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Abstract. The adequacy of the gamma distribution (GD) for
monthly precipitation totals is reconsidered. The motivation
for this study is the observation that the GD fails to represent
precipitation in considerable areas of global observed and
simulated data. This misrepresentation may lead to erroneous
estimates of the Standardised Precipitation Index (SPI), eval-
uations of models, and assessments of climate change. In
this study, the GD is compared to the Weibull (WD), Burr
Type III (BD), exponentiated Weibull (EWD) and gener-
alised gamma (GGD) distribution. These distributions extend
the GD in terms of possible shapes (skewness and kurtosis)
and the behaviour for large arguments. The comparison is
based on the Akaike information criterion, which maximises
information entropy and reveals a trade-off between devia-
tion and the numbers of parameters used. We use monthly
sums of observed and simulated precipitation for 12 calendar
months of the year. Assessing observed and simulated data,
(i) the Weibull type distributions give distinctly improved fits
compared to the GD and (ii) the SPI resulting from the GD
overestimates (underestimates) extreme dryness (wetness).

1 Introduction

The Standardised Precipitation Index (SPI) is widely applied
to characterise extreme dryness or wetness. An increasing
number of publications uses the SPI to diagnose observed
precipitation deficits or excesses and analyse its variabil-
ity (for example:Vicente-Serrano, 2006; Lopez-Moreno and
Vicente-Serrano, 2008; Mo and Schemm, 2008; Bordi et al.,
2009; Bothe et al., 2010; Santos et al., 2010; Zhu et al.,

2011). The SPI is further applied as a monitoring tool, to pro-
vide the actual state of meteorological, agricultural and hy-
drological conditions of drought and wetness (US Drought
Monitor1). The World Meteorological Organisation (WMO
press release No. 872, December 2009) as well as the “Lin-
coln declaration on drought indices” (Hayes et al., 2011) rec-
ommend the SPI to all meteorological and hydrological ser-
vices for characterising meteorological droughts. Recent ap-
plications use the SPI for diagnosing future drought occur-
rences in climate change scenarios (Sienz et al., 2007; Burke
and Brown, 2008; Heinrich and Gobiet, 2011).

One reason for the wide application of the SPI is its
simplicity compared to other drought indicators, such as
the Palmer drought severity index (PDSI;Palmer, 1965).
Only precipitation is needed as input quantity, contrary to
the PDSI, where in addition temperature and local avail-
able water content of soil are required. Contrary to other
precipitation-based indices, such as precipitation deciles
(Gibbs and Maher, 1967) or the rainfall anomaly index
(Rooy, 1965), the SPI benefits from its unique description in
different seasons or climate regions. Regarded as an easy-to-
use measure, the SPI has its restrictions concerning the sam-
ple size and in arid environments.Wu et al.(2005) present
a critical assessment of sample size effects. Furthermore,
months without precipitation create a lower bound in the SPI
(Wu et al., 2007). This leads to problems for drought indi-
cation, because for sufficiently high lower bounds, extreme
dryness is not observable.

For the SPI calculation the probability distribution of pre-
cipitation is of relevance. This has been analysed byGuttman

1http://www.droughtmonitor.unl.edu/monitor.html
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(1999), who concluded that “the SPI should not be used
widely until a single probability distribution is accepted as a
standard”.Guttman(1999) compared different distributions
with a regional drought model and proposed the gamma dis-
tribution (GD) as standard. The GD is now widely applied
in hydrological and climatological science. However, several
authors pointed out that the GD can lead to problems and
does not fulfil goodness of fit criteria (Lloyd-Hughes and
Saunders, 2002; Sienz et al., 2007).

Beside the usage of the precipitation distribution for SPI
calculation, the distribution itself is of interest, and there is
a long history of applying and comparing different kinds of
distribution functions (Mielke and Johnson, 1974; Groisman
et al., 1999). The knowledge about the underlying distribu-
tion is of importance, as therefrom probabilistic properties
of precipitation can be derived. Therefore, the analysis of
dryness and wetness could be done comparably in terms of
the estimated distributions. However, some additional effort
is needed because of the missing standardisation. It is the
standardisation which makes the SPI the preferred method
of analysis where relative deviations from a climatological
mean state are of interest or where normality is required for
further analysis. On the other hand, the SPI is meaningless in
applications where direct precipitation properties should be
described. Here, the distribution itself gains in relevance, for
example, for precipitation climatology or for climate model
validation.

In this article we reconsider the GD as the standard distri-
bution for precipitation. Monthly precipitation is of main in-
terest here. This is motivated by the expert recommendation
for applying the SPI as standard index worldwide on short
time scales (Hayes et al., 2011). However, precipitation sums
related to longer SPI time scales are discussed as well. We
find that the GD describes precipitation erroneously in many
parts of the world. The implications are a biased description
of precipitation and the derived SPI. Mainly the extremes are
affected, leading to overestimation or underestimation of ex-
treme dryness or wetness, respectively. This error translates
into SPI applications. For example, in the case of SPI-based
drought warning systems, the consequences can be too many
false alerts, and in climate projection studies extreme dryness
is detected too frequently.

A comparative method is used to demonstrate that SPI
biases are caused by incorrect distributional assumptions.
Four other distributions are applied: the Weibull (WD),
Burr Type III (BD), exponentiated Weibull (EWD) and the
generalised gamma distribution (GGD). Distributions are
compared employing Akaike’s information criterion (AIC),
which quantifies the information gain or loss by the chosen
statistical models. The appropriateness of the AIC is sup-
ported by a simulation study. In addition, individual SPIs for
each distribution are calculated and their deviations from the
expected SPI classes are compared.

For our analysis we use data sets ranging from an observed
individual time series up to precipitation fields simulated

Table 1. Definition of the Standardised Precipitation Index (SPI)
classes and corresponding event probabilities (P ).

SPI intervals SPI classes P [%]

SPI≥ 2 W3: extremely wet 2.3
2> SPI≥ 1.5 W2: severely wet 4.4
1.5> SPI≥ 1 W1: moderately wet 9.2
1> SPI> −1 N0: normal 68.2
−1≥ SPI> −1.5 D1: moderately dry 9.2
−1.5≥ SPI> −2 D2: severely dry 4.4
SPI≤ −2 D3: extremely dry 2.3

by a coupled climate model. Thus the results are not re-
stricted to local areas or a particular data set. Furthermore,
observed data sets exemplify monitoring issues, whereas cli-
mate model data illustrate problems with drought projec-
tions.

