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Abstract. State updating of distributed rainfall-runoff mod-
els via streamflow assimilation is subject to overfitting
because large dimensionality of the state space of the
model may render the assimilation problem seriously under-
determined. To examine the issue in the context of op-
erational hydrologic forecasting, we carried out a set of
real-world experiments in which streamflow data is assim-
ilated into the gridded Sacramento Soil Moisture Account-
ing (SAC-SMA) and kinematic-wave routing models of the
US National Weather Service (NWS) Research Distributed
Hydrologic Model (RDHM) via variational data assimilation
(DA). The nine study basins include four in Oklahoma and
five in Texas. To assess the sensitivity of the performance
of DA to the dimensionality of the control vector, we used
nine different spatiotemporal adjustment scales, with which
the state variables are adjusted in a lumped, semi-distributed,
or distributed fashion and biases in precipitation and PE are
adjusted at hourly or 6-hourly scale, or at the scale of the
fast response of the basin. For each adjustment scale, three
different assimilation scenarios were carried out in which
streamflow observations are assumed to be available at basin
interior points only, at the basin outlet only, or at all loca-
tions. The results for the nine basins show that the optimum
spatiotemporal adjustment scale varies from basin to basin
and between streamflow analysis and prediction for all three
streamflow assimilation scenarios. The most preferred ad-
justment scale for seven out of the nine basins is found to be
distributed and hourly. It was found that basins with highly

correlated flows between interior and outlet locations tend
to be less sensitive to the adjustment scale and could ben-
efit more from streamflow assimilation. In comparison with
outlet flow assimilation, interior flow assimilation produced
streamflow predictions whose spatial correlation structure is
more consistent with that of observed flow for all adjustment
scales. We also describe diagnosing the complexity of the
assimilation problem using spatial correlation of streamflow
and discuss the effect of timing errors in hydrograph simula-
tion on the performance of the DA procedure.

1 Introduction

Improving flood forecasting has long been an important
research topic for natural hazard mitigation (Droegemeier
et al., 2000; NHWC, 2002; NRC, 2010; USACE, 2000).
Changes in spatiotemporal patterns of precipitation and oc-
currences of record-breaking events at unprecedented scales
around the globe during the past decades (Knutson et al.,
2010; Milly et al., 2008; Min et al., 2011; Trapp et al., 2007;
Trenberth et al., 2003) are pressing further the needs for rapid
advances in real-time flood forecasting (NRC, 2010). In the
US River Forecast Centres (RFCs), the flood forecasting pro-
cess has often involved manual modifications of the model
states by human forecasters (MOD; Seo et al., 2003; Smith et
al., 2003) to reconcile any significant differences between the
model results and the observations. With distributed models,
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such MOD’s are a very difficult proposition due to the gener-
ally very large dimensionality of the state variables involved.
As such, automatic data assimilation (DA) procedures are a
necessity.

DA techniques merge information in the real-time hy-
drologic and hydrometeorological observations into the hy-
drologic model dynamics by considering uncertainties from
different error sources (Liu and Gupta, 2007; McLaughlin,
2002; Moradkhani, 2008; Seo et al., 2003, 2009; Troch et
al., 2003). Compared to applying DA to lumped rainfall-
runoff models (e.g., Bulygina and Gupta, 2009; Moradkhani
et al., 2005a,b; Seo et al., 2003, 2009; Vrugt et al., 2005,
2006; Weerts and El Serafy, 2006), state updating of dis-
tributed rainfall-runoff models is subject to overfitting to a
much greater extent due to the typically much larger dimen-
sionality of the state space of the model.

In operational streamflow forecasting, other than the atmo-
spheric forcing data, streamflow observation is usually the
only source of data available for assimilation, which is often
insufficient to reduce the large degrees of freedom (DOF)
associated with distributed models. As such, most, if not
all, distributed rainfall-runoff models are under-determined,
i.e., the information available in the data is not enough to
uniquely determine the state variables and/or parameters of
the model. Note that, while a vast amount of remote-sensing
data, in particular satellite-based, are widely available, they
are generally of limited utility for operational river and flash
flood forecasting due to large temporal sampling intervals
and relatively low information content at the catchment scale.
In an under-determined system, streamflow analysis at inde-
pendent validation locations as well as streamflow prediction
at any locations in a basin could be worse than the base model
streamflow simulation due to overfitting. This poses an obvi-
ous obstacle to advances in DA for distributed models which
requires developing appropriate assimilation strategy to con-
strain large degrees of freedom causing a state and/or param-
eter identifiability problem.

In the following, we summarize previous studies that ad-
dress state and/or parameter identifiability when applying
DA techniques to distributed hydrologic modelling. Clark
et al. (2008) tested the impact of assimilating streamflow
at one location on streamflow prediction at other locations
in the Wairau River basin in New Zealand by using the
ensemble square root Kalman filter (EnSRF) and the dis-
tributed model TopNet. They obtained degraded streamflow
results from assimilation at independent validation locations
in the basin, highlighting the importance of accurately mod-
elling spatial variability, or correlation structure of hydrolog-
ical processes in order to improve streamflow prediction at
ungauged locations by assimilating streamflow observations
from elsewhere in the basin. With the limited data available
in field operations, the assimilation technique may neces-
sarily adjust state variables at some lumped fashion (e.g.,
at the sub-basin scale) that reflects or preserves the spatial
correlation length or structure of hydrological processes. Lee

et al. (2011) found in a synthetic experiment using the El-
don basin (ELDO2) in Oklahoma that assimilating outlet
flow into the gridded SAC via variational assimilation de-
graded streamflow prediction at interior locations. This indi-
cates difficulty of solving the inverse problem in distributed
modelling based on the limited information available in the
outlet flow data alone, and points out the need for differ-
ent assimilation strategies to reduce the degrees of freedom
associated with the problem. Van Loon and Troch (2002)
noted degraded prediction of ground water depth at some
locations in a 44-ha catchment in Costa Rica from assimi-
lating soil moisture measured by a Trime time domain re-
flectometry (TDR) system at multiple sites. The above re-
sult was obtained even though discharge predictions were
benefited considerably from soil moisture assimilation. Chen
et al. (2011) carried out assimilation of 20 different sets of
synthetically generated soil moisture observations into the
SWAT model with the ensemble Kalman filter (EnKF). They
found that, for some cases, analyses of groundwater flow
and percolation rate were degraded. Brocca et al. (2010) as-
similated the rescaled Soil Wetness Index (SWI) into the
semi-distributed model Modello Idrologico SemiDistribuito
in continuo (MISDc) in a synthetic experiment. They found
that the assimilation results for flood prediction were de-
graded for some experimental settings. Performance degra-
dation following assimilation from above studies may be
due to a combination of factors, including inadequate model
physics as mentioned in Van Loon and Troch (2002) and
Chen et al. (2011) or inappropriate assimilation strategy. Al-
though it is difficult to trace the causes in real-world appli-
cations due to the presence of a number of different error
sources and their unknown characteristics, the degraded as-
similation results in the above studies warrant exploring dif-
ferent assimilation strategies.

