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Abstract. The water balance in high Alpine regions is often
characterized by significant variation of meteorological vari-
ables in space and time, a complex hydrogeological situation
and steep gradients. The system is even more complex when
the rock composition is dominated by soluble limestone, be-
cause unknown underground flow conditions and flow direc-
tions lead to unknown storage quantities. Reliable distributed
modeling cannot be implemented by traditional approaches
due to unknown storage processes at local and catchment
scale. We present an artificial neural network extension of
a distributed hydrological model (WaSiM-ETH) that allows
to account for subsurface water transfer in a karstic environ-
ment. The extension was developed for the Alpine catch-
ment of the river “Berchtesgadener Ache” (Berchtesgaden
Alps, Germany), which is characterized by extreme topogra-
phy and calcareous rocks. The model assumes porous con-
ditions and does not account for karstic environments, re-
sulting in systematic mismatch of modeled and measured
runoff in discharge curves at the outlet points of neighbor-
ing high alpine subbasins. Various precipitation interpola-
tion methods did not allow to explain systematic mismatches,
and unknown subsurface hydrological processes were con-
cluded as the underlying reason. We introduce a new method
that allows to describe the unknown subsurface boundary
fluxes, and account for them in the hydrological model. This
is achieved by an artificial neural network approach (ANN),
where four input variables are taken to calculate the unknown
subsurface storage conditions. This was first developed for

the high Alpine subbasin K̈onigsseer Ache to improve the
monthly water balance. We explicitly derive the algebraic
transfer function of an artificial neural net to calculate the
missing boundary fluxes. The result of the ANN is then
implemented in the groundwater module of the hydrologi-
cal model as boundary flux, and considered during the con-
secutive model process. We tested several ANN setups in
different time increments to investigate ANN performance
and to examine resulting runoff dynamics of the hydrolog-
ical model. The ANN with 5-day time increment showed
best results in reproducing the observed water storage data
(r2 = 0.6). The influx of the 20-day ANN showed best results
in the hydrological model correction. The boundary influx
in the subbasin improved the hydrological model, as perfor-
mance increased from NSE = 0.48 to NSE = 0.57 for subbasin
Königsseetal, from NSE = 0.22 to NSE = 0.49 for subbasin
Berchtesgadener Ache, and from NSE = 0.56 to NSE = 0.66
for the whole catchment within the test period. This com-
bined approach allows distributed quantification of water bal-
ance components including subsurface water transfer.

1 Introduction

Alpine catchments are very important albeit vulnerable land-
scapes. Most of the major European rivers have their head-
waters in Alpine catchments, and their discharge is trans-
ported via river systems to lower-lying areas (EEA, 2007).
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The Alps are crucial for water accumulation and water supply
(e.g.Viviroli and Weingartner, 2004). For sustainable water
management of water resources in alpine areas, it is imper-
ative to understand the hydrological processes, their quan-
tities and dynamics. Distributed hydrological modeling has
become an important tool for describing the water balance in
catchments (e.g.Goldscheider, 2011). However, these meth-
ods face challenges in Alpine areas, on account of high alti-
tudinal gradients, variation of meteorological parameters in
time and scale, snow cover dynamics, and unknown subsur-
face water fluxes and storages. The situation is even more
complex when the mountain ranges within a watershed con-
sist of soluble limestone dissected by small fractures and
dominant flow paths up to caves and numerous spring loca-
tions, as is the case for this study area. The duality of karst,
enfolding slow and fast infiltration, slow and fast groundwa-
ter flow, and unknown storage leads to heterogeneous wa-
ter flow in the unsaturated and saturated zone (Attkinson,
1977; Bakalowicz, 2005; Kiraly, 2003; Sauter et al., 2006;
White, 2002, 2003). Many approaches at different tempo-
ral and spatial scales deal with the modeling of hydrolog-
ical processes in karst aquifers (e.g.Teutsch and Sauter,
1991). Spring hydrograph, chemograph, and tracer break-
through curve analysis focus on small-scale effects of karst
conduits to define the size and the characteristics of one indi-
vidual spring aquifer (Birk et al., 2004; Einsiedl, 2005; Geyer
et al., 2008; Bonacci, 2004; Hauns et al., 2001; Kovacs et al.,
2001; Grasso and Jeannin, 2002; Maloszweski et al., 2005;
Weiler et al., 2003). Other approaches concentrate on karst
genesis or theoretical conduit flow (Sauter et al., 2006; Ro-
manov et al., 2004; Ford, 2003). Distributive methods, such
as “Single Continuum Porous Equivalent”, “Double Contin-
uum Porous Equivalent”, “Discrete Single Fracture Sets” or
“Discrete Multiple Fracture Set”, “Hybrid Models” (Sauter
et al., 2006) attempt to take into account the heterogeneity
of karst aquifers within single conduits or parameter fields
in a spatial continuum, however mainly concentrate on mod-
eling water fluxes within the saturated zone. The duality of
karst makes it tremendously difficult to find an adequate pa-
rameterization to successfully model groundwater flow in
present distributed models, which principally assume porous
conditions (Kiraly, 2003). In the past, many studies have ap-
plied distributed groundwater models in karst environments
(Scanlon et al., 2003; Caroll et al., 2008; Martinez Santos
and Andreu, 2010; Worthington, 2003), or other conceptual
approaches such as inRimmer and Salingar(2006). These
approaches do not deal with the effects of a massif Alpine
karst aquifer itself on the hydrology of a catchment or sub-
catchment.Barthel(2011) recommends groundwater studies
that focus on the catchment scale.Kunstmann et al.(2006b)
and Kunstmann and Stadler(2005) applied the distributed
hydrological model WaSiM-ETH in Alpine catchments. To
the author’s knowledge, so far, no attempt has been made to
examine the complete water balance of an Alpine karstified
watershed and its sub-catchments by applying a distributed

hydrological model to determine possible subsurface bound-
ary fluxes.White and White(2003) describe groundwater
basins as total recharge areas including all surface stream
catchments that drain into the conduit system of a spring.
Overall, karst ground water basins from springs do not cor-
relate with the boundaries of overlying surface water basins;
they may also be linked by piracy or spillover routes. Con-
duits develop across surface water divides thereby transmit-
ting water to or from other nearby surface water basins. Fur-
thermore, groundwater basins have one set of flow paths ac-
tive during base flow conditions and quite a different set of
flow paths during flood flow conditions (White and White,
2003). Our study area is characterized by hundreds of springs
connected to fracture, conduit or cave systems with an un-
known set of active or inactive flow paths. We assume, how-
ever, that water fluxes in an high Alpine 1000 m banked
limestone aquifer with an inclined stratification can lead to
groundwater inflow, outflow or redistribution on an even
larger scale than spring basins – at catchment scale, where
subbasins cover valleys in mountainous regions, and that this
affects river runoff within those subbasins and consecutive
streams.