Next, Sect.2 introduces applied methods and used data
sets. The precipitation data sets (observed and climate model
output) are analysed with respect to distribution properties
and SPI biases in Sect.3. Discussion and outlook close the
manuscript. The appendix presents technical supplements re-
garding the evaluation of distribution functions.

2 Methods and data

2.1 Standardised Precipitation Index (SPI)

The SPI was introduced byMcKee et al.(1993) to classify
and monitor dryness and wetness. The calculation of the SPI
is based on an equal probability transformation: monthly pre-
cipitation is transformed to a standard normal distribution to
yield SPI values by preserving probabilities. Standardisation
ensures that the SPI gives a uniform measure in different cli-
mate regimes or under seasonal dependence. The SPI def-
inition is given in Table1. The SPI can be constructed for
time scales ranging from months to years and enables the
description of meteorological, agricultural and hydrological
droughts.

The SPI calculation is applied separately for each month.
This procedure ensures seasonal independence, contrary to a
yearly distribution estimation, and leads to a consistent SPI
classification not only in different climate regimes but also in
differing seasons. The following steps are required (Fig.1;
according toMcKee et al., 1993, andEdwards and McKee,
1997; see alsoBordi and Sutera, 2001):

1. distribution estimation:F(x; λ̂), with the vector of esti-
mated parameters,λ̂;

2. probability calculation for each precipitation event:
p =p0 + (1− p0) F (x; λ̂), with the probability of zero
precipitation,p0;

Hydrol. Earth Syst. Sci., 16, 2143–2157, 2012 www.hydrol-earth-syst-sci.net/16/2143/2012/
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Fig. 1. Conceptual diagram, illustrating the SPI calculation of artificial data (black dots) with the estimated

distribution (F (x;λ̂), blue line, left) and another distribution given by the red line. The outcome are two

different SPI time series, represented through their empirical distribution functions (blue and red lines, right).
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Fig. 2. Akaike differences (AICD) yielded by the Gamma (GD), Weibull (WD), Burr Type III, (BD), exponen-

tiated Weibull (EWD) and generalised Gamma (GGD) distribution for England Wales precipitation, separately

for each month.
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Fig. 1. Conceptual diagram illustrating the SPI calculation of ar-
tificial data (black dots) with the estimated distribution (F(x; λ̂),
blue line, left) and another distribution given by the red line. The
outcome is two different SPI time series, represented through their
empirical distribution functions (blue and red lines, right).

3. calculation of associated standard normal quantiles,
quantile function:Q(p) =8−1(p;0,1), 8(x;0,1) is
the standard normal distribution, with meanµ = 0 and
standard deviationσ = 1.

The first point ensures that the resulting SPI achieves the
desired properties. Deviations from standard normal proper-
ties occur due to problems in the estimation procedure or,
even more important, due to the wrong distribution assump-
tion. This is demonstrated in Fig.1: Contrary to the estimate
for the artificial data (blue line), the distribution given by
the red line leads to overall too low probabilities. Conse-
quently the single SPI values are too small and the result-
ing SPI distribution is shifted to lower values. Thus, extreme
dryness (wetness) is overestimated (underestimated). These
deviations from standard normality can indicate that the se-
lected distributional type is misleading and are one criterion
used in the following for distribution comparison.

In the following a threshold of 0.035 mm month−1 is used
to separate months with and without precipitation in the cli-
mate model. This prevents that numerical noise present in-
fluences the analysis. Distributions are calculated if at least
50 values remain. Linear regression is applied to check the
observed precipitation time series for existing trends. Trends
are removed to ensure the stationarity for distribution esti-
mation. The subsequent SPI transformation, however, is per-
formed with the original data. In this way the resulting SPI
series preserves present trends.

2.2 Distributions

The monthly precipitation sums are described by skewed dis-
tribution functions, defined on the positive real axis. All dis-
tribution functions consist of scale (σ ) and shape parameters
(γ ). The three parameter distributions include an additional
shape parameter (α). The lower dimensional distributions are
partly subsets of the higher dimensional ones. The probabil-
ity density functions are:

i. The gamma distribution (GD):

f (x) =
1

σ0(γ )

( x

σ

)γ−1
exp

(
−

x

σ

)
(1)

0 is the gamma function. The GD and its location pa-
rameter extension, the Pearson Type III distribution,
are recommended for SPI calculation (Guttman, 1999).
Note that applying a location parameter does not alter
the presented results.

ii. The Weibull distribution (WD), with the same number
of parameters as the GD, is given by:

f (x) =
γ

σ

( x

σ

)γ−1
exp

(
−

( x

σ

)γ )
. (2)

The WD is widely used for the analysis of wind speed,
but rarely for precipitation. An exception isReeve
(1996), applying WD for Indian rainfall.

iii. The Burr Type III distribution (BD) extends the param-
eter space by an additional shape parameter (α):

f (x) = αγ
( x

σ

)−γ+1
[
1+

( x

σ

)−γ
]−α+1

(3)

The BD extends the flexibility of the GD in terms of
kurtosis and skewness (Rodriguez, 1977; Tadikamalla,
1980). An early precipitation application is the study
of Mielke and Johnson(1974), using a Beta distribu-
tion, which is associated with the BD by a parameter
transformation. Note that the BD is a special case of
the Kappa IV distribution (Hosking, 1994). The Kappa
distribution was applied for SPI comparison (Guttman,
1999) and heavy precipitation events (Kysely and Picek,
2007).

iv. The exponentiated Weibull distribution (EWD) is also a
three parameter distribution:

f (x) =
αγ

σ

( x

σ

)γ−1[
1− exp

(
−

( x

σ

)γ )]α−1

exp
(
−

( x

σ

)γ )
(4)

The EWD extends the WD by a factor including a
stretched exponential term and a shape parameterα. For
α = 1 the WD is obtained.

v. The generalised gamma distribution (GGD):

f (x) =
α

σ0(γ )

( x

σ

)αγ−1
exp

(
−

( x

σ

)α)
(5)

This version includes as special cases the gamma dis-
tribution (for α = 1) and the Weibull distribution (for
γ = 1).