To address the aforementioned issues with DA into dis-
tributed models in an operational setting and to develop an
effective assimilation strategy in order to limit the degrees of
freedom in DA with distributed models, in this study we in-
vestigate the effect of the spatiotemporal scale of adjustment
on analysis and prediction of streamflow. The analysis and
prediction are generated by assimilating streamflow data into
the distributed SAC-SMA and kinematic-wave routing mod-
els of HL-RDHM with the variational DA procedure (Seo
et al., 2010; Lee et al., 2011). We tested nine spatiotempo-
ral adjustment scales based on combinations of three spatial
scales of adjustment (lumped, semi-distributed, distributed)
to state variables and three temporal scales (hourly, 6-hourly,
fast-response time of the basin) of adjustment to mean field
bias in the precipitation and PE data. The strategy of adjust-
ing short-term biases in the forcing data in the assimilation
procedure is motivated by the use of long-term bias adjust-
ment factors in the SAC-SMA model calibration. Adopting
a coarser spatiotemporal adjustment scale would reduce the
dimensionality of the control vector, which may help pre-
vent overfitting when solving the inverse problem. For basins
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Fig 1. Schematic of the gridded SAC and kinematic-wave routing models of HL-RDHM (from Lee 801 
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Fig. 1.Schematic of the gridded SAC and kinematic-wave routing models of HL-RDHM (from Lee et al., 2011).

with highly heterogeneous soil and physiographic properties
and precipitation patterns, however, a finer adjustment scale
may be preferable. In this work, three streamflow assimila-
tion scenarios are considered, i.e., assimilating interior flow
observations only, outlet flow observations only, or all flow
observations. Given a spatiotemporal adjustment scale, each
streamflow assimilation scenario is carried out for four basins
in Oklahoma and five basins in Texas, US.

The paper is organised as follows: Sect. 2 describes the
methodology including the hydrologic model, the assimi-
lation technique, and the evaluation metrics; Sect. 3 de-
scribes the study basins; Sect. 4 describes the multi-basin
experiment and presents the results and discussions; and fi-
nally, Sect. 5 summarises conclusions and future research
recommendations.

2 Methodology

2.1 The gridded SAC and kinematic-wave routing
models of HL-RDHM

The models used are the gridded Sacramento Soil Mois-
ture Accounting (SAC-SMA) and kinematic-wave routing
models of the National Weather Service (NWS) Hydrology
Laboratory’s Research Distributed Hydrologic Model (HL-
RDHM, Koren et al., 2004). The SAC-SMA is a conceptual
rainfall runoff model (Burnash et al. 1973) which calculates
fast and slow runoffs from two subsurface zones, i.e., Upper

Zone (UZ) and Lower Zone (LZ). The UZ is thinner than the
LZ and consists of tension and free water storages. The LZ is
composed of tension and primary and supplemental free wa-
ter storages. Soil moisture states at each subsurface storage
compartment are named as Upper Zone Tension Water Con-
tent (UZTWC), Upper Zone Free Water Content (UZFWC),
Lower Zone Tension Water Content (LZTWC), Lower Zone
Primary Free Water Content (LZFPC), and Lower Zone Sup-
plemental Free Water Content (LZFSC) (Koren et al., 2004).
The sum of the surface and subsurface runoff is then routed
through the kinematic-wave routing model to calculate flow
at each HRAP grid. The models operate at an hourly time
step on the Hydrologic Rainfall Analysis Project (HRAP)
grid (∼ 16 km2) (Greene and Hudlow, 1982; Reed and Maid-
ment, 1999). The NEXRAD-based multi-sensor precipita-
tion data (Fulton et al., 1998; Seo, 1998; Seo et al., 1999;
Young et al., 2000) are available on the HRAP grid, a pri-
mary reason for its use by HL-RDHM. If higher-resolution
data and model parameters are available, it is possible to
run HL-RDHM on a finer grid. For PE, monthly climatol-
ogy is used (Smith et al., 2004). Figure 1 shows a schematic
of the gridded SAC and kinematic-wave routing models of
the HL-RDHM (Lee et al., 2011). The a priori estimates of
the SAC parameters (Koren et al., 2000) are derived from the
soil data, STATSGO2 (NRCS, 2006) and SSURGO (NRCS,
2004). Optimisation of the a priori parameters is carried out
via manual or automatic calibration (Koren et al., 2004). For
the four Oklahoma basins, we used the manually-optimised
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parameters used in the Distributed Model Intercomparison
Project (DMIP, Smith et al., 2004). For the five Texas basins,
we used the manual calibration results from WGRFC. The
routing parameters are estimated from the DEM, channel
hydraulic data and observed flow data (Koren et al., 2004).
The flow direction from upstream to downstream HRAP grid
cells is determined by the Cell Outlet Tracing with an Area
Threshold (COTAT) algorithm (Reed, 2003) using the Digi-
tal Elevation Model (DEM) data. We note here that, in this
study, streamflow predictions were generated assuming per-
fectly known forcing, i.e., using the historical observed forc-
ing data rather than forecast forcing because our primary in-
terest here is in reducing hydrologic uncertainty (Krzyszto-
fowicz, 1999; Seo et al. ,2006).

2.2 DA procedure

The automated DA procedure used in this study is based
on the variational DA (VAR) technique. There are a num-
ber of reasons for this choice among different DA tech-
niques. While simpler to implement, EnKF is optimum only
if the observation equation is linear, which is easily violated
when assimilating streamflow for soil moisture updating. On
the other hand, the VAR technique is optimum in the least
squares sense, even if observation equations are strongly
nonlinear (Zhang et al., 2001). Also, since the VAR proce-
dure is smoother than a filter and, hence, equivalent to ensem-
ble Kalman smoother, but with an ability to handle nonlin-
ear observation equations, it can easily account for the time
lag due to flow routing (Seo et al., 2003; Clark et al., 2008;
Pauwels and De Lannoy, 2006; Weerts and El Serafy, 2006).
In theory, one may use the particle filter to overcome the
linearity or distributional assumptions (Doucet et al., 2001;
Pham, 2001). In reality, however, particle filtering is compu-
tationally prohibitively expensive for high-dimensional prob-
lems such as the one dealt with in this work.

In the following, we formulate the DA problem for the
gridded SAC and kinematic-wave routing models of HL-
RDHM, which may be stated as follows:Given the a pri-
ori SAC states at the beginning of the assimilation window
and observations/estimates of precipitation, potential evapo-
transpiration (PE) and streamflow at the outlet and/or inte-
rior locations, update the state variables of the gridded SAC
and kinematic-wave routing models by adjusting the initial
SAC states and multiplicative biases for precipitation and PE
over the assimilation window at the predefined spatiotempo-
ral scales of adjustment.

