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Abstract. It is well established in the hydroclimatic literature
that the interannual variability in seasonal streamflow could
be partially explained using climatic precursors such as trop-
ical sea surface temperature (SST) conditions. Similarly, it is
widely known that streamflow is the most important predic-
tor in estimating nutrient loadings and the associated con-
centration. The intent of this study is to bridge these two
findings so that nutrient loadings could be predicted using
season-ahead climate forecasts forced with forecasted SSTs.
By selecting 18 relatively undeveloped basins in the South-
east US (SEUS), we relate winter (January-February-March,
JFM) precipitation forecasts that influence the JFM stream-
flow over the basin to develop winter forecasts of nutrient
loadings. For this purpose, we consider two different types of
low-dimensional statistical models to predict 3-month ahead
nutrient loadings based on retrospective climate forecasts.
Split sample validation of the predictive models shows that
18–45 % of interannual variability in observed winter nu-
trient loadings could be predicted even before the begin-
ning of the season for at least 8 stations. Stations that have
very high coefficient of determination (> 0.8) in predicting
the observed water quality network (WQN) loadings during
JFM exhibit significant skill in predicting seasonal total ni-
trogen (TN) loadings using climate forecasts. Incorporating
antecedent flow conditions (December flow) as an additional
predictor did not increase the explained variance in these
stations, but substantially reduced the root-mean-square er-
ror (RMSE) in the predicted loadings. Relating the dominant
mode of winter nutrient loadings over 18 stations clearly il-
lustrates the association with El Niño Southern Oscillation
(ENSO) conditions. Potential utility of these season-ahead
nutrient predictions in developing proactive and adaptive nu-
trient management strategies is also discussed.

1 Introduction

Concerted efforts to improve national water quality condi-
tions resulted in the enactment of the 1972 Clean Water
Act with section (303) d requiring the states and territo-
ries to list impaired water bodies and develop total maxi-
mum daily loads (TMDLs) for these waters. Despite these
efforts and frequent updates to TMDLs, the US Environmen-
tal Protection Agency’s recent update reveals that nutrients
affect 20 % of impaired and 12 % of the assessed river miles
(EPA, http://www.epa.gov/owow/tmdl/, 2006). The increase
in aquatic nutrients might result from population growth as
well as from increased fertilizer application (Meybeck, 1982;
Vitousek et al., 1997). However, natural variability associ-
ated with weather (e.g., hurricanes) and climatic events (e.g.,
El Niño) could also induce significant increase in nutrient
concentrations beyond critical levels (Chen et al., 2007) even
if the basin is not experiencing any pressure from urban de-
velopment or changes in agricultural practice. Thus, for these
virgin basins, we have the opportunity to estimate the sea-
sonal nutrient loadings due to the potential changes in runoff
during the season.

The National Research Council (NRC, 2002, 2001) has
emphasized that a detailed understanding of various sources
of uncertainties, including the role of climate change and cli-
mate variability, is required for improving water quality pre-
diction in natural systems. One of the dominant and well-
understood modes of global climatic variability is El Niño
Southern Oscillation (ENSO) that has a periodicity of 3–7 yr
and exhibits anomalous warm/cold sea surface temperature
(SST) conditions in the equatorial Pacific, thereby modu-
lating the climate particularly in the tropics and sub-tropics
(Ropelewski and Halpert, 1987). Considerable research now
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exists on the recurrence and regime structure of ENSO and
its teleconnections to rainfall/streamflow, and their potential
predictability of interannual hydroclimatic variability over
the United States (Ropelewski and Halpert, 1987; Dettinger
and Diaz, 2000; Devineni and Sankarasubramanian, 2010). It
is also well known that instream nutrient concentration and
loadings primarily depend on streamflow variability (Borsuk
et al., 2004; Paerl et al., 2006; Lin et al., 2007) and antecedent
flow conditions (Vecchia, 2003; Alexander and Smith, 2006).
Recent studies on the relationship between coastal water
quality conditions and SST conditions also show that there
is a strong association between climatic modes and concen-
trations of phosphorous (Childers et al., 2006), aquatic veg-
etation (Cho and Poirrier, 2005), and chlorophyll and phy-
toplankton levels (Arhonditsis et al., 2004). However, sys-
tematic research in associating climatic variability to in-
stream nutrient variability and utilizing that linkage to es-
timate season-ahead nutrient loadings is very limited.

Most of the studies on estimating instream nutrient con-
centrations have focused primarily on predicting the aver-
age annual concentrations using runoff and various basin at-
tributes (Smith et al., 1998, 2003; Mueller and Spahr, 2006;
Mueller et al., 1997). Studies have also recommended ap-
proaches to predict daily and seasonal loadings and con-
centration nutrients using streamflow and their time of ob-
servation (Cohn et al., 1992; Runkel et al., 2004). How-
ever, these nutrient models rely on the observed information
(e.g., streamflow) during that season, which has limited util-
ity in developing season-ahead estimates of nutrients. Find-
ings from the hydroclimatic literature clearly show that in-
terannual variability in streamflow can be predicted by de-
veloping low-dimensional models contingent on SST condi-
tions (Devineni et al., 2008) as well as using precipitation
forecasts from general circulation models (GCMs) (Sankara-
subramanian et al., 2008). Similarly, water quality literature
emphasizes that streamflow is the most important descriptor
in explaining nutrient variability (Cohn et al., 1992; Runkel
et al., 2004; Cohn, 2005). To our knowledge, this is the first
effort that associates the interannual variability in all of the
above noted three variables – climate, streamflow and total
nitrogen (TN) – to develop TN forecasts over a region. The
purpose is to understand thecontrols that are required for
developing skillful seasonal nutrient forecasts and also to as-
sess how the skill in hydroclimatic predictions translates into
skill in nutrient forecasts over the regional scale. For this pur-
pose, we consider two low-dimensional models that consider
season-ahead precipitation forecasts and streamflow condi-
tions as predictors for developing season-ahead estimates of
winter nitrogen loadings over the SEUS.

The manuscript is organized as follows: a brief de-
scription of precipitation forecasts, streamflow and water
quality databases employed in the study is first provided
in Sect. 2. Following that, Sect. 3 provides the details
of the low-dimensional statistical models and skill mea-
sures utilized in developing and evaluating the season-ahead

nitrogen loadings forecasts. In Sect. 4, we present results
from the winter nutrient forecasts developed using the low-
dimensional models. Next, we discuss the potential implica-
tions of the findings in the context of developing adaptive
water quality management plans. Finally, in Sect. 6, we sum-
marize the findings and conclusions from the study.

