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Abstract. Given the importance of groundwater for food pro-
duction and drinking water supply, but also for the survival
of groundwater dependent terrestrial ecosystems (GWDTEs)
it is essential to assess the impact of climate change on this
freshwater resource. In this paper we study with high tempo-
ral and spatial resolution the impact of 28 climate change
scenarios on the groundwater system of a lowland catch-
ment in Belgium. Our results show for the scenario pe-
riod 2070–2101 compared with the reference period 1960–
1991, a change in annual groundwater recharge between
−20 % and +7 %. On average annual groundwater recharge
decreases 7 %. In most scenarios the recharge increases dur-
ing winter but decreases during summer. The altered recharge
patterns cause the groundwater level to decrease significantly
from September to January. On average the groundwater
level decreases about 7 cm with a standard deviation between
the scenarios of 5 cm. Groundwater levels in interfluves and
upstream areas are more sensitive to climate change than
groundwater levels in the river valley. Groundwater discharge
to GWDTEs is expected to decrease during late summer and
autumn as much as 10 %, though the discharge remains at
reference-period level during winter and early spring. As
GWDTEs are strongly influenced by temporal dynamics of
the groundwater system, close monitoring of groundwater
and implementation of adaptive management measures are
required to prevent ecological loss.

1 Introduction

There is little doubt that the ongoing climate change will
significantly influence the hydrological cycle worldwide
(Kundzewicz et al., 2008; Maxwell and Kollet, 2008). Cur-
rent observations show that already at this moment climate
changes are influencing hydrological processes in certain ar-
eas (Rosenzweig et al., 2007; Kundzewicz and D̈oll, 2009).
As the IPCC predicts that global atmospheric concentrations
of greenhouse gases will continue to rise, it is expected that
climate change will continue in the future (Solomon et al.,
2007). Freshwater resources are among those systems that
are particularly vulnerable to changes in climate (Solomon
et al., 2007).

Recent research (Feyen and Dankers, 2009) showed that
global warming is likely to amplify drought events over Eu-
rope. Especially during drought events groundwater is of vi-
tal importance for availability of water for food production
and drinking water. Groundwater plays a vital role in main-
taining the ecological value of many areas (Solomon et al.,
2007; UN WWAP, 2009). Because groundwater is less vis-
ible and has a more complex relationship with the climate
than surface water bodies it has been studied less than sur-
face water bodies up till now (Kundzewicz and D̈oll, 2009;
Scibek et al., 2007). However, there is an increasing aware-
ness to protect the groundwater resources and to assess the
impact of future land-use and climate changes (Solomon et
al., 2007; Green et al., 2011).

Published by Copernicus Publications on behalf of the European Geosciences Union.



1518 J. Dams et al.: Impact climate change on groundwater

In order to assess the impact of climate change on the
groundwater system there is a need for reliable climate
change scenarios and consistent methods to simulate water
fluxes recharging and discharging the groundwater system.
The uncertainty on climate change forecasts is still very high
due to uncertainties in the future world visions, influenc-
ing for example the emissions of greenhouse gas, land-use
changes, etc. and uncertainties caused by the General and
Regional Circulation Models (GCMs and RCMs) (Murphy
et al., 2004). In order to optimally incorporate the current
knowledge on climate change,Kundzewicz et al.(2008) and
Allen et al. (2010) suggest a joint analysis of ensembles of
climate models driven by multiple emission scenarios.Hen-
dricks Franssen(2009) emphasizes the importance of down-
scaling of future precipitation from GCMs for impact as-
sessments on hydrology.Stoll et al. (2011) stress the large
uncertainty introduced by those downscaling methods.

Previous studies show a large variety in complexity of
approaches to simulate groundwater recharge. For exam-
ple Chen et al. (2002), Hsu et al. (2006) and Serrat-
Capdevila et al.(2007) apply a simple linear function in-
cluding precipitation and temperature to simulate groundwa-
ter recharge, whileWoldeamlak et al.(2007), Jyrkama and
Sykes(2007), van Roosmalen et al.(2009), McCallum et al.
(2010) amongst others apply a more complex approach.Hol-
man(2006), Jyrkama and Sykes(2007), Hendricks Franssen
(2009), Ferguson and Maxwell(2010) and Holman et al.
(2011) advise a physically based approach that accounts
for spatial and temporal variation of surface and subsurface
properties of the study basin when simulating the impact of
climate change on groundwater recharge. A majority of the
current studies assessing the impact of climate change on
the groundwater system estimate the impact on the annual
or seasonal average spatially distributed recharge, e.g.:Dick-
inson et al.(2004), Scibek and Allen(2006), Scibek et al.
(2007), Serrat-Capdevila et al.(2007) andWoldeamlak et al.
(2007). Woldeamlak et al.(2007) stated that climate change
impact studies based on steady-state groundwater simulation
have limitations in representing boundary conditions and can
only be used for assessing sensitivities. A few recent stud-
ies have applied transient methods to estimate the impact
of climate changes on the groundwater system (Goderniaux
et al., 2009; van Roosmalen et al., 2009; Goderniaux et al.,
2011; Jackson et al., 2011; Stoll et al., 2011). However,van
Roosmalen et al.(2009), Goderniaux et al.(2009), Goder-
niaux et al.(2011), Jackson et al.(2011) and Stoll et al.
(2011) limit the analysis of the transient results to the pre-
dicted head change in some observation wells or to the av-
erage change in groundwater head of the basin without anal-
yses of the spatial variation. Nevertheless, the groundwater
dynamics within a year is of major importance for ground-
water dependent terrestrial ecosystems (GWDTEs) (Naum-
burg et al., 2005). Groundwater dependent vegetations along
with riverine landscapes have an important ecological func-
tion (Naumburg et al., 2005; Kløve et al., 2011) and should

therefore be protected. Applying highly dynamic models also
allows including more accurately changes in precipitation in-
tensity and number of dry and wet days projections due to
climate change. Precipitation intensity and number of wet
and dry days have an important impact on the soil moisture
content and consequently influence strongly the groundwater
recharge.