The VAR technique formulates the above as a least-
squares minimisation problem that minimises the objective
function J constrained by the model physics (Lewis et al.,
2006; Liu and Gupta, 2007):

Minimize

JK

(
XS,K−L, XP,k, XE,k, XW,k

)
=

1

2

K∑
k=K−L+1[

ZQ,k − HQ,k

(
XS,K−L, XP,K−L+1:k, XE,K−L+1:k, XW,K−L+1:k

)]T R−1
Q,k[

ZQ,k − HQ,k

(
XS,K−L, XP,K−L+1:k, XE,K−L+1:k, XW,K−L+1:k

)]
+

1

2

K∑
k=K−L+1

[
ZP,k − HP,kXP,k

]T R−1
P,k

[
ZP,k − HP,k XP,k

]
+

1

2

K∑
k=K−L+1

[
ZE,k − HE,kXE,k

]T R−1
E,k

[
ZE,k − HE,k XE,k

]
+

1

2

[
ZB,K−L − HB XS,K−L

]T R−1
B,K−L

[
ZB,K−L − HB XS,K−L

]
+

1

2

K∑
k=K−L+1

XT
W,k R−1

W,k XW,k (1)

subject to


XS,k = M

(
XS,k−1,XP,k,XE,k,XW,k

)
,

k = K − L + 1, ...,K

Xmin
S,j,i≤XS,j,i,k≤Xmax

S,j,i

k = K − L,...,K;j = 1, ...,nS; i = 1, ...,nC

(2)

The objective function presented above is based on the fol-
lowing observation equations:

ZB,K−L = HB XS,K−L + V B,K−L (3)

ZP,k = HP,k XP,k + V P,k (4)

ZE,k = HE,k XE,k + V E,k (5)

ZQ,k = HQ,k

(
XS,K−L, XP,K−L+1:k, XE,K−L+1:k,

XW,K−L+1:k

)
+ V Q,k (6)

In Eqs. (1) to (6),XS,k−1, XS,k, and XS,K−L denote
the five SAC states (UZTWC, UZFWC, LZTWC, LZFSC,
LZFPC) at hourk − 1, k, and K − L, respectively;XP,k

andXE,k denote the multiplicative adjustment factors for bi-
ases in precipitation and PE at hourk, respectively;ZB,K−L,
ZP,k, ZE,k, and ZQ,k denote the observations of SAC
states at the beginning of the assimilation window, precip-
itation, PE, and streamflow, respectively;HP,k and HE,k

are the same asZP,k and ZE,k (this follows from the
fact thatXP,k andXE,k are multiplicative adjustment fac-
tors), respectively;HQ,k represents the gridded SAC and
kinematic-wave routing models;HB is the identity matrix;
XW,k denotes the model error;V B,K−L, V P,k, V E,k and
V Q,k denote the measurement error vectors associated with
ZB,K−L, ZP,k, ZE,k, andZQ,k, respectively;XP,K−L+1:k

denotesXP,K−L+1, XP,K−L+2, ..., XP,k; XE,K−L+1:k de-
notesXE,K−L+1, XE,K−L+2, ..., XE,k; XW,K−L+1:k de-
notesXW,K−L+1, XW,K−L+2, ..., XW,k; RP,k, RE,k, RQ,k,
RB,K−L, and RW,k represent the observation error covari-
ance matrices associated withZP,k, ZE,k, ZQ,k, ZB,K−L,
and a priori estimates of the model error, respectively.

In simplifying the above minimisation problem, we drop
the model error,XW,k because, in reality, little is known
about its statistical properties. Seemingly an oversimplifica-
tion, such strong-constraint formulation (Zupanski, 1997) is
still very reasonable for our problem becauseV P,k andV E,k

in Eqs. (4) and (5) act like model errors to a certain extent
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(Seo et al., 2003). We then assume that the observation errors
are independent and time-invariant (Seo et al., 2003) so that
RP,k, RE,k, RQ,k andRB,K−L become diagonal and static.
This assumption significantly reduces statistical modelling
and computational requirements. Eq. (7) shows the resulting
objective function used in this work:

Minimize

JK

(
λj,i, XP,k, XE,k

)
=

1

2

K∑
k=K−L+1

nQ∑
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ZQ,l,k − HQ,l,k

(
XS,K−L, XP,K−L+1:k, XE,K−L+1:k

)]2
σ−2

Q,l

+
1

2

K∑
k=K−L+1

Z2
P,k

[
1 − XP,k

]2
σ−2

P

+
1

2

K∑
k=K−L+1

Z2
E,k

[
1 − XE,k

]2
σ−2

E

+
1

2

nS∑
j=1

nC∑
i=1

[
ZB,j,i,K−L − λj,i ZB,j,i,K−L

]2
σ−2

B,j,i (7)

subject to


XS,k = M

(
XS,k−1, XP,k, XE,k

)
,

k = K − L + 1, ..., K

Xmin
S,j,i ≤ XS,j,i,k ≤ Xmax

S,j,i,

k = K − L, ..., K; j = 1, ..., nS; i = 1, ..., nC

(8)

Equations (7) and (8) pose a nonlinear constrained least-
squares minimisation problem with the model dynamics as a
strong constraint. In Eqs. (7) and (8),nQ denotes the number
of stream gauge stations,ZQ,l,k denotes the streamflow ob-
servation at thel-th gauge station at hourk, andZB,j,i,K−L

denotes the background (i.e., the a priori or before-DA)
model soil moisture state associated with thej -th state vari-
able andi-th cell at the beginning of the assimilation win-
dow, HQ,l,k() denotes the observation operator that maps
XS,K−L to streamflow at thel-th gauge station and hourk,
XS,K−L denotes the SAC states at hourK − L, σQ,l denotes
the standard deviation of the streamflow observation error
at thel-th stream gauge location,σP andσE denote the er-
ror standard deviations of observed precipitation and PE, re-
spectively,σB,j,i denotes the standard deviation of the error
associated with thej -th background model state at thei-th
grid, andλj,i denotes the multiplicative adjustment factor to
ZB,j,i,K−L. The vectorXS,K−L consists ofλj,i ZB,j,i,K−L.

At the beginning of the minimisation, the control vari-
ables,XP,k, XE,k, and λj,i , are set to unity for alli, j ,
and k. During the minimisation, we allowXP,k and XE,k

to vary hourly or 6-hourly or keep them constant over the
entire assimilation window andλj,i to be adjusted at each
cell, uniformly over each sub-catchment or over the entire
basin. The computation time for the model simulation was
not very sensitive to the spatiotemporal scale of adjustment.
Equations (7) and (8) are solved using the Fletcher-Reeves-
Polak-Ribiere minimisation (FRPRMN) algorithm (Press et
al., 1992), a conjugate gradient method. Gradients of the
objective function with respect to the control vector were

calculated using the adjoint code generated from Tapenade
(http://tapenade.inria.fr:8080/tapenade/index.jsp).