2 Data sources

In this section, we discuss various hydroclimatic and water
quality databases employed for associating climate forecasts
with the nutrient loadings over the Southeast US. We con-
sider 18 watersheds (Fig. 1) for understanding the role of
hydroclimate in influencing interannual nutrient variability.
Previous studies have shown that winter precipitation and
streamflow over the Southeast US are heavily influenced by
the ENSO variations (Ropelewski and Halpert, 1987; Devi-
neni and Sankarasubramanian, 2010). The selected 18 wa-
tersheds span over seven states and the streamflow with
drainage area ranging from 136 km2 to 44 547 km2 (Table 1).
Given that the selected watersheds are minimally impacted
by anthropogenic influences, we hypothesize that the inter-
annual variability in winter nutrients could be explained by
the precipitation variability as well as by the antecedent flow
conditions. For this purpose, we assemble hydroclimatic and
water quality databases for developing season-ahead nutrient
forecasts over these 18 watersheds.

2.1 HCDN streamflow database

Given that the intent of the study is to associate interannual
variability in winter nutrient loadings to climatic variabil-
ity, we focus our analysis on 18 undeveloped basins over
the Southeast United States (SEUS) from the Hydro-Climatic
Data Network (HCDN) database (Slack et al., 1993). Daily
streamflow records in the HCDN basins are purported to
be relatively free of anthropogenic influences such as up-
stream storage and groundwater pumping, and the accu-
racy ratings of these records are at least “good” according
to United States Geological Survey (USGS) standards. The
HCDN database contains the mean daily discharge for about
1600 sites across the continental United States with an aver-
age length of 48 yr. Figure 1 shows the location of 18 HCDN
stations, and Table 1 provides the list of the 18 stations con-
sidered in this study along with their drainage areas. Since
the streamflow data (Q) in the HCDN database are available
only up to 1988, we have extended it up to 2009 based on the
USGS historical daily streamflow database.

2.2 WQN Water Quality Network database

USGS provides national and regional descriptions of stream
water quality conditions in Water Quality monitoring Net-
work (WQN) across the nation (Alexander et al., 1998). The
WQN database comprises water quality data from USGS
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Table 1.Baseline information for 18 selected stations showing the number of years of observed daily records of TN available in the Water-
Quality Monitoring Network (WQN) database. Values in the parentheses under number of years column show the total number of daily
observations available for each station.

Station Station
Station name

Drainage Number of years
index number area (km2) (# of daily Obs.)

1 2047000 Nottoway River near Sebrell, VA 3732.17 17 (95)
2 2083500 Tar River at Tarboro, NC. 5653.94 22 (152)
3 2126000 Rocky River near Norwood, NC 3553.46 14 (65)
4 2176500 Coosawhatchie River near Hampton, SC 525.77 13 (100)
5 2202500 Ogeechee River near Eden, GA 6863.47 20 (141)
6 2212600 Falling Creek near Juliette, GA 187.00 14 (56)
7 2228000 Satilla River at Atkinson, GA 7226.07 20 (123)
8 2231000 St. Marys River near Macclenny, FL 1812.99 14 (108)
9 2321500 Santa Fe River at Worthington Springs, FL 1489.24 21 (82)
10 2324000 Steinhatchee River near Cross city, FL 906.50 19 (92)
11 2327100 Sopchoppy River near Sopchoppy, FL 264.18 22 (125)
12 2329000 Ochlockonee River near Havana, FL 2952.59 22 (133)
13 2358000 Apalachicola River at Chattahoochee, FL 44 547.79 23 (152)
14 2366500 Choctawhatchee River near Bruce, FL 11 354.51 21 (119)
15 2368000 Yellow River at Milligan, FL 1616.15 21 (123)
16 2375500 Escambia River near Century, FL 9885.98 22 (145)
17 2479155 Cypress Creek near Janice, MS 136.23 16 (54)
18 2489500 Pearl River near Bogalusa, LA 17 023.99 12 (57)
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Figure 1: Location of the 18 Hydro-Climatic Data Network (HCDN) stations along with the 
considered grid points of precipitation forecasts over the Southeast United States (SEUS). 
  

Fig. 1. Location of the 18 Hydro-Climatic Data Network (HCDN)
stations along with the considered grid points of precipitation fore-
casts over the Southeast United States (SEUS).

monitoring networks from both large watersheds (National
Stream Quality Accounting Network, NASQAN) and min-
imally developed watersheds (Hydrologic Benchmark Net-
work, HBN). We employ the observed daily concentrations
of total nitrogen (TN) available for these 18 stations from the
NASQAN. Observed streamflow during the time of sampling
is also available as part of the WQN database. The avail-
able water quality data vary from 10–30 yr depending on the
measured water quality variable and station. By ensuring the

selected watersheds are from HCDN basins, we basically en-
sure that both the streamflow and water quality data are min-
imally affected by anthropogenic influences. For additional
details about WQN, see Alexander et al. (1998). The selected
18 HCDN stations have observed TN concentrations for 12–
22 yr (Table 1). However, the number of samples for each
station ranges from 54–152 daily observations with an aver-
age of 5–7 observations per year.

2.3 Simulated nutrients database

Though nutrient data in the WQN database are available for
12–23 yr over 18 watersheds (see Table 2), their samplings
are intermittent. Using the daily observation over this period,
we first obtain continuous daily nutrients for the observed pe-
riod using the LOADing ESTimation (LOADEST) program
developed by USGS (Runkel et al., 2004). LOADEST is a
statistical model that estimates daily loadings based on the
observed daily streamflow and the centered time (dtime) of
the year of the observation (Runkel et al., 2004).

ln(Lj ) = a0+ a1ln(Qj ) + a2lnQ2
j + a3sin(2πdtime)

+a4cos(2πdtime) + ε̂j ... (1)

whereLj denotes the observed daily loadings from the WQN
database withj denoting the day of observation;Qj is the
observed daily flow anddtime is the centered time which is
a function of the observation’s number of days (from 1 Jan-
uary) in the calendar year;a0–a4 denote the model coeffi-
cients, and̂εj is the estimated residual for the model. The
expressiondtime is centered to avoid multi-collinearity, and

www.hydrol-earth-syst-sci.net/16/2285/2012/ Hydrol. Earth Syst. Sci., 16, 2285–2298, 2012



2288 J. Oh and A. Sankarasubramanian: Interannual hydroclimatic variability

Table 2. Performance of LOADEST model in predicting the observed TN loadings from the WQN database. Models with linear time
components (Model No.: 3, 5, 7–9) are not considered. The skill in predicting JFM WQN loadings is separately given in the last two
columns.