This is one of the first studies analyzing the intra-annual
response of a groundwater system to climate changes. These
intra-annual changes determine the status of the groundwa-
ter resources as well as site conditions of GWDTEs (Naum-
burg et al., 2005). The climate for the reference period,
1960–1991, is compared with climate scenarios, predicted
for 2071–2100. Due to the high variability of climate change
predictions between different climate change models, an en-
semble of 28 climate change scenarios is chosen from the Eu-
ropean project PRUDENCE (Christensen and Christensen,
2007). By applying this ensemble of climate change models
we obtain uncertainty bounds on the impacts of the climate
change on the groundwater system. We limit the study to cli-
mate change impacts, disregarding other expected changes
such as land-use change (Dams et al., 2008).

The Kleine Nete basin, situated in Belgium, was chosen as
a study area. Due to the sandy soils and low slopes a large
fraction of the effective rainfall in the basin percolates to
the groundwater. The groundwater in the basin is extensively
used for drinking water supply, and hosts important ground-
water dependent wetlands. An impact assessment is therefore
required to assess whether adaptive measures are essential to
protect the groundwater system and related groundwater de-
pendent natural vegetations from expected climate changes.

2 Study area

The study area is the Kleine Nete basin, which is a sub-
basin of the Scheldt basin (Fig.1). The Kleine Nete basin
has an area of 581 km2. The elevation ranges from 3 to
48 mTAW (Belgian reference height above sea level), the av-
erage slope is about 0.4 %. Interfluves are slightly elevated,
the valleys broad and swampy. The dominant soil texture in
the basin is sand, though in the valleys some loamy sand,
sandy loam and sandy clay is present. The region has a tem-
perate climate characterized by a warm summer and a cool
winter with little snowfall. The average annual precipita-
tion during the period 1960–1991 was 828 mm with a stan-
dard deviation of 136 mm. Precipitation is nearly equally dis-
tributed throughout the year and the different raingauges, in-
dicated in Fig.1, show similar annual precipitation amounts.
Over the same period 1960–1991 the estimated average an-
nual potential evapotranspiration (PET) is 664 mm with a
standard deviation of 47 mm. The subsurface of the model
area is limited to the Quaternary and Tertiary sediments
which are deposited on the Boom clay aquitard during the
Oligocene epoch. From depositionally oldest to youngest the
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Fig. 1. Location and topography of the study area including the geographical position of the observation and most important pumping wells
and rain gauges.

Table 1.Overview of the hydrostratigraphy of the study area

Aquifer Hydraulic

code Aquifer name conductivity [m d−1]

(HCOV) Mean Range

0100 Holocene eolian sand aquifer 4.8 1–20
0220 Campine Clay-sand complex 9.4 5–15
0230 Pleistocene and Pliocene aquifer 20.5 4–40
0240 Pliocene clay layer 0.1 0.04–0.2
0250 Miocene aquifer 14.1 3–30

hydrostratigraphy of the study area comprises the Miocene
aquifer, the Pliocene clay layer, the Pleistocene and Pliocene
aquifer, the Campine clay-sand-complex and the Holocene
eolian sand aquifer. An overview of the formations is given
in Table1. Only the Miocene aquifer and the Holocene eo-
lian sand aquifer are found throughout the basin, other hy-
drostratigraphic units are discontinuous as shown in Fig.2.
Figure 3 shows a 3-D view of the geological layers along
a cross-section over the area. The Miocene aquifer has an
average thickness of about 187 m and in the eastern part of
the basin this aquifer reaches a maximum thickness of 410 m
(Wouters and Vandenberghe, 1994).

The land-cover in the study area consists mainly of agri-
cultural fields including meadows (60 %), coniferous and
mixed forest (20 %) and urban areas (10 %). Groundwater
is extensively used in the basin, in total there are 565 wells
which extract a total of 54 291 m3 day−1 of which about
30 200 m3 day−1 is extracted by a single water production

Fig. 2. Occurrence of the Campine clay-sand complex (0220) and
Pliocene clay layer (0240), as described in Table1. Other layers oc-
cur throughout the basin. The profile B-B’-B” is presented in Fig.3.

company for drinking water supply. Most important pumping
wells are indicated in Fig.1.

Within the Kleine Nete catchment several ecologically im-
portant areas are protected by the European Natura2000 net-
work, set up for the protection of Europe’s most vulner-
able habitats. Several of these habitats depend largely on
oligotrophic and mesotrophic site conditions, influenced by
groundwater flow conditions. Typical habitats are Northern
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Fig. 3. Cross-section along profile B-B’-B” presented in Fig.2
showing the different Tertiary formations. The HCOV aquifer codes
are given in Table1.

wet heaths, Shady woodland fringes, Atlantic Quercus robur
– Betula woods, Alnus-Fraxinus woods, etc.

3 Data and method of analysis

This study compares the groundwater characteristics of a
lowland watershed in Belgium for the reference period 1960–
1991 with those subject to climate change conditions for the
period 2070–2101. Figure4 shows a conceptual overview of
the applied spatial-temporal methodology. An ensemble of
28 climate change scenarios derived from multiple GCMs
and RCMs and driven by multiple greenhouse emission
scenarios is applied.

