cu(v) and calculatev =

c−1
u (v∗), wherec−1

u denotes the generalized inverse of
cu (Nelsen, 1999);

3. Calculate the correspondingy-values using the proba-
bility integral transformationF−1

Y (v) = y, with FY (y)

being the marginal distribution of the variateY .

3.3 Copula-based bias correction

Basis for the hereinafter presented copula-based bias cor-
rection methods is the estimated copula models derived for
all positive radar/gauge pairs in the domain of interest. The
copula models are characterized by their copula parame-
ters, which can be visualized as copula maps. For copulas
with only one parameter, the copula maps show the magni-
tude of dependence between gauge stations and correspond-
ing/surrounding radar grids for each station in the domain.
Thus, the map is a reflection of the spatial dependence struc-
ture between radar and gauge data across the radar domain.
To assimilate the statistical characteristics of all gauge sta-
tions at the same time, the copula models have to be com-
bined in an appropriate way. Figure3 schematically illus-
trates the different methods for one single time step. Note
that theMaximum Thetaapproach is only applicable in cases
where one single and one-parametric copula model is suit-
able for all radar/gauge pairs. TheMultiple Thetaapproach
is flexible in terms of the number of theoretical copula func-
tions and the dimension of their respective parameter space.

In any case, the starting point is the ensemble ofθ maps
and of estimated marginal distributions. In the sequel, the two
different approaches are described in more detail.

3.3.1 Multiple Theta approach

The Multiple Thetaapproach can be applied for a theoret-
ical copula with a parameter set of2 ∈ Rn. The algorithm
consists of the following steps:
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Fig. 3: Overview over the Copula based interpolation meth-
ods.

1. Based on the available gauge stations 31 Copula maps
are derived, resulting in 31 sets of Copula parameters
Θ∈R

n for one specific radar grid cell.

2. 31 Copula parameter sets, 31 marginal distributions of
the respective gauge stations and one single marginal
distribution of the specific radar grid cell are assigned
to a specific radar grid cell.

3. For each set (marginal distribution gauge, marginal dis-
tribution radar and Copula parameters) a sample of 100
members is simulated in the rank space.

4. The expectation values are calculated from the random
samples.

5. The integral transformation is applied to the calculated
expectation values to transform back to data space.

6. Inverse Distance Weighting (IDW) is applied to gener-
ate one single value for each radar grid cell.

7. These steps are repeated for all radar grid cells.

8. A field containing the IDW single value for each radar
grid cell is obtained.

3.3.2 Maximum Theta approach

TheMaximum Theta can be applied only in the case of the-
oretical Copulas with one parameterθ ∈R. The approach
comprises the following steps:

1. Based on the available gauge stations 31 Copula maps
are derived, resulting in a set of 31 Copula parameters
for a specific radar grid cell.

2. The set showing the maximum Copula parameter is as-
signed to a specific grid cell, retaining the informa-
tion of the Copula parameter and the corresponding
marginals (gauge and radar).

3. One sample of 100 members is simulated in the rank
space for this set.

4. The expectation value is calculated from the random
sample.

5. The integral transformation is applied to the expectation
value to transform back to data space.

6. These steps are repeated for all radar grid cells.

7. A field containing the expectation value for each radar
grid cell is obtained.

This approach is restricted to one-parametric Copula fam-
ilies as the maximum, required in step 2 of the proposed al-
gorithm, can not be interpreted as a measure for the strength
of the dependence between the marginals for higher dimen-
sional parameter spaces.

3.4 Validation measures

Once fields of pseudo-observations are generated the effi-
ciency of the Copula based approach has to be tested. The
sources that have to be compared are the original radar mea-
surements, the informations from the different gauges in the
domain and the simulated fields. In order to test the perfor-
mance of the simulated field, Ordinary Kriging is applied to
the gauge information exclusively to derive an interpolated
field. Kriging uses the variogram of the regionalized vari-
able (here precipitation), i.e. the variance between pairsof
points that lie different distances apart. The best estimate
of the values (BLUE - Best Linear Unbiased Estimator) is
calculated considering the layout of the observation network
relative to the interpolation grid. The major assumption of
Ordinary Kriging is that the expected value of the regional-
ized variable is constant across the interpolated precipitation
field. This is not the case for precipitation in the Alpine re-
gion. Nevertheless it is often used in a pragmatic way to
obtain a first guess on the spatial distribution of rainfall.

Besides a purely visual inspection of the resulting fields
a quantitative validation is done point-wise, using a cross-
validation approach. Table 3 shows the different effi-
ciency criteria used in this study, withoi denoting the
value of the observations,mi the value of the model at
time stepi= 1,...,n andnc,nd the number of the concor-
dant/disconcordant values.

4 Results

To apply theMultiple Theta andMaximum Theta algorithms
described above,iid data is required. However, as can be

Fig. 3.Overview over the copula-based interpolation methods.

1. Based on the available gauge stations, 31 copula maps
are derived, resulting in 31 sets of copula parameters
2 ∈ Rn for one specific radar grid cell.

2. 31 copula parameter sets, 31 marginal distributions of
the respective gauge stations and one single marginal
distribution of the specific radar grid cell are assigned
to a specific radar grid cell.

3. For each set (marginal distribution gauge, marginal dis-
tribution radar and copula parameters), a sample of 100
members is simulated in the rank space.

4. The expectation values are calculated from the random
samples.

5. The integral transformation is applied to the calculated
expectation values to transform back to data space.

6. Inverse distance weighting (IDW) is applied to generate
one single value for each radar grid cell.

7. These steps are repeated for all radar grid cells.

8. A field containing the IDW single value for each radar
grid cell is obtained.

3.3.2 Maximum Theta approach

TheMaximum Thetacan be applied only in the case of theo-
retical copulas with one parameterθ ∈ R. The approach com-
prises the following steps:

1. Based on the available gauge stations, 31 copula maps
are derived, resulting in a set of 31 copula parameters
for a specific radar grid cell.

2. The set showing the maximum copula parameter is as-
signed to a specific grid cell, retaining the informa-
tion of the copula parameter and the corresponding
marginals (gauge and radar).
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Table 3: Validation measures used in this study.

Validation measure Abbreviation Formula Range Perfect Fit

Kendall Rank Correlation τ τ = nc−nd

2−1n(n−1)
[−1,1] |τ |=1

Pearson Correlation r r=
∑n

i=1(oi−ōi)(mi−m̄i)√∑
n
i=1

(oi−ōi)
2
√∑

n
i=1

(mi−m̄i)
2

[−1,1] |r|=1

Root Mean Square Error RMSE
√

1
n

∑n

i=1(oi−mi)2 [0,∞[ RMSE=0

Nash Sutcliffe Efficiency NSE 1−
∑n

i=1(oi−mi)
2

∑
n
i=1

(oi−ōi)
2 ]−∞,1] NSE=1

seen from Fig. 4 both radar and gauge data show autocorre-
lation.
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Fig. 4: Autocorrelation function for gauge (top) and cor-
responding radar grid (bottom) at the station Garmisch-
Partenkirchen.

Therefore ARMA-GARCH composite models are fitted
to the radar and gauge time series to generateiid resid-
uals. In this two step transformation (Laux et al., 2011)
the ARMA model compensates for autocorrelation while the
GARCH(P,Q) model reduces the heteroskedasticity within
the respective time series. Following their method the or-
der of the AR, MA, P and Q components is varied from 0

to 3 and the autocorrelation function and the Ljung-Box Q-
test (Box et al., 1994) are applied to test the residuals of the
hourly time series for remaining serial dependence and het-
eroskedasticity. It can be seen from Table 4 that both radar
and gauge data are serially correlated at least up to lag 20.
Heteroskedasticity is mainly detected for radar data. Both
effects could be removed successfully using an ARMA(1,1)-
GARCH(1,1) time series model.