Coefficients of
Skill for JFM

Station R2 AIC Model
selected LOADEST model

index (daily) (daily) No.
a0 a1 a2 a3 a4 R2

(LOADEST)
RMSE(LOADEST)
(kg day−1 km−2)

1 0.948 0.892 4 6.768 1.114 −0.283 −0.069 0.897 0.432
2 0.966 −0.131 4 8.122 0.980 0.108 −0.018 0.948 0.403
3 0.966 0.496 4 8.863 1.066 −0.195 0.090 0.929 0.896
4 0.956 0.905 6 4.446 1.013 0.026 0.238 −0.036 0.867 0.702
5 0.916 0.837 4 7.721 1.069 −0.084 −0.317 0.014 0.756
6 0.853 2.094 1 2.647 1.095 0.004 0.855
7 0.968 0.518 6 7.521 1.005 −0.025 −0.083 0.103 0.887 0.701
8 0.963 0.250 6 6.428 1.088 −0.075 −0.027 0.187 0.925 0.242
9 0.986 −0.219 6 5.690 1.086 −0.037 −0.078 0.059 0.977 0.211
10 0.979 0.279 6 5.549 1.241 −0.069 −0.096 0.071 0.826 0.608
11 0.979 0.516 6 4.351 1.139 −0.043 0.187 0.007 0.959 0.344
12 0.923 0.585 1 7.341 0.846 0.839 0.415
13 0.902 0.193 4 10.563 0.981 0.074 0.165 0.728 0.625
14 0.835 0.423 4 9.077 0.931 −0.145 −0.042 0.884 0.375
15 0.834 1.085 6 7.238 1.123 −0.131 −0.004 0.176 0.835 0.595
16 0.873 0.758 4 8.868 1.039 0.147 0.032 0.424 0.798
17 0.912 1.233 4 4.555 1.188 0.206 0.328 0.999 1.531
18 0.899 0.853 1 10.193 1.047 0.075 6.544

dtime also represents the seasonality in loadings pattern. For
a detailed expression ondtime, see Cohn et al. (1992).

The LOADEST model allows the user to select the best-
fitting regression model from 11 predefined regression mod-
els using the Akaike information criterion (AIC) (Akaike,
1974). Five regression models that include a linear time trend
are not appropriate, since we are employing observed stream-
flow to estimate simulated loadings beyond the observed pe-
riod. Therefore, the simulated nutrient loadings based on the
remaining regression models (i.e., model forms: 1, 2, 4 and
6 as defined in Runkel et al., 2004) in the LOADEST pro-
gram do not have any time trend. Equation (1) represents the
model form 6. Model form 1 (Eq. 1) considers only the first
two (three) terms on the right-hand side (RHS) of Eq. (1),
whereas model form 3 considers all the terms except the
third term in the RHS of Eq. (1). For further details on model
forms, see Runkel et al. (2004). Table 2 shows the goodness
of fit statistics (coefficient of determination (R2) and AIC) in
predicting the observed daily loadings in the WQN database
(Table 1) and the coefficients of the best fitting regression
model for TN for the selected 18 stations. From Table 2, we
infer thatR2 ranges from 0.83–0.97 indicating good fit of the
observed daily loadings over 18 stations.

In this study, we primarily focus on developing nutrient
forecasts for the winter season. Given that streamflow peaks
in winter over the Southeast US, it has been shown that
loadings are at their peak during the same season (Muller

and Spahr, 2006). From the perspective of winter forecasts
too, this is a season that has significant skill in predict-
ing observed precipitation by the ECHAM4.5 model (Devi-
neni and Sankarasubramanian, 2010). Given that the selected
18 basins are virgin watersheds whose flows are minimally
impacted by anthropogenic influences, the primary source
of total nitrogen is from non-point that includes fall foliage
and post-harvest agricultural lands (Muller and Spahr, 2006).
Thus, increased flow during the winter season primarily car-
ries the TN loadings from fall foliage and agricultural lands.
Given the focus on the JFM season, we also report the ability
of the LOADEST model in predicting the observed JFM nu-
trients in Table 2. FromR2

(LOADEST) and RMSE during JFM,
we clearly see that the performance of the LOADEST model
in predicting JFM nutrients is poor in stations 5, 6, 13, 16 and
18. This potentially will have impact in developing nutrient
forecasting model for the sites with lowR2 in JFM.

To relate retrospective climate forecasts (discussed in the
next section), we estimated the daily TN loadings from
1957–2009 using the observed streamflow data available
from the extended HCDN database and the best fitting re-
gression model (in Table 2). The simulated daily load-
ings obtained from the LOADEST model over the pe-
riod 1957–2009 are aggregated during JFM to develop
winter loadings (Lt ) of TN where t represents the year.
Given that the estimated loadings are based on adjusted
maximum likelihood estimation (AMLE) procedure in the
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LOADEST model, the simulated daily and the aggregated
winter loadings are statistically unbiased (Cohn, 2005). We
also computedR2

(LOADEST) and the root-mean-square error
(RMSE(LOADEST)) for the simulated winter TN loadings ob-
tained from the LOADEST model. For additional details on
computing errors in seasonal predictions, see Cohn (2005).
Further, to ensure that there is no trend in the winter loadings,
we performed Mann-Kendall test. At 1 % significance level,
null-hypothesis with Kendall’s tau being not equal to zero
was rejected in all of the sites for TN. We also performed
regional Mann-Kendall test to account for spatial correlation
among the 18 stations (Douglas et al., 2000). The p-value
for TN is 4 % indicating no trend at the regional level. Our
study will consider the simulated winter TN loadings (Lt )

available during 1957–2009 for relating the interannual hy-
droclimatic variability to nutrient variability over 18 stations
in the SEUS.

2.4 Climate forecasts database

Seasonal climate forecasts are typically developed either
using atmospheric GCMs (AGCMs) or using coupled GCMs
(CGCMs). In the case of former, it is a two-tiered system, in
which SSTs are forecasted first using a statistical/dynamical
model and then they are forced with AGCMs. In CGCMs,
since ocean and atmospheric models are coupled, they are
run in a continuous mode. Recent studies clearly show that
AGCMs are more skillful than CGCMs (Goddard et al.,
2003). Further, Devineni and Sankarasubramanian (2010)
show that ECHAM4.5 precipitation forecasts explain
25–36 % of the variability in observed precipitation over
the Southeast US. For this study, we utilize the retro-
spective winter precipitation forecasts from ECHAM4.5
general circulation model forced with constructed analogue
SSTs (http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/
.ECHAM4p5/.Forecast/casst/.ensemble24/.MONTHLY/
.prec/, International Research Institute of Climate and
Society (IRI) data library) (Li and Goddard, 2005). Ret-
rospective precipitation forecasts from ECHAM4.5 are
available for 5 months in advance for every month beginning
January 1957. To force the ECHAM4.5 with SST forecasts,
retrospective monthly SST forecasts were developed based
on the observed SST conditions in that month based on
the constructed analogue approach. For additional details
on forcing ECHAM4.5 using constructed analogue SST
forecasts, see Li and Goddard (2005).

Figure 1 also shows the locations of 56 grid points of pre-
cipitation forecasts from ECHAM 4.5 along with their lati-
tude and longitude over SEUS. For this study, we utilize only
the forecasted mean (which is obtained by computing the av-
erage of 24 ensembles) of winter retrospective precipitation
forecasts issued in the beginning of January for developing 3-
month ahead retrospective nutrient forecasts over the period
1957–2007.