Summary of the new approach

Within the study area, each of the three high Alpine head sub-
basins is unique in subsurface hydrological systems (Kraller
et al., 2011), and measured runoff differs significantly be-
tween the valleys within the same time period. By applying
the hydrological model, we are able to show that high Alpine
aquifers do have a tremendous effect on the hydrology of
subbasins and that common approaches for distributed mod-
eling (Richards equation, 2-D-groundwater model, Darcy
equation and continuity equation) of the water balance per-
form insufficiently. By analyzing measured runoff and mod-
eling results for precipitation, evapotranspiration and runoff
we found systematic data patterns in model mismatch, and,
consequently mismatch in modeled and observed water stor-
age in three neighboring subbasins “Klausbachtal”, “Wim-
bachtal” and “K̈onigsseetal” (Fig.1). This under- and over-
estimation affects model results in consecutive subbasins
(river gauge Berchtesgadener Ache) within the model area
and the model area outflow (river gauge St. Leonhard). Dif-
ferent precipitation interpolation approaches did not allow
to correct for this mismatch. Thus, we conclude that differ-
ent storage conditions lead to under- and overestimation of
runoff and we developed a method to calculate missing wa-
ter fluxes with flexible inflow and outflow at subbasin scale.
We derive the analytical solution of the artificial neural net
to calculate observed water storage that can be implemented
in the hydrological model as inflow or outflow in the sat-
urated zone as continuous boundary flux (Fig.2). The im-
plemented flux is considered in the model run and affects
modeled stream discharge of consecutive subbasins. The aim
of this study is to improve the monthly water balance in the
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Fig. 1.Study area: river gauges and subbasins.

subbasin K̈onigsseetal and investigate effects on downstream
subbasins. Not only does this method permit description of
water storage dynamics and resulting groundwater inflow
and outflow in karstic terrains, but it also allows to adapt dis-
tributed hydrological models to karst dominated watersheds.

2 Study area and former karst research results

The study site encompasses the watershed of the river
Berchtesgadener Ache and is situated in the Berchtesgaden
Alps in the southeast of Germany in the Federal State of
Bavaria. The area covers 432 km2 and is mostly German
territory. Ten per cent, however, is Austrian national terri-
tory. Most of the area can be assigned to theMan and Bio-
sphere Reserve Berchtesgaden, of which the core zone is
Berchtesgaden National Park (IUCN Category II) with an
area of 210 km2 (Fig. 1). The climate in the area is cool-
temperate and humid. Mean temperature is 4.5◦C in the high
Alpine regions and 7.5◦C for the whole watershed. Precip-
itation has an altitude-dependent gradient of 47 mm/100 m.
Annual precipitation ranges from 1500 mm in the valleys to
up to 2600 mm in higher elevated regions. Maximum pre-
cipitation is 250–350 mm in July in the high Alpine regions
of the test site, albeit high uncertainties exist as only few

Fig. 2. Overview of the presented method. Effective precip-
itation results in modeled runoff. Consistent model mismatch
was detected due to water storage deviations. Modeled water
storage (derived from hydrological model runoff) systematically
over/underestimates observed water storage (derived from mea-
sured runoff). The observed water storage is then calculated by the
ANN and implemented in the groundwater module to account for
the observed storage processes. The ANN is applied to the subcatch-
ment Königsseetal.

stations are established in higher regions. The number of
days with snow cover is more than 300 per year in peak re-
gions. Dominant biotopes are forest, limestone grasslands,
rock and scree, mountain pines and lakes. The Berchtesgaden
Alps are situated in the northern limestone Alps and can be
seen as a geomorphological unit. The nine associated moun-
tain ranges to the watershed “Berchtesgadener Ache” are
shaped in close proximity as plateaus and ridges. Three val-
leys stretching from south to north, separating four mountain
massifs from each other are representative for the area. Dom-
inant rock formations are Triassic Dachstein limestone and
Ramsau Dolomite, but Jurassic and Cretaceous rock series
are also present (Fig.3). The banked limestone with a layer
thickness of up to 1000 m covering 500–700 m of Dolomite
extends along an altitudinal gradient up to 2100 m. The three
main tectonic units in the area are arranged on top of one an-
other: The base Tirolikum is covered by the Tiefjuvavikum
which itself lies beneath the Hochjuvavikum. Alpine fold
leads to a typical slope and inclined stratigraphy of the ex-
isting rock formations. The mountain massifs Hochkalter
and Watzmann slightly slope in a northern direction (Fis-
cher, 2005; Langenscheidt, 1994). The soluble limestone has
been exposed to karstification processes since the Alpine lift,
which took place in different phases. Typical karst phenom-
ena in the region are the presence of dolines, basins, dry
stream beds, caves and karrens. The massif karst aquifer in
the area is characterized by matrix, fractures and conduits.
The epikarst and vadose zones are more dominant than the
phreatic zone. Most of the spring discharge is a reaction to
precipitation events. A spring horizon at the south shore of
a lake shows phreatic behaviour but reacts also to precipita-
tion events. There are no permanent sinking streams within
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Fig. 3.Soil classification, land use classification and main geological units within the study area.

the study area, but snowmelt and rain immediately infiltrate
through swallow holes, especially on karst plateaus. Based
on spring locations, the boundary between unsaturated and
saturated zone is estimated at an altitude of 601 m a.s.l. and
1500 m a.s.l. maximum, but mainly at 700–1000 m a.s.l. Con-
sequently, the unsaturated zone can be up to 1000 m in thick-
ness. The eight rivers within the watershed drain the area in
a northerly direction. Based on nine river gauges available
for the basin, it can be divided into nine subbasins (Fig.1).
Several tracer experiments, a spring database and geologi-
cal conditions indicate a main groundwater flow direction
from the south. Furthermore, groundwater redistribution be-
tween subcatchments is also indicated between three neigh-
boring Alpine head subbasins stretch from north to south
(Kraller et al., 2011). These subbasins are located in a highly
karstified area with a steep terrain. Subbasin Klausbachtal
(42.79 km2) is characterized by forests at lower altitudes and
high Alpine plateau and ridge karst at higher altitudes. It
is bounded by the plateau mountain Reiteralm and mount
Hochkalter. Subbasin Wimbachtal (35.69 km2) is filled with
Dolomite gravel deposits, forming a porous aquifer with a
depth of 300 m. It is surrounded by mounts Hochkalter and
Watzmann, which are characterized by a huge carbonate stra-
tum. In the southern part, it is surrounded by dolomite moun-
tains. Subbasin K̈onigsseetal (163.54 km2) is characterized
by Lake Königssee (511 mio m3) and very steep gradients.
It is bounded by mount Watzmann and the Hagengebirge
plateau, while to the south it is surrounded by a huge Alpine
karst plateau, called “Steinernes Meer”. Geologically and hy-
drologically, these neighboring subbasins show unique geo-
logical and hydrological features (Fig.3).

3 Distributed modeling in high Alpine terrain

3.1 Model setup

We applied the distributed hydrological model WaSiM-ETH
(Schulla, 2012) (Version 8.8.0) in a horizontal resolution
of 50 m and a temporal resolution of 1 h. The basin and
borders of the subbasins were derived by the digital eleva-
tion model and the location of river gauges. Eight gauges
are located in Germany and one in Austria. The model
uses physically-based algorithms within its modular system.
Precipitation interpolation was done using inverse distance
weighting and linear regression linearly combined (IDW
weighted with 0.25). Interpolation of other meteorological
input data was done by elevation dependent regression or
IDW. Infiltration is calculated afterPeschke(1977), evapo-
transpiration after Penman-Monteith (Penman, 1948; Mon-
teith, 1975; Brutsaert, 1982), snow cover dynamics are calcu-
lated followingStrasser(2008). Direct flow (surface runoff)
is the sum of infiltration excess, saturation excess and a de-
fined fraction of the snow melt. Vertical soil water fluxes
within a defined number of soil layers and depth in the unsat-
urated zone are described by solving the Richards equation
(Richards, 1931). Soil parameterization is done according to
Van Genuchten(1976). Interflow is calculated depending on
suction, drainable water content and saturated hydraulic con-
ductivity. The lakes are modeled using the fully integrated
lake model with connection to the unsaturated and saturated
zone. The hydrological model was applied with a 2D ground-
water model coupled to the unsaturated zone with a vertical
boundary flux. The lower boundary of the unsaturated zone is
the depth of the groundwater layer. Horizontal groundwater
flow is calculated by the flow equation derived from Darcy’s
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law and the continuity equation. The saturated zone is located
within the defined soil layers and depth, groundwater level is
calculated corresponding to soil water content and previous
storage conditions. The aquifer is assumed to be unconfined.
Storage conditions within the unsaturated zone are initialized
for each discretization layer with a water content correspond-
ing to an hydraulic equilibrium with the groundwater (fluxes
are zero) and the groundwater table is assumed to be at a
depth of 20 % of the soil column.