The parameters of the distributions are estimated by the
Maximum Likelihood method. This is a versatile approach
and applicable for all analysed distributions. The maximised
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likelihood is further the basis for Akaike’s information cri-
terion (AIC). The optimization is performed by a quasi-
Newton method and checked for convergence. In the sub-
sequent analysis cases are omitted when convergence is not
achieved. The number is below 1 % (4 %) of all grid points
and months in the CRU (ECHAM5) data set.

2.3 Akaike’s information criterion (AIC)

The Akaike information criterion (AIC;Akaike, 1974) com-
pares statistical models (here: the distributions) in terms of
information gain or loss with respect to an unknown truth. It
is employed because no statistical tests are available to com-
pare non-nested distributions directly. Further, it is shown
that AIC outperforms other measures, such as test statistics
or p-values resulting from goodness of fit tests (GOF; see
simulation study given in AppendixA). AIC is the relative
expected Kullback-Leibler information given by

AIC = −2log(L(θ̂ |y)) + 2k (6)

with maximised likelihood (L(θ̂ |y)), estimated parameters
(θ̂ ) dependent on the data (y) and the number of parameters
(k). The term 2k corrects the maximum likelihood bias as
estimator for the Kullback-Leibler information and is inter-
preted as penalty term for higher model dimension. A mod-
ified penalty term, changed from 2k to (2kn)/(n − k − 1),
improves AIC calculation for small sample sizes (n; Burn-
ham and Anderson, 2002) and is applied in the following.
Note that the modified version approaches the standard one
for largen.

Within a set of models (indexedi) and corresponding AIC
values (AICi), the best model attains a minimum AIC value
(AICmin). Calculating AIC differences (AICD)

AICDi = AICi − AICmin (7)

eases comparison and ranking of the models, because abso-
lute AIC values are of minor importance in contrast to the
relative differences between them. With this definition the
best model achieves AICD = 0.

If several models achieve sufficiently small AICD, a deci-
sion for the AIC best model is hampered. The reason is that
the sample size is too small and it is likely that the AICmin
model will change from sample to sample. This behaviour is
analogous to classical tests.Burnham and Anderson(2002)
give guidelines for the interpretation of AICD, which are re-
produced in Table2.

2.4 Data

The data sets analysed in the following range from a single
observed time series to global precipitation data produced by
a climate model.

– England and Wales precipitation time series: one of the
longest observed precipitation time series, starting in the

Table 2. AICD and their interpretation in respect to the achieved
strength of model support.

AICD Model support

0–2 substantial
4–7 considerably less
>10 essentially none

year 1766 and reaching up to the present day (Alexander
and Jones, 2001). Here, the years up to 2007 are used.

– Observed high-resolution precipitation: the Climatic
Research Unit (CRU) data set covers the global land ar-
eas in 0.5 degree resolution and the time period from
1901 to 2002. The data set is tested for inhomogeneities,
and details on the homogenization procedure are given
in Mitchell and Jones(2005). The analysis is restricted
to grid points where at least one station is present
over the whole time period. This avoids problems aris-
ing from the interpolation scheme, filling observational
gaps in time and space. Under this restriction two larger
regions, Europe (EU; 11◦ W–26◦ E and 35◦ N–72◦ N)
and the contiguous United States (US; 126◦ W–60◦ W
and 24◦ N–50◦ N) have full data coverage and are anal-
ysed separately.

– Precipitation from a coupled atmosphere-ocean climate
model: simulated precipitation in T63 spectral reso-
lution (about 2.8◦) from the coupled climate model
ECHAM5/MPI-OM (Roeckner et al., 2003; Marsland
et al., 2003). A pre-industrial control experiment is
used with constant greenhouse gas concentrations as ob-
served in 1860 with an integration time of 500 yr. The
simulation of the 20th century (1860 to 2000; 20C), the
scenario run A1B (2001 to 2100; A1B) and the adja-
cent stabilisation run (100 yr; A1BS) are analysed for
climate change assessment. Again, Europe and the con-
tiguous United States are investigated, but further all
land and ocean grid points are considered from 60◦ S–
85◦ N.

3 Precipitation distributions and SPI

Observed and simulated precipitation data sets are inves-
tigated. The observed data sets (Sects.3.1 and 3.2) pro-
vide case studies related to drought monitoring, whereas cli-
mate model precipitation (Sect.3.3) provides an example for
drought projection studies. Monthly precipitation is consid-
ered throughout, and results for longer SPI time scales are
additionally presented in Sect.3.4. In the following the AIC
best distributions are determined for each month separately.
This is analogous to the SPI calculation. Resulting SPI time
series are compared with respect to probability deviations
from defined SPI classes.

Hydrol. Earth Syst. Sci., 16, 2143–2157, 2012 www.hydrol-earth-syst-sci.net/16/2143/2012/
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Fig. 1. Conceptual diagram, illustrating the SPI calculation of artificial data (black dots) with the estimated

distribution (F (x;λ̂), blue line, left) and another distribution given by the red line. The outcome are two

different SPI time series, represented through their empirical distribution functions (blue and red lines, right).
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Fig. 2. Akaike differences (AICD) yielded by the gamma (GD),
Weibull (WD), Burr Type III, (BD), exponentiated Weibull (EWD)
and generalised gamma (GGD) distributions for England and Wales
precipitation separately for each month.

3.1 England and Wales precipitation

The England and Wales precipitation data set consists of a
single time series. This eases analysis and enables the visual-
isation of the results on a monthly basis, contrary to the later
sections where gridded precipitation fields are of interest.