4.1 Marginal distributions

As explained in section 3.2.3 for the probability integral
transformation the single marginal distributions are needed.
The appropriate distribution function is estimated for all
radar grids and all gauge stations separately. In general the
algorithm presented in section 3.3 allows to fit different theo-
retical marginal distribution functions. Four univariatedistri-
bution functions are considered, namely Normal, Exponen-
tial, Gamma and Weibull. After estimation of the param-
eters by a maximum likelihood approach the Kolmogorov-
Smirnov and the Chi-Squared goodness-of-fit test are used.
These tests only allow for rejecting the Normal distribution
at significance levels 0.05 and 0.01. To come to a final deci-
sion about the distribution, the AIC/BIC values are calculated
for each radar grid and all gauge stations. Table 5 lists exem-
plarily the results for the stations Garmisch-Partenkirchen,
Oberammergau, and Wielenbach, indicating that the Weibull
distribution provides the best fit, followed by the Gamma and
the Exponential distribution. It is obvious that neither radar
nor gauge time series are normally distributed.

The results shown in Table 5 are representative for the 31
gauge stations where the AIC/BIC criterion confirmed the
Weibull distribution to provide the best fit in all cases. This
is consistent with the findings for the 10000 radar grids. The
AIC (BIC) criterion allowed to decide for the Weibull dis-
tribution for 99.1% (98.8%) of the cases, while only 0.9%
(0.8%) could be assigned to the Gamma distribution. Fol-
lowing the results of the goodness-of-fit tests, the Weibull

Fig. 4. Autocorrelation function for gauge (top) and corresponding
radar grid (bottom) at the station Garmisch-Partenkirchen.

3. One sample of 100 members is simulated in the rank
space for this set.

4. The expectation value is calculated from the random
sample.

5. The integral transformation is applied to the expectation
value to transform back to data space.

6. These steps are repeated for all radar grid cells.

7. A field containing the expectation value for each radar
grid cell is obtained.

This approach is restricted to one-parametric copula fami-
lies as the maximum, required in step 2 of the proposed al-
gorithm, cannot be interpreted as a measure for the strength
of the dependence between the marginals for higher dimen-
sional parameter spaces.

3.4 Validation measures

Once fields of pseudo-observations are generated, the effi-
ciency of the copula-based approach has to be tested. The

www.hydrol-earth-syst-sci.net/16/2311/2012/ Hydrol. Earth Syst. Sci., 16, 2311–2328, 2012



2318 S. Vogl et al.: Copula-based assimilation of radar and gauge information

Table 3.Validation measures used in this study.

Validation measure Abbreviation Formula Range Perfect Fit

Kendall rank correlation τ τ =
nc−nd

2−1n(n−1)
[−1,1] |τ | = 1

Pearson correlation r r =

∑n
i=1(oi−ōi )(mi−m̄i )√∑n

i=1(oi−ōi )
2
√∑n

i=1(mi−m̄i )
2

[−1,1] |r| = 1

Root-mean-square error RMSE
√

1
n

∑n
i=1(oi − mi)

2 [0,∞[ RMSE = 0

Nash-Sutcliffe efficiency NSE 1−
∑n

i=1(oi−mi )
2∑n

i=1(oi−ōi )
2 ] −∞,1] NSE = 1

sources that have to be compared are the original radar mea-
surements, the information from the different gauges in the
domain and the simulated fields. In order to test the perfor-
mance of the simulated field, ordinary kriging is applied to
the gauge information exclusively to derive an interpolated
field. Kriging uses the variogram of the regionalized variable
(here precipitation), i.e. the variance between pairs of points
that lie different distances apart. The best estimate of the val-
ues (BLUE – Best Linear Unbiased Estimator) is calculated
considering the layout of the observation network relative
to the interpolation grid. The major assumption of ordinary
kriging is that the expected value of the regionalized variable
is constant across the interpolated precipitation field. This is
not the case for precipitation in the Alpine region. Neverthe-
less, it is often used in a pragmatic way to obtain a first guess
on the spatial distribution of rainfall.

Besides a purely visual inspection of the resulting fields,
a quantitative validation is done point-wise, using a cross-
validation approach. Table3 shows the different efficiency
criteria used in this study, withoi denoting the value
of the observations,mi the value of the model at time
step i = 1, . . . ,n and nc,nd the number of the concor-
dant/disconcordant values.

4 Results

To apply theMultiple ThetaandMaximum Thetaalgorithms
described above, “iid” data are required. However, as can be
seen from Fig.4, both radar and gauge data show autocorre-
lation.

Therefore, ARMA-GARCH composite models are fitted
to the radar and gauge time series to generate “iid” residu-
als. In this two-step transformation (Laux et al., 2011), the
ARMA model compensates for autocorrelation, while the
GARCH (P , Q) model reduces the heteroskedasticity within
the respective time series. Following their method, the or-
der of the AR, MA,P andQ components is varied from 0
to 3 and the autocorrelation function and the Ljung-Box Q-
test (Box et al., 1994) are applied to test the residuals of the
hourly time series for remaining serial dependence and het-
eroskedasticity. It can be seen from Table4 that both radar

and gauge data are serially correlated at least up to lag 20.
Heteroskedasticity is mainly detected for radar data. Both ef-
fects could be removed successfully using an ARMA (1,1)-
GARCH (1,1) time series model.

4.1 Marginal distributions

As explained in Sect.3.2.3for the probability integral trans-
formation, the single marginal distributions are needed. The
appropriate distribution function is estimated for all radar
grids and all gauge stations separately. In general, the algo-
rithm presented in Sect.3.3allows to fit different theoretical
marginal distribution functions. Four univariate distribution
functions are considered: normal, exponential, gamma and
Weibull. After estimation of the parameters by a maximum
likelihood approach, the Kolmogorov-Smirnov and the Chi-
Squared goodness-of-fit tests are used. These tests only al-
low for rejecting the normal distribution at significance lev-
els 0.05 and 0.01. To come to a final decision about the dis-
tribution, the AIC/BIC values are calculated for each radar
grid and all gauge stations. Table5 lists exemplarily the re-
sults for the stations Garmisch-Partenkirchen, Oberammer-
gau, and Wielenbach, indicating that the Weibull distribution
provides the best fit, followed by the gamma and the expo-
nential distribution. It is obvious that neither radar nor gauge
time series are normally distributed.

The results shown in Table5 are representative for the 31
gauge stations where the AIC/BIC criterion confirmed the
Weibull distribution to provide the best fit in all cases. This
is consistent with the findings for the 10 000 radar grids. The
AIC (BIC) criterion allowed to decide for the Weibull dis-
tribution for 99.1 % (98.8 %) of the cases, while only 0.9 %
(0.8 %) could be assigned to the gamma distribution. Follow-
ing the results of the goodness-of-fit tests, the Weibull distri-
bution can be considered for all time series without loss of
generality.