In principle, the model environment is not able to account
for karstic underground. A porous aquifer is assumed. It rep-
resents a substitutional porous media model whose parame-
ters must be interpreted as effective parameters approximat-
ing the karstic environment on subcatchment scale (Kunst-
mann et al., 2006a). Next to numerous free model parame-
ters, sensitive calibration parameters are the recession con-
stantkrec for the saturated hydraulic conductivity and the in-
terflow drainage densitydr (Schulla, 2012). Discharge rout-
ing is done with a kinematic wave approach, including a
flow time table, retardation and translation. Due to fast in-
filtration and high evapotranspiration in bare karst area, we
adapted parameters for evapotranspiration over rock surfaces
leading to increased evapotranspiration for these areas. Fur-
thermore, we also allowed for macropore-infiltration as it is
implemented in the hydrological model afterJansson and
Karlberg (2001). Data for soil classification were derived
from the existing soil database of the National Park author-
ity and the concept soil map provided by the Bavarian En-
vironment Agency. Land use classification was derived from
Lotz (2006) and Corine Land Cover data. Main soil types
are cambisol, pararendzina, podsol, ranker and bare rock.
We classified 15 land use types and 20 soil types within the
model area. Soil stratification was defined for 40 layers with
a depth of 0.2 m to 4.0 m according the distributed porous
approach. Soil depth ranges from 15 to 56 m. Information
on the hydraulic saturated conductivity was derived from
BGRSGD(2007). Best parameterization for aquifer thick-
ness and the specific storage coefficient were iteratively es-
timated. Aquifer thickness was assumed to be 15 m. The au-
thors assumed several soil depths and aquifer thicknesses,
and got best performance results for the mentioned setup.
River courses were derived from the digital elevation model
during preprocessing. The discharge data was provided by
the Traunstein water management office and the Salzburg
hydrographical service. Meteorological input data were pro-
vided by 33 weather stations whereby 20 are automatic and
13 are mechanical stations (Table1). The stations are equally
distributed in altitude (430–2445 m a.s.l.) and space through-
out the model area (Fig.4). Several model runs showed that
the model is in steady state after several months, so the ini-
tialization period was one hydrological year 2001/2002. Af-
ter model calibration and model validation, the results were
used as fitted storage parameters to be read in for the follow-
ing model runs.

Fig. 4. Locations of weather stations within and outside the study
area.

3.2 Analysis of precipitation interpolation methods

We found there to be a mass problem in the hydrological
model because it is unable to reproduce measured runoff
in the Alpine head catchments. Modeling with precipita-
tion correction (factor 0.20 for solid precipitation) resulted
in decreasing model performance. Figure6 shows annual
sums of measured runoff and modeled runoff with and with-
out precipitation correction in subbasins Königsseetal, Wim-
bachtal and Klausbachtal. Without precipitation correction,
runoff performance is satisfactory in subbasin Klausbachtal,
but measured runoff is underestimated in subbasin Wimbach-
tal and K̈onigsseetal. Although modeled runoff performance
increases slightly in subbasin Wimbachtal when using pre-
cipitation correction, it is often overestimated in subbasin
Königsseetal and highly overestimated in subbasin Klaus-
bachtal. Table3 shows the Nash Sutcliffe efficiency of mod-
eled runoff for the validation period with and without pre-
cipitation correction. It decreases for all subbasins except
subbasin Wimbachtal. When considering all the subbasins,
runoff performance is better without precipitation correction.
Application of precipitation correction with different fac-
tors in each of the subbasins would improve model results.
In our opinion, however, there is no meteorological justifi-
cation to do so. Based on the results of this investigation
we decided to model without precipitation correction. Ad-
ditionally, various interpolation methods to analyze whether
precipitation input data were the cause for the deviation or
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Table 1.Location, altitute and parameters and temporal resolution of the meteorological stations used for our investigation.

Station Altitude Parameters Temporal Operator
[m a.s.l.] resolution

Reiteralm1 1755 T , RH, WS, WD 10 min LWZ
Reiteralm2 1670 T , RH, TS, SD 10 min LWZ
Reiteralm3 1615 T , RH,P , GR, RR, SD 10 min LWZ
Hinterseeau 839 T , RH, WS, WD, GR, RR, SD 10 min NPV
Hinterberghorn 2270 T , RH, WS, WD, GR, RR 10 min NPV
Blaueis 1651 T , RH, WS, WD, GR, RR 10 min NPV
Brunftbergtiefe 1238 T , RH,P , WS, WD, GR, RR 10 min NPV
Triscḧubl 1764 T , RH,P , WS, WD, GR, RR 10 min NPV
Steinernes Meer 1900 T , RH,P , WS, WD, GR, RR 10 min NPV
Watzmannhaus 1919 T , RH, WS, WD, GR, RR 10 min LWZ
Scḧonau 617 T , RH,P , GR, DR, SS, WS, WD, AP 10 min Schönau/NPV/DWD
Jenner 1219 T , RH,P , WS, TS, SD 10 min LWZ
Schlunghorn 2155 T , RH, WS, WD, GR, RR 10 min NPV
Höllgraben 653 T , RH,P 10 min LWZ
Kühroint 1407 T , RH,P , WS, WD, GR, RR, TS, SD, SWE 10 min LWZ
Funtenseetauern 2445T , RH, WS, WD 10 min LWZ
Lofer 625 T , P , RH, WS, WD, GR, SS, AP 1 h ZAMG
LofererAlm 1623 T , P , RH, WS, WD, GR, SS, AP 1 h ZAMG
SBG Flughafen 430 T , P , RH, WS, WD, GR, SS, AP 1 h ZAMG
Schmittenḧohe 1973 T , P , RH, WS, WD, GR, SS, AP 1 h ZAMG
Königsberg Pegel 699 P 1 d NPV
Schapbach 953 P 1 d NPV
Kühroint (mech.) 1418 P 1 d NPV
Lahneralm 1240 P 1 d NPV
St. Bartholom̈a 604 P 1 d NPV
Wimbachschloss 926 P 1 d NPV
Brunftbergtiefe (mech.) 1238 P 1 d NPV
Auf dem Gries 1435 P 1 d NPV
Bindalm 1119 P 1 d NPV
Eckau 1015 P 1 d NPV
Lahnwaldf̈utterung 840 P 1 d NPV
Mittereis 1325 P 1 d NPV
Halsalm 1088 P 1 d NPV

T = air temperature, RH = relative humidity, WS = wind speed, SD = snow depth, SWE = snow water equivalent, SS = sunshine duration, GR = global radiation,
DR = direct radiation, RR = reflected radiation,P = precipitation, AP = atmospheric pressure at sea level, TS = surface temperature, LWZ = Bavarian avalanche
warning service, NPV = Administration Berchtesgaden National Park, ZAMG = Central Institute for Meteorology and Geodynamics Austria

Table 2.Pecipitation interpolation analysis.

Scale Time period IDW REG REG + IDW Station data (Kühroint)
[mm] [mm] [mm] [mm] (1407 m a.s.l.)