3.1 Climate change

Climate change scenarios are obtained from the PRUDENCE
database and combine several GCMs: ECHAM4/OPYC,
HadAM3H, HadAM3P, ARPEGE and HadCM3 that drive
a range of RCMs: RCAO, RACMO, HIRAM, CHRM,
HadRM3P, REMO, ARPEGE, CLM and PROMES (Chris-
tensen and Christensen, 2007). Baseline assessments for all
scenarios used in this study have been performed byBaguis
et al. (2010) andNtegeka et al.(2008). All these scenarios
are based on the A2 and B2 SRES greenhouse gas emis-
sion scenarios of the Intergovernmental Panel for Climate
Change (IPCC) (Nakicenovic and Swart, 2000). In total, pro-
jections from 28 climate models runs were statistically ana-
lyzed, comparing the daily simulation results for precipita-
tion and PET between the control period 1960–1991 and the
scenario period 2070–2101. The precipitation results were
obtained directly from the RCM outputs, and PET was cal-
culated byBaguis et al.(2010) using the Penman equation
based on the RCM outputs of mean sea level pressure, net
terrestrial radiation, total solar radiation, cloud cover, tem-
perature at 2 m, wind at 10 m and humidity. A change factor
method (Deque et al., 2007; Diaz–Nieto and Wilby, 2005;
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Gw discharge 
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Fig. 4. Conceptual overview of the applied spatial-temporal
methodology. The figure shows a watershed discretized using a rec-
tilinear grid, surface water bodies are represented in blue. For ev-
ery cell all water balance components are simulated daily and the
runoff, interflow and groundwater flow are routed to the outlet of the
catchment. Recharge and discharge are aggregated to half-monthly
time steps. Two cells in this figure are highlighted. Cell A represents
a typical groundwater discharge area: during most time steps the
groundwater in this cell flows from the groundwater system towards
the land surface where the groundwater can discharge to the surface
water bodies or be used for evapotranspiration. Cell B represents a
typical recharge area where the water table is recharged by water
infiltrating from the land surface. The graphs on the right show how
the groundwater discharge or recharge flux typically evolve over
time. In this study the groundwater system is simulated for the ref-
erence condition (grey line) and several climate change scenarios
(e.g. orange line).

Prudhomme et al., 2002) was applied to downscale the RCM
outputs. The change factor method involves the calculation
of climate change signals from the RCM outputs, which are
applied to an observed series to generate a climate change
series. The main advantage of this method is that the climate
change signals are transmitted robustly, irrespectively of ab-
solute biases of individual models (Buonomo et al., 2007;
Christensen and Christensen, 2007).

An adapted version of the traditional change factor method
that takes into account changes in number of wet days and
rainfall variability is applied in this study for the perturba-
tion of rainfall series. To incorporate the change in variabil-
ity, a quantile perturbation factor that accounts for the dif-
ferences in rainfall intensities is used (Olsson et al., 2009).
The climate change signal is calculated based on the dif-
ference between the cumulative distribution of the control
and future RCM scenario. The difference in rainfall vari-
ability between the control and climate change scenario is
applied on the observed historical series by multiplying the
rainfall in each wet day by a unique change factor that is
based on the exceedance probability of the rainfall intensity
during that day. This method is applied separately for each
month (all days in a month for all 32 yr), which results in
an intensity perturbated observed series. Secondly, the ob-
served series are adapted for the number of wet days. Again
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the control and climate change scenario are compared, this
time for number of wet days (>0.1 mm). According to the
result of the comparison, wet days are added or removed
from the observed series based on a two-state second order
Markov chain process. If the number of wet days increases,
the four transition probabilities for wetness (dry-wet-wet,
wet-dry-wet, wet-wet-wet and dry-dry-wet) are calculated on
a monthly basis from the control and scenario series. The
changes in transition probabilities are then calculated as a ra-
tio of the control transition probabilities to the scenario tran-
sition probabilities. This factor is multiplied with the transi-
tion probabilities of the intensity perturbated observed series.
The obtained transition probabilities are used to weight the
probability of a dry day to be converted to a wet day dur-
ing the random selection of new wet days. The intensity of
the new wet days is estimated from a mixed exponential dis-
tribution as suggested byWilks (1999) andWillems (2000).
The above mentioned process is repeated one hundred times,
from the generated series the series with the closest match of
change in coefficient of variability with the considered cli-
mate model is selected. More details on the frequency- and
quantile-perturbation procedure can be found inNtegeka and
Willems (2008) andWillems and Vrac(2011).

Because for PET no significant variations were found be-
tween the change factors for the different return periods, a
simpler approach was followed. Monthly change factors for
PET are calculated from a comparison of the control and sce-
nario series. The observed PET series are multiplied by these
change factors to obtain the perturbated PET series.

3.2 Groundwater system modeling

The impact of climate change on the groundwater system is
simulated by applying a coupled WetSpa – MODFLOW ap-
proach. WetSpa (Liu et al., 2003), a physically based dis-
tributed hydrological model, simulates with a daily time step
the river discharge at the outlet of the basin and the ground-
water recharge for each 50 by 50 m model cell in the wa-
tershed. WetSpa updates the root zone water balance for all
model cells during each timestep (Safari et al., 2011):

D
dθ

dt
= P − I − S − ET− R − F (1)

where D [L] is root depth, θ [L3 L−3] soil moisture,P
[L T−1] precipitation,I [L T−1] initial loss including inter-
ception and depression storage,S [L T−1] surface runoff, ET
[L T−1] evapotranspiration,R [L T−1] percolation out of the
root zone,F [L T−1] interflow, t [T] is time. The evapotran-
spiration flux includes, evaporation, transpiration from the
root zone and direct uptake of groundwater by plants. The
routing scheme of the WetSpa model accounts for the spatial
differences by integrating the slope, soil and landuse charac-
teristics of the grid cells along the flow path. Based on the
spatial characteristics of grid cells along the flow path the

runoff, interflow and groundwater flow are routed directly
from the grid cell to the watershed outlet.