4.2 Fitting theoretical copula functions

Once the univariate marginal distributions are fitted, the de-
pendence structure between the time series has to be inves-
tigated. The first step is to calculate the empirical copulas
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Table 4.Ljung-Box Q-test results for three observation stations and their corresponding radar grid cells. The test indicates whether or not the
time series exhibit autocorrelation for a given number of lags [hours]. One tests the null hypothesis that a series exhibits no autocorrelation for
a fixed number of lags against the alternative hypothesis that the autocorrelation is nonzero. “1” indicates that the null hypothesis is rejected
(i.e. autocorrelation (original) and heteroskedasticity (squared)), and “0” indicates no autocorrelation/heteroskedasticity for any given time
lag and level of significance (significant atα = 0.05 (bold), orα = 0.01 level of significance (normal)).

Station without ARMA-GARCH with ARMA-GARCH
lag [h] 1 5 10 15 20 1 5 10 15 20

Garmisch-Partenkirchen Gauge (original) 1 1 1 1 1 1 0 0 0 0
Gauge (squared) 0 0 0 0 0 0 0 0 0 0
Radar (original) 1 1 1 1 1 0 0 0 0 0
Radar (squared) 1 1 1 1 1 0 0 0 0 1

Oberammergau Gauge (original) 1 1 1 1 1 0 0 0 0 0
Gauge (squared) 0 0 0 1 0 0 0 0 0 0
Radar (original) 1 1 1 1 1 0 0 0 0 0
Radar (squared) 1 1 1 1 1 0 0 0 0 0

Wielenbach Gauge (original) 1 1 1 1 1 0 0 0 0 0
Gauge (squared) 1 1 0 0 0 0 0 0 0 0
Radar (original) 1 1 1 1 0 0 0 0 0 0
Radar (squared) 0 0 0 0 0 0 0 0 0 0

Table 5. Akaike and Bayesian information criteria (AIC and BIC) of radar and gauge (positive pairs only) for selected rain gauge stations
and different univariate distribution functions (June, July, and August of 2006 and 2007). Smallest values of AIC/BIC indicate the best fit
(bold).

Station Normal Exponential Gamma Weibull

Garmisch-Partenkirchen AIC (Radar) 3137 1809 1783 1740
BIC (Radar) 3149 1815 1794 1751
AIC (Gauge) 2215 1294 1274 1251
BIC (Gauge) 3139 1895 1871 1842

Oberammergau AIC (Radar) 3153 1962 1918 1880
BIC (Radar) 3164 1968 1929 1891
AIC (Gauge) 2958 1835 1811 1787
BIC (Gauge) 3013 1861 1835 1807

Wielenbach AIC (Radar) 2222 1420 1417 1405
BIC (Radar) 2233 1425 1427 1416
AIC (Gauge) 2060 1171 1138 1110
BIC (Gauge) 2590 1497 1467 1434

for the radar/gauge pairs and then fit a theoretical bivariate
copula function with its parameters estimated by either us-
ing Kendall’sτ or a maximum-pseudolikelihood approach.
In this study, five different theoretical copula functions are
tested: Gaussian, Student-T, Frank, Clayton and Gumbel-
Hougaard. As the Student-T copula has two parameters,
the maximum-pseudolikelihood approach is preferable and
therefore it is used for all theoretical copulas to ensure con-
sistency. Only the positive pairs of radar and gauge are con-
sidered with 0.1 mm being the threshold for a rainy day. Fig-
ure 5 shows the probability density functions of the empir-
ical and the estimated theoretical Gumbel-Hougaard copula
for radar-gauge pairs exemplarily for the station Garmisch-

Partenkirchen. The empirical copula density is asymmetric
with respect to the minor diagonal of the unit square. The
density is highest for the upper right corner and shows a sec-
ond maximum in the lower left corner, indicating a strong
upper and lower tail dependence.

For the five different theoretical copula functions, the
goodness-of-fit test, which is based on the the Cramér-von
Mises statistic, is applied (Genest and Ŕemillard, 2008).
1000 values of the test statistic are sampled, and the pro-
portion of values larger thanSn is estimated by calculating
the corresponding p-values. The results based onSn only al-
low to exclude the Gaussian and the Student-T copula, while
the three Archimedean copulas, namely Frank, Clayton and
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two parameters, the maximum-pseudolikelihood approach is
preferable and therefore it is used for all theoretical Copu-
las to ensure consistency. Only the positive pairs of radar
and gauge are considered with 0.1 mm being the threshold
for a rainy day. Figure 5 shows the probability density func-
tions of the empirical and the estimated theoretical Gumbel-
Hougaard Copula for radar-gauge pairs exemplarily for the
station Garmisch-Partenkirchen. The empirical Copula den-
sity is asymmetric with respect to the minor diagonal of the
unit square. The density is highest for the upper right corner
and is showing a second maximum in the lower left corner,
indicating a strong upper and lower tail dependence.
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Fig. 5: Probability density function of the empirical Copula
(top) and theoretical Gumbel-Hougaard Copula (bottom) for
the station Garmisch-Partenkirchen.

For the five different theoretical Copula functions the
goodness-of-fit test, which is based on the the Cramér-von
Mises statistic, is applied (Genest and Rémillard, 2008).
1000 values of the test statistic are sampled and the propor-
tion of values larger thanSn are estimated by calculating the
corresponding p-values. The results based onSn only al-
low to exclude the Gaussian and the Student-T Copula, while
the three Archimedean Copulas, namely Frank, Clayton and

Gumbel-Hougaard,perform similarly well. To decide for one
of them, K-functions are used.

The results of the tests are shown for Garmisch-
Partenkirchen, Oberammergau and Wielenbach (Table 6), in-
dicating that the Gumbel-Hougaard Copula provides the best
fit. In ∼95% out of all radar/gauge pairs (31 stations times
10000 radar grids) has been identified as the best fit. The
remainder of 5% is assigned to the Frank Copula. Follow-
ing the results of the goodness-of-fit analysis it can be as-
sumed that the accuracy of the proposed algorithm is not
reduced significantly by constraining the model to one spe-
cific theoretical Copula function. Please note, that for the
Maximum Theta approach one single one-parametric Copula
model must be used to ensure the comparability of the Cop-
ula maps. Nevertheless the corresponding Copula parameter
has to be estimated individually.

4.3 Copula-based simulation of precipitation fields

In this section the results for the Copula-based simulationof
precipitation fields are shown, starting with the estimation
of the Copula maps, followed by the description of the two
different simulation algorithms (Maximum Theta and Mul-
tiple Theta). Bias-corrected precipitation fields are shown
for one arbitrarily chosen time step and the obtained results
are validated by visual inspection and different performance
measures.

4.3.1 Copula maps

As described in section 3.3 the starting point of the Copula-
based precipitation simulation is a precipitation field derived
from radar reflectivities. The radar field, derived by the stan-
dard Z/R relationship, is usually disturbed by e.g. effectsof
backscatter or spokes caused by obstacles shading the radar
beam (see e.g. Figure 2). Nevertheless, the measured radar
field gives a realistic impression of the spatial distribution
of precipitation at that certain time step. Even if the pre-
cipitation patterns are realistically displayed, the radar does
not accurately reproduce the absolute precipitation amounts
on the ground. In order to correct the radar field in terms
of the absolute precipitation amounts, ground based mea-
surements are assimilated. The parameter of the Gumbel-
Hougaard Copula is estimated between the ARMA-GARCH
residuals of one selected gauge and all grid cells of the radar
field. All Copula parametersθ are visualized together build-
ing the so called Copula map corresponding to the respective
station. These maps are showing the strength of the depen-
dence between radar and gauges. Figure 6 shows the Copula
maps for station Garmisch-Partenkirchen (top) and Wielen-
bach (bottom). In general, the correlation between radar and
gauge time series decreases with increasing distance. For sta-
tion Wielenbach e.g., the Copula map is almost radially sym-
metric. However, considering all available gauge stationsin
the domain, there are also cases where the dependence struc-

Fig. 5. Probability density function of the empirical copula (top)
and theoretical Gumbel-Hougaard copula (bottom) for the station
Garmisch-Partenkirchen.