Subbasin Sum 2006/2007 1559 1704 1643 –
Station Mean 2001–2010 – 1468 1670 1676

Inverse distance weighting (IDW), Regression (REG) and the combination of Regression and IDW (REG + IDW) in the
year 2006/2007 for subbasin Königsseetal (4). Regression and REG+IDW for station location (Kühroint) – mean
2001–2010.

not were investigated. The precipitation interpolation meth-
ods inverse distance weighting (IDW), elevation dependent
regression(REG) and a linear combination of IDW and el-
evation dependent regression (weighting factor IDW: 0.25)
were tested for the annual sum of precipitation in subbasin

Königsseetal. Annual sums of interpolated precipitation were
1559 mm for IDW, 1704 mm for regression and 1643 mm
for the linear combination of both methods (Table2). IDW
shows the lowest value because the elevation dependency of
the precipitation was not considered (1559 mm). However,
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Table 3. Nash Sutcliffe efficiency (NSE) in the calibration period, validation period and validation period with precipitation correction for
several subbasins.

No. Subbasin Cal. period Val. period Val. period with
linNSE/logNSE linNSE/logNSE precipitation

orrection
clinNSE/logNSE

1 Klausbachtal 0.58/0.78 0.63/0.81 −3.68/0.50
2 Wimbachtal −0.98/−0.98 −0.0008/0.16 −0.008/0.39
3 Ramsauer Ache 0.36/0.36 0.18/0.65 −6.82/0.65
4 Königsseetal 0.66/0.51 0.56/0.64 −0.53/0.45
6 Berchtesgadener Ache 0.55/0.22 0.32/−0.04 −0.61/0.63
9 St. Leonhard 0.54/0.51 0.59/0.52 −1.15/0.27

Fig. 5. Comparison of different interpolation methods in subbasin Königsseetal. Inverse distance weighting (IDW), elevation dependent
regression (REG) and both methods linearly combined (IDW + REG).

analyses of station data within the area proved gradient de-
pendency of precipitation amount. In high Alpine terrain,
IDW was not considered appropriate for the application. Re-
gression showed the highest value, because it did not repro-
duce station data (1704 mm). The combined method gives a
value between the two other methods, because it takes into
account elevation dependency and station data (1643 mm).
We analyzed both methods for one station by comparing the
overall mean from 2001–2010. The analysis revealed that
REG + IDW could best reproduce the station data. Figure5
shows modeled runoff resulting from the different interpola-
tion methods. Runoff dynamics differ slightly, and none of
the methods resulted in improved model results. In this ter-
rain, model mismatch cannot be put down to a single cause.
We are aware that there are highly dynamic meteorologi-
cal processes in high Alpine terrain and cannot exclude that
these effects may partly be responsible for the model mis-
match. However, as the study area is located in profoundly
karstic terrain, we also concluded unknown storage processes
to be the the main cause for the model mismatch.

3.3 Outcomes distributed modeling – identification and
quantification of boundary fluxes

In a first step, we analyzed annual sums and overall means
of measured runoff and modeled precipitation, evapotranspi-
ration and runoff at the river gauges of the three high Alpine
neighboring head subbasins Klausbachtal, Wimbachtal and
Königsseetal (Table4). Annual sums of measured runoff
ranged from 996 mm to 1375 mm in subbasin Klausbachtal
(mean 1086), from 1045 to 2808 mm in subbasin Wimbachtal
(mean 1882) and from 1197 to 1831 mm (mean 1443) in sub-
basin K̈onigsseetal. Annual sums of measured runoff differed
significantly in these subcatchments. Precipitation ranged
from 1575 to 2154 mm in subbasin Klausbachtal, from
1565 to 1983 mm in subbasin Wimbachtal and from 1532 to
1923 mm in subbasin K̈onigsseetal, resulting in an over-
all mean of 1605 mm (Klausbachtal), 1560 mm (Wimbach-
tal) and 1551 mm (K̈onigsseetal), respectively. Mean annual
evapotranspiration was 306 mm for subbasin Klausbachtal,
306 mm for subbasin Wimbachtal and 349 mm for subbasin
Königsseetal. The measured runoff indicates a unique hy-
drology in each valley. After hydrological model calibration,
model runs result in equally calculated annual sums of mod-
eled runoff, dependent on precipiation input. Mean annual
modeled discharge was 1254 mm in subbasin Klausbachtal,
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Fig. 6. Annual sums of measured runoff, modeled runoff and modeled runoff with precipitation correction for subbasins Klausbachtal,
Wimbachtal and K̈onigsseetal.

1194 mm in subbasin Wimbachtal and 1164 mm in subbasin
Königsseetal. Consequently, a systematic over- and under-
estimation of discharge was found in these subbasins when
comparing modeled to measured runoff (Fig.7). Based on
analyses of several precipitation interpolation approaches,
we assume the different annual sums of measured runoff in
subbasin Klausbachtal, Wimbachtal and Königsseetal to be
the result of subsurface boundary fluxes that were not taken
into account by the hydrological model, leading to under and
overestimation of measured runoff during model runs. Since
it is the characteristic subsurface conditions and resulting wa-
ter fluxes that influence the water balance in karst aquifers,
the monthly sums of water storage for subbasins Klausbach-
tal, Wimbachtal and K̈onigsseetal were analyzed in model
runs and reality to gain more information about the annual
dynamics of the water storage. By subtracting the runoff (Q)
from the incoming effective precipitation (Eq.1) storage re-
duction or buildup is expressed and is assumed to be posi-
tive in winter and summer (snow storage and soil storage)
and negative in spring and autumn (snow melt and soil stor-
age decrease), leading to a systematic pattern throughout one
year. Deviations from the assumed pattern for the observed
water storage may give insights into groundwater inflow, out-
flow or redistribution at subbasin scale due to subsurface
water fluxes. Monthly sums of observed and modeled water
storage were analyzed (Eqs.2 and3).

Peff(t) = P(t) − ET(t) (1)

Smod(t) = Peff(t) − Qmod(t) (2)

Sobsreal(t) = Peff(t) − Qmeas(t) (3)

Figure 8a shows the water storage modeled for the sub-
catchments Klausbachtal, Wimbachtal and Königsseetal in
monthly sums for the summer period in years 2002 to 2011.
Storage is mostly positive as there is less runoff than pre-
cipitation income (soil storage buildup) in the hydrological
model. The monthly sums of modeled runoff show positive
values. Figure8b shows the water storage derived from the
measured runoff. It shows negative peaks during summer
for subbasins Wimbachtal and Königsseetal. There is more
runoff than precipitation coming in, indicating groundwater
inflow and explaining the amount of measured annual runoff.
In subbasin Klausbachtal, there is less soil storage and snow
melt, indicating groundwater outflow and explaining the an-
nual lack of water. Table5 shows the maximum, minimum
and mean of monthly modeled and measured water storage.
In subbasin Klausbachtal, mean of observed water storage
is positive (21 mm), indicating water outflow from the sub-
basin. It is underestimated by the hydrological model (4 mm),
because water outflow is not calculated and all incoming pre-
cipitation is routed to the stream. In subbasins Wimbachtal
and Königsseetal, mean water storage is negative (−53 mm;
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Fig. 7.Annual sums of modeled and measured discharge subbasins Klausbachtal, Wimbachtal and Königsseetal before ANN correction.

Fig. 8. (a)Comparison of the water storage (Smod) derived from results of hydrological model runoff before ANN correction. Monthly sums
June–October 2002–2011. Subbasins Klausbachtal, Wimbachtal, Königsseetal.(b) Comparison of the water storage (Sobsreal) derived from
measured runoff. Monthly sums June–October 2002–2011. Subbasins Klausbachtal, Wimbachtal, Königsseetal.