The rate of percolation (Rrate) or groundwater recharge in
the WetSpa model is derived through the Brooks and Corey
relationship (Brooks and Corey, 1964):

Rrate= K(θ) = Ks(
θ − θr

θs− θr
)3+( 2

B
) (2)

whereK(θ) [L T−1] is the unsaturated hydraulic conductiv-
ity, Ks [L T−1] saturated hydraulic conductivity,θs [L3 L−3]
water content at saturation,θr [L3 L−3] residual soil moisture
content, andB [–] is the soil pore size distribution index. The
soil pore size distribution indexB is obtained from an empir-
ically derived univariate regression, based on the percentage
of clay content (Cosby et al., 1984). The Brooks and Corey
relationship assumes the pressure potential gradient in the
soil to be zero, causing the percolation to be controlled by
gravity only. Furthermore, the applied methodology assumes
the percolation out of the root zone to pass directly to the
groundwater reservoir without considering any delay.Nyenje
and Batelaan(2009) applied WetSpa to assess the impact of
climate change on groundwater recharge and baseflow.

Daily spatially distributed recharge results are aggregated
over half monthly periods to be compatible with the MOD-
FLOW time step. Additionally, the results of a hydraulic
model for the main rivers in the basin are used to obtain
half monthly average river heads for every 50 m transect of
those rivers, based on WetSpa simulated river discharge at
the basin outlet.

The groundwater flow model MODFLOW (Harbaugh and
McDonald, 2000) simulates the effect of the climate in-
duced changes in river head and groundwater recharge on
the groundwater level and flux. Previous groundwater flow
models that included the Kleine Nete basin used a variety of
concepts to represent the geological units playing a role in the
local hydrology of the study basin:Batelaan and De Smedt
(2004) andGedeon et al.(2007) conceptualized all geologi-
cal units above the Boom clay as one layer whileVerbeiren
et al.(2006) used five layers according to the geological units
listed in Table1. In both cases satisfying calibration results
were obtained.Woldeamlak et al.(2007) applied a two layer
conceptualization in which the top layer represents the Pleis-
tocene and Pliocene aquifer, Holocene eolian sand deposits,
Pliocene clay layer and Campine clay-sand complex and the
bottom layer represents the Miocene aquifer. To incorporate
the spatial variability of hydraulic conductivity and specific
yield within the upper layer, the layer is sub-divided into
seven zones. The initial horizontal and vertical conductiv-
ity in these zones are calculated using the weighted arith-
metic and harmonic mean, respectively. Independent calibra-
tion multipliers were applied for each of the zones in the
layer. The two layer model (Woldeamlak et al., 2007) gave
similar calibration results than the five layer model ofVer-
beiren et al.(2006). Furthermore, the numerical stability of
the two layer model is significantly better then the five layer
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Fig. 5. Comparison of the filtered baseflow, the baseflow simulated
by WetSpa and the baseflow simulated by MODFLOW.

model, which sometimes fails to converge during dry peri-
ods. Therefore, the conceptualization of the geological units
for the MODFLOW model in this study is chosen as sug-
gested byWoldeamlak et al.(2007) and represents a com-
promise between geological detail and optimal hydrogeolog-
ical model conceptualization. The watershed boundaries of
the applied model are assumed to be no-flow boundaries.
All major rivers, canals and lakes are simulated as internal
boundaries and parameterized with the RIVER package. The
RIVER package controls the flux exchanged between the
groundwater system and the river, based on the river stage,
the elevation of the bottom of the riverbed, the riverbed hy-
draulic conductance and the hydraulic head calculated for the
particular model cell containing the surface-water feature.
The river stage of the main rivers, in the MODFLOW model,
is based on an upstream river profile simulated by a hydraulic
model according to the river discharge at the outlet calculated
by WetSpa. The groundwater drainage from ditches, small
streams and wetlands is simulated using the DRAIN package
(Batelaan and De Smedt, 2004). Drain cells are defined for
the whole model area except for the cells where river con-
ditions are defined. Drain simulated by MODFLOW repre-
sents flow from the saturated zone towards the land surface.
The drain flow simulated by the DRAIN package depends on
the drainage level and conductance. The drainage level is set
to the deepest location in the soil profiles where oxidation
appears as suggested byStuurman et al.(2002).

WetSpa is calibrated manually on seven global parame-
ters: interflow scaling factor (i), groundwater recession co-
efficient (ii), initial soil moisture content (iii), initial ac-
tive groundwater storage (iv), maximum active groundwa-
ter storage (v), moisture or surface runoff exponent (vi) and
maximum rainfall intensity (vii). The calibration period for
WetSpa is from 1 January 1992–31 December 2001 and val-

idation period from 1 January 2002–31 December 2004. The
calibration parameters for the MODFLOW model were se-
lected based on a sensitivity analyses of a steady-state ver-
sion of the model. The most sensitive parameters were used
for the calibration of the transient model and include: the hor-
izontal hydraulic conductivity of different zones in the two
layers that are based on the occurrence of Tertiary forma-
tions as represented in Fig.2 (i–vi), the river conductance of
northern and southern part of the river (vii–viii) and the drain
conductance (iv). The MODFLOW model is calibrated using
10 226 head observations measured between 1 January 1992
and 31 December 2001 from 113 observation wells (Fig.1)
more or less equally distributed over the basin. To make
optimal use of the available groundwater head observations
(1992–2001) all observations are used to calibrate the MOD-
FLOW model. Initial calibration parameters were obtained
from an automatic calibration of a steady state version of
the MODFLOW model using PEST (Doherty and Johnston,
2003). The transient MODFLOW model was further manu-
ally calibrated. Because at the moment there is no automatic
coupling between WetSpa and MODFLOW, the models are
calibrated separately while being loosely coupled. Because
the ability of the models to simulate groundwater recharge
and discharge is important in this paper, the baseflow is in-
tegrated in the calibration procedure. A measured baseflow
time series is extracted using the baseflow filter developed
by Arnold and Allen(1999).