Gumbel-Hougaard, perform similarly well. To decide for one
of them, K-functions are used.

The results of the tests are shown for Garmisch-
Partenkirchen, Oberammergau and Wielenbach (Table6), in-
dicating that the Gumbel-Hougaard copula provides the best
fit. ∼ 95 % out of all radar/gauge pairs (31 stations times
10 000 radar grids) have been identified as the best fit. The re-
mainder of 5 % is assigned to the Frank copula. Following the
results of the goodness-of-fit analysis, it can be assumed that
the accuracy of the proposed algorithm is not reduced sig-
nificantly by constraining the model to one specific theoreti-
cal copula function. Please note that, for theMaximum Theta
approach, one single one-parametric copula model must be
used to ensure the comparability of the copula maps. Nev-
ertheless, the corresponding copula parameter has to be esti-
mated individually.

4.3 Copula-based simulation of precipitation fields

In this section, the results for the copula-based simulation
of precipitation fields are shown, starting with the estima-
tion of the copula maps, followed by the description of

the two different simulation algorithms (Maximum Theta
and Multiple Theta). Bias-corrected precipitation fields are
shown for one arbitrarily chosen time step, and the ob-
tained results are validated by visual inspection and different
performance measures.

4.3.1 Copula maps

As described in Sect.3.3, the starting point of the copula-
based precipitation simulation is a precipitation field derived
from radar reflectivities. The radar field, derived by the stan-
dardZ/R relationship, is usually disturbed by e.g. effects of
backscatter or spokes caused by obstacles shading the radar
beam (see e.g. Fig.2). Nevertheless, the measured radar field
gives a realistic impression of the spatial distribution of pre-
cipitation at that certain time step. Even if the precipitation
patterns are realistically displayed, the radar does not accu-
rately reproduce the absolute precipitation amounts on the
ground. In order to correct the radar field in terms of the
absolute precipitation amounts, ground-based measurements
are assimilated. The parameter of the Gumbel-Hougaard cop-
ula is estimated between the ARMA-GARCH residuals of
one selected gauge and all grid cells of the radar field. All
copula parametersθ are visualized together building the so-
called copula map corresponding to the respective station.
These maps show the strength of the dependence between
radar and gauges. Figure6 shows the copula maps for sta-
tion Garmisch-Partenkirchen (top) and Wielenbach (bottom).
In general, the correlation between radar and gauge time se-
ries decreases with increasing distance. For station Wielen-
bach e.g., the copula map is almost radially symmetric. How-
ever, considering all available gauge stations in the domain,
there are also cases where the dependence structure is highly
anisotropic such as for Garmisch-Partenkirchen (see Fig.6).

For theMaximum Thetaapproach, all 31 available cop-
ula maps are combined in the first step. To assign the maxi-
mum value out of the set of all available copula parameters
to each grid cell is only possible if the goodness-of-fit tests
allow to identify one single and one-parametric theoretical
copula model for all radar/gauge pairs in the domain. This
is the case for the data considered in this study, and Fig.7
shows theMaximum Thetamap (estimated parameter of the
Gumbel-Hougaard copula) for the whole domain. The asym-
metries from the single station maps are reflected by the field,
considering all variabilities in the dependence structures.

The anisotropic nature of the dependence structure has
to be considered when copula-based precipitation fields
are modelled. The results of the two different approaches,
namelyMultiple ThetaandMaximum Theta, are presented in
the sequel.
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Table 6.Value of the K-function times 104 for radar/gauge pairs at the stations Garmisch-Partenkirchen, Oberammergau and Wielenbach for
three Archimedean copulas (Gumbel-Hougaard, Frank, Clayton). Smallest values indicate the best fit (bold).

Station Gumbel-Hougaard Frank Clayton

Garmisch-Partenkirchen 1.9 3.8 6.5
Oberammergau 3.5 7.6 12.6
Wielenbach 1.2 7.4 21.3
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maps are combined in the first step. To assign the maximum
value out of the set of all available Copula parameters to each
grid cell is only possible if the goodness-of-fit tests allow

to identify one single and one-parametric theoretical Copula
model for all radar/gauge pairs in the domain. This is the case
for the data considered in this study and Figure 7 shows the
Maximum Theta map (estimated parameter of the Gumbel-
Hougaard Copula) for the whole domain. The asymmetries
from the single station maps are reflected by the field, con-
sidering all variabilities in the dependence structures.
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The anisotropic nature of the dependence structure has
to be considered when Copula-based precipitation fields are
modelled. The results of the two different approaches namely
Multiple Theta andMaximum Theta are presented in the se-
quel.

4.3.2 Multiple Theta

As described in section 3.3 the single Copula maps based
on the radar-gauge pairs are combined to simulate a bias-
corrected precipitation field.

A precipitation field generated using theMultiple Theta
approach is shown in Figure 8. This field is based on 31x100
realisations for each grid cell. The pattern information from
the radar precipitation field is preserved, and the absoluteval-

Fig. 6. Copula maps for stations Garmisch-Partenkirchen (top) and
Wielenbach (bottom) showing the parameterθ of the Gumbel-
Hougaard copula. The position of Hohenpeissenberg is indicated by
a white triangle, Garmisch-Partenkirchen (in the south) and Wielen-
bach (in the north) by a white circle.

4.3.2 Multiple Theta

As described in Sect.3.3, the single copula maps based on the
radar-gauge pairs are combined to simulate a bias-corrected
precipitation field.

A precipitation field generated using theMultiple Theta
approach is shown in Fig.8. This field is based on 31× 100
realisations for each grid cell. The pattern information from
the radar precipitation field is preserved, and the absolute val-
ues are corrected towards the ground measurements. For the
chosen time step, the rainfall intensities and variances are
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The anisotropic nature of the dependence structure has
to be considered when Copula-based precipitation fields are
modelled. The results of the two different approaches namely
Multiple Theta andMaximum Theta are presented in the se-
quel.

4.3.2 Multiple Theta

As described in section 3.3 the single Copula maps based
on the radar-gauge pairs are combined to simulate a bias-
corrected precipitation field.

A precipitation field generated using theMultiple Theta
approach is shown in Figure 8. This field is based on 31x100
realisations for each grid cell. The pattern information from
the radar precipitation field is preserved, and the absoluteval-

Fig. 7. Maximum Thetamap derived from all gauge stations
in the domain. The position of Hohenpeissenberg (Garmisch-
Partenkirchen) is indicated by a white triangle (circle).
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ues are corrected towards the ground measurements. For the
chosen time step the rainfall intensities and variances arere-
duced. Spokes and backscattering effects could be dimin-
ished compared to the original radar image (see Figure 2).
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Fig. 8: Precipitation field [mm/h] in the data space derived
with theMultiple Theta method for 14/07/2008 (13:00). The
position of Hohenpeissenberg (Garmisch-Partenkirchen) is
indicated by a white triangle (circle).