−20 mm) indicating more river runoff than incoming precip-
itation and consequently water inflow into the system. Fig-
ure 9 shows monthly sums for measured runoff and hydro-
logical model runoff for summer months in the years 2001
to 2011. Runoff is mostly highly underestimated by the hy-
drological model in springtime but also in summer months

where no snow melt is present. Especially year 2010 is dif-
ferent compared to the other years as there is a good per-
formance of the distributed model considering monthly sums
of runoff. Modeled runoff underestimates measured runoff.
Figure 10 shows the annual dynamic of main water bal-
ance components for each hydrological year within the study
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Fig. 9.Monthly sums of measured runoff and modeled runoff in subbasin Königsseetal before ANN correction –for years 2001 to 2010.

period for subbasin K̈onigssetal. Figure10a and b show the
sum of snowmelt and rain and snowmelt only. In November,
snowmelt and rain are hydrological input into the system,
from February to June snowmelt is dominant, and from June
to October it is mainly rainfall that contributes to the water
balance in the subbasin. The evapotranspiration (Fig.10c)
shows an annual dynamic with a peak in July. Figure10d
shows water storage derived from the modeled runoff by the
hydrological model. In winter months, storage is nearly zero,
in spring values are negative due to snow melt, while in sum-
mer values are slightly positive due to soil water storage.
Figure10e shows the water storage derived from the mea-
sured runoff. In winter months, the storage is positive due to
snow cover build-up. In May there is strong snow melt im-
pact, leading to negative storage values. In summer months,
storage remains negative indicating water inflow through un-
known subsurface processes. We assume that underground
catchment sizes differ from surface catchment sizes as they
are presumed for distributed modeling, and that this is the
cause of deviating water storage quantities.

4 Artificial neural net to calculate boundary fluxes and
distributed model correction

Analysis of the mismatches indicates that there are system-
atic subsurface boundary fluxes that can be expressed as ob-
served water storage. This water storage in the karst aquifer is
temporally diverse and underlies many influencing processes
such as precipitation income and intensity, evapotranspira-
tion and soil water processes. These processes and their inter-
action are highly complex and it is not possible to physically
describe them in detail within the study area. The hydrolog-
ical model needs to be adapted to the special hydrological
systems in the high Alpine karst environment. We developed
an artificial neural network (ANN) as introduced byHerz
et al.(1991) andHaykin(1999) to calculate the observed wa-
ter storage (Fig.2). ANNs are nonlinear input-output models
that are able to reproduce the desired output based on a given
input parameter set. It is then able to determine complex
input-output relationships where physically based methods

are limited. The network itself is trained by parameter ad-
justing and after validation available itself as tool for calcu-
lating subsurface conditions. Due to the algorithm, negative
and positive water storage can be considered. Artificial neu-
ral networks have already been applied in karstic environ-
ments byDou et al.(1997); Dixon (2005); Siou et al.(2011);
Kurtulus and Razack(2010); Kunstmann et al.(2006a) to
calculate spring response and stream discharge. The ANN in
our study does not calculate stream or spring discharge, but
the observed water storage. With this method we describe
the strong heterogeneity and discontinuity of the medium.
Input variables are hydrological model outputs. ANNs ap-
proaches are usually implemented using common libraries,
as they are, for example, available for the Matlab® Neural
Network Toolbox libraries. We present the analytical solu-
tion of the neural network to enable implementation of this
method within the hydrological model source code. We want
to emphasize that this new approach combines a neural net-
work approach to calculate karst water storage with the tem-
poral and spatial dynamic correction of a distributed phys-
ically based hydrological model. We tested several ANNs
where we changed the time increment of given input and
output parameters to find the best setup for monthly water
balance correction of the hydrological model. Furthermore,
we tested the effect of the correction based on different time
increments on the resulting runoff dynamic performance.

4.1 Artificial neural network (ANN)

We developed and tested two layer feedforward artificial neu-
ral network (ANN) with a sigmoid function in the hidden
layer, and a linear function in the output layer for the sub-
basin K̈onigsseetal (Fig.11) in six different time increments
where input and output parameters were aggregated to sums
of 5, 10, 15, 20, 25 and 30 day, respectively (time period 2001
to 2010). The inputsQS(t) (snow melt and/or rain), snow
precipitationPS(t), temperatureT (t) and relative humidity
RH(t) give the observed water storageSobsANN (t) (Eq. 4).
These explanatory variables for the artificial neural net are
interpolated outputs of the hydrological model to ensure that
the ANN is not based on measured data. The input data were
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Fig. 10.Monthly sums of snowmelt + rain(a), snowmelt(b), evapotranspiration(c), water storage of the hydrological model(d) and observed
water storage(e) for hydrological years 2001–2010 in subbasin Königsseetal.

calculated with hydrological model output before ANN de-
velopment. During the training process and input data test-
ing, four input variables turned out to perform best. Tem-
peratureT (t) and air humidity RH(t) as interpolated mete-
orological variables to capture seasonality and air moisture;
snow precipitationPS(t) andQS(t) are the calculated input
into the hydrological system. No sliding window is needed.
Selection of the number of hidden neurons was done by an

autocalibration algorithm. ANN setups are presented in Ta-
ble 6. The size of the training and validation data sets is
based on the given time increment. The dataset was split up in
60 % training and validation data and 40 % testing data. The
dataset for training and validation was split into 85 % training
data and 15 % validation data. Training is done with a known
set of input and output data and aims at finding a parame-
ter set in such a way that the ANN can reproduce the output
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Table 4. Annual sums and mean of modeled precipitation, evapotranspiration, modeled and measured discharge –subbasins Klausbachtal,
Wimbachtal and K̈onigsseetal.

Year Klausbachtal Wimbachtal K̈onigsseetal

Area[km2
] 42.79 35.69 163.54

Precipitation/ 2001/2002 2154/344 1983/344 1900/432
evapotranspiration 2002/2003 1665/395 1565/395 1532/458
[mm] 2003/2004 1805/346 1738/346 1 673/400

2004/2005 1829/328 1745/328 1667/351
2005/2006 1640/319 1595/319 1552/339
2006/2007 1685/363 1645/363 1643/404
2007/2008 1836/342 1789/342 1923/389
2008/2009 1856/340 1857/340 1842/379
2009/2010 1575/278 1681/278 1777/334

Mean precipitation/ 1605/306 1560/306 1551/349
evapotranspiration[mm]

Measured/modeled 2001/2002 1183/1654 1535/1494 1402/1427
runoff [mm] 2002/2003 1375/1296 1872/1186 1634/1077

2003/2004 996/1418 1045/1317 1197/1260
2004/2005 1253/1475 1783/1384 1596/1299
2005/2006 1235/1331 2622/1289 1784/1201
2006/2007 1259/1274 2269/1220 1799/1169
2007/2008 1128/1402 2346/1324 1831/1422
2008/2009 1178/1381 2544/1368 1597/1362
2009/2010 1253/1313 2808/1355 1593/1416

Mean measured/ 1086/1254 1882/1194 1443/1164
modeled runoff[mm]

Table 5. Minimum, maximum and mean of monthly modeled
(Smod) water storage by the hydrological model and observed
water storage (Sobs) in subbasin Klausbachtal, Wimbachtal and
Königsseetal (mm).