3.3 Groundwater level and flux analyses

The mean highest groundwater level (MHGL), mean low-
est groundwater level (MLGL) and mean spring groundwater
level (MSGL) are calculated respectively as the three highest,
the three lowest and the three groundwater level measure-
ments around the 1st April per year, based on two weekly
measurements, and averaging these values over at least eight
years (Van der Sluijs and De Gruijter, 1985). In this study
the MHGL, MLGL and MSGL for each model cell are es-
timated based on the half monthly groundwater level simu-
lated by MODFLOW. In order to reduce the effect of the ini-
tial conditions, results of the first six half-monthly time steps
are not used. The groundwater discharge frequency of each
50 by 50 m MODFLOW cell is calculated as the percentage
of time steps in which a groundwater discharge to the soil
surface is simulated by the DRAIN or RIVER package.

4 Results

4.1 Model calibration and validation

The WetSpa model was calibrated using measured river dis-
charges and estimated baseflow at the catchment outlet. Dur-
ing calibration a Nash-Sutcliff efficiency of 73 % was ob-
tained for the river discharge and 87 % for the baseflow.
For the validation period the Nash-Sutcliff efficiency is 74%

Hydrol. Earth Syst. Sci., 16, 1517–1531, 2012 www.hydrol-earth-syst-sci.net/16/1517/2012/
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Fig. 6. Comparison of the measured groundwater heads and heads
simulated by the MODFLOW model.

for the total discharge and 57 % for the baseflow. Figure5
compares the baseflow extracted by the baseflow filter with
the simulated baseflow of WetSpa and MODFLOW obtained
during the calibration period. It is shown that the baseflow
simulated with the WetSpa model is very similar to the
baseflow derived from the baseflow filter. The MODFLOW
model, while using the WetSpa simulated recharge, tends to
underestimate high baseflows. After calibration the MOD-
FLOW model has an average bias between observed and
simulated hydraulic head of−0.03 m, a mean absolute error
of 0.59 m and a root mean square error of 0.81 m. Figure6
shows a scatter-plot of all measured versus simulated ground-
water heads. The Nash-Sutcliff efficiency of the baseflow cal-
culated by MODFLOW compared to the filtered baseflow is
0.76 [–].

4.2 Intra–annual impact of climate change on
groundwater characteristics

Figure 7a shows the reference and forecasted average pre-
cipitation within the basin for each time step. The total an-
nual precipitation decreases on average by 50 mm, from 821
to 771 mm yr−1 with a standard deviation of 35 mm between
the scenarios. As observed from Fig.7a the change in precip-
itation varies in time: from October to April the precipitation
increases on average 50 mm but from May to September the
precipitation decreases about 100 mm. Figure7b illustrates
the projected intra-annual change in PET, obtained from av-
eraging the 32 yr simulation period. The average yearly PET
of 664 mm yr−1 measured during 1960–1991 is predicted to
increase almost 30 % with a standard deviation between the
scenarios of 91 mm yr−1. The increase in PET occurs almost

Fig. 7. Average intra-annual variability of(a) precipitation,(b) po-
tential ET,(c) actual ET,(d) runoff, (e) soil moisture storage and
(f) groundwater recharge for the reference climate (1960–1991), 28
climate scenarios (2070–2101) and the average of the climate sce-
narios. One year is divided into 24 half monthly time steps, for ev-
ery time step the average of 32 yr simulation is presented. Error bars
represent one standard deviation between the climate scenarios.

completely between April and October. Due to restrictions
on the water availability the actual evapotranspiration (AET)
is only a fraction of the PET. The intra-annual variability of
the AET is represented in Fig.7c. During winter the scenar-
ios predict no significant changes in AET. In spring we notice
a small increase in AET, however the largest changes are ob-
served for the summer period where a significant decrease in
AET is predicted. The largest decrease in AET is predicted
for August where the average AET of the scenarios is 30 %
below the AET of the reference scenario. The average yearly
AET is predicted to decrease by 3.5 % from 532 mm yr−1

for the reference scenario to 513 mm yr−1 for the average of
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Fig. 8.Average intra-annual variability of(a) groundwater head and
(b) groundwater discharge for the reference climate (1960–1991),
28 climate scenarios (2070–2101) and the average of the climate
scenarios. One year is divided into 24 half monthly time steps, for
every time step the average of 32 yr simulation is presented. Error
bars represent one standard deviation between the climate scenarios.

the climate change scenarios with a standard deviation be-
tween the scenarios of 23 mm yr−1. The difference between
the precipitation (Fig.7a) and the AET (Fig.7c) is available
for surface runoff or groundwater recharge. The mean aver-
age half-monthly runoff represented in Fig.7d is the sum of
the interflow and surface runoff simulated by WetSpa. The
results show that the runoff increases during winter and de-
creases during summer. The average yearly runoff decreases
with 6.5 % from 103 mm yr−1 to 96 mm yr−1 with a stan-
dard deviation between the scenarios of 5.7 mm yr−1. Fig-
ure7e represents the average intra-annual variability of soil
moisture storage, one of the controlling factors of the per-
colation rate. During winter season the average soil mois-
ture storage is around 90 mm for both reference and future
scenarios. During summer however, the average soil mois-
ture storage decreases to around 65 mm for the reference pe-
riod, while for the future scenarios the soil moisture storage
decreases to around 55 mm. Figure7f illustrates the aver-
age annual groundwater recharge pattern. The already low
groundwater recharge during summer decreases further due
to higher evapotranspiration and lower precipitation, on the
other hand additional precipitation during winter causes the
groundwater recharge to increase. On average the ground-
water recharge is predicted to decrease about 40 mm during
summer and increase about 20 mm during winter, resulting
in an annual decrease from 278 to 258 mm yr−1 or 7.2 %.
The standard deviation of the change in yearly groundwa-
ter recharge calculated from the different climate scenarios
is 20 mm.