Distributions:The GD reaches the AIC minimum only in
November (Fig.2). In all other months the AICD are greater
than 2 and even exceed 7 in the majority of cases. The WD
approaches most frequently the AIC minimum (9 months)
and AICD smaller than 2 for the rest of the months, with
the exception of November. Although the higher dimensional
BD partly reaches smaller AICD than the GD, the informa-
tion gain by the additional parameter is low compared to the
WD. Small AICD are expected for the EWD and GGD, be-
cause they include the WD as special case (Sect.2.2). But the
AIC penalises the additional shape parameter, so that AICD
around 2 are obtained in the majority of months. Hence the
GD fails to adequately represent England and Wales monthly
precipitation. With the restriction of November, the WD out-
performs the GD. A comparable information gain is given by
EWD and GGD, while BD demonstrates that higher dimen-
sional distributions do not necessarily improve the results. If
only a single distribution is to be used, the WD is preferred
due to the lower number of distributional parameters.

SPI: The impact of the selected distribution on the SPI
time series is analysed. The SPI calculation is based on either
the GD or the WD, and their adequacy for the description of
precipitation and its extremes is investigated. The resulting
SPI series are expected to be standard normally distributed,
with SPI wet (dry) extremes exceeding 2 (falling below−2).

Even by visual inspection of the SPI time series, a shift
to lower values is obvious for GD-transformed precipitation
(Fig. 3a). Contrary to the expected number of extremes with

probability of 2.3 % (Table1), extremely dry conditions oc-
cur more frequently (3.41 %) than extremely wet conditions
(0.96 %). The WD-transformed SPI is evenly scattered, ap-
proaching adequate equal probabilities of 2.31 % (2.1 %) for
extreme wet (dry) conditions (Fig.3b). A summarised pre-
sentation highlights the tail deviations. For this purpose the
differences from the expected probabilities of the SPI classes
(Table 1) are calculated. The SPI based on the GD yields
the largest deviations compared to all alternative distribu-
tions (Fig.4a). Extreme dryness (wetness) is clearly overes-
timated (underestimated) and detected around 40 % (60 %)
more (less) frequently. All other distributions reduce this
bias. The smallest deviations are achieved with the Weibull
type distributions (WD and EWD) and the GGD.

The SPI quantile-quantile plots are calculated to associate
SPI deviations to goodness of fit. Empirical SPI values are
obtained by utilising empirical probabilities for the proba-
bility transformation. The standardisation enables the pre-
sentation of all months in a single plot. The GD underesti-
mates the SPI in the tails (Fig.5a). Most values drop below
the straight line and are partly located outside the confidence
bounds (confidence intervals are calculated from 1000 sam-
ples of standard normally distributed data). Further, the GD
shows a slight tendency to overestimate the SPI at the centre.
In contrast, WD-transformed SPI values are equally scattered
around the straight line, with almost all values inside the con-
fidence bounds (Fig.5b). The quantile-quantile plots demon-
strate that the differing SPI time series (Fig.3) are not related
to random variability. In fact, choosing the GD for SPI cal-
culation leads to systematic deviations, most pronounced in
the tails, leading to overestimation or underestimation of ex-
treme dryness or wetness, respectively.

3.2 Observed high resolution precipitation data set

Observed precipitation is investigated grid point-wise in the
high resolution CRU data set. The main interest is in the
European region, however a comparison to the contiguous
United States is included. This analysis clarifies whether pre-
viously presented results for England and Wales precipitation
are specific to this data set.

Distributions: The selected distributions are estimated and
compared for Europe. Therefore a summarised presentation
is used to combine calculated AICD into a single figure,
which displays the number of times a distribution reaches
values equal or below a given AICD in percent of all grid
points and months. In this way the percentages for AICD = 0
achieved by the single distributions add up to 100 %. Further,
the cumulative way of construction leads to increasing curves
for increasing AICD. Distribution functions with good data
support should show a rapid increase and approach 100 %
quickly, preferably before AICD reaches 4. Higher AICD in-
dicate considerably lower model support. The GD is at first
compared to every other distribution separately, followed by
an overall comparison. This stepwise approach enables the

www.hydrol-earth-syst-sci.net/16/2143/2012/ Hydrol. Earth Syst. Sci., 16, 2143–2157, 2012
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distribution (F (x;λ̂), blue line, left) and another distribution given by the red line. The outcome are two

different SPI time series, represented through their empirical distribution functions (blue and red lines, right).
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Fig. 4. Differences to the expected probabilities of the SPI classes in percent for England and Wales precipitation. SPI time series are
calculated with(a) GD, (b) WD, (c) BD, (d) EWD and(e)GGD.

identification of potential alternative distributions in view of
the circumstances that the distribution functions have simi-
lar properties and are partly nested. A reference data set is
created additionally, consisting of values simulated with the
previously estimated parameters of the GD and a sample size
equivalent to the observed one. These data show the outcome
for one realisation of true gamma-distributed precipitation
and serve as guideline.

Beginning with the reference data set, the GD (Fig.6,
black dashed-dotted lines) gives most frequently the AIC
best model in comparison with all alternatives (WD, BD,
EWD and GGD; red dashed-dotted lines). The AICD rates
start around 80 % and higher, approaching 100 % quickly.
The frequencies for the alternatives show different behaviour
reflecting their ability to reproduce the GD properties. The
BD shows lowest rates, exceeded by the WD, while EWD
and GGD rates approach 100 % for small AICD. The GGD
result is primarily attributed to the property that the GD is a
special type of the GGD. Therefore the differences in AIC are
mainly a result of the additional parameter. The GD however
is not a subset of EWD, but the similar behaviour of EWD
and GGD demonstrates the EWD potential to reproduce GD
characteristics.
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Fig. 5. SPI quantile-quantile plots based on(a) GD and(b) WD
transformations and empirical SPI values. 95 % confidence interval
for standard normally distributed data is given by red lines.

The AICD frequencies of CRU precipitation differ consid-
erably from the reference data set. The GD rates are lowered,
whereas rates of all alternatives are increased (Fig.6, contin-
uous lines). The BD achieves the smallest but still remark-
able increase. The WD, EWD and GGD exceed the related
GD frequencies for Europe (GGD at least for AICD> 1).
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Fig. 6.AICD frequencies (CRU data set): percentages of all grid points and months a distribution yields AICD smaller or equal than a given
value for the European region. The GD (black lines) is compared to(a) WD, (b) BD, (c) EWD and(d) GGD (red lines). Dashed-dotted lines
with corresponding colours show the respective outcome for a simulated data set, representing gamma-distributed precipitation in Europe.
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Fig. 7. AICD frequencies (CRU data set): percentages of all grid
points and months a distribution yields AICD smaller or equal than
a given value for(a) the European region and(b) the contiguous
United States. AIC comparison with GD, WD, BD and EWD.