3 Low-dimensional models development and
performance validation metrics

Given that winter streamflow over the SEUS is predomi-
nantly rainfall driven with limited snow accumulation, we
hypothesize that precipitation is the primary driver in con-
trolling the JFM loadings. To verify this, we correlate simu-
lated JFM loadings with both observed precipitation (Fig. 2a)
and principal components of the forecasted precipitation
from ECHAM4.5 (Table 3). Principal components basically
signify the reduced dimensions of the gridded precipitation
forecasts. Given that the precipitation forecasts from the se-
lected grid points are spatially correlated, it is better to ob-
tain low/reduced dimensions of the forecasts using principal
component analysis. In this study, we only employ Spear-
man rank correlation for performing all correlation analy-
ses. Similarly, the computed rank correlation was checked
for statistical significance (i.e., 1.96/(n − 3)0.5 at 95 % con-
fidence interval, wheren denotes the number of data points
used in calculating the correlation). Thus, the computed cor-
relation in Fig. 2a needs to be greater than 0.29 (n = 50) to
indicate statistically significant relationship between the ob-
served precipitation and simulated loadings.

From Fig. 2a, we infer that the correlation between ob-
served precipitation and simulated loadings is statistically
significant and greater than 0.55 for all the basins. Given this
dependency, we first identify relevant grid points (Table 3)
of JFM precipitation forecasts that have statistically signif-
icant correlation with JFM-observed precipitation for each
watershed. Nearest grid points that are significantly corre-
lated to each watershed (Fig. 1) are selected. The variance
explained by the first principal component (PC1) of the pre-
cipitation forecasts from these grid points is around 74–95 %
indicating the strong spatial correlation among the gridded
forecasts. Further, from Table 3, we also infer that rank cor-
relations between PC1 of precipitation forecasts with stream-
flow, and seasonal loadings of TN, are statistically significant
for all stations (> 0.29) with the only exception being sta-
tion 18. The primary reason for such low correlation for sta-
tion 18 is due to the poor coefficient of determination from
the LOADEST model (Table 2) in predicting observed WQN
data. Given that the PC1 of precipitation forecasts explain
almost the same amount of observed variability in precipita-
tion, streamflow and TN (Table 3 and Fig. 2a), it is logical
to develop TN forecasts conditioned on precipitation fore-
casts. This is expected since the selected basins are virgin
watersheds with non-point loadings being the primary source
of TN. Given that PCs of precipitation forecasts are signifi-
cantly correlated with the observed precipitation, streamflow
and TN loadings, predictive models of TN loadings can be a
powerful tool to obtain season-ahead nutrient forecasts.
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Table 3. Rank correlation between observed winter streamflow, TN loadings with the first principal component of the winter precipitation
forecasts for the 18 selected stations. Locations of grid points indicated in the Table are shown in Fig. 1.

Station
% Correlation between

index Grid points variance PC1 and

explained Q Lt (TN)

1 37–40, 45–48, 53–56 73.6 0.453 0.453
2 29–32, 37–40, 45–48 84.9 0.479 0.476
3 36–39, 44–47 79.8 0.456 0.445
4 27–31, 35–39, 45–47 86.2 0.710 0.611
5 19–23, 27–31, 35–39, 45–47 85.6 0.598 0.480
6 37–40, 45–48 86.5 0.418 0.405
7 19–23, 27–31, 35–39 91.3 0.596 0.601
8 18–22, 26–30, 34–38 90.8 0.556 0.561
9 19–22, 27–30, 35–38 90.8 0.561 0.558
10 18–22, 26–30, 34–38 90.8 0.575 0.572
11 10–14, 18–22, 26–30 96.0 0.526 0.561
12 18–22, 26–30, 34–38 90.8 0.469 0.490
13 26–30, 34–38, 45–46 86.8 0.554 0.555
14 18–21, 26–29, 34–37 88.0 0.491 0.500
15 18–21, 26–29, 34–37 90.8 0.499 0.531
16 26–31, 34–39, 45–47 86.9 0.404 0.404
17 18–21, 26–29, 34–37 90.1 0.453 0.432
18 26–27, 34–35 94.7 0.287 0.284

3.1 Source of climatic information influencing the
winter TN variability

To understand the source of climate information that modu-
lates the TN variability over the SEUS, we performed princi-
pal component analysis on the simulated loadings (Lt ) of TN
over 18 stations. The first component approximately explains
59 % of total variability in TN loadings over 18 stations. It is
well known in the hydroclimatic literature that ENSO is one
of the important climatic conditions that influence the win-
ter precipitation, temperature and streamflow over the SEUS
(Ropelewski and Halpert, 1987). Figure 2b shows the cor-
relation between the first component of JFM TN loadings
over 18 stations and JFM Nino3.4 – an index used to de-
note ENSO conditions by averaging the SSTs (Kaplan et
al., 1998) over the tropical Pacific (170◦ W–120◦ W; 5◦ S–
5◦ N). From Fig. 2b, we infer that roughly 36 % of the vari-
ability in the first principal component of nutrient loadings
over SEUS could be explained purely based on ENSO con-
ditions. ENSO plays an important role on the winter climate
of the US since its peak activity typically coincides during
December–February. In fact, the precipitation forecasts from
ECHAM4.5 incorporate the forecasts of tropical SST con-
ditions (i.e., Nino3.4 region), which are obtained from con-
structed analogue SST forecasts for forcing the ECHAM4.5.
Thus, ENSO is one of the sources of climatic variability
that primarily influence both JFM hydroclimatic and nutri-
ent variability over the SEUS. Based on the information pro-
vided in Fig. 2 and Table 3, we understand that there is scope

for using the low-dimensional components of precipitation
forecasts for developing season-ahead forecasts of TN load-
ings over 18 selected stations.

3.2 Low-dimensional models

Given that our interest is primarily in understanding how
large-scale hydroclimatic information could be utilized for
seasonal nutrient predictions over the SEUS, we consider
two low-dimensional models: principal component regres-
sion (PCR) and canonical correlation analysis (CCA). Low-
dimensional models reduce the correlated predictors and pre-
dictands so that a subspace of uncorrelated predictors and
predictands could be used for regression model development
(Tippet et al., 2003; Sankarasubramanian et al., 2008). Fur-
ther, these low-dimensional models also recalibrate the GCM
forecasts so that any bias in predicting the JFM long-term
mean of the nutrients is removed based on the regression
model. Brief description of the low-dimensional models is
provided next.