2.3 Evaluation metrics

The performance of DA procedure is evaluated using correla-
tion coefficient (r), skill score (SS), root-mean-square-error
(RMSE), and timing error (TE). We developed two types of
correlation-based matrices (r1, andr2) as defined in Eqs. (9)
to (10) below. Ther1-matrix defines spatial (i.e., intersta-
tion) correlation of streamflow, either observed or simulated,
at paired gauge locations. Ther2-matrix compares differ-
ences in spatial correlation between observed and simulated
streamflow in off-diagonal entries, and defines correlation
between the two at the same locations in diagonal entities.

r1(Q) = R
(
Qi, Qj

)
for all i andj (9)

r2
(
Q−

s , Qo

)
=

R
(
Q−

s,i, Q−

s,j

)
− R

(
Qo,i, Qo,j

)
if i 6= j

R
(
Q−

s,i, Qo,j

)
if i = j

(10)

whereR denotes the operator for the Pearson’s correlation
coefficient between the two streamflow time series;Q−

s,i

and Q−

s,j denote the simulated flow (without assimilation)
at gaugesi andj , respectively;Qo,i andQo,j denote the ob-
served flow at gaugesi andj , respectively;Q in Eq. (9) can
be eitherQ−

s or Qo; subscriptsi andj denote the indices for
the stream gauges at interior or outlet locations.

The Skill Score (SS; Murphy, 1996) is calculated based on
the summed squared errors of simulated streamflow before
and after assimilation:

SS= 1 −

k2∑
k=k1

(
Q+

s,k − Qo,k

)2

k2∑
k=k1

(
Q−

s,k − Qo,k

)2
(11)

In the above,k denotes the time index,Q−

s,k andQ+

s,k denote
the simulated streamflow valid at timek before and after as-
similation, respectively;Qo,k denotes the streamflow obser-
vation valid at timek. A positive SS means improvement af-
ter assimilation and the opposite for a negative SS. The SS
value is 1 if DA is perfect and 0 if DA adds nothing.

Root-Mean-Square-Error (RMSE) of streamflow is calcu-
lated by Eq. (12) whereQs,k denotes eitherQ−

s,k or Q+

s,k.

RMSE =

√√√√ 1

k2 − k1 + 1

k2∑
k=k1

(
Qs,k − Qo,k

)2 (12)

Timing Error (TE) in streamflow simulation is represented
by the phase difference between observed and simulated hy-
drographs as computed by a wavelet-based technique (Liu et
al., 2011).

TE =
T

2π
tan−1

(
=
(〈
s−1WXY

n (s)
〉)

<
(〈
s−1WXY

n (s)
〉)) (13)

www.hydrol-earth-syst-sci.net/16/2233/2012/ Hydrol. Earth Syst. Sci., 16, 2233–2251, 2012

http://tapenade.inria.fr:8080/tapenade/index.jsp


2238 H. Lee et al.: Variational assimilation of streamflow into operational distributed hydrologic models

47 

 

 805 

Fig 2. Map showing the locations of study basins, channel network, and stream gauges 806 
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Fig. 2.Map showing the locations of study basins, channel network and stream gauges.

whereT denotes the equivalent Fourier period of the wavelet;
s and n denote the scale and location parameter of the
wavelet, respectively;WXY

n (s) denotes the cross wavelet
spectrum of the two time seriesX andY ; =() and<() denote
the imaginary and real parts of the variable bracketed, respec-
tively; 〈 〉 denotes the smoothing operation in both time and
frequency domains (Torrence and Compo, 1998). The TE has
a unit of time, e.g., h. A smaller TE means better model per-
formance. In our study, a positive/negative TE means that
the simulated hydrograph leads/trails the observed hydro-
graph. Compared to small basins, large basins may produce
large TE because of longer travel time. Further details on the
wavelet-based timing error estimation technique are found in
Liu et al. (2011).

3 Study basins

Figure 2 shows the nine basins used in this study, and Ta-
ble 1 provides additional details on the data used for each
basin. In Fig. 2, ELDO2 and SLOA4 are nested in the Illinois
River basin located near the border of Oklahoma (OK) and
Arkansas (AR); TIFM7 is a part of the Elk River basin near
the border of Missouri (MO) and Arkansas (AR); BLUO2 is
a headwater basin to the Blue River in southern Oklahoma
(OK). These four basins are located in the service area of
the Arkansas-Red Basin River Forecast Centre (ABRFC).
The other five basins, GBHT2, HBMT2, ATIT2, KNLT2,
HNTT2, are located in Texas (TX) in the service area of
the West Gulf River Forecast Centre (WGRFC). Topogra-
phy of the ABRFC basins ranges from gently rolling to hilly
with the maximum elevation difference between the basin

outlet and the interior exceeding 200 m (Smith et al., 2004).
In contrast, topography of the WGRFC basins is generally
characterised as flat to very flat (Vieux, 2001). Very large
runoff coefficients for HBMT2 and GBHT2 are due mainly
to the large urbanised areas around Houston, TX (Liscum,
2001). In particular, HBMT2 has an extremely large runoff
coefficient due to the combined effect of 85 % of the wa-
tershed area being highly developed, clayey soils with low
infiltration rates, and the lower 42 km of the channel be-
ing lined with concrete (Vieux, 2001). The basins, BLUO2,
KNLT2, HNTT2 and ATIT2 are relatively dry with annual
precipitation of less than 850 mm and runoff coefficients
of less than 0.14 (Table 1). As with HBMT2, these four
basins are also largely covered by clayey soils. Morphologi-
cally, BLUO2 is very elongated. SLOA4 and TIFM7 have a
radial channel network with tributaries with similarly-sized
drainage areas. Figure 3 shows the maps of delineated sub-
basins, the soil type and mean event precipitation on the
HRAP grid for each basin; selected flood events summarised
in the Table 2 are used to calculate mean event precipitation.
In Fig. 3, sub-basins were delineated based on the channel
connectivity information derived from the COTAT algorithm
(Reed, 2003) and an area threshold for channel cell identifi-
cation, which delineates the channel network the most sim-
ilar to the actual channel network. Inter-grid variability of
mean event precipitation ranges from 12 (HBMT2) to 90 mm
(HNTT2). The basins BLUO2 and HNTT2 show a clearer
pattern of spatial variability of precipitation than the other
basins. Mean event precipitation in the upper half of the
BLUO2 basin is approximately 25 mm smaller than that in
the lower half. Each basin has one or more interior stream
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Fig 3. Map of delineated sub-basins, soil type, and mean accumulated rainfall per event.  810 
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Fig. 3.Map of delineated sub-basins, soil type and mean accumulated rainfall per event.

gauges (nine for ATIT2). The drainage area ranges from 137
(GBHT2) to 2258 (TIFM7) km2.