4.3.3 Maximum Theta

Based on the Maximum Theta map 100 random realisations
(rank space) are generated for each grid cell conditioned on
the respective radar value. The resulting field is shown in
Figure 9. Compared to the results shown for theMultiple
Theta approach the patterns from the radar are reproduced
similarly well. More small-scale variability is resolved com-
pared to the radar field. Compared to theMultiple Theta
method more details are retained and the absolute values are
slightly higher.

4.4 Validation of the simulated precipitation fields

4.4.1 Visual inspection

Figure 10 shows an interpolated rainfall field derived from
the observed precipitation values on 14/07/2008 (13:00). The
observations from the 31 gauge stations in the radar domain
are interpolated by application of an Ordinary Kriging ap-
proach (e.g. de Marsily, 1986; Kitanidis, 1997).

Albeit the major assumption of Ordinary Kriging is not
valid throughout the whole research domain, i.e. the expecta-
tion value is not constant over space, the interpolated precip-
itation field roughly reproduces the rainfall patterns revealed
by the radar measurement (compare to Figure 2). The fine
structures of the rainband are remarkably smoothed and the
rainfall is concentrated in three local maxima. As gauge sta-
tions are only available for the center of the domain (see Fig-
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Fig. 9: Precipitation field [mm/h] in the data space derived
with the Maximum Theta method for 14/07/2008 (13:00).
The position of Hohenpeissenberg (Garmisch-Partenkirchen)
is indicated by a white triangle (circle).

ure 1) there is no information included for the outer regions.
This is the reason why the interpolated field can not repro-
duce the variability of precipitation in that area. In contrast to
the Kriging field, the Copula-based precipitation fields (see
Figure 8 and Figure 9) not only include information from
the rain gauges but also incorporate information from the
radar measurement. Consequently, they resolve better the
fine structures in the overall pattern of precipitation.

Figure 11 shows the accumulated summer precipitation
obtained from radar measurements at Hohenpeissenberg de-
rived by a standard Z/R-relationship, the RADOLAN cor-

Fig. 10: Interpolated rainfall field [mm/h] derived from the
observed precipitation values on 14/07/2008 (13:00). The
observations from the 31 gauge stations in the radar do-
main are interpolated by application of an Ordinary Krig-
ing approach. The position of Hohenpeissenberg (Garmisch-
Partenkirchen) is indicated by a white triangle (circle).

Fig. 8. Precipitation field [mm h−1] in the data space derived with
the Multiple Thetamethod for 14 July 2008 (13:00). The position
of Hohenpeissenberg (Garmisch-Partenkirchen) is indicated by a
white triangle (circle).

reduced. Spokes and backscattering effects could be dimin-
ished compared to the original radar image (see Fig.2).

4.3.3 Maximum Theta

Based on theMaximum Thetamap, 100 random realisations
(rank space) are generated for each grid cell conditioned on
the respective radar value. The resulting field is shown in
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ues are corrected towards the ground measurements. For the
chosen time step the rainfall intensities and variances arere-
duced. Spokes and backscattering effects could be dimin-
ished compared to the original radar image (see Figure 2).
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4.3.3 Maximum Theta

Based on the Maximum Theta map 100 random realisations
(rank space) are generated for each grid cell conditioned on
the respective radar value. The resulting field is shown in
Figure 9. Compared to the results shown for theMultiple
Theta approach the patterns from the radar are reproduced
similarly well. More small-scale variability is resolved com-
pared to the radar field. Compared to theMultiple Theta
method more details are retained and the absolute values are
slightly higher.

4.4 Validation of the simulated precipitation fields

4.4.1 Visual inspection

Figure 10 shows an interpolated rainfall field derived from
the observed precipitation values on 14/07/2008 (13:00). The
observations from the 31 gauge stations in the radar domain
are interpolated by application of an Ordinary Kriging ap-
proach (e.g. de Marsily, 1986; Kitanidis, 1997).

Albeit the major assumption of Ordinary Kriging is not
valid throughout the whole research domain, i.e. the expecta-
tion value is not constant over space, the interpolated precip-
itation field roughly reproduces the rainfall patterns revealed
by the radar measurement (compare to Figure 2). The fine
structures of the rainband are remarkably smoothed and the
rainfall is concentrated in three local maxima. As gauge sta-
tions are only available for the center of the domain (see Fig-
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Fig. 9: Precipitation field [mm/h] in the data space derived
with the Maximum Theta method for 14/07/2008 (13:00).
The position of Hohenpeissenberg (Garmisch-Partenkirchen)
is indicated by a white triangle (circle).

ure 1) there is no information included for the outer regions.
This is the reason why the interpolated field can not repro-
duce the variability of precipitation in that area. In contrast to
the Kriging field, the Copula-based precipitation fields (see
Figure 8 and Figure 9) not only include information from
the rain gauges but also incorporate information from the
radar measurement. Consequently, they resolve better the
fine structures in the overall pattern of precipitation.

Figure 11 shows the accumulated summer precipitation
obtained from radar measurements at Hohenpeissenberg de-
rived by a standard Z/R-relationship, the RADOLAN cor-

Fig. 10: Interpolated rainfall field [mm/h] derived from the
observed precipitation values on 14/07/2008 (13:00). The
observations from the 31 gauge stations in the radar do-
main are interpolated by application of an Ordinary Krig-
ing approach. The position of Hohenpeissenberg (Garmisch-
Partenkirchen) is indicated by a white triangle (circle).

Fig. 9. Precipitation field [mm h−1] in the data space derived with
the Maximum Thetamethod for 14 July 2008 (13:00). The posi-
tion of Hohenpeissenberg (Garmisch-Partenkirchen) is indicated by
a white triangle (circle).

Fig. 9. Compared to the results shown for theMultiple Theta
approach, the patterns from the radar are reproduced simi-
larly well. More small-scale variability is resolved compared
to the radar field. Compared to theMultiple Thetamethod,
more details are retained and the absolute values are slightly
higher.

4.4 Validation of the simulated precipitation fields

4.4.1 Visual inspection

Figure10 shows an interpolated rainfall field derived from
the observed precipitation values on 14 July 2008 (13:00).
The observations from the 31 gauge stations in the radar do-
main are interpolated by application of an ordinary kriging
approach (e.g.de Marsily, 1986; Kitanidis, 1997).

Albeit the major assumption of ordinary kriging is not
valid throughout the whole research domain, i.e. the expecta-
tion value is not constant over space, the interpolated precip-
itation field roughly reproduces the rainfall patterns revealed
by the radar measurement (compare to Fig.2). The fine struc-
tures of the rainband are remarkably smoothed, and the rain-
fall is concentrated in three local maxima. As gauge stations
are only available for the center of the domain (see Fig.1),
there is no information included for the outer regions. This
is the reason why the interpolated field cannot reproduce the
variability of precipitation in that area. In contrast to the krig-
ing field, the copula-based precipitation fields (see Figs.8
and9) not only include information from the rain gauges but
also incorporate information from the radar measurement.
Consequently, they resolve better the fine structures in the
overall pattern of precipitation.

Figure 11 shows the accumulated summer precipitation
obtained from radar measurements at Hohenpeissenberg de-
rived by a standardZ/R-relationship, the RADOLAN cor-
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ues are corrected towards the ground measurements. For the
chosen time step the rainfall intensities and variances arere-
duced. Spokes and backscattering effects could be dimin-
ished compared to the original radar image (see Figure 2).