3.2.1 Principal component regression (PCR):

PCR, which is otherwise known as model output statistics
(MOS) (Wilks, 1995), eliminates systematic errors and bi-
ases in GCM fields and also recalibrates the principal com-
ponents (PCs) of GCM fields to predict the hydroclimatic
variable of interest using regression analyses. The predic-
tand could be streamflow (Qt ) or loadings (Lt ) over a water-
shed. Since the gridded precipitation forecasts over a given
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Figure 2: Rank correlation between the simulated total nitrogen (TN) loadings from the 
LOADEST model and observed precipitation (a) and the association between El Nino Southern 
Oscillation (ENSO) index – Nino3.4 – and the first principal component (PC1) of TN loadings 
over the selected 18 stations. 
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Fig. 2. Rank correlation between the simulated total nitrogen (TN)
loadings from the LOADEST model and observed precipitation(a)
and the association between El Niño Southern Oscillation (ENSO)
index – Nino3.4 – and the first principal component (PC1) of TN
loadings(b) over the selected 18 stations.

region are spatially correlated, employing precipitation fore-
casts from multiple grid points as predictors would raise mul-
ticollinearity issues in developing the regression. To avoid
this, we employ PCR based on Eq. (2):

ln(Lt ) = β̂0 +

K∑
k=1

β̂j · PCk
t + ε̂t (2)

whereLt denotes the estimate of daily average TN loadings
during the JFM season in yeart , PCk

t denotes thek-th PCs
from the retainedK PCs of precipitation forecasts andβ̂s de-
note the regression coefficients, whose estimates are obtained
by minimizing the sum of squares of error. We employ step-
wise regression to selectK PCs out of the rotated grid points
of precipitation (given in Table 3) for developing the PCR
model. From Table 4, we infer that most of the stations (ex-
cept stations 8, 10 and 11) require only up to the first four
principal components for developing the PCR model.

3.2.2 Canonical correlation analysis (CCA):

In PCR, we develop separate regression models for each site.
Given that the predictands, the winter loadings, across the
basins are also spatially correlated, one could utilize that
information to develop a reduced set of regression models.
CCA is a low-dimensional regression modeling framework
that utilizes inter-site correlations to relate many (multiple
predictands)-to-many (multiple predictors). Consider win-
ter loadings available fromm sites represented byLT

=

(L1,L2,..., Lm) (dimension:nXm), whose corresponding
p grid points of precipitation forecasts (p > m) are repre-
sented asXT

= (X1,X2,...,Xp) (dimension:nXp) where “T”
denotes the transpose. Then, canonical correlation analysis
finds a linear combination of thep predictors,L∗

= bTL,
that maximally correlates with the linear combination ofm

predictands (X∗
= aTX). Mathematically, the canonical cor-

relation is obtained by choosing the vectorsa andb that max-
imize the relationship(

aT
∑
xy

b

)/{(
aT
∑
xx

a

)(
bT
∑
yy

b

)}1/2

where
∑

denotes the variance-covariance matrix between
the two matrices in the subscript. For a detailed mathematical
treatment of CCA, see Wilks (1995). Number of components
from m predictands andp predictors to be retained for the
regression is decided based on step-wise regression. Squared
values of canonical correlation represent the percentage of
variance explained in each predictand by the predictors un-
der that dimension. Thus, CCA allows us to develop a re-
duced set of models that can be used to predict loadings for
each site based on the precipitation forecasts.

Before performing CCA, we first group the basins based
on k-means clustering (Hartigan and Wong, 1979) so that
CCA could be performed on each cluster. Based on cluster-
ing, four groups were identified (Table 5) with the sites hav-
ing the highest loadings placed under group 1 and the lowest
average loadings placed under group 4. Separate CCA was
performed for each group. For instance, CCA on group 1 is
performed on loadings from two sites (m = 2) and the cor-
responding grid points of precipitation forecasts for the two
sites (# 13 and #18) from Table 3 are combined (p = 20)
as predictors. The skill in predicting the winter loadings for
each station is evaluated based on two different skill scores,
which are discussed next.

3.3 Skill scores for nutrients forecasts

To evaluate the skill in predicting the interannual variabil-
ity in winter TN loadings using climate forecasts, we con-
sider two error metrics – coefficient of determination (R2)

and root-mean-square error (RMSE) per unit area of the wa-
tershed (A). These metrics need to account for both sources
of errors: error in predicting the observed JFM nutrient load-
ings from the WQN database using the LOADEST program
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Table 4.Skill, expressed as root-mean-square error (RMSE) (based on Eq. 4), in predicting winter TN loadings using climate forecasts. Table
also gives the number of principal components considered and the percentage variance explained by them for the total grid points selected
(given in Table 3) for each station.

Station

PCR
CCA

index # of % variance
RMSE (kg day−1 km−2) RMSE (kg day−1 km−2)

PCs explained LCV SSV LCV SSV

1 1 73.6 0.585 0.924 0.583 0.884
2 2 96.6 0.652 0.672 0.679 1.246
3 3 99.2 1.955 1.809 1.968 3.461
4 1 86.2 0.938 2.190 0.891 1.654
5 2 97.4 0.801 0.833 0.795 0.968
6 1 86.5 1.038 1.284 1.039 1.472
7 1 91.3 1.034 1.547 0.938 1.285
8 6 99.7 0.678 0.652 0.524 2.319
9 1 90.8 0.967 1.458 0.674 3.619
10 8 99.9 1.235 1.830 1.005 6.453
11 6 99.8 0.865 1.518 0.757 3.691
12 1 90.8 0.906 0.923 0.757 2.014
13 1 86.8 0.790 0.818 0.785 1.582
14 2 98.1 0.510 0.555 0.523 1.013
15 2 98.5 0.690 0.817 0.682 1.199
16 2 96.9 0.965 1.106 0.960 1.418
17 1 90.1 1.656 2.051 1.645 2.132
18 1 94.7 6.703 6.722 6.694 7.673

(R2
(LOADEST), RMSE(LOADEST)) (see Table 2) and the error in

predicting simulated JFM nutrients from LODEST based on
the low-dimensional model(R2

(PCR/CCA), RMSE(PCR/CCA)).

Since these two models are developed independently,R2 and
RMSE in predicting winter nutrient loadings using climate
information could be expressed as follows:

R2
= R2

(LOADEST) · R
2
(PCR/CCA) (3)

RMSE= (RMSE(LOADEST)+ RMSE(PCR/CCA))/A (4)

For each station,R2
(PCR/CCA)and RMSE(PCR/CCA)were com-

puted based on the estimated TN loadings from the low-
dimensional models and the simulated winter TN loadings
for the period 1957–2006. Thus, we compute skill measures
using Eqs. (3) and (4) to quantify our ability to explain the
interannual variability in winter TN loadings using precipita-
tion forecasts from ECHAM4.5.

4 Results and analyses

To ensure that the skill in forecasting winter nutrients is reli-
able, we evaluate the low-dimensional models based on two
different types of validation: leave-X out cross-validation
(LCV) and split-sample validation (SSV). Both these meth-
ods are commonly adapted in forecasting literature for vali-
dating the model (Wilks, 1995).