4 Streamflow DA experiments

4.1 Experimental design and procedure

Simulation experiments were carried out in which stream-
flow data were assimilated into the distributed SAC-SMA at
the pre-specified spatiotemporal scale of adjustment. Three
streamflow assimilation scenarios are considered: outlet flow
assimilation, interior flow assimilation, and outlet and inte-
rior flow assimilation. The experiment is designed to inves-
tigate: (1) the effect of spatiotemporal adjustment scale on
streamflow analysis and prediction, (2) the sensitivity of the
optimum spatiotemporal adjustment scale to the streamflow
assimilation scenario, and (3) the performance of the DA pro-
cedure at the optimum spatiotemporal adjustment scale. The
experiment is composed of the following four steps:

– Step 1: carry out the base model simulation (i.e., without
assimilation) and evaluate its performance on stream-
flow simulation.

– Step 2: estimate the observational error variances.

– Step 3: given a spatiotemporal adjustment scale, assim-
ilate streamflow observations into the model for each of

the three assimilation scenarios, i.e., assimilation of out-
let flow, of interior flow, and of both outlet and interior
flows.

– Step 4: repeat Step 3 for each of the nine spatiotemporal
adjustment scales.

In Step 2, the sensitivity of the performance of DA on
streamflow observational error variance (σ 2

Q) is examined to

obtain an optmumσ 2
Q. In these sensitivity runs, seven dif-

ferent values forσ 2
Q (0.01, 0.1, 1, 10, 100, 1000, 10000

(m3 s−1)2) were used for each of three streamflow assim-
ilation scenarios. The results show thatσ 2

Q = 10 (m3 s−1)2

yields the best results for streamflow analysis and prediction
in terms of RMSE for all basins except TIFM7, for which
σ 2

Q = 100 (m3 s−1)2 was better. For each basin, the optimum

σ 2
Q showed largely insensitive to the assimilation scenario

possibly because similar properties associated with flow pro-
cesses and channel geometry at upstream and downstream
locations in the same basin result in the similar amount of er-
ror in the estimation of the rating curve and the rating curve-
to-flow conversion at those locations. Observational error
variances for precipitation and PE are taken directly from
Seo et al. (2003). Sample variances calculated from the base
model simulation for the entire period of record were used
as error variances for background model states (Lee et al.,
2011). We assumed that the streamflow observation errors
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Table 1.Study basins whereA denotes drainage area,NG the number of interior stream gauges in a basin,P mean annual precipitation,Q

mean annual runoff,C runoff coefficient.

Location of Basin and A USGS ID NG Period of P Q C

stream sub-basin (km2) record (mm yr−1) (mm yr−1)
gauge at the name
basin outlet

Baron Fork ELDO2 795 7197000 2 Jan 1996– 1163 371 0.32
at Eldon, DUTCH 105 7196900
OK CHRISTI 65 7196973 Jan 2004

Illinois SLOA4 1489 7195430 3 Apr 2000– 1324 383 0.29
River South SAVOY 433 7194800 Jan 2002
of Siloam ELMSP 337 7195000
Springs, AR CAVESP 90 7194880

Elk river TIFM7 2258 7189000 2 May 2000– 1117 246 0.22
near Tiff LANAG 619 7188885 Sep 2006
City, MO POWELL 365 7188653

Blue river BLUO2 1232 7332500 1 Oct 2003– 846 117 0.14
near Blue, BLUP2 419 7332390 Sep 2006
OK

Brays Bayou HBMT2 246 08075000 1 Jan 1997– 1202 1124 0.94
at Houston, GSST2 136 08074810 Jul 2009
TX

Greens GBHT2 137 08076000 1 Jan 2000– 1467 944 0.64
Bayou near HGBT2 95 08075900 Jul 2009
Houston, TX

Sandy Creek KNLT2 904 08152000 2 Oct 1997– 767 68 0.09
near SNBT2 401 ∗ Sep 2008
Kingsland, OXDT2 381 ∗

TX

Guadalupe HNTT2 769 08165500 1 Jan 1998– 697 82 0.12
River at HNFT2 438 08165300 Jun 2009
Hunt, TX

Onion Creek ATIT2 844 08159000 9 Jan 1997– 752 96 0.13
at US Hwy ONIT2 469 08158827 Jun 2009
183, Austin, BDUT2 437 ∗

TX DRWT2 321 08158700
BRBT2 62 08158819
SLHT2 60 08158860
AAIT2 49 08158930
BCDT2 32 08158810
SCAT2 21 08158840
WKLT2 16 08158920

∗ denotes stream gauges operated by Lower Colorado River Authority.

are homoscedastic and that the observation errors for pre-
cipitation and PE are homogeneous in space. These assump-
tions may be lifted in the future in order to more effectively
constrain the assimilation problem, relying on advances in
uncertainty techniques that properly parameterise and quan-
tify uncertainty associated with stage measurement, stage to
discharge conversion, and spatial correlation of forcing error
(Clark et al., 2008; Mandapaka et al., 2009).

4.2 Results and discussion

In this subsection, the experiment results are comparatively
evaluated. We focus on analysis vs. prediction and depen-
dent vs. independent validation to address the questions as-
sociated with overfitting due to large degrees of freedom in
distributed modelling.
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Table 2. The length of assimilation window, the number of sub-basins delineated from the channel connectivity map, the number of flood
events denoted asNF and the threshold of streamflow (QT) used to identify flood events.

Basin name ELDO2 SLOA4 TIFM7 BLUO2 HBMT2 GBHT2 KNLT2 HNTT2 ATIT2

Assimilation 36 48 60 60 42 48 36 30 36
window
length (h)

No. of sub- 3 3 5 5 3 3 5 3 3
basins
QT (m3 s−1) 200 200 200 100 400 150 200 200 100

NF 17 7 15 7 20 16 15 9 23
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Fig 4. Spatial correlation structure of the streamflow processes.  814 
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Fig. 4.Spatial correlation structure of the streamflow processes.

4.2.1 Analysis of the assimilation problem

Prior to assimilation, we assess for each basin the level of
complexity of the assimilation problem by examining the
spatial correlation structure of observed and base-simulated
streamflow, and the basin characteristics such as spatial het-
erogeneity of soil and precipitation. Figure 4 presents the
correlation-based matrices of streamflow. In Fig. 4, the cor-
relation coefficients were calculated using streamflow data
at any paired gauges (i.e., interior and outlet as well as in-
terior and interior). The data were paired at concurrent time
steps due to the difficulty of correctly estimating travel time
for all paired gauges. Correlations of time-lagged simulated
interior and outlet flow as a function of a lag time closely fol-
lowed those based on streamflow observations. This supports
the idea of using correlation matrices in Fig. 4 for analysing
spatial correlation structure of streamflow. The 1st row of
Fig. 4 presents ther1-matrices (see Eq. 9) showing the spa-
tial correlation of observed streamflow. In all correlation ma-
trices, the stream gauges are sorted in the increasing or-
der of the drainage area starting from the bottom-left cor-
ner. Note in Fig. 4 that, for most basins, observed stream-
flow at the outlet is highly correlated with that at interior
locations. For BLUO2, the low correlation between the in-
terior and outlet flows may be due to the distance between
the two and large variability in precipitation. For ELDO2,