Therefore, each of the three distributions is superior to the
GD in its ability to describe European monthly precipitation.
However, neither the GD nor the WD achieves frequencies
of 100 % for sufficiently low AICD. This demonstrates that
neither of the two parameter distributions is able to repre-
sent European precipitation completely. Note that the AICD
show coherent spatial patterns in the individual months, but
with regional and seasonal differences (Fig. S5). Below, an
overall comparison guides the decision if one or both distri-
butions can be excluded.

The AICD frequency comparison using all distributions
negates this (Fig.7). Incorporating BD and EWD in the
AICD calculation, resulting GD and WD AICD frequencies
are just slightly lowered compared to Fig.6a. The discus-
sion is restricted to the EWD for simplicity, as the outcome
is similar if the GGD is used instead of the EWD. If both
are included, EWD and GGD compete against each other,
demonstrated by similar AICD frequencies and reduced fre-
quencies at AICD= 0 (Fig. S1). The BD frequencies are
strongly decreased in comparison to Fig.6b, pointing to mi-
nor importance of this distribution for European precipita-
tion. The EWD frequencies yield a similar result for small
AICD, but the frequencies increase fast and exceed the GD
and WD rates towards higher AICD. This is a result of the

additional parameter penalised by AIC for months where GD
and WD achieve small AICD (note that the AIC comparison
for the simulated data set using all distributions is given in
Fig. S3a for completeness.).

These results are not restricted to the European region.
The outcome is similar for the contiguous United States
(US; Figs.7b and S1b). The agreement is largest for the BD
and EWD frequencies, with just a small offset compared to
Fig. 7a. Notable differences are the increased (reduced) per-
centages for the GD (WD), leading to almost equal frequen-
cies.

As the GD and WD are not able to describe EU and US
precipitation sufficiently for all grid points and months, a sin-
gle two parameter distribution is not recommended for SPI
calculation. On the other hand, both cannot be excluded as
they still yield high percentages. It follows that a mixture of
the GD and WD is a possible solution, given that a com-
plete coverage is achieved for small AICD. The higher di-
mensional distributions (EWD and GGD) are another suit-
able choice. Here one has the advantage of using only a sin-
gle distribution, although at the expense of increasing vari-
ance due to the bias and variance tradeoff.

SPI: Analogous to the previous Sect.3.1 (Fig. 4), devia-
tions from the expected SPI occurrences are shown, includ-
ing all grid points and months. Note that the SPI biases may
cancel each other out due to the large number of distribu-
tions involved and that the inclusion of months with small
AICD reduces the overall SPI differences. Nonetheless large
deviations occur for the GD-transformed SPI, mainly in the
tails (Fig. 8a). On average more than 30 % too many (few)
extreme drought (wet) events are detected in the consid-
ered time period and region. The BD underestimates both
extremes (Fig.8c), whereas the WD and, even more, the
EWD and GGD reduce the SPI differences (Fig.8b, d and
e). Selecting only SPI values for which the transforming dis-
tributions yield AICD≤ 2, the differences for the GD, WD
and BD are reduced (Fig.8, red lines). This criterion ap-
plied to the EWD and GGD achieves no further improve-
ment, consistent with the fast approach of 100 % coverage in
Fig. 7a.
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Fig. 8. Differences to the expected probabilities of the SPI classes in percent (CRU data set), using all grid points of the European region
(black). SPI time series are calculated with(a) GD, (b) WD, (c) BD, (d) EWD and(e)GGD. The percentages each distribution is approaching
AICD ≤ 2 is given in parentheses. Additionally, the differences for SPI time series selected according to this criterion are given (red).

0

20

40

60

80

100

AICD

%

0 2 4 7 10

a) EU

GD
WD
BD
EWD

0

20

40

60

80

100

AICD

%

0 2 4 7 10

b) US

GD
WD
BD
EWD

Fig. 7. AICD frequencies (CRU data set): percentages of all grid points and months a distribution yields

AICD smaller or equal than a given value for a) the European region and b) the contiguous United States. AIC

comparison with GD, WD, BD and EWD.

SPI classes
%

−40

−20

0

20

40

D3 D2 D1 N0 W1 W2 W3 D3 D2 D1 N0 W1 W2 W3 D3 D2 D1 N0 W1 W2 W3 D3 D2 D1 N0 W1 W2 W3 D3 D2 D1 N0 W1 W2 W3

a) GD (52.1%) b) WD (77.4%) c) BD (24.6%) d) EWD (63.4%) e) GGD (60.7%)

Fig. 8. Differences to the expected probabilities of the SPI classes in percent (CRU data set), using all grid

points of the European region (black). SPI time series are calculated with a) GD, b) WD, c) BD d) EWD and

e) GGD. The percentages each distribution is approaching AICD≤ 2 is given in parentheses. Additional, the

differences for SPI time series selected according to this criterion are given (red).

0

20

40

60

80

100

AICD

%

0 2 4 7 10

a)

GD
WD
GD
WD

0 2 4 7 10

b)

GD
BD
GD
BD

0 2 4 7 10

c)

GD
EWD
GD
EWD

0 2 4 7 10

d)

GD
GGD
GD
GGD

Fig. 9. AICD frequencies (ECHAM5 data set): percentages of all gridpoints and months a distribution yields

AICD smaller or equal than a given value for the European region. The GD (black lines) is compared to a) WD,

b) BD, c) EWD and d) GGD (red lines). Dashed-dotted lines withcorresponding colors show the respective

outcome for a simulated data set, representing Gamma distributed precipitation in Europe.

22

Fig. 9. AICD frequencies (ECHAM5 data set): percentages of all grid points and months a distribution yields AICD smaller or equal than
a given value for the European region. The GD (black lines) is compared to(a) WD, (b) BD, (c) EWD and(d) GGD (red lines). Dashed-
dotted lines with corresponding colours show the respective outcome for a simulated data set, representing gamma-distributed precipitation
in Europe.