Figure8a shows the intra-annual variability of the ground-
water head for the reference and climate change scenarios.
In April the average simulated future groundwater head is
close to the average reference head. During summer how-
ever, the climate scenarios predict a larger seasonal ground-
water storage depletion. The maximum average groundwater
depth simulated for the reference period is 2.2 m below the
topography and is reached during the first half of September,
while the maximum average future groundwater depth pre-
dicted by the climate scenarios is 2.3 m and occurs later at
the end of September. The timing of the minimum average
groundwater depth also shifts, from late December–January
to early February–late March. The maximum average differ-
ence in simulated groundwater depth between the reference
period and the future scenarios occurs in November, when
the average simulated future groundwater depth increases
with about 15 cm. Over the entire year the average reference
simulated groundwater head declines about 7 cm. Figure8b
displays the average intra-annual groundwater discharge sim-
ulated for the reference period and future scenarios. Similar
to the groundwater head we observe that the average future
groundwater discharge decreases at a faster rate during sum-
mer compared to the reference scenario, however, also the in-
crease of the average groundwater discharge during autumn
is more profound for the future scenarios. The average fu-
ture groundwater discharge from February until May fluc-
tuates around the groundwater discharge simulated for the
reference climate. On the other hand, from August until De-
cember the groundwater discharge is predicted to decrease
by more than 10 %.

4.3 Spatial impact of climate change on average
groundwater recharge and extreme groundwater
heads

Figure9 shows the spatial distribution of the temporally aver-
aged change in groundwater recharge between the average of
the climate change scenarios and the reference scenario. The
figure clearly shows that in this basin the change in ground-
water recharge is largely determined by the land-cover and
soil texture. Urban land-use seems more sensitive to the cli-
mate changes in comparison to agricultural land and forest.
Areas with a sandy loam soil texture show larger decreases
in groundwater recharge than soils with a sand texture. Open
waters in Fig.9 are shown in blue because in these areas the
groundwater-surface water interactions are simulated by the
MODFLOW model.

Figure 10 illustrates the spatial impact of the climate
change scenarios on the groundwater head. Compared with
the reference scenario the groundwater head decreases most
on the interfluves and near the fringes of the watershed
where the average groundwater level can be as much as
30 cm lower. In the valleys the average groundwater level de-
crease is generally less than 5 cm (Fig.10a). For GWDTEs,
especially the yearly extreme groundwater depths (MHGL,
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Fig. 9. Spatial distribution of the simulated change (average fu-
ture minus reference scenario) in temporally averaged groundwa-
ter recharge. Negative changes indicate a decrease in groundwater
recharge from the reference status to the average future state.

Fig. 10. Spatial distribution of the simulated change (average fu-
ture minus reference) in temporally averaged:(a) groundwater
level; (b) mean highest groundwater level (MHGL);(c) mean low-
est groundwater level (MLGL); and(d) mean spring groundwater
level (MSGL). Positive changes indicate an increase in ground-
water level, negative changes indicate a decrease in groundwater
level from the reference status to the average future state. Rivers are
shown in white.

Fig. 10b and MLGL, Fig.10c), and the MSGL (Fig.10d)
influence the plant species distribution. Both the MLGL and
the MHGL show a generally decreasing trend. Similar to the
average groundwater levels, the interfluves are more sensitive
and show the greatest decrease in yearly extreme groundwa-
ter levels. From Fig.10b–d we notice that the largest decrease
is obtained for the MLGL, for which an average decrease of
6 cm is simulated, with a standard deviation of 3 cm between
the scenarios. The MHGL and MSGL decrease on average
3 and 1 cm, respectively. The standard deviation between the
different scenarios is 5 cm for both MHGL and MSGL.

Fig. 11.Scatter-plot showing for all MODFLOW grid cells, which
have an average groundwater discharge flux (drain and river leak-
age) between 0 and 20 mm day−1 (x-axis), the difference in ground-
water discharge flux between the reference period (1960–1991) and
the average of the 28 climate change scenarios (2071–2101) (y-
axis). The moving average is calculated over a range of 500 suc-
cessive values. The lines indicate the 50 % and 15 % decrease in
groundwater discharge flux.

4.4 Impact of climate change on groundwater discharge

Climatic conditions also influence the groundwater interac-
tion with surface water and groundwater discharge towards
the land surface. Because sufficient groundwater exfiltration
is crucial for the presence of GWDTEs changes due to cli-
mate change are further analyzed in this section. Figure11
plots the average change in groundwater discharge flux simu-
lated for the different scenarios versus the reference ground-
water discharge flux of the same grid cells. The scenarios
predict for most cells a decrease in average groundwater dis-
charge. Figure11 also shows that the maximum decrease is
about 50 %. The highest decrease in groundwater discharge
occurs in cells with a reference groundwater discharge flux of
less than 1 mm d−1 where the average decrease is about 15 %.
Groundwater discharge cells with a reference flux between 1
and 10 mm d−1 seem to be buffered quite well to the pre-
dicted climate changes. The average total groundwater dis-
charge from the basin decreases from 5.0 m3 s−1 (reference
scenario) to 4.8 m3 s−1 (average of the future scenarios).

In addition to the magnitude of groundwater discharge,
the temporal availability of groundwater is important for
GWDTEs. Figure 12 plots the change in groundwater
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Fig. 12.Scatter-plot of reference groundwater discharge frequency
(x-axis) versus the change in groundwater discharge frequency
from the reference period (1960–1991) to the average future period
2070–2101 (y-axis). The groundwater discharge frequency is the
percentage of time that a certain model cell has a positive ground-
water discharge flux, the quantity of this flux is not taken into ac-
count. Every point in the graph represents a model cell in the wa-
tershed where at least during one time step of the reference period
groundwater discharge occurs.

discharge frequency versus the reference groundwater dis-
charge frequency. The groundwater discharge frequency of a
cell is the temporal frequency that groundwater discharge oc-
curs from this cell. Figure12 shows that there is an average
decrease in the frequency of groundwater discharge. For cells
with a reference groundwater discharge frequency between
0 and 80 % the climate change scenarios predict an average
reduction of the frequency of about 20 %. Cells with ground-
water discharge frequencies above 80 % have a lower sensi-
tivity that further reduces towards permanent discharge cells.