the weak spatial correlation in flow between the outlet and
DUTCH may be contributed by the different soil types. For
ATIT2, the upstream flows at some interior gauges, particu-
larly SCAT2 and BCDT2, are weakly correlated with down-
stream flows at BDUT2 and at the outlet. This may be due to
the small drainage areas involved and the locations of SCAT2
and BCDT2 being on minor tributaries. The 2nd row in Fig. 4
shows ther1-matrices of streamflow from base model simu-
lation, and the 3rd row in Fig. 4 presentsr2-matrices (Eq. 10)
of observed and simulated flows prior to assimilation, respec-
tively. Both r1- andr2-matrices in the 2nd and 3rd rows in
Fig. 4 indicate that the model simulation generally well re-
produces the spatial correlation of streamflow at two loca-
tions in a basin, particularly for GBHT2, HBMT2, HNTT2
and KNLT2 for which the differences in correlation between
observed and simulated streamflow (off-diagonal terms in
r2) are less than 0.1. In addition to the absolute value of
r2 off-diagonal terms, the unity of their signature is treated
as another information associated with the degree of com-
plexity of the assimilation problem; that is, overall overes-
timation or underestimation of spatial correlation structure
of the streamflow is considered less ill-posed than combina-
tion of over- and under-estimation. In the latter case, inde-
pendent validation results posterior to the assimilation may
benefit less at any adjustment scales than the former due to
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Fig 5. Mean skill score of streamflow analysis where mean skill score is obtained by averaging 817 

mean squared error-based skill score calculated for individual event (D: distributed, S: semi-818 
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821 

Fig. 5. Mean skill score of streamflow analysis where mean skill score is obtained by averaging mean squared error-based skill score
calculated for individual event (D: distributed, S: semi-distributed, L: lumped, 1: 1-h, 6: 6-h, W: the length of time equal to that of the
assimilation window).

the interference of the correlation to the assimilation proce-
dure in a complicated way. In this regard, ELDO2, ATIT2,
KNLT2 and SLOA4 can be viewed as more ill-posed than
the other basins.

4.2.2 Effect of spatiotemporal adjustment scale on the
performance of the DA procedure

Figures 5 and 6 show the mean SS for streamflow analy-
sis and prediction, respectively, for all assimilation scenarios
and adjustment scales. As described in Sect. 2.1, streamflow
prediction with assimilation is made with updated state vari-
ables at the prediction time and historical observed precipita-
tion data and monthly climatology of PE over the forecasting
window. For streamflow analysis (Fig. 5), the mean SS is cal-
culated by averaging the SS values calculated at every hour
within the assimilation window for each event and for each

gauge location separately (Eq. 14). For streamflow predic-
tion (Fig. 6), the mean SS is calculated by averaging the SS
values calculated at every hourly lead time up to 6 hours for
each event and for each gauge location separately (Eq. 14).

mean SS=
1

NT NG NF

NT∑
τ=1

NG∑
j=1

NF∑
i=1

SSi,j,τ (14)

In the above, SSi,j,τ denotes the skill score (Eq. 11) calcu-
lated for thei-th event,j -th gauge,τ -th hour of lead time;
NT denotes the number of lead hours considered, e.g.,NT

denotes the length of the assimilation window (Table 2) for
Fig. 5, andNT = 6 for Fig. 6; NG denotes the number of
gauges involved;NF denotes the number of selected flood
events for each basin (Table 2). Note that the mean SS pre-
sented in Figs. 5 and 6 equally weighs SS for each event. Fig-
ures 5 and 6 may be summarised as follows. The performance

Hydrol. Earth Syst. Sci., 16, 2233–2251, 2012 www.hydrol-earth-syst-sci.net/16/2233/2012/



H. Lee et al.: Variational assimilation of streamflow into operational distributed hydrologic models 2243

51 

 

 822 

Fig 6. Same as Fig 5 but for streamflow prediction for 1- to 6-hr lead time. 823 
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825 

Fig. 6.Same as Fig. 5, but for streamflow prediction for 1- to 6-h lead time.

of DA is less sensitive to the temporal adjustment scale than
the spatial adjustment scale. The basins with high spatial cor-
relation between interior and outlet flows (GBHT2, HBMT2,
HNTT2), show less sensitive in DA performance to the spa-
tial adjustment scale than those with lower correlation. For
BLUO2, lumped adjustment yields less improvement than
other assimilation cases due possibly to the low spatial cor-
relation of interior and outlet flows. In a number of indepen-
dent validation cases (i.e., validating assimilation results with
streamflow data not used in the assimilation), the mean SS for
streamflow analysis is less than zero, suggesting overfitting.
For GBHT2, HNTT2 and KNLT2, assimilating interior flows
produced positive mean SS for streamflow prediction for the
first 6 h of lead time at both interior and outlet locations.
However, assimilating outlet flow generally degrades interior
flow prediction for most basins, compared to the base model
simulation. This implies assimilating interior flow makes the
DA problem less subject to overfitting. Note that some events

are affected by timing errors in the model simulation which
are partially responsible for small to negative mean SS for
some cases. We further discuss timing errors at the end of
this section.

To further examine the sensitivity of DA performance
to the adjustment scale, Figs. 7 and 8 show the box-and-
whiskers plot of the mean SS shown in Figs. 5 and 6, respec-
tively. In Figs. 7 and 8, each box-and-whiskers plot is con-
structed with 27 samples resulted from the combinations of
nine basins and three (space or time) scales. Figures 7 and 8
can be summarised as follows. The performance of DA is
generally higher at finer adjustment scales and is more sen-
sitive to the spatial adjustment scale than the temporal ad-
justment scale in terms of both the median SS and the in-
terquartile range of the SS. The DA performance greatly de-
pends on the streamflow assimilation scenario, i.e., assim-
ilating outlet and/or interior flow data. Assimilating outlet
flow does not improve interior flow simulation in most cases,
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Fig 7. Mean skill score vs. spatial adjustment scale where the mean skill score is obtained by 827 

averaging mean squared error-based skill score calculated for individual event. Mean skill score for 828 

the prediction period is calculated using streamflow predicted for 1- to 6-hr lead time. In the above, 829 

D, S, and L denote distributed, semi-distributed, and lumped ways of adjusting the SAC-states, 830 
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833 

Fig. 7.Mean skill score vs. spatial adjustment scale where the mean
skill score is obtained by averaging mean squared error-based skill
score calculated for individual event. Mean skill score for the pre-
diction period is calculated using streamflow predicted for 1- to
6-h lead time. In the above, D, S, and L denote distributed, semi-
distributed and lumped ways of adjusting the SAC-states, respec-
tively; Qo & Qi DA, Qo DA and Qi DA denote both outlet and in-
terior flow assimilation, outlet flow assimilation and interior flow
assimilation, respectively.

whereas, not surprisingly, assimilating interior flows typi-
cally improves outlet flow simulation to some degree. This
indicates the difficulty of propagating the information con-
tained in outlet flow data backward (i.e., upstream) through
the stream network and the hydrologic processes involved to
improve prediction of interior flow.