3.3 Precipitation from a coupled atmosphere-ocean
climate model

For the SPI analysis of future drought occurrences in cli-
mate projections, it is essential that the SPI of a reference
climate state is determined. This might be either the present
or a climate undisturbed by anthropogenic greenhouse gas
emissions. Therefore, precipitation distributions and the de-
rived SPI are evaluated in a pre-industrial control simulation
(ECHAM5/MPI-OM), with an integration time of 500 yr and
constant greenhouse gas levels fixed at values for the year
1860.

Distributions:The distributions are compared first for the
reference data set of true gamma-distributed values repre-
senting European precipitation (Fig.9, dashed-dotted lines
and in the Supplement Fig. S3b). In comparison to the CRU
data set (Fig.6), the GD yields higher frequencies, whereas
frequencies of the alternatives (WD and BD) are reduced.
This difference is due to the larger sample size, helping to
distinguish between the distributions. The sample size is of
minor importance for EWD and GGD. Here, the additional
parameter dominates the achieved frequencies, which are
similar to the ones in the CRU data set (Figs.6 and9c and d).

The GD frequencies are strongly reduced for ECHAM5
precipitation (Fig.9, continuous lines), and each of the al-
ternatives outperforms the GD in terms of AIC. Depending
on the alternative distribution selected, the GD is not sup-
ported according to AIC for 60 % (BD) of all grid points and
months or even higher (WD, EWD and GGD). The marginal
increase of the frequencies in Fig.9a and b, remaining below
100 % for high AICD, demonstrates that neither the WD nor
the BD alone is able to cover European precipitation com-
pletely. This is in contrast to the EWD and GGD, yielding
AICD < 3 in all cases.

A comparison for all distributions follows: The EWD and
GGD are found to be exchangeable again, as for the CRU
data set (Fig. S2). Therefore, the GGD is omitted for the
AICD calculation below. The GD yields the lowest frequen-
cies, which are even exceeded by the BD (Fig.10a and b).
The WD achieves high frequencies in the European region,
but not for the contiguous United States. The EWD outper-
forms all other distributions, even for AICD below 2, and
yields the AIC best model in around 40 % of times. This, to-
gether with the minor importance of GD and WD (Fig.10a
and b), demonstrates a reduced impact of nested distribution
types. That is, for a complete coverage the higher dimen-
sional distributions (EWD or GGD) are essential. However,
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Fig. 10.AICD frequencies (ECHAM5 data set): percentages of all grid points and months a distribution yields AICD smaller or equal than a
given value for(a) the European region,(b) the contiguous United States and(c) global land areas. AIC comparison with GD, WD, BD and
EWD.
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Fig. 11. Differences to the expected probabilities of the SPI classes in percent (ECHAM5 data set), using all grid points of the European
region (black). SPI time series are calculated with(a) GD, (b) WD, (c) BD, (d) EWD and(e) GGD. The percentages each distribution is
approaching AICD≤ 2 is given in parentheses. Additionally, the differences for SPI time series selected according to this criterion are given
(red).

the EWD frequencies do not achieve 100 % sufficiently fast
(Fig. 10b and c). Given that the EWD is an extension of the
WD and is able to reproduce GD characteristics, this limit is
related to the BD.

SPI:Based on ECHAM5 precipitation the deviations from
the expected SPI probabilities are given in Fig.11 restricted
to Europe. The outcome is similar to the CRU data set
(Fig. 8). That is, the largest differences occur with the GD,
and they are reduced with Weibull type distributions (WD,
EWD and GGD). If distributions are selected with AICD≤
2, the deviations are again reduced.

3.4 Distribution selection for longer SPI time scales

So far the investigation focussed on the monthly SPI. A short
outlook extends the results to time scales of agricultural and
hydrological droughts. AICD frequencies are shown for the
CRU (Fig. 12) and ECHAM5 data set (Fig.13) for time
scales in the range from 1 to 24. The analysis is restricted
to the case AICD= 0, to simplify matters.

The GD yields a rapid increase in the number of times
the AIC minimum is reached, if longer SPI time scales are
considered. The alternative distributions show the direct op-
posite. The same qualitative behaviour is present for each of
the alternative distributions and for both data sets. However,

differences occur in the percentages reached. For example,
the GD frequencies remain below 80 % for the alternatives
EWD and GGD in the ECHAM5 data set, even for the time
scale of 24 months (Fig.13). Because the GD outperforms
each alternative for longer time scales, the same holds also if
all distributions are compared together (Fig. S4).

The preference of the GD for longer time scales is ex-
plained by the central limit theorem. The longer time scales
are constructed by averaging precipitation, so that the dis-
tribution approaches the normal distribution for increasing
time scales. This is consistent with the property of the GD
that for higher shape parameters normality is reached, but
is in contrast to the WD because of deviations in the kurto-
sis (Fig.A1). The BD, EWD and GGD occupy areas in the
skewness-kurtosis diagram, so that their frequency develop-
ment is mainly a result of the additional parameter.

3.5 Climate change projection of SPI extremes

The role of the SPI bias is further analysed in climate change
projections. Therefore, an optimised SPI is defined, minimis-
ing systematic deviations. This newly created SPI serves as
reference and eases comparison to the SPI resulting from the
GD (GD-SPI).
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Fig. 12.AICD frequencies (CRU data set): percentages of all grid points and months a distribution yields AICD equal zero for the European
region. The GD (black dots) is compared to the WD, BD, EWD and GGD (red triangles) in dependence of the SPI time scale.
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Fig. 13. AICD frequencies (ECHAM5 data set): percentages of all grid points and months a distribution yields AICD equal zero for the
European region. The GD (black dots) is compared to the WD, BD, EWD and GGD (red triangles) in dependence of the SPI time scale.

Multi-Distribution SPI (MD-SPI):Several ways can be de-
duced to reduce SPI errors from the previous results. One
possibility is the usage of a single, the most general, distribu-
tion, that is the distribution with highest AICD frequencies
for sufficiently low AICD. Reasonable choices are the EWD
or the GGD, independent of the analysed data set. Calculat-
ing the SPI with several distributions is another possibility,
which is applied in the following. The AIC best distribution
is selected for each grid point and month separately and is
applied for SPI calculation. Compared to a single distribu-
tion approach, the additional effort needed to obtain a Multi-
Distribution SPI (MD-SPI) is legitimated by improved error
reduction and bias-variance adjustment.