Klausbachtal Wimbachtal K̈onigsseetal
Smod/Sobsreal Smod/Sobsreal Smod/Sobsreal

Max 265/271 275/205 347/285
Min −275/−191 −272/−316 −360/−348
Mean 4/21 7/−53 3/−20

data satisfactorily. In the validation, the network is prevented
from overfitting. Overfitting means that the ANN learns to
reproduce the noise of the data or the data pairs itself rather
than trends in the data set as a whole. When beginning to
train the ANN, the error for training and validation data de-
creases. The errors for the training set continue to decrease,
after the optimal amount of training has been achieved, but
validation data error increases. Model training is stopped be-
fore. The validation error increases. Table6 shows the ANN
results. Net training to obtain the parametersai to gi was
done with the Levenberg-Marquardt algorithm for which the
RMSE was chosen as the objective function to be minimized
(Eq.5).

Fig. 11. Architecture artificial neural network. Input layer, hidden
layer and output layer. The inputsQS(t) (snow melt and/or rain),
snow precipitationPS(t), temperatureT (t), relative humidity RH(t)
give the observed water storageSobsANN (t).
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Table 6.Artificial neural net setup and performance.

TI HN total Training Validation Testing lin R-Square log R-Square Index d linNSE MSE RSME
n n n n

5 18 657 335 59 263 0.6 0.31 0.57 0.6 432 20
10 1 328 167 30 131 0.39 0.29 0.38 0.69 1607 40
15 3 219 111 20 88 0.5 0.31 0.52 0.71 2369 48
20 6 164 83 15 66 0.56 0.33 0.5 0.44 3539 56
25 14 131 67 12 52 0.58 0.35 0.56 0.9 4712 57
30 6 109 55 10 44 0.56 0.33 0.54 0.82 1707 84

linear R-Square, logartihtmic R-Square, Index d, linear NSE, MSE and RSME for the six time increments (n = number of datasets; HN = Hidden Nodes; TI = Time
increments).

SobsANN (t) = ai +

n∑
i=1

bi

1 + eci+diQS(t)+eiPS(t)+fiT (t)+giRH(t)
(4)

RMSE =

√√√√1

n

n∑
i=1

(
SobsANN (t) − Sobsreal(t)

)2
. (5)

During pre- and postprocessing for the tansig transfer func-
tion net input and output were normalized fromrmin =−1 to
rmax= 1 (Eq.6) wherexs is the scaled output andxt is the
value of the time series at the given time increment. The out-
put of the ANN is then backtransformed using the Eq. (7):

xs(t) = (rmax − rmin)
xt − xmin

xmax − xmin
+ rmin (6)

xt = (xs(t) + 1) (xmax − xmin)
/

2 + xmin . (7)

Performance evaluation – ANN

We show results of the ANNs with different time aggrega-
tions each the test period. Table6 shows R-Square, Index
d, NSE, MSE and RSME for each ANN Setup. Best re-
sults were achieved with a 5-day time increment (r2 = 0.60)
(Fig. 12), whereby the NSE = 0.6 and the RMSE = 20. Net-
works with 20, 25 and 30-day increments also show good re-
sults and their performance is very similar. Figure13 shows
the performance of the ANN for the entire time increment.
None of the tested ANN setups were able to capture the pos-
itive storage value at the beginning of the time series. Fur-
thermore, the positive water storage in 2010 could not be re-
produced. The resulting storage series were reproduced satis-
factorily. Dynamics and quantities of the water storage were
calculated appropriately for the ANNs with larger time in-
crements. Since the ANN with a 10-day increment shows the
lowest correlation, it was not implemented as boundary flux
in the hydrological model. Table7 shows the weights and
biases derived by the training process for the ANN with a
20-day time increment which shows the best results in hy-
drological model correction.

Table 7.Weights and biases ANN. 20-day time increment.

bi ci di ei fi gi

0.04 −6.84 −6.67 −5.03 −1.18 0.90
0.58 3.30 −4.43 1.57 0.89 −2.03
0.71 4.32 −3.93 −0.65 −4.18 2.53
0.59 −2.03 −2.66 3.04 7.18 −5.85
0.39 1.97 3.57 −1.13 −0.72 5.53
0.14 5.39 −7.44 1.24 2.10 3.84

bi = weight hidden layer to output.di , ei , fi = weights layer 1 to hidden
layer.ci = bias layer 1 to hidden layer.ai =−0.54 ( bias hidden layer to
output).

4.2 Distributed model correction: implementation of
boundary flux in the saturated zone

The ANNs reproduce the missing water quantities within
the subbasin K̈onigsseer Ache at different time increments.
The missing water quantities are expressed as water storage,
which is the difference of incoming effective precipitation
minus measured runoff. We used the outcomes of the artifi-
cial neural network as a basis for the constant boundary flux
into the hydrological model (Fig.2). We implemented results
of the ANNs for all increments in the hydrological model
to analyze which increment performs best when looking at
the water balance and runoff performance. During correcting,
one has to take into account the water storage already calcu-
lated by the hydrological model, which is the difference of
effective precipitation minus modeled runoff. Therefore, the
given sum of observed water storage simulated by each of
the neural networks was subtracted from the modeled water
storage already calculated for the investigated period (Eq.8).
Next, this difference was converted into a time series, where
influx or outflux values switched according to the time in-
crement. For example, for the ANN with a 5-day increment,
the in- or outflux value changes every 5 days. The values of
the time series are automatically written into a boundary grid
in WaSiM-ETH at a given extent. The difference was im-
plemented as a continuous boundary fluxQbound(t) in m s−1

for time increment in the saturated zone at a given area in
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Fig. 12. Performance ANN – Test period. Correlation diagram between simulated monthly observed water storage by the ANN (output)
vs. observed water storages (target) –(a) = 5-day,(b) = 10-day,(c) = 15-day,(d) = 20-day,(e)= 25-day and(f) = 30-day time increment.
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Fig. 13.Comparison of observed water storage (test data) and observed water storage simulated by the ANN (output net) in monthly sums.
Test period of the neural net in subbasin Königsseetal –(a) = 5-day,(b) = 10-day,(c) = 15-day,(d) = 20-day,(e) = 25-day,(f) = 30-day
increment.

the southern border of the subbasin. Influx is also possible at
given influx point locations, but influx at a given area within
the subbasin showed better results. During the model run, the
influx was defined in an external table where the values for
the influx are listed for each time step. Therefore, the hy-
drological model was constantly corrected during the model
run. The correction was subsequently considered in consecu-
tive modules of the hydrological model and finally routed to
river outlets.

Qbound(t) = Smod(t) − SobsANN (t) (8)

This method is not a bias correction of modeled runoff at
the outlet point, but an inflow within the groundwater model,
which the model accounts for and is considered in the follow-
ing modeling process. The inflow size can vary from one grid
cell to the whole subbasin area. We implemented a boundary
flux based on the results of the test period of each of the neu-
ral net from March 2007 to October 2010.

5 Results and discussion

In this study, we were able to demonstrate the limitations
of a hydrological model in high Alpine terrain with mas-
sive carbonate aquifers. We were able to quantify systematic
model mismatch at subbasin scale and point out hydrological

processes within these heterogeneous catchments that devi-
ate from common model assumptions (Darcy Flow, porous
media conditions). To enable distributed hydrologcial mod-
eling within these catchments, which are the origin of low-
land river runoff quantities and dynamics, we developed a
method to describe and account for the missing water quan-
tities. Analyses of given station data, interpolation methods
and the effects of precipitation correction showed that unre-
alistic precipitation assumptions were not the case and could
therefore be suspended as the main reason for the model mis-
match. Therefore, we concluded unknown subsurface bound-
ary fluxes to be the cause for the uneven observed water bal-
ance for the given subbasins. Or, in other words, due to un-
derground fluxes, the real catchment size for river gauges dif-
fers from the size calculated by the hydrological model. By
using porous condition parametrization, the model is unable
to account for extreme differences in hydrological system
at catchment scale, resulting in consistent model mismatch.
Analysis of modeled runoff from 2001 to 2010 showed that
it underestimates observed runoff, pointing to deviations dur-
ing summer months (Fig.9). The hydrological model under-
estimates river runoff in the given subbasin from April to Oc-
tober 2007, from June to September 2008 and from June to
October 2009.