4.1 TN loadings forecasts based on PCR models

For validating the PCR models under LCV, the methodology
suggested by Towler et al. (2009) is modified to evaluate the
skill of the model over 51 yr (1957–2008). The LCV steps
for PCR models are described as follows: (i) 10 % of the data
(5 yr) are randomly removed along with the year for which
the prediction is desired; (ii) a PCR model is developed us-
ing the remaining 45 yr of loadings (Lt ) and retained PCs;
(iii) the developed model is then used to predict the left-out
year, and (iv) steps (i) to (iii) are repeated to develop predic-
tion for each year, and skill measures (R2 and RMSE) were
computed based on the 51 yr of predicted data. This entire
procedure (i)–(iv) is repeated 100 times and a box plot ofR2

(Fig. 3) and the median of RMSE (in Table 4) are presented.
Figure 3 shows the box plot ofR2 under LCV for 18 sta-

tions. Under LCV, we computeR2 based on the predicted
loadings for 51 yr. Hence,R2 needs to be higher than 0.08
(correlation> 0.29) to demonstrate statistically significant
skill in predicting season-ahead nutrient loadings. However,
more than 12 stations exhibitR2 greater than 0.16 over 100
trials of LCV. From Fig. 3, 16 stations show statistically sig-
nificant skill for TN. The developed PCR model under LCV
explains more than 10 % of interannual variability in TN
loadings in all the 100 different fittings (Fig. 3) except sta-
tions 6 and 18. For the rest of the 16 sites, the correlation be-
tween the predicted nutrient loadings obtained using climate
forecasts and the loadings simulated from LOADEST using
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Figure 3: Box-plot of R2 (based on equation (3)) of principal component regression (PCR) model 
predicted TN loadings obtained using PC’s of forecasted precipitation under leave-one-out cross 
validation (LCV). 
 

   

Fig. 3. Box plot of R2 (based on Eq. 3) of principal compo-
nent regression (PCR) model predicted TN loadings obtained using
PCs of forecasted precipitation under leave-one-out cross validation
(LCV).

the WQN database is greater than 0.29, which is statistically
significant for the 51 yr of data considered. The forecasted
TN loadings show statistically insignificant relationship with
observed TN loadings that the correlation coefficients are
0.28 and 0.16 for stations 6 and 18 respectively. Poor good-
ness of fit (see Table 2,R2

(LOADEST)) from the LOADEST
model is the primary reason behind the poor performance of
these two stations during the winter season. Further, station
18 shows poor correlation between the principal components
of precipitation forecasts and JFM loadings (Table 3). An-
other possible reason for such poor prediction by LOADEST
model in those two stations is the limited number of years of
data availability (see Table 1) with station 6 (18) WQN obser-
vations spanning 14 (12) years having a total of 56 (57) daily
samples. The median RMSE (Table 4) computed under LCV
also shows that error in predicting the observed WQN load-
ings during the winter season is lesser than 1 kg day−1 km−2

for most of the stations.
Under split-sample validation (SSV), PCR models are de-

veloped usingLt and PCs available over the calibration pe-
riod (PCR: 1957–1986) and skill measures are computed
in predictingLt during the validation period (1987–2007).
Hence,R2 needs to be higher than 0.21 (correlation> 0.46
for 21 yr of data) to demonstrate statistically significant skill
in predicting season-ahead nutrient loadings. Based on this,
Fig. 4 indicates that 11 stations (2–4, 7–11 and 13–15) show
significant skill in predicting TN loadings. Stations 6 and 18
perform poorly because of the limited number of years of
WQN data which results in very lowR2 of the LOADEST
model. Apart from these two stations, stations 1, 5, 12, 16
and 17 also show insignificant skill (R2 < 0.21). Stations 5
and 16 perform poorly due to the poor skill of the LOAD-
EST model during JFM (see Table 2,R2

(LOADEST)). Similarly,
stations 1, 12 and 17 perform well under LCV, but the skill
is statistically insignificant under SSV, even though the sim-
ulated TN (Fig. 2) loadings exhibit significant correlation
with both observed precipitation (Table 2) and forecasted

Table 5. Grouping of 18 selected stations based on k-means clus-
tering.

Group Stations
Averaged TN loading
(kg day−1)

1 13, 18 59 608.83
2 2, 3, 7, 14, 16 11 394.76
3 1, 5, 12 4 043.69
4 4, 6, 8, 9, 10, 11, 15, 17 895.95

precipitation (Table 3). It is important to discuss the impor-
tance from the perspective of developing real-time nutrient
forecasts. LCV basically exploits all the available data in the
future years to predict the TN loadings for the left-out year.
Thus, LCV shows that there is potential in developing sea-
sonal nutrient forecasts for sites 1, 12 and 17. However, un-
der SSV, we cannot guarantee that skill in developing real
time (without using future information) forecasts, since the
trained model using the data from 1957–1986, is not capable
of developing a statistically significant forecast for the pe-
riod 1987–2007. But, as we collect more data in the future,
we may be able to develop statistically significant forecasts
for these stations. Thus, LCV shows the potential skill in de-
veloping the forecast, whereas SSV shows the demonstrable
skill in developing real-time forecasts. Thus, based on two
different validation methods, we understand that 11 stations
(2–4, 7–11 and 13–15) exhibit statistically significant skill in
predicting the observed WQN loadings using the PCR model
developed separately for each site. Next, we evaluate the abil-
ity to predict the loadings in these stations under a differ-
ent low-dimensional model – canonical correlation analyses
– that utilizes the spatial correlation in the TN loadings to
develop a predictive model.

4.2 TN loadings forecasts based on canonical
correlation analyses

Four different CCAs were performed on each group (listed
in Table 5), and the developed models were evaluated un-
der LCV and SSV. For LCV, we simply perform leave-5 out
cross-validation instead of repeated fitting of the model (as
described in Sect. 4.1 for the PCR model). Under leave-5
out cross-validation, we randomly leave out five predictands
and predictors along with the year for which the prediction
is desired for each station under a given group (in Table 5)
and CCA model is developed using the rest of the 46 yr of
data. The developed CCA model was employed to predict
the year for which the prediction is desired. This procedure
was repeated for all the years of observation under a given
group to develop the CCA model estimated loadings. The
R2

CCA and RMSECCA were estimated between the simulated
winter loadings from the LOADEST model and predicted
loadings from the CCA model for each station under all
the four groups.R2

CCA and RMSECCA were further adjusted
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Figure 4: Modified R2 (based on equation (3)) of PCR model predicted TN loadings obtained 
using PC’s of forecasted precipitation under split sample validation (SSV). 
 