Figure14a to d shows differences to the expected prob-
ability in percent of extreme dryness/wetness according to
the SPI definition in the control simulation (CTL). The MD-
SPI yields strongly reduced errors (Fig.14a and b) com-
pared to the GD-SPI (Fig.14c and d). Extreme dryness, how-
ever, is underestimated in large regions worldwide, mainly in
Northern Africa, Australia and tropical areas (Fig.14a and
c). This underestimation is due to the lower bound restric-
tion of the SPI, as can be inferred from the green lines. The
green lines enclose regions where, at least for one month, the
lower bound is higher than−2, that is, extreme dryness is
not observable. Note that the lower SPI bound is distribution

independent and results solely from the probability of zero
precipitation. Thus deviations for extreme dryness are simi-
lar in these regions for both SPIs. Outside the lower bound
affected areas, the GD-SPI attributes too high (low) prob-
abilities for the occurrences of extreme dryness (wetness)
(Fig. 14c and d) in most regions worldwide.

Climate change projections:Percentage differences be-
tween projected MD-SPI extremes for the stabilisation run
(A1BS) and the control run (CTL) are given in Fig.14e and f.
Large areas worldwide show an increase in dryness and wet-
ness extremes. This increase can reach up to 200 % and more,
dependent on the considered areas. Inverse relationships are
notable, that is, regions with increased dryness (wetness)
show also decreased wetness (dryness). Regions with an in-
crease in both extremes, for example in South America or
China, are a result of seasonally different responses (not
shown). The MD-SPI and GD-SPI projections deviate from
each other (Fig.14g and h). Shown are differences in percent
relative to the expected probability. The resulting patterns are
similar to the ones demonstrating the GD bias in the control
run (Fig. 14c and d), with most parts of the world covered
by positive and negative differences. Thus, the GD not only
overestimates (underestimates) extreme dryness (wetness) in
the unforced climate model run, but also their potential future
changes. Further, comparing the projection differences with
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Fig. 14.Comparison of SPI dry (left column) and wet (right column) extreme occurrences in the control (CTL) and stabilisation run (A1BS).
(a–d): differences to the expected probability (P in %) of the extreme SPI classes (P ≈2.3 %) for CTL based on MD-SPI(a, b) and CTL
based on GD-SPI(c, d). MD-SPI probability changes in percent of extreme dry(e) and wet(f) conditions in respect to the CTL.(g, h): SPI
projection differences between GD-SPI and MD-SPI. The green lines surround dry regions where the SPI lower bound is higher than−2 for
at least 1 month.
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Fig. 15.Time series of SPI dry(a–c)and wet(d–f) extreme occurrences in each year for the European region (EU, left), the contiguous United
States (US, middle) and global land areas (right). Shown are the differences in percent to the expected probability (2.3 %) for MD-SPI and
GD-SPI separately (upper panels) and the magnitude of the differences between them (lower panels).
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the ones yielded before (Fig.14c and d) points to increased
differences in the future climate.

The temporal evolution of the SPI extremes under green-
house gas forcing are analysed next: Time series of extreme
SPI occurrences, that is the number of events falling below
(above) SPI≤ −2 (SPI ≥ 2) in each year and for different
regions, are created. These time series have again a probabil-
ity of 2.3 % on average, according to the SPI definition. Dif-
ferences to this probability in percent are shown in Fig.15
for the model runs CTL, 20C, A1B and A1BS together. Ide-
alised lines highlight the general behaviour (thick blue and
red lines, Fig.15). They are built of the CTL (A1BS) mean at
the beginning (end) and smoothed time series between them.
Grid points influenced by the SPI lower bound are excluded
(compare Fig.14, green lines). The variability of the time
series is expected to be higher in smaller regions due to the
lower number of grid points analysed since spatial and tem-
poral dependencies may result in a homogeneous coverage
with one type of extremes in a certain year. The time series
are expected to oscillate around a zero mean in the unforced
climate, well approached by the MD-SPI (Fig.15). In con-
trast, the GD-SPI yields higher (lower) frequencies of ex-
treme dryness (wetness), which is consistent with previous
findings. For the future climate, all time series show increas-
ing extreme dry and wet frequencies. The absolute value of
differences between the smoothed lines highlight the discrep-
ancy between MD-SPI and GD-SPI. The deviations range be-
tween 20 % and 50 % in CTL, depending on the considered
area (Fig.15, black lines). The MD-SPI/GD-SPI differences
increase dependent on the strength of external greenhouse
gas forcing (20C, A1B and A1BS). Therefore, the SPI bias
resulting from the GD assumption, that is overestimation (un-
derestimation) of extreme dryness (wetness), enlarges if pro-
jected future climate states are investigated.

4 Conclusions

Single location, regional and global precipitation data sets
are analysed to substantiate the gamma distribution (GD) for
monthly precipitation sums. The aim is to validate the ade-
quacy of the GD as a basis for the calculation of the Standard-
ised Precipitation Index (SPI), drought monitoring, climate
model evaluation and climate change assessment. Distribu-
tion functions are compared using the Akaike information
criterion (AIC), which accounts for the information gain or
loss of different statistical models. The impact of different
distributional types on the calculated SPI series is investi-
gated. A comparison solely on a statistical basis is justified
given that the SPI is a purely statistical measure of droughts.
The main results are:

– The GD fails to represent precipitation in considerable
areas of global observed and simulated data, with largest
deviations on short SPI time scales (SPI 1–3).

– Improvements are attained by Weibull type distribu-
tions, mainly for the European region, but also for
the contiguous United States and global land areas in
ECHAM5.

– The selected distribution strongly impacts the outcome
of the SPI calculation. The SPI based on the GD can
lead to severe overestimation (underestimation) of ex-
treme dryness (wetness).