Underestimation also occurs during the summer months
when snow melt is not present. Figure14 shows the results
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Fig. 14. Spatial water balance results of the hydrological model (before model correction). Precipitation and evapotranspiration, relative
humidity, temperature, relative soil moisture and groundwater level.

of the hydrological model for the hydrological year 2006–
2007. It is evident that the grid-based approach provides de-
tailed information on the heterogeneous Alpine catchment.
The annual sum of precipitation ranges from 1300 mm in
the valleys to over 2100 mm in mountainous regions. Actual
evapotranspiration is calculated to over 1400 mm at extreme
locations and shows a mean value of 396 mm for the area.

Relative humidity ranges from 70 % to over 82 %. Mean an-
nual temperature is from 10◦C in valleys to−2◦C at ele-
vated regions. The mean groundwater level in the region in
the year 2006–2007 is presented. Based on the assumed soil
layers, which had to be in the given range of the hydrologi-
cal model, groundwater reaches the surface in valley regions,
because steep gradients lead to increased flow in hill slopes.
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Table 8.Performance of the hydrological model correction 1 March 2007–31 October 2008 and 1 March 2007–31 October 2010. Values are
linear and logarithmic Nash Sutcliffe efficiencies.

1 March 2007–31 October 2008 1 March 2007–31 October 2010

Time Königsseetal Berchtesgadener St. Leonhard Königsseetal Berchtesgadener St. Leonhard
increment Ache Ache

lin no influx 0.48 0.22 0.57 0.53 0.33 0.56
NSE 5 0.46 0.4 0.6 0.28 0.5 0.57

15 0.48 0.39 0.59 0.35 0.48 0.56
20 0.57 0.49 0.66 0.34 0.55 0.61
25 0.4 0.43 0.6 0.38 0.5 0.58
30 0.46 0.37 0.59 0.31 0.49 0.57

log no influx 0.56 −0.61 0.67 0.6 0.06 0.51
NSE 5 0.35 −0.15 0.31 0.24 0.37 0.2

15 0.34 −0.02 0.23 0.18 0.42 0.15
20 0.46 0.05 0.4 0.31 0.48 0.27
25 0.24 −0.04 0.22 0.28 0.41 0.25
30 0.29 −0.11 0.27 0.19 0.42 0.22

Soil moisture in the root zone ranges from zero to almost
100 %. The massive karst aquifer itself and the location of all
conduits and subsurface flow channels remain a black box.
However, based on tracer experiments and spring locations
we were able to synthesize that the main underground flow
direction tends to be north, which corresponds to the results
of the hydrological model mismatch (Kraller et al., 2011).
We assume the missing or additional water quantities in the
high Alpine subbasins are caused by boundary fluxes from
outside the study area. No internal boundary fluxes (e.g. from
the Wimbachtal to the K̈onigsseetal) are considered during
the development of this new method. Since we are unable to
quantify each underground flux in the study area, and espe-
cially the dynamics throughout a hydrological year, we chose
a statistical method to capture unknown underground flow
processes at subbasin catchment scale on various temporal
time increments. By developing the artificial neural net, we
were able to reproduce monthly storage deviations. A two
layer feedforward backpropagation network was developed
with a sigmoid function in the hidden layer and a linear func-
tion in the output layer with varying number of neurons in the
hidden layer. The neural networks give satisfactory represen-
tation of observed water storage. For each of the ANNs, we
implemented a constant boundary flux in m/s for each time
increment in the saturated zone module of the hydrological
model for subbasin K̈onigsseetal based on the results of the
ANN for the years 2007 to 2010. The influx was then in-
volved in the consecutive modules during model run. Perfor-
mance of the hydrological model improved with implemen-
tation of the constant boundary flux (Eq.8). We analyzed
hydrological model performance in the corrected subbasin
Königsseetal, but also the effects of the correction on down-
stream subbasins Berchtesgadener Ache and St. Leonhard.
Figure 15 a to c shows monthly sums of measured runoff,

modeled runoff and modeled runoff after implementing the
boundary flux from 2007 to 2010 for all the time increments.
In 2007 and 2008, the modeled runoff improves for most of
the time aggregations, however there is slight overestimation
in July and August 2007. In 2009 and 2010, runoff is overes-
timated in the summer months. The reason for this is that the
artificial neural network is trained to extreme inflow events
in late summer as it is the case for all years before 2009.
In 2009 and 2010, there is no such a system behavior and the
artificial neural network is therefore overestimates the influx,
leading to overestimated runoff.

The ANN and the influx is perform very well during win-
ter and spring time, the hydrology of the processes within
the watershed does not seem to be so variable during that
time. The approach underlines the extreme heterogeneity of
the hydrologic processes taking place during summer months
in a karstified watershed. Best performance in the hydrologi-
cal model correction is shown by the artificial neural network
with 20-day time increment. When analyzing the period from
1 March 2007 to 31 October 2010 Linear Nash Sutcliffe effi-
ciency increases from 0.48 to 0.57 in subbasin Königsseetal,
from 0.22 to 0.49 in subbasin Berchtesgadener Ache and
from 0.57 to 0.66 in subbasin St. Leonhard (Table8). In
subbasin K̈onigsseetal no other time increment results in
modeled runoff improvement. However, in Berchtesgadener
Ache and St. Leonhard all time increments improved mod-
eled results (linear NSE). Looking at the logarthmic NSE,
only subbasin Berchtesgadener Ache shows improvements.
When looking at the whole correction period for the 20-day
time increment from 1 March 2007 to 31 October 2010 , NSE
only increases in subbasin Berchtesgadener Ache (0.33 to
0.55) and St. Leonhard (0.56 to 0.61). No improvement could
be achieved in subbasin Königseetal. The reason for this is
overestimation of storage of the ANN in years 2009 and
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Fig. 15. Monthly sums of measured runoff and hydrological model runoff with and without implemented boundary flux from June to
October for years 2007–2010 for subbasin Königsseetal, Berchtesgadener Ache and St. Leonhard.(a), (b), (c): Results of influxes of all
time increments in subbasin Königsseetal, Berchtesgadener Ache and St. Leonhard. Mod-ANN5 = 5 days, Mod-ANN15 = 15 days, Mod-
ANN20 = 20 days, Mod-ANN25 = 25 days, Mod-ANN30 = 30 days.(d), (e), (f): Results for the ANN with 20-day time increment, which
showed best performance in the hydrological model correction.
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Fig. 16.Measured runoff, modeled runoff and modeled runoff with implemented boundary flux (20-day time increment) for June to Octo-
ber 2007 for subbasin K̈onigsseetal. Linear Nash Sutcliffe Efficiency shows model performance from June to October 2007.

Fig. 17.Water balance components for subbasin Königsseetal and modeled runoff for St. Leonhard – annual sums 2007. Results for orig-
inal model run and model run with implemented boundary flux (P = precipitation, ET = evapotranspiration;Peff = effective precipitation,
Qobs= measured runoff,Qmod= modeled runoff,Sobs= observed storage,Smod= modeled storage).