 

 

   

Fig. 4. Modified R2 (based on Eq. 3) of PCR model predicted TN
loadings obtained using PCs of forecasted precipitation under split
sample validation (SSV).

according to Eqs. (3) (Fig. 5) and Eq. (4) (Table 4) to ac-
count for the errors in the LOADEST model in predicting
the WQN database. From Fig. 5, stations 5, 6 and 18 do not
exhibit statistically significant correlation in predicting the
loadings from the WQN loadings. As discussed under PCR
model, stations 5, 6 and 18 did not perform well because of
the limited number of years of WQN data and lowR2 of
the LOADEST model during the winter season. The rest of
the sites exhibited statistically significant relationships in ex-
plaining the observed variability in the WQN loadings. For
stations 8 and 9, CCA model explains 30–40 % (correlation
0.55–0.63) of the observed winter variability in TN within
the WQN database. With regard to RMSE, the performance
of CCA model and PCR model is almost similar at most of
the stations having an error less than 1 kg day−1 km−2.

Under SSV (Fig. 6 and Table 4), we computeR2 based
on the predicted loadings during 1987–2007 using the CCA
model developed over the period 1957–1986. From Fig. 6,
CCA model did not exhibit any skill in predicting the win-
ter loadings in stations 5, 6, 11–13, 16–18. Comparing this
with the PCR model performance, the CCA model performs
similarly with the exception being very lowR2 at station 11.
For station 11, PCR (R2

= 0.47) performs significantly bet-
ter than the CCA model (R2

= 0.14). One possible reason
for such poor performance of CCA model is that station 11
has low correlation with the rest of the sites under group #4
which has 8 stations. Under SSV,R2 of the CCA model for
the rest of the stations is almost similar to that ofR2 of the
PCR model. However, the RMSECCA is consistently higher
than the RMSEPCR (Table 4). This implies that the condi-
tional bias (overprediction and underprediction) of the CCA
model is much higher. One possible reason for such increased
conditional bias under CCA is due to increased heteroscedas-
ticity in the observed loadings under a given group. However,
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Figure 5: Modified R2 (based on equation (3)) of canonical correlation analysis (CCA) model 
predicted TN loadings obtained using PC’s of forecasted precipitation under LCV. 
 
 
 
 
 
  

Fig. 5. ModifiedR2 (based on Eq. 3) of canonical correlation anal-
ysis (CCA) model predicted TN loadings obtained using PCs of
forecasted precipitation under LCV.

the ability of the CCA model to explain the observed vari-
ance in loadings is almost comparable to that of the PCR
model, indicating that the source of interannual variability
in winter nutrients is the same across the region. To sum-
marize, using ECHAM4.5 precipitation forecasts alone, we
infer both low-dimensional models demonstrate significant
ability in predicting the observed winter TN loadings in nine
coastal stations (#2–4, 7–10 and 14–15) based on two differ-
ent validation methods.

5 Discussion

Analyses presented in Figs. 2–6 show that interannual vari-
ability in nutrient loadings could be predicted well before the
beginning of the season contingent on the climate forecasts.

Though instream loadings primarily depend on streamflow
and precipitation variability during the season, antecedent
moisture/flow conditions also play a critical role in influ-
encing the nutrient loadings from the watershed (Vecchia,
2003; Alexander and Smith, 2006). At seasonal time scales,
antecedent flow conditions could be considered as the sur-
rogate for basin storage or initial conditions in influenc-
ing the streamflow variability. To understand the role of an-
tecedent storage conditions, we consider the observed De-
cember streamflow at each station as an additional predictor
along with the gridded precipitation forecasts (Table 3) to
develop nutrient forecasts for each station. Forecasts of TN
loadings were developed using both PCR model (Fig. 7a) and
CCA model (Fig. 7b), and the modifiedR2 and RMSE (Ta-
ble 6) are computed (Eqs. 3 and 4) based on SSV by evaluat-
ing the model over the period 1987–2007. Comparing Fig. 7a
and b with Fig. 4 (PCR model) and 6 (CCA model), we in-
fer that only station #13 (under CCA model) has resulted in
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Figure 6: Modified R2 (based on equation (3)) of CCA model predicted TN loadings obtained 
using PC’s of forecasted precipitation under SSV. 
 
 
  

Fig. 6. Modified R2 (based on Eq. 3) of CCA model predicted TN
loadings obtained using PCs of forecasted precipitation under SSV.

statistically significant skill by adding streamflow as an ad-
ditional predictor. However, by using streamflow as an ad-
ditional predictor,R2 of the CCA model substantially im-
proved over all stations, which indicates the importance of
incorporating basin information in spatial-dimension reduc-
tion. Further, RMSE of both PCR and CCA models is sub-
stantially reduced by adding the observed December stream-
flow as an additional predictor. This implies that antecedent
storage/flow conditions are very critical in reducing the con-
ditional bias in developing season-ahead TN forecasts result-
ing in reduced over/underprediction compared to the mod-
els developed using the precipitation forecasts alone. Thus,
from a process control perspective, given the good skill in
the reconstructed seasonal nutrient loadings, the interannual
variability in nutrient loadings could be partially explained
based on climatic variability. But, to obtain improved predic-
tion (i.e., RMSE), it is important to incorporate both climatic
variability and antecedent storage conditions in developing
season-ahead nutrient forecasts.

5.1 Role of basin characteristics

We also compared theR2 (Fig. 7a) and RMSE (Table 6)
to basin characteristics such as drainage area (figure not
shown). But, we did not find any significant relationship be-
tween the skills of the nutrient forecasts to basin character-
istics. It is difficult to associate the spatial variability in the
skill with the basin characteristics just using 18 stations. Fur-
ther, at interannual time scales, we understand that climatic
signals are the primary source of variability (Fig. 2b) fol-
lowed by basin storage conditions (Fig. 7). Performing these
analyses over the continental scale may provide additional
information on the role of basin characteristics in influenc-
ing the skill in predicting nutrients.

Table 6. RMSE (Eq. 4) of forecasted TN loadings based on PCR
and CCA models that consider ECHAM4.5 precipitation forecasts
and December streamflow as predictors under SSV.