5 Discussion

5.1 Discussion of results

Both the calibration and validation results of the WetSpa
runoff and calibration results of MODFLOW groundwater
heads are satisfying. A closer analysis of the MODFLOW re-
sults for the different observation wells revealed that in some
cases there is a systematic shift between measured and sim-
ulated groundwater head, although the groundwater dynam-
ics is modeled relatively well. This systematic shift could be

caused by differences in reference head between the mea-
surements and the groundwater model. The systematical un-
derestimation of the winter baseflow by MODFLOW (Fig.5)
can be explained by the fact that the drain output simulated
by MODFLOW is not added to the baseflow but is assumed
to be lost by ET. The baseflow from MODFLOW was cal-
culated as the net river leakage from the groundwater system
towards the river. During summer it is very likely that a major
part of the drain is indeed lost by ET, however, during win-
ter when PET is low it is likely that a significant part of the
output of the drains contribute to the baseflow of the river.

The climate change scenarios predict that more than in the
reference scenario the availability of water will be the lim-
iting factor for (eco-)hydrological processes in summer. Re-
sults shown in Fig.7 show that although the PET is predicted
to increase significantly in the future the AET is simulated
to decrease due to the decrease in summer precipitation. The
decrease in precipitation during summer, although slightly
compensated by less ET, causes a stronger depletion of the
soil moisture storage and a decrease of the summer runoff
and groundwater recharge.

Figure8 shows that the groundwater system is less vari-
able than the highly dynamic precipitation and groundwa-
ter recharge, due to the moderating effect of the flow sys-
tems. The changes in groundwater recharge and river head
cause the groundwater head and discharge to decrease espe-
cially towards the end of the summer. This predicted reduc-
tion in groundwater availability and groundwater discharge
could cause an increased risk of water shortage towards the
end of the summer in the future.

Figure9 shows that groundwater recharge in urban areas
is most vulnerable to climate change. A land-use map of the
catchment can be found inDams et al.(2008). The rela-
tively large decrease in groundwater recharge in urban areas
is mainly caused by a significantly higher increase in AET
simulated by the WetSpa model due to the predicted climate
change, in comparison to non urban areas. An explanation
of the increase in AET is that because of the rise in PET pre-
dicted by the climate change scenarios a larger fraction of the
water stored in the relatively large depression storage of the
urban cell is actually evaporated, causing an increase in AET.
However, because parameterization of urban areas in hydro-
logical models is difficult due to large heterogeneity in for
example impervious surfaces density, drainage density etc.
further research is required to verify the impact of climate
changes on the urban hydrology.

Comparing the spatial distribution of changes in ground-
water recharge and head due to climate change, we can
conclude that the groundwater level change is mainly topo-
graphically controlled but amplified by the position of the
urban areas which are generally also located on the inter-
fluves. As shown in Fig.10 for both the temporally aver-
age groundwater as well as the MHGL, MLGL and MSGL
the largest decrease in groundwater head occurs upstream
and on the interfluves and less in valley’s and wetland areas
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where GWDTE’s are located. The interfluves and catchment
fringes are most sensitive to changes in groundwater recharge
because their groundwater level is primarily controlled by
recharge. In valleys, on the other hand, also the groundwater
flow from upstream areas and river head boundary conditions
have an important impact on the groundwater level.

The buffering of groundwater discharge cells with a flux
between 1–10 mm d−1 (Fig. 11) can be explained by the
fact that cells with a small groundwater discharge flux
(<1 mm d−1) are situated on the borders of the groundwater
discharge areas. Due to climate change the discharge zones
will become smaller in most scenarios and as such lead to
drastic changes in the groundwater discharge at the fringe
of these areas. Within the center of the wetlands where the
groundwater discharge is higher, MODFLOW predicts a sim-
ilar decrease of groundwater discharge for all cells. This
is due to the fact that the changes in recharge of the up-
stream infiltration zones are spatially averaged. Closer to the
river where the highest groundwater discharges are found the
groundwater discharge is also influenced by the river heads
which causes more diverse changes.

The impact of the climate change scenarios on the ground-
water discharge frequency (Fig.12) shows that the highest
changes in frequency occur in cells that during the reference
period change from groundwater recharge cells (generally
during summer) to groundwater discharge cells (generally
during winter). The majority of the cells that are infiltrating
water during all time steps also remain groundwater recharge
cells in the future. The same applies for cells that are ground-
water discharge zones throughout the year. Cells with a ref-
erence groundwater discharge frequency above 80 % seem to
have a lower sensitivity which could be explained by the rel-
atively large amount of discharge in these cells which might
be increased or decreased but will nevertheless remain dis-
charging groundwater to the soil surface and as such not
influence the frequency. For a large number of cells with
a low reference groundwater discharge frequency, a small
increase in discharge frequency is simulated under the cli-
mate change conditions (Fig.12). This increase is caused by
the fact that the presented future groundwater discharge fre-
quency is the average of the frequencies simulated for the dif-
ferent climate scenarios. A few scenarios predict a significant
increase in groundwater discharge area. Although after aver-
aging the groundwater discharge frequency for the different
scenarios the frequency becomes very small, the frequency
is still larger than zero.