2010 is leading to an overestimation of runoff. In the shorter
time period there is an improvement for subbasin Berchtes-
gadener Ache for all time increments (linear NSE and log-
arithmic NSE) and a slight improvement for St. Leonhard
for all time increments (linear NSE). It is important to note,
that at that position runoff performance in downstream sub-
basins Berchtesgadener Ache and St. Leonhard is also influ-
enced by the runoff dynamics of other subbasins (e.g. Wim-
bachtal, Klausbachtal, Ramsauer Ache) and, of course, that
the model correction in subbasin Königsseetal alone can-
not improve model results for these river gauges. Here we
show the effect on downstream subbasins of hydrological
model correction in a head subbasin. The lower graphs of
Fig. 15d to e show monthly sums of measured runoff, mod-
eled runoff and modeled runoff with boundary flux for the
network with 20-day aggregation for subbasin Königsseetal,
Berchtesgadener Ache and St. Leonhard. Modeling is im-
proved at both gauges. Since there is also an underestima-
tion of runoff in the subbasin Wimbachtal which effects dis-
charge at gauge Berchtesgadener Ache and St.Leonhard, the
results are only slightly better. Application of the method in
the Wimbachtal and the K̈onigsseetal would lead to a greater
improvement. Figure16 shows measured runoff, modeled
runoff and modeled runoff with implemented boundary flux
for June to October 2007. The correction improves runoff in

late June and early July, but only slightly influences winter
periods. During peak flow between August and September,
the correction shows good performance at two minor peaks
and runoff is increased. However, it is still sligthly underes-
timated in the main peak. Reproduction of the monthly sum
of September is very satisfactory (Fig.15).

Figure17 shows the main components of the annual wa-
ter balance of 2007 in subbasin Königsseetal before and after
hydrological model correction. Since the inflow takes place
in the saturated zone module, the annual sums of precipita-
tion (1643 mm), evapotranspiration (404 mm), effective pre-
cipitation (1249 mm) and observed water storage (−550 mm)
calculated are the same before and after boundary flux. Ob-
served water storage was negative in the annual balance, be-
cause subsurface water inflow takes place throughout sub-
basin borders (derived by the DEM). In the original model
run, the modeled runoff (1169 mm) underestimated mea-
sured runoff. After implementing the boundary flux, mod-
eled runoff is increased to 2153 mm. Originally, modeled wa-
ter storage was minimal (80 mm), because the hydrological
model even calculates annual water balances internally. By
correcting the hydrological model with the constant inflow
on a monthly basis, annual modeled water storage resulted
in −914 mm and improved reproduction of observed water
storage. At river gauge St. Leonhard, which is the outlet of
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the whole catchment, modeled runoff also increases, show-
ing improved distributed hydrological modeling for the over-
all study area. Storage capacities are reached within the satu-
rated zone in the given soil layers, and water excess is given
for the unsaturated zone. Figure18 presents runoff compo-
nents of modeled runoff in year 2007 before and after im-
plementation of the boundary flux. In the original model run,
the rates calculated for directflow and baseflow were almost
equal, whereas interflow was the main contributor to mod-
eled runoff. After implementing the boundary flux, direct-
flow increased most, whereas baseflow remained almost un-
changed and interflow decreases. As the groundwater mod-
ule and unsaturated zone module in the hydrological model
are coupled bidirectionally, increased baseflow is leading to
saturation in the soil and directflow is produced due to satura-
tion excess. ANNs have been used previously in hydrological
studies, but mainly to predict and calculate the discharge of a
given river course or spring rather than deviating storage con-
ditions. Our new method describes the ANN analytically and
enables to calculate unknown storage processes in complex
hydrogeological environments in different time increments.
With this method, the hydrological model reproduces stor-
age conditions more realistically in high Alpine karst terrain,
which leads to a more realistic runoff at catchment scale. The
challenge of this new method was to find an adequate com-
bination of artificial neural network time increment and hy-
drological model correction, because it was not clear wether
best ANN setup corresponds to best hydrological model per-
formance after correction. The ANN is a statistical-empirical
method that is able to reproduce static conditions, in our case
static water storage in the given time aggregation. However,
the aim of hydrological model correction is to correct the
overestimated water balance first, followed next by the dy-
namics of the overestimated water quantities. What we found
is that the method increases model performance on a monthly
time basis for hydrological years, where the runoff is strongly
underestimated in summertime.

The ANN is trained to reproduce such storage effects.
Without such a system behavior, the ANN tends to overesti-
mate such influxes and consequently the hydrological model
overestimates runoff. Looking at the runoff dynamics after
hydrological model correction, runoff curves show, that the
method is limited to correct adequately for every peak flow
in high Alpine subbasin K̈onigsseetal. Although correction
significantly improved model results in monthly sums, the
peak flow is not perfectly matched. The method is developed
to correct for monthly sums and not for hourly data. How-
ever, runoff dynamics is based on hourly data. We assume
that, in reality, there are fast flow components in the unsat-
urated zone (karst channels) that are directly routed to the
receiving water after emerging at spring locations. Steep gra-
dients and orography intensify fast flowing water within the
watershed. These fast flowing processes can be attributed to
flow velocities of interflow of direct flow although happen-
ing in the unsaturated or saturated zone and possibly being

Fig. 18. Components of modeled runoff. Subbasin Königsseetal –
annual sums [mm] 2007. Results for original model run and model
run with implemented boundary flux.

the reason for the peak flow events. The method corrects wa-
ter fluxes in the groundwater zone. Thus, the baseflow is
corrected but this does not always improve modeled peak
flow because the algorithm of the groundwater module re-
mains unchanged and the influx is converted to groundwa-
ter flow based on Darcy flow. If saturation of the soil is
reached, excess water is converted to direct flow. However,
this does not lead to peak discharge in all cases. Regarding
the runoff dynamics of the hydrological model the devel-
oped method works well for downstream subbasins, where
slower flow processes are more dominant.We found that the
model performance in subbasins Berchtesgadener Ache and
St. Leonhard increased for all the years and almost all time
increments. Missing water in these downstream subbasins is
mainly caused by baseflow. The baseflow is increased due to
the influx and hydrological model performance therefore in-
creases. In this study, we were able to show the limitations of
a distributed hydrological model in high Alpine terrain with
massive carbonate aquifers. We were able to quantify sys-
tematic model mismatch at subbasin scale and point out hy-
drological processes within these heterogeneous catchments
that deviate from common model assumptions (Darcy Flow,
Porous Media Conditions). To enable hydrological model-
ing within these catchments, which are the origin of lowland
river runoff quantities and dynamics, we developed a method
to describe and account for the missing water quantities.

6 Summary and conclusions

We implemented a distributed hydrological water balance
model in the watershed of the river Berchtesgadener Ache.
The model area was derived during preprocessing by sur-
face water divides. Since the model area is situated in high
Alpine karst, we expect groundwater basin sizes to differ
from surface basin sizes. This was also indicated byKraller
et al. (2011), who synthesized northerly subsurface water
flow direction. Each of the three neighboring high Alpine
head subbasins is unique in its hydrology, indicated by huge
runoff deviations when comparing the annual sums of mea-
sured discharge. Distributed hydrological modeling resulted
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in systematic model mismatch in these neighboring high
Alpine subbasins. Model mismatch is concluded to be a con-
sequence of deviations in water storage in reality and the hy-
drological model. We have demonstrated a novel method to
account for boundary fluxes of karst aquifers within the hy-
drological model on a monthly time basis. An artificial neu-
ral network is able to reproduce missing storage quantities
and the consecutive model correction could significantly im-
prove modeled runoff in subbasin Königsseetal. Further stud-
ies should be conducted to investigate whether this method
can be successfully transferred to other subbasins within the
area or other watersheds in karst terrain. Furthermore, in
a next step boundary fluxes within neighboring subbasins
should also be considered.
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