Station RMSE (kg area−1)

index PCR CCA

1 0.653 0.866
2 0.671 1.233
3 1.748 3.420
4 2.136 1.487
5 0.845 0.930
6 1.247 1.438
7 1.312 1.283
8 0.631 2.359
9 1.294 3.190
10 1.266 6.061
11 1.510 3.417
12 0.846 1.419
13 0.750 1.370
14 0.508 1.008
15 0.810 1.193
16 1.058 1.411
17 2.022 2.038
18 6.713 7.032

5.2 Validating nutrient forecasts with observed
precipitation

To understand how well the forecasts predict the extreme sea-
sons of loadings over 9 stations (#2–4, 7–10 and 14–15), we
compare the predicted loadings with the observed wet and
dry precipitation seasons. For this purpose, we computed the
33rd and 67th percentiles of observed JFM precipitation and
JFM-simulated loadings based on the available record over
the period 1957–2007. Based on this, if the observed precip-
itation in a given year falls below (above) 33rd (67th) per-
centile of precipitation, then that particular year is denoted
as below-normal (above-normal). If the observation falls be-
tween 33rd and 67th climatological percentiles, then it is de-
noted as normal year. Similarly, based on the 33rd and 67th
climatological percentiles of TN loadings, we also grouped
the forecasted nutrients into three categories: below-normal,
normal and above-normal. Based on these two tercile cat-
egories available for precipitation and forecasted nutrients,
we computed the false alarm rate for the forecasted nutrients
estimated using forecasted precipitation and streamflow as
predictors (Fig. 7a) based on the PCR model over the period
1987–2007. The false alarm ratio gives the probability of pre-
dicting above-normal (below-normal) nutrient year given the
observed precipitation for that year falls under below-normal
(above-normal). If this ratio is very high, then it indicates the
forecasting model issues false alarms too often contrary to
the observed category. Based on Table 7, the probability of
issuing false-alarm is around 4–5 % for all the 9 stations. It
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Figure 7: R2 (based on equation (3)) of PCR(a) and CCA(b) model predicted TN loadings 
obtained using both PC’s of forecasted precipitation and December streamflow under SSV. 

(a) 

(b) 

Fig. 7. R2 (based on Eq. 3) of PCR(a) and CCA(b) model pre-
dicted TN loadings obtained using both PCs of forecasted precipi-
tation and December streamflow under SSV.

is important to note that this false alarm rate also incorpo-
rates the errors that would have resulted from the forecasted
precipitation. Results from Table 7 show that the forecasted
nutrients modulate well with the observed extreme seasons in
precipitation over the validation period 1987–2007 and could
be utilized for issuing categorical nutrient forecasts.

5.3 Potential for application – water quality trading

Perhaps the most important utility of the season-ahead fore-
casts of nutrient loadings is in promoting water quality trad-
ing. Some of the successful water quality trading programs in
the country (e.g., Tar-Pamlico River Basin and Neuse River
Basin in NC) typically allow trading nutrient loadings across
different point sources as well as with non-point sources
(e.g., farmers participating in the voluntary nutrient reduction
program) through the basin-level trading association so that
the seasonal/annual load caps are always met from the basin.
Research on climate forecasts and water allocation clearly
shows that probabilistic streamflow forecasts could be effec-
tively utilized to specify the failure probability of reservoir

Table 7. The false alarm rate of nutrient forecasts developed using
precipitation forecasts and December streamflow.

Station
Observation-

index
Precipitation

BN AN

2 0.0 0.0
3 0.0 0.0
4 0.05 0.0
7 0.05 0.0
8 0.0 0.14
9 0.05 0.14
10 0.1 0.0
14 0.05 0.14
15 0.05 0.0
Average 0.04 0.05

releases as well as in ensuring the end of season target stor-
age conditions being met with high probability (Sankarasub-
ramanian et al., 2009). Similarly, in the context of seasonal
water quality management, the developed forecasts of load-
ings could be used to estimate the probability of violation of
target loadings for the upcoming season (Towler et al., 2010;
Borsuk et al., 2002). One could also develop an optimal nu-
trient loading model such that the probability of violating the
total loadings from multiple sources is within the acceptable
level. Thus, utilizing season-ahead forecasts of nutrient load-
ings and updating them throughout the season provide an op-
portunity to develop adaptive nutrient control strategies that
ensure target nutrient loadings and desired concentration.

5.4 Alternate forecasting models and nutrient forecasts
for urbanized watersheds

Thus, the intent of this study is to understand how well cli-
mate and basin storage conditions control the development
of skillful forecasts of TN loadings and to evaluate the per-
formance of two low-dimensional models in issuing season-
ahead nutrient forecasts utilizing climate forecasts and basin
storage conditions. In principle, the analyses provided here
could also be extended with other sophisticated statistical
models including nonparametric and Bayesian hierarchical
models to estimate the entire conditional distribution of load-
ings. Similarly, one could also develop nutrient forecasts by
forcing the mechanistic water quality model with forecasted
streamflow and water temperature, which in turn could be ob-
tained based on dynamical downscaling (Leung et al., 1999)
or statistical downscaling (Devineni et al., 2008) based on the
climate forecasts.

Given that the developed models are statistical models, it
requires observed nutrients and streamflow information for
application in other basins. However, CCA model could be
employed for prediction in ungauged basins within the clus-
ter since it employs both spatial and temporal dimension
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reduction. However, to apply this approach for urban water-
sheds with significant anthropogenic influences, the devel-
oped model could be used to predict the upstream loadings
for the undeveloped segment of the watershed. However, to
estimate the loadings leaving the fully developed watersheds,
one needs to know the loadings from the point sources so
that net loadings leaving the watershed could be estimated in
total. We are currently working on extending this approach
with weather forecasts, so that point and non-point sources
could be controlled in both virgin basins as well as in basins
whose loadings are significantly impacted by anthropogenic
influences.

6 Summary and conclusions

The study primarily focused on understanding the process
controls in estimating winter nutrient loadings by consider-
ing 18 HCDN watersheds over the SEUS. Given the discon-
tinuous observed daily TN loadings, the study reconstructed
simulated TN loadings using the LOADEST model for the
winter season. The ability to predict these simulated load-
ings was validated with two low-dimensional models that uti-
lize winter precipitation forecasts and pre-season flow condi-
tions.

Out of 18 stations, a total of 9 stations (#2–4, 7–10
and 14–15) exhibited statistically significant skill in predict-
ing the observed winter nutrient loadings under both low-
dimensional models based on two different validation meth-
ods. However, the reported skill in predicting the TN load-
ings accounts for both error from the LOADEST model as
well as the error from the low-dimensional models. Find-
ings from the study could be summarized as the following
“controls” that influence the skill in predicting seasonal TN
loadings: stations that have very highR2

(LOADEST) (> 0.8)
in predicting the observed WQN loadings during the winter
(Table 2) exhibit significant skill in loadings. This highR2

from the LOADEST model could be considered as a poten-
tial criterion for developing nutrient forecasts if the basin’s
hydroclimatology exhibits significant association with cli-
matic signals. Incorporating antecedent flow conditions (De-
cember flow) as an additional predictor did not increase
the explained variance in these stations, but substantially
reduced the RMSE in the predicted loadings. Understand-
ing the source of climatic variability that controls the TN
variability revealed that Nino3.4, an index denoting ENSO
conditions over the tropical Pacific, accounted for 36 % of
the observed spatial variability in the TN loadings over the
SEUS. Given that using climate forecasts have been very
beneficial in improving reservoir management over seasonal
time scale (Sankarasubramanian et al., 2009), we argue the
need to develop nutrient loading forecasts conditioned on cli-
mate forecasts. Our future work will utilize these seasonal
nutrient forecasts in developing adaptive water management
plans over the SEUS.
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