L
at

it
u

d
e 

[d
eg

re
e]

 

Longitude [degree]

 

 

10.75 10.95 11.15 11.35

48.15

47.95

47.75

47.55

0

1

2

3

4

5

6

Fig. 8: Precipitation field [mm/h] in the data space derived
with theMultiple Theta method for 14/07/2008 (13:00). The
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4.3.3 Maximum Theta

Based on the Maximum Theta map 100 random realisations
(rank space) are generated for each grid cell conditioned on
the respective radar value. The resulting field is shown in
Figure 9. Compared to the results shown for theMultiple
Theta approach the patterns from the radar are reproduced
similarly well. More small-scale variability is resolved com-
pared to the radar field. Compared to theMultiple Theta
method more details are retained and the absolute values are
slightly higher.

4.4 Validation of the simulated precipitation fields

4.4.1 Visual inspection

Figure 10 shows an interpolated rainfall field derived from
the observed precipitation values on 14/07/2008 (13:00). The
observations from the 31 gauge stations in the radar domain
are interpolated by application of an Ordinary Kriging ap-
proach (e.g. de Marsily, 1986; Kitanidis, 1997).

Albeit the major assumption of Ordinary Kriging is not
valid throughout the whole research domain, i.e. the expecta-
tion value is not constant over space, the interpolated precip-
itation field roughly reproduces the rainfall patterns revealed
by the radar measurement (compare to Figure 2). The fine
structures of the rainband are remarkably smoothed and the
rainfall is concentrated in three local maxima. As gauge sta-
tions are only available for the center of the domain (see Fig-
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Fig. 9: Precipitation field [mm/h] in the data space derived
with the Maximum Theta method for 14/07/2008 (13:00).
The position of Hohenpeissenberg (Garmisch-Partenkirchen)
is indicated by a white triangle (circle).

ure 1) there is no information included for the outer regions.
This is the reason why the interpolated field can not repro-
duce the variability of precipitation in that area. In contrast to
the Kriging field, the Copula-based precipitation fields (see
Figure 8 and Figure 9) not only include information from
the rain gauges but also incorporate information from the
radar measurement. Consequently, they resolve better the
fine structures in the overall pattern of precipitation.

Figure 11 shows the accumulated summer precipitation
obtained from radar measurements at Hohenpeissenberg de-
rived by a standard Z/R-relationship, the RADOLAN cor-

Fig. 10: Interpolated rainfall field [mm/h] derived from the
observed precipitation values on 14/07/2008 (13:00). The
observations from the 31 gauge stations in the radar do-
main are interpolated by application of an Ordinary Krig-
ing approach. The position of Hohenpeissenberg (Garmisch-
Partenkirchen) is indicated by a white triangle (circle).

Fig. 10. Interpolated rainfall field [mm h−1] derived from the ob-
served precipitation values on 14 July 2008 (13:00). The observa-
tions from the 31 gauge stations in the radar domain are interpolated
by application of an ordinary kriging approach. The position of Ho-
henpeissenberg (Garmisch-Partenkirchen) is indicated by a white
triangle (circle).

rection of DWD, and simulated by theMaximum Thetaand
Multiple Thetaapproach for the years 2005–2008. Compared
to the rain gauges, the radar observes the liquid and solid
water in a certain volume of the atmosphere, which only
partly reaches the ground as precipitation. Therefore, the to-
tal amount of precipitation measured by the gauges is signif-
icantly different from that seen by the radar. In general, the
cumulated amount of precipitation obtained by radar is over-
estimated. This effect is supposed to be stronger in wet sum-
mers such as 2006 and 2007. For these seasons, the copula-
based methodologiesMaximum ThetaandMultiple Thetare-
duce significantly the total amount of rainfall, while for dry
summers the spatial representation of annual amounts is sim-
ilar for all approaches. While errors due to shading effects
are accumulated over time in the radar (standardZ/R rela-
tionship) and the RADOLAN-corrected fields, these artifacts
are reduced by the copula-based approaches.

4.4.2 Quantitative validation

The results of theMaximum Thetaand Multiple Thetaap-
proaches are checked by cross-validation for all 31 stations,
using the time series of gauge and pseudo-observations in
the respective grid cell. Different validation measures are
used to obtain a quantitative appraisal for the performance
of the simulation algorithms (see TableA). The mean cor-
relation between the simulated pseudo-observations (the re-
spective gauge station is not included in the analysis) and
the observed precipitation is 0.6 for both proposed meth-
ods indicating equally reasonable results. However, the re-
sults for RMSE, MAE and MSE show that theMultiple Theta
approach is slightly superior. This finding is also supported
by the inspection of the respective mean NSE values, being
0.2 for theMaximum Thetaand 0.1 for theMultiple Theta
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Fig. 11: Accumulated rainfall for summer [mm] obtained by radar (standard Z/R relationship), RADOLAN-correction method,
Maximum Theta, andMultiple Theta approach (from left to right) for the years 2005, 2006, 2007,and 2008 (from top to
bottom).

Table 7: Comparison of radar precipitation derived with thestandard Z/R-relationship, the DWD RADOLAN-correction,
pseudo-observations simulated with theMaximum Theta approach (all 31 stations included) to gauge observations for
Garmisch-Partenkirchen, Oberammergau and Wielenbach (positive pairs, summer 2005-2008).

Garmisch-P. Oberammergau Wielenbach
Methods τ r RMSE NSE τ r RMSE NSE τ r RMSE NSE

[–] [–] [mm/h] [–] [–] [–] [mm/h] [–] [–] [–] [mm/h] [–]

Standard Z/R 0.51 0.64 1.74 0.21 0.49 0.62 1.77 0.21 0.48 0.531.72 0.20
RADOLAN 0.51 0.66 1.66 0.28 0.49 0.64 1.66 0.30 0.48 0.58 1.640.27
Copula based 0.47 0.61 1.65 0.29 0.46 0.62 1.67 0.30 0.43 0.551.69 0.23

Fig. 11.Accumulated rainfall for summer [mm] obtained by radar (standardZ/R relationship), RADOLAN-correction method,Maximum
Theta, andMultiple Thetaapproach (from left to right) for the years 2005, 2006, 2007, and 2008 (from top to bottom).

method. Note that the validation results for the station Ho-
henpeissenberg are not included in the mean values as this
station is located close to the radar observatory. For this grid
cell, the radar precipitation is significantly biased, resulting
in a very low correlation, negative NSE and the highest val-
ues for RMSE, MAE and MSE among all gauge stations.
It is also important to appreciate how qualified the copula-
based bias-correction is compared to operational correction
methods. Therefore, precipitation time series corrected with
RADOLAN are used for comparison.

Table7 shows the results of the comparison of radar pre-
cipitation derived with the standardZ/R-relationship and
the DWD RADOLAN-correction, pseudo-observations sim-
ulated with theMaximum Thetaapproach and gauge obser-
vations for the three arbitrarily chosen stations Garmisch-
Partenkirchen, Oberammergau and Wielenbach (positive
pairs, summer 2005–2008). The correlations do not dif-
fer significantly between the three methods. However, the
RMSE and the NSE indicate that the copula-based approach
can improve the results of the standardZ/R relationship sim-
ilarly well as the RADOLAN correction. Visual inspection of
the respective time series shows that high precipitation val-
ues adhere to the highest biases. These are most effectively

corrected by the copula approach, which is also confirmed by
the calculated NSE.

Overall, theMaximum Thetamethod is found to be an ex-
pedient alternative to the RADOLAN correction with equally
good performance.