5.2 Discussion of methodology

Hydrological impact assessments are subject to large uncer-
tainties. The uncertainty of the climate change scenarios is
incorporated in this study by applying a range of scenarios
from the PRUDENCE database. It should, however, be noted
that all scenarios in the PRUDENCE database are based on
the A2 and B2 emission scenarios and therefore not cover

the whole range of scenarios as set out by the IPCC (Chris-
tensen and Christensen, 2007). The integrated scenarios also
include only the direct consequences of changes in PET
and precipitation, indirect consequences of the projected cli-
mate change such as increased future groundwater extrac-
tion during dry summers, changes in greywater recycling
or rainfall water harvesting, etc. are not taken into account
in this study. Also uncertainties of the hydrological models
are not included in this study. Assessing both the individual
and combined impact of the different sources of uncertainty
is important for the selection of appropriate mitigation and
adaption measures.

The one-way coupling between the WetSpa model that
simulates the groundwater recharge and river head, and the
MODFLOW model has both advantages and disadvantages.
The most important reason for choosing the one-way cou-
pling in this study is that the calculation time is significantly
lower in comparison to a fully integrated surface-subsurface
model. To investigate the spatial and temporal impact of cli-
mate change on the groundwater system both a high spatial
and temporal resolution is required and simulations should
be performed on basin scale. In order to incorporate cli-
mate variability time series of at least 30 yr should be ap-
plied, which leads to considerable calculation times. Further-
more, to incorporate the climate change uncertainty, simula-
tions should be repeated for different scenarios, in our case
28 times. The disadvantage of one-way coupled surface and
sub-surface hydrological models compared to fully coupled
models is that the groundwater recharge calculation is not up-
dated by the groundwater head and flux information available
from the MODFLOW model. WetSpa simulates the ground-
water recharge based on the soil moisture content of the
soil layer independent from the groundwater depth. Although
WetSpa allows direct AET from the groundwater system if
the soil moisture is below the field capacity, the groundwater
recharge output of WetSpa does not integrate this groundwa-
ter discharge towards the soil surface. The water flux from
the groundwater system towards the soil surface is simulated
as drain in the MODFLOW model. MODFLOW does not
differentiate between drainage that is lost by AET or that
contributes to the river baseflow. Fully integrated hydrologi-
cal models are better suited to simulate these interactions be-
tween the saturated zone, unsaturated zone, land surface and
vegetation in a physically based way (Hendricks Franssen,
2009; Holman et al., 2011).

One of the consequences of the applied one-way cou-
pling on the results is that AET could be underestimated in
zones with shallow groundwater depths (Maxwell and Kol-
let, 2008). This is most likely partly compensated during
calibration of the drain conductance in the reference MOD-
FLOW model, however winter-summer differences remain.
Additionally, when due to future climatic changes grid cells
change from recharging the groundwater system to receiving
groundwater discharge or vice versa the drain flux might be
under- or overestimated. Since the decrease in groundwater
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level obtained in this study, especially in the valleys where
wetlands are concentrated, is relatively small, the impact of
the climate change on the ET from the groundwater system
is most likely also small. The small change in groundwater
level in the valleys justifies the one way coupling applied in
this paper. However, in studies predicting a larger change of
the groundwater level in areas where surface water processes
are influenced by the groundwater level, a fully integrated
surface water-groundwater simulation of the hydrological
processes is required.

6 Conclusions

This paper discusses how climate changes alter the spatio-
temporal dynamics of the groundwater system. Until re-
cently hydrological impact assessment of climate change
has been focused primarily on peak flows and flood events
(Solomon et al., 2007; Maxwell and Kollet, 2008). However,
most GCMs predict that global warming is likely to amplify
drought events over Europe. Consequently, there is a growing
concern on the future availability of water for drinking wa-
ter supply, crop growth and natural vegetations throughout
the year. Hence, there is an urgent need for more research on
the impact of those drought events on low flows and on the
groundwater system.

Our paper is one of the first that analyzes the impact of cli-
mate change on the groundwater system with a high spatio-
temporal resolution at the watershed scale. Applying this
high spatial and temporal resolution showed that the impact
is highly variable both in space and time. We found that for
our study area, situated in Western Europe, the ensemble av-
erage of 28 climate change scenarios predict a decrease in
summer groundwater recharge causing reduced groundwater
heads and lower groundwater discharge fluxes especially in
late summer-early autumn. Because of the increasing precip-
itation during winter the groundwater head and flux during
spring are expected to decrease only slightly. Groundwater
level changes are shown to be more pronounced on the inter-
fluves and upstream in the catchment. The MHGL, MLGL
and groundwater discharge frequency are likely to decrease
at most places. The results also indicate the importance of
applying transient climate change impact assessments as
seasonal variations of the changes are significant.

Additionally, our research shows the importance of ap-
plying an ensemble of climate change predictions. By ap-
plying 28 different climate scenarios obtained from differ-
ent GCMs and RCMs we indicate the uncertainties associ-
ated with the results. As the uncertainties of the climate sce-
narios are large the additional uncertainties from the hydro-
logical and groundwater flow models are not taken into ac-
count. Due to the large uncertainties in the predictions of cli-
mate variables, especially precipitation, the predicted impact
on the groundwater system obtained in this research should

be considered as trends and order of magnitudes rather than
exact predictions.

To reduce model calculation time and increase the model
stability a loose coupling is applied between the surface wa-
ter model Wetspa and the groundwater flow model MOD-
FLOW. Further research should examine how models could
be improved for assessing the impact of climate changes on
the groundwater system, for example by including vegetation
growth, physically based ET calculation, hourly time dis-
cretization, further coupling of surface-subsurface processes
without increasing the data requirements and computation
time too excessively.

Although it is advisable to mitigate climate change as
much as possible it has become clear over the past decade
that we will also have to adapt to climate change. To pre-
vent the loss of groundwater dependent vegetation and re-
duced crop growth due to drought problems, resource man-
agers should consider adaptive measures as soon as possi-
ble. An important message from the results is that GWDTEs
are especially vulnerable due to too low