For the three different assimilation scenarios, “optimum”
spatiotemporal scales are selected for interior and outlet flow
predictions (Fig. 9). The selection is based on the mean
SS for streamflow analysis or prediction shown in Figs. 5
and 6. Not surprisingly, a number of cases in streamflow
analysis showed the largest improvement with the finest
spatiotemporal scale of adjustment. For streamflow predic-
tion, on the other hand, the optimum scale of adjustment
is spread over a broader range. This indicates the possible
large over-adjustment of state variables in the cases of dis-
tributed, hourly adjustment. Despite the issue associated with
the over-fitting problem, the cases of distributed, hourly ad-
justment generally produce the best assimilation results in
comparison to other adjustment scales.
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Fig. 8. Same as Fig. 7 but for the temporal adjustment scale. Here 1, 6, and W denote adjusting 835 

mean field bias in the precipitation and potential evaporation data on an 1-hr or 6-hr basis, or 836 

uniformly over the entire assimilation window, respectively. 837 

838 

Fig. 8. Same as Fig. 7, but for the temporal adjustment scale. Here
1, 6 and W denote adjusting mean field bias in the precipitation and
potential evaporation data on an 1-h or 6-h basis, or uniformly over
the entire assimilation window, respectively.

4.2.3 Performance of the DA procedure at the optimum
spatiotemporal adjustment scale

For more detailed quantitative analysis of the assimilation
results, we chose a single optimum adjustment scale for
each basin which produces reasonable assimilation results,
based on mean SS in Figs. 5 and 6, for analysis and pre-
diction of interior and outlet flows. The selected adjustment
scales are semi-distributed and hourly for GBHT2, lumped
and hourly for HBMT2 and distributed and hourly for all
the other basins. Figure 10 shows the RMSE of streamflow
analysis and prediction evaluated at every hour of lead time
for each basin and for each assimilation scenario. Figure 11
shows the amount of reduction in the RMSE of streamflow
analysis and prediction for all basins collectively. Figure 12
shows the timing error estimates from streamflow analysis
and prediction for each assimilation scenario.

To diagnose streamflow analysis similarly to Fig. 4, we ex-
amined the spatial correlation structure of streamflow anal-
ysis at the optimum spatiotemporal adjustment scale (not
shown). The spatial correlation between observed and simu-
lated flows at both interior and outlet locations are generally
improved for all basins by assimilating streamflow data, but
at the expense of slightly adjusting spatial correlation struc-
ture of streamflow. Especially, for ELDO2, the spatial corre-
lation between CHRISTIE and the outlet is improved notice-
ably after streamflow assimilation whereas, for ATIT2 and
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Fig. 9. Optimum spatiotemporal scales of adjustment for streamflow analysis and prediction for 840 

each basin and assimilation scenario. Underscored italic letters represent interior flow results and 841 

the others represent outlet flow results (A: ATIT2, B: BLUO2, E: ELDO2, G: GBHT2, Hb: 842 

HBMT2, Hn: HNTT2, K: KNLT2, S: SLOA4, T: TIFM7).   843 
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Fig. 9.Optimum spatiotemporal scales of adjustment for streamflow analysis and prediction for each basin and assimilation scenario. Under-
scored italic letters represent interior flow results and the others represent outlet flow results (A: ATIT2, B: BLUO2, E: ELDO2, G: GBHT2,
Hb: HBMT2, Hn: HNTT2, K: KNLT2, S: SLOA4, T: TIFM7).

KNLT2, the spatial correlation at some paired gauges was re-
duced after streamflow assimilation compared to that of base
model simulation. This indicates that the performance gains
from the DA do not always lead to improving the spatial cor-
relation structure of the streamflow, a possible symptom of
over-adjustment. In addition, examining the spatial correla-
tion structure of streamflow at all adjustment scales indicated
that, compared to outlet flow assimilation, interior flow as-
similation produces correlation structure that is more consis-
tent with that of observed streamflow. This may be explained
by the local information available in interior flow observa-
tions which is diluted at the outlet location due to the various
hydrologic and hydraulic processes involved.

Figure 10 shows the RMSE of streamflow as a function
of lead time. The lead time is negative over the assimila-
tion window and positive over the prediction horizon. For
GBHT2, HBMT2 and HNTT2, all three assimilation scenar-
ios improved both streamflow analysis and prediction. These
basins show high spatial correlation between interior and out-
let flows and the base model simulation reproduces the spa-
tial correlation structure very well (see Fig. 4). For ill-posed
basins ELDO2, ATIT2, KNLT2 and SLOA4, there is an indi-
cation of over-adjustment for streamflow analysis and predic-
tion. For ELDO2, over-adjustment is not conspicuous pos-
sibly due to the smaller basin size and the relatively better
base model simulation than the other ill-posed basins. For
BLUO2, weak spatial correlation between interior and outlet
flow may explain little improvement in streamflow at gauge
locations where the data were not assimilated. The basin
TIFM7 also shows similar results as BLUO2. It is noted that

for TIFM7 we use an observational error variance ten times
larger than that for the other basins. This may have consid-
erably reduced the amount of adjustment to state variables
at most cells. Overall, assimilating streamflow data generally
produces, expectedly, improved streamflow analysis and pre-
diction at that gauge location. The margin of improvement
at other locations varies, depending on the level of under-
determinedness and basin characteristics.

Figure 11 shows the margin of reduction in the RMSE
of streamflow analysis and prediction due to the assimila-
tion versus the peak flow of selected events. To evaluate the
overall performance of the VAR procedure, each plot is con-
structed with simulations from all nine basins. Assimilating
interior flow yielded similar improvement (14 % reduction in
RMSE with assimilation) to outlet flow assimilation in outlet
flow prediction for the first 6 h of lead time. In contrast, in the
case of outlet flow assimilation, gains in interior flow analy-
sis (19 % reduction in RMSE after the assimilation) did not
lead to improvement in multi-basin averaged skill in interior
flow prediction over the first 6 lead hours, even though break-
down into each basin showed RMSE reduction by assimila-
tion ranging from−31 % (ATIT2) to 14 % (GBHT2). This
indicates that the outlet flow assimilation case is more vul-
nerable to overfitting than the interior flow assimilation case.
Assimilating both outlet and interior flows outperforms the
outlet flow assimilation case in terms of outlet flow predic-
tion (22 % vs. 14 % reduction in RMSE with assimilation),
although outlet flow analysis is less improved (55 % vs. 59 %
reduction in RMSE with assimilation). This shows the value
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Fig. 10. RMSE of streamflow vs. lead hour where the lead hour is negative within the assimilation 847 

window.  848 
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Fig. 10.RMSE of streamflow vs. lead hour where the lead hour is negative within the assimilation window.

of additionally assimilating interior flow for streamflow pre-
diction at the basin outlet.