5 Discussion

Radar precipitation fields are a good supplement to gauge
measurements as they provide a reasonable representation of
spatial rainfall distribution. Nevertheless, precipitation fields
from radar reflectivities incorporate significant errors due to
the measurement itself (backscatter, shading etc.), the ap-
plied Z/R-relationship or the fact that they do not provide
values at the ground level. There are sophisticated opera-
tional bias-correction algorithms for radar products such as
the RADOLAN, which contains orographic shading correc-
tion, statistical reduction of clutter, gradient smoothing and
further preprocessing steps and assimilates data from om-
brometer measurements. Here a purely statistical copula-
based approach to assimilate gauge information for bias-
correction of radar precipitation fields is proposed, using
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Table 7. Comparison of radar precipitation derived with the standardZ/R-relationship, the DWD RADOLAN-correction, pseudo-
observations simulated with theMaximum Thetaapproach (all 31 stations included) to gauge observations for Garmisch-Partenkirchen,
Oberammergau and Wielenbach (positive pairs, summer 2005–2008).

Garmisch-P. Oberammergau Wielenbach

Methods τ r RMSE NSE τ r RMSE NSE τ r RMSE NSE
[–] [–] [mm h−1] [–] [–] [–] [mm h−1] [–] [–] [–] [mm h−1] [–]

StandardZ/R 0.51 0.64 1.74 0.21 0.49 0.62 1.77 0.21 0.48 0.53 1.72 0.20
RADOLAN 0.51 0.66 1.66 0.28 0.49 0.64 1.66 0.30 0.48 0.58 1.64 0.27
Copula-based 0.47 0.61 1.65 0.29 0.46 0.62 1.67 0.30 0.43 0.55 1.69 0.23

positive radar/gauge pairs only. In general, there exist four
cases, namely (0,0), (0,1), (1,0) and (1,1), with 0 denoting
dry and 1 wet conditions. It is known that a high number of
low precipitation values is measured by the radar that cannot
be reaffirmed by ground-based observations. These presum-
ably erroneous datasets are removed by the application of a
threshold value, being 0.01 mm for a rain event in this study.
Note that the case where the radar does not detect precipita-
tion correctly, i.e. (0,1), cannot be corrected by the proposed
algorithms and has to be examined separately. However, a
thorough investigation of the radar/gauge data shows that
these cases only contribute negligibly as the radar measure-
ment in general tends to overestimate precipitation. This is
due to the fact that both liquid and solid water in a certain vol-
ume of the atmosphere is observed by the radar, which only
partly reaches the ground as precipitation. Therefore, using
only positive pairs to derive the dependence structures does
not restrict the applicability of the algorithms substantially.

RecentlyLaux et al.(2011) showed that daily precipitation
data incorporate autocorrelation and heteroskedasticity and
therefore are not “iid”. They showed that an ARMA-GARCH
algorithm can be used to transform the time series so that
copula-based methods can be applied.

A thorough investigation of the hourly radar and gauge
precipitation used in this study reveals that these hourly
data also incorporate autocorrelation and heteroskedasticity
to some degree. It is shown by the results of an Ljung-Box
Q-test that an ARMA (1,1)-GARCH (1,1) time series model
is sufficient to successfully generate “iid” residuals, which
are the prerequisite for all copula-based applications.

The copula-based bias correction methods presented in
this study tend to apply a pairwise copula analysis to the
positive pairs of the data and incorporate anisotropies in the
dependence structure by combination of the derived copula
maps. While theMaximum Thetaapproach is limited to ap-
plications where only one single, one-parametric theoretical
copula function can be fitted to the data, theMultiple Theta
approach is fully flexible with respect to the number of theo-
retical copula functions and the dimension of their respective
parameter space. For the data that were used in this study, one
single copula, namely the Gumbel-Hougaard copula, can be

identified by goodness-of-fit tests. As this copula function is
one-parametric, the copula maps can be nicely visualized.

In general, the copula parameter (i.e. correlation) for a
radar/gauge pair decreases with increasing distance between
the respective gauge station and radar grid cell. Besides, the
copula maps show more details of the dependence structure.
For certain gauge stations (see Fig.6), theθ -field is strongly
asymmetric, revealing the influence of orography on the de-
pendence structure. This asymmetry is disregarded by stan-
dard interpolation methods such as inverse distance weight-
ing, although it is getting more important in complex terrain.

Asymmetries in the dependence structure can also be an
indicator of air flow directions, dominant for a certain lo-
cation. This theory could be supported by investigation of
different time scales: for small time scales (< 1 h), localized
rainfall events are not resolved by the statistical analysis. In
that case, the region of strongly correlated grid cells, visu-
alized through high copula parameters in the copula map, is
expected to be reduced compared to larger time scales.

For different seasons, different types of rainfall regimes
are predominant. Therefore, the investigation of e.g. summer
and winter season separately is expected to reveal prefer-
ential precipitation types, differentiating large- scale winter
precipitation from convective summer events.

As a result from the goodness-of-fit tests for marginal dis-
tributions and theoretical copula functions in this study, one
single type of marginal distribution (Weibull) and one single
theoretical copula function (Gumbel-Hougaard copula) are
used for all stations and all radar grid cells.

Both theMaximum Thetaand theMultiple Thetamethod
allow for estimating different marginal distributions for each
time series, while only for theMultiple Thetaapproach is it
possible to consider more than one theoretical copula func-
tion and multidimensional copula parameter spaces. As the
Gumbel-Hougaard copula, identified by the goodness-of-fit
tests, is one-parametric, both theMaximum Thetaand the
Multiple Thetaapproach can be applied in this study to gen-
erate bias-corrected precipitation fields.

Before the integral transformation is applied to the simu-
lated fields, the marginals do not contribute to the simulation
results. Therefore, the performance of the copula model it-
self can be assessed in the rank space. It is found that the
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correlation between the pseudo-observations and gauges is
significantly higher in that case. Hence, the choice of the
marginals is of crucial importance for the overall model re-
sults.

Finally, it is shown that the proposed bias-correction meth-
ods are able to combine the advantages of the two data
sources: the rainfall patterns observed by the radar mea-
surement are retained in the simulated field, while the ab-
solute values are successfully corrected towards the gauge
observations.

The results of a cross-validation show that theMaximum
Theta approach performs slightly better than theMultiple
Thetamethod. This is due to the fact that, for each radar grid
cell, the simulation is based on the highestθ and the respec-
tive marginal distribution, while for theMultiple Thetacase
stations with low correlation they also slightly contribute to
the simulated results. However, both methods are potentially
useful as not for every application it may be possible to use
one single copula function.

As all ingredients for the proposed algorithms, namely
the marginal distributions and the theoretical copula func-
tions, they only have to be estimated once the proposed bias-
correction methods are computationally not very demand-
ing, which facilitates operational application of the proposed
methods in quasi real-time. The effectiveness of theMax-
imum Thetaapproach is also emphasized by the results of
the comparison with the RADOLAN correction. The corre-
lations between corrected rainfall and gauge measurements
are nearly the same for the two approaches, and RMSE and
NSE indicate that the performance of the copula-based ap-
proach is equally good.

6 Conclusions

Two new copula-based methods are proposed to bias-correct
radar precipitation fields by assimilation of gauge informa-
tion. As copula-based applications require “iid” variables, an
ARMA-GARCH model is used to generate “iid” residuals.
After this transformation for each gauge station and all radar
grid cells, a copula map is derived revealing anisotropies in
the dependence structure. Asymmetries in the copula maps
reflect the complexity of the terrain as well as predominant
flow directions and rainfall types.

The goodness-of-fit tests suggest that it is possible to con-
strain the copula model to one single, one-parametric theo-
retical copula function, which is a requirement for theMax-
imum Thetaapproach. TheMultiple Thetaapproach is not
restricted and can be applied also for more than one theo-
retical copula family and copulas with multidimensional pa-
rameter spaces. The copula-based methods are suitable to
merge the advantages of the different data sources: the spa-
tial distribution of the radar rainfall field is preserved, while
absolute values are corrected towards gauge observations.
As a consequence, they can be used as a computationally

not very demanding alternative method to bias-correct radar
precipitation fields. Considering the performance measures
applied in this study, theMaximum Thetaapproach mod-
els the gauge values with the same performance as the bias-
correction method RADOLAN, used as standard procedure
by DWD.

Appendix A

Empirical and theoretical copulas

The empirical copulaCn(u,v), which is defined on the ranks
of the data, is an estimator for the unknown theoretical copula
distributionCθ (u,v) associated with the pair(X,Y ), having
a set of parametersθ :

Cn(u,v) = 1/n

n∑
i=1

1

(
ri

n + 1
6 u,

si

n + 1
6 v

)
(A1)

where(r1, s1), . . . , (rn, sn) denote the pairs of ranks of the
data (x1,y1), . . . , (xn,yn), and 1(. . .) is the indicator func-
tion.

The density of a theoretical copulaC(u,v) is calculated as

cθ (u,v) =
∂2C(u,v)

∂u∂v
. (A2)

A special family of copula functions is the so-called
Archimedean copulas. Some of the copula functions dis-
cussed in this study are members of this family.

Let ϕ : [0,1] → [0,∞] a steady, strict monotonic function
with ϕ(1) = 0 and letϕ[−1]

: [0,∞] → [0,1] the pseudo-
inverse ofϕ (Nelsen, 1999):

ϕ[−1]
:=

{
ϕ−1(t) if 0 ≤ t ≤ ϕ(0),

0 else
(A3)

then the function

C : [0,1]
2

→ [0,1]

(u,v) 7→ ϕ[−1](ϕ(u) + ϕ(v))
(A4)

defines a copula only ifϕ is convex andϕ is called the gen-
erator of the Archimedean copulaC.

In this paper the following Archimedean copulas are used:

the Frank copula withϕ(t) = − ln
(

e−θt
−1

e−θ−1

)
andθ > 0:

Cθ (u,v) = −
1

θ
ln

(
1+

(e−θu
− 1)(e−θv

− 1)

e−θ − 1

)
(A5)

the Clayton copula withϕ(t) =
1
θ

(
t−θ

− 1
)

andθ > 0

Cθ (u,v) =
(
u−θ

+ v−θ
− 1

)− 1
θ (A6)
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Validation

Table B1.Validation of theMultiple ThetaandMaximum Thetaapproach for the 31 stations (summer 2005–2008, wet days only).

Multiple Theta Maximum Theta

ID Station Name τ r RMSE NSE τ r RMSE NSE
[–] [–] [mm h−1] [–] [–] [–] [mm h−1] [–]

1 Bernbeuren-Prachtsried 0.47 0.58 1.90 0.09 0.44 0.57 1.80 0.17
2 Diessen 0.45 0.61 1.75 0.11 0.46 0.62 1.65 0.21
3 Deisenhofen 0.36 0.47 1.72 0.07 0.34 0.45 1.70 0.13
4 Ettal 0.31 0.52 1.74 0.06 0.36 0.53 1.70 0.10
5 Garmisch-Partenkirchen 0.46 0.59 1.84 0.11 0.46 0.60 1.73 0.21
6 Gilching 0.37 0.63 1.80 0.10 0.33 0.60 1.71 0.19
7 Griesen 0.41 0.57 1.56 0.11 0.36 0.54 1.50 0.18
8 Halblech 0.48 0.61 2.06 0.10 0.45 0.60 1.93 0.21
9 Hindelang 0.34 0.46 2.41 0.00 0.35 0.48 2.27 0.11
10 Hohenpeissenberg −0.21 −0.25 3.36 −0.11 −0.20 −0.26 4.70 −1.20
11 Kaufbeuren 0.41 0.63 1.83 0.10 0.37 0.61 1.72 0.20
12 Kochel 0.49 0.63 1.86 0.11 0.44 0.60 1.76 0.20
13 Kohlgrub, Bad 0.50 0.68 1.98 0.10 0.46 0.67 1.83 0.23
14 Kraftisried 0.28 0.50 2.07 0.04 0.30 0.48 1.97 0.13
15 Kreuth 0.43 0.65 2.14 0.07 0.42 0.65 1.99 0.20
16 Krün 0.49 0.66 1.84 0.13 0.48 0.64 1.68 0.27
17 Lenggries 0.43 0.63 1.98 0.11 0.43 0.63 1.75 0.31
18 Maisach 0.30 0.56 1.80 0.07 0.37 0.58 1.70 0.18
19 Marktoberdorf 0.45 0.58 1.86 0.11 0.44 0.57 1.78 0.19
20 Munich 0.40 0.56 1.87 0.10 0.40 0.55 1.77 0.19
21 Oberammergau 0.51 0.65 1.81 0.15 0.45 0.66 1.74 0.23
22 Oberschleissheim 0.27 0.51 2.05 0.06 0.35 0.55 1.93 0.17
23 Oy 0.32 0.50 1.98 0.03 0.34 0.52 1.90 0.14
24 Schwangau 0.37 0.49 1.92 0.08 0.34 0.49 1.84 0.15
25 Seeg 0.48 0.53 2.16 0.10 0.45 0.54 2.03 0.20
26 Scḧaftlarn 0.48 0.60 1.87 0.09 0.43 0.60 1.75 0.21
27 Steingaden 0.54 0.68 2.06 0.14 0.49 0.68 1.83 0.32
28 Schwaben 0.36 0.53 2.00 0.06 0.36 0.53 1.94 0.11
29 Schlehdorf 0.41 0.56 1.91 0.07 0.44 0.57 1.77 0.20
30 Vilgertshofen 0.45 0.59 1.80 0.13 0.45 0.58 1.67 0.24
31 Wielenbach 0.42 0.53 1.69 0.11 0.36 0.52 1.60 0.19

and the Gumbel-Hougaard copula with generatorϕ(t) =

(− ln(t))θ andθ > 1

Cθ (u,v) = e−
(
(− ln(u)θ )+(− ln(v)θ )

) 1
θ
. (A7)

In addition to the Archimedean copulas, the bivariate Gaus-
sian copula

Cθ (u,v) = (A8)
8−1(u)∫
−∞

8−1(v)∫
−∞

1

2π
√

1− θ2
exp

(
−

s2
− 2θst + t2

2(1− θ2)

)
dsdt.

whereθ ∈ [−1,1], and8 denotes the inverse of the univari-
ate Gaussian distribution, and the Student-T copula

Cθ,ν(u,v) = (A9)

t−1
ν (u)∫

−∞

t−1
ν (v)∫

−∞

1

2π(1− θ2)
1
2

(
1+

s2
− 2θst + t2

ν(1− θ2)

)−
ν+2

2

dsdt,

wheret−1
ν is the inverse of the univariate Student-T distribu-

tion with ν degrees of freedom considered.
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Bárdossy, A.: Copula-based geostatistical models for ground-
water quality parameters, Water Resour. Res., 42, W11416,
doi:10.1029/2005WR004754, 2006.
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scḧatzung von Niederschlagsintensitäten und zur Abflussvorher-
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