The SPI bias has direct implications on potential applica-
tions. The misleading detection of drought onset and inten-
sity reduces its usefulness for drought monitoring. Further-
more the comparison between different regions and seasons
is hampered if differences can occur solely due to the ade-
quacy of the transforming distribution. Climate change pro-
jections of drought conditions can include increasing SPI er-
rors in future climates.

Notable differences are detected between the observed
(CRU) and climate model (ECHAM5) data sets, with pro-
nounced lower GD frequencies in the model simulation. This
might indicate a model bias in precipitation. Additional work
is required to clarify the source of this discrepancy due to dif-
ferent spatial resolutions and temporal coverage. It is shown,
however, that applying the GD for the SPI calculation is too
restrictive under a wider range of applications, for example in
multi-model comparison studies. Because precipitation cal-
culation is a critical component in climate models, model de-
pendent deviations from a distributional type might occur.
This can hamper the drought comparison in terms of the SPI.

Two ways to overcome this problem are suggested: Firstly,
in terms of bias-variance adjustment, the preferred SPI calcu-
lation should be performed stepwise with multiple distribu-
tions, that is, using lower dimensional distributions as long as
they are appropriate (AICD≤ 2) and changing to the higher
dimensional ones for the remaining grid points. Secondly, if
comparability and reproducibility are important, a distribu-
tion should be chosen that yields accurate estimates in almost
all areas and months. For this purpose the generalised gamma
(GGD) and the exponentiated Weibull distribution (EWD)
are plausible candidates. This approach, however, implies the
risk of overfitting.

The Empirical Cumulative Distribution Function (ECDF)
is potentially an alternative way to calculate the SPI. This
avoids completely the distribution hypotheses and therewith
associated problems. On the other hand, the ECDF is likely
to be a too coarse measure due to its discrete nature. The
smoothed ECDF prevents this, and a comparison between the
different approaches is of interest for future research.

Evidence is presented that the monthly precipitation distri-
bution cannot be described on the basis of the GD alone. The
source of the deviations, however, remains open to questions.
Beside the possibility that the true distribution is of another
type or even of an unknown type, it is conceivable (i) that the
GD is just modified by instationarities of the climate system
and not flexible enough to capture these deviations under the
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Fig. 15. Time series of SPI dry (a-c) and wet (d-f) extremes occurrences in each year for the European region

(EU, left), the contiguous United states (US, middle) and global land areas (right). Shown are the differences in
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Fig. A1. Skewness-kurtosis diagram comparing the possible shapes
of the GD and WD, together with the normal and exponential dis-
tribution. The black line is the limit of all distributions.

stationary assumption or (ii) that different distributions are
preferred dependent on specific climate states. Examples of
instationarities with known impact on precipitation are the
North Atlantic Oscillation or the El Nino/Southern Oscilla-
tion.

The presented analysis framework can be useful for up-
coming studies which extend the set of alternative distribu-
tions or investigate other data sets. It is of additional interest
to see if distributions can be physically founded. However,
despite the problems discussed here, the SPI remains a valu-
able method for drought analysis. Its general usefulness is
not affected by the calculational details. In the nearer future
the index will gain in importance because of its intended im-
plementation as a worldwide standard.

Appendix A

Comparison of distribution functions

In this article, the Akaike information criterion (AIC; intro-
duced in Sect.2.3) is applied to compare distribution func-
tions. This criterion is rarely used in climatology and hydrol-
ogy for the task at hand. Thus, its performance is compared
by a simulation study to the following other measures:

– Test statistics: The Kolmogorov-Smirnov statistic
(KSS) and the Anderson-Darling statistic (ADS) de-
scribe deviations between the estimated distribution and
the data. Hence the best distribution can be chosen ac-
cording to the smallest test statistic.

– p-values derived from Goodness of Fit tests (GOF): A
parametric bootstrap procedure is carried out for GOF
(Davison and Hinkley, 2003). The number of replicates
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Fig. 17.Simulation study: Number of times where the GD is selected asthe preferred model, with the measures

KSS, ADS, P-KSS, P-ADS and AIC. The gray line gives the rejection rate of the WD, according to GOF with

ADS.
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Fig. A2. Simulation study: Number of times where the GD is se-
lected as the preferred model, with the measures KSS, ADS, P-KSS,
P-ADS and AIC. The gray line gives the rejection rate of the WD,
according to GOF with ADS.

is nB = 1000. The p-values (P-KSS and P-ADS) are
based on the above given statistics and include addition-
ally the impact of sample variability. The largest p-value
determines the preferred model.

Given that the GD is most widely applied, 5000 gamma-
distributed random samples have been created with given
scale (σ = 20) and shape (γ = 0.6) parameters and sample
sizes from 20 to 2500. Since the distribution of the data
is known, it is possible to determine the conditions which
are necessary to reject other kinds of distribution functions.
Here, the alternative is limited to the WD.

Note that the two distributions (GD and WD) are rather
similar. Both include the exponential distribution, and the
kurtosis and skewness diagram demonstrates that nearly the
same distributional shapes are possible (Fig.A1). The conse-
quences are rather low rejection rates for the WD (according
to bootstrapped GOF) for sample sizes similar to the obser-
vational time period (Fig.A2, gray lines). All other quanti-
ties exceed this rejection rate considerably. However, sample
sizes of at least 50 are required with the KSS to favour the
GD more often than the WD. The other measures (ADS, P-
KSS and P-ADS) are close to each other and yield distinctly
higher percentages. The bootstrapped p-values outperform
the statistics, however the ADS results in higher percentages
than the KSS-based p-values. This is due to the different con-
cepts of the two statistics, as the KSS is given by the maxi-
mum deviation, whereas the ADS is an integrated measure.
The GD is most often detected as the preferred distribution
with AICD.

The achieved rates can alter if the parameters of the simu-
lated GD are different to the ones used here. No influence of
the scale is found, whereas higher shape parameters improve
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the decision for the GD (not shown). Further, the rates are
expected to drop if the set of competing distributions is en-
larged with higher dimensional ones. But even then the AIC
is superior to the other measures due to the penalty for the
larger number of parameters. In summary the AIC is a reli-
able choice for the problem of distribution selection.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
16/2143/2012/hess-16-2143-2012-supplement.pdf.
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