Phase (or timing) and flow magnitude are the two distinc-
tive attributes in hydrograph evaluation (Liu et al., 2011). To
examine the performance of DA, we also examine the tim-
ing error of a hydrograph within the assimilation and pre-
diction windows separately as estimated via wavelet anal-
ysis (Liu et al., 2011) (see Eq. 13). Note that our timing
error analysis is somewhat exploratory because of the ob-
jective equation, Eq. (7), used in this study, which includes
no explicit timing error modelling component. Figure 12
shows the box-and-whiskers plots of the timing error esti-
mates of simulated hydrographs that characterise inter-basin
and inter-event variability. In Fig. 12, the reference is the
event-scale timing error in the base simulation. On the whole,
timing errors in the simulated hydrographs following assim-
ilation at both outlet and interior stream gauge locations for

the assimilation period are generally smaller than the refer-
ence. While flow timing errors for the prediction period are
less improved via streamflow assimilation, their medians are
mostly free of timing error especially in the case of outlet
flow. For events with significant timing errors in the rising
limb, the assimilation procedure slightly improved the tim-
ing of streamflow analysis, but yielded significant magnitude
errors in predicted flows. Examples of this are illustrated in
Fig. 13. Note in the figure that the base model simulation for
Event A shows significant timing errors in the rising limb,
peak flow and the overall shape of the hydrograph, whereas
Event B has smaller timing errors than Event A. The above
situation arises due to lack of timing error modelling in the
DA formulation used in this study (see Eq. 7). As a result,
the VAR procedure over-adjusts control variables to com-
pensate for timing errors in streamflow analysis which re-
sult in magnitude errors in predicted flows. Further analysis
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Fig. 11. Reduction in the RMSE of streamflow analysis due to the assimilation vs. peak flows of 852 

selected events summarized in Table 2 (top panel); the bottom panel shows the same but for 853 

Fig. 11.Reduction in the RMSE of streamflow analysis due to the assimilation vs. peak flows of selected events summarised in Table 2 (top
panel); the bottom panel shows the same but for streamflow prediction for 1- to 6-h lead time. The RMSE is calculated for each event and
individual lead hour separately. The figure in the parenthesis denotes the percentage reduction in RMSE after the assimilation.

based onr2-matrices indicates that the assimilation problem
for events with timing errors of 3 h or bigger in the rising
limb or peak flow simulation is more ill-posed than the other
events, and that the spatial correlation structure of streamflow
from the entire simulation appear to be very similar to that of

events with timing errors. To address the above issues, tim-
ing errors must be dealt with explicitly, a topic left for future
endeavours.
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Fig. 12. Timing error estimates in the simulation of outlet and interior flows. The box-plot 862 

characterizes both inter-basin and event-to-event variability.  863 
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Fig. 12.Timing error estimates in the simulation of outlet and interior flows. The box-plot characterises both inter-basin and event-to-event
variability.

5 Conclusion and future work

The importance of hydrologic DA has been emphasised by
many researchers as a unifying approach to accounting for
different error sources in hydrologic model simulations in a
cohesive manner and improving skill in streamflow predic-
tion (Aubert et al., 2003; Liu and Gupta, 2007; Seo et al.,
2003, 2009; Clark et al., 2008; Vrugt et al., 2006). Com-
pared to lumped models, distributed rainfall-runoff models
are subject to overfitting to a much greater extent due to large
dimensionality of the inverse problem involved. In this work,
we investigated the effects of the spatiotemporal scale of ad-
justment in assimilating streamflow data at outlet and/or in-
terior locations into the NWS’s Hydrology Laboratory Re-
search Distributed Hydrologic Model (HL-RDHM, Koren et
al., 2004). The assimilation technique used is variational as-
similation similar to those used in Seo et al. (2009) with
lumped models and Lee et al. (2011) with distributed models.
For large sample evaluation, we used 4 basins in Oklahoma
and 5 basins in Texas in the US.

The main conclusions from this study are as follows:

– The optimum spatiotemporal scale of adjustment varies
from basin to basin and between streamflow analysis
and prediction. The latter indicates over-adjustment of
state variables. The performance of the assimilation pro-
cedure is more sensitive to the spatial scale of adjust-
ment than the temporal scale. The preferred strategy
identified in this study is to adjust the state variables in
a spatially distributed manner and precipitation and PE
on an hourly basis, despite the fact that validation with

streamflow at interior and outlet gauge locations at this
adjustment scale may indicate overfitting in some cases.

– The quality of streamflow analysis and prediction is
highly dependent on the availability of streamflow data
at interior locations. At the optimum spatiotemporal ad-
justment scale, assimilating interior flow and assimilat-
ing outlet flow yielded comparable improvement (14 %
reduction in RMSE after the assimilation) in outlet flow
prediction for the first 6 h of lead time. However, out-
let flow assimilation produced degraded interior flow
prediction for the first 6-h lead time (10 % increase in
RMSE after assimilation), but 15 % reduction in RMSE
in the case of assimilating interior flow observations.
This indicates that, as one might expect, outlet flow as-
similation is more susceptible to overfitting than inte-
rior flow assimilation. Assimilating both outlet and inte-
rior flows outperforms assimilating outlet flow only for
streamflow prediction at the outlet (22 % vs. 14 % re-
duction in RMSE with assimilation), indicating the im-
portance of additionally assimilating interior flow.

– Basins with highly correlated interior and outlet flows
tend to benefit more from streamflow assimilation and
be less sensitive to the adjustment scale. Streamflow as-
similation at most adjustment scales generally improves
the match in the interstation correlation pattern between
the observed and the simulated flows. Compared to out-
let flow assimilation, interior flow assimilation repro-
duces better the spatial correlation structure of observed
flow. This may be explained by the local information
available in interior flow observations, whereas at the
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Fig. 13.Streamflow evaluated at the outlet and interior gauge locations for two events in HNTT2. The adjustment scale used is distributed
and hourly. The data assimilated is outlet flow. Each curve represents analysis (at the prediction time) and prediction of hourly streamflow
generated at different prediction time.

outlet location the information is diluted, or fuzzed up,
due to the various intervening hydrologic and hydraulic
processes.

– Timing errors in streamflow analysis and prediction are
found to be largely related to the ill-posedness of the as-
similation problem, which was diagnosed using the in-
formation associated with the spatial correlation struc-
ture of streamflow. In the cases of events with signifi-
cant timing errors in rising limb, the assimilation proce-
dure yielded large magnitude errors in streamflow pre-
diction followed by slight improvement in the timing of
streamflow analysis. This indicates error compensation
with over-adjusting state variables due partly to a lack
of timing error modelling component in the objective
function used in this study.

The future work should include improving the DA
methodology to account for timing errors explicitly, account-
ing for the model structural error (Van Loon and Troch, 2002;
Chen et al., 2011) by applying the model as a weak constraint
(Zupanski, 1997), and generalising the procedure in an en-
semble framework via, e.g., maximum likelihood ensemble
filter (Zupanski, 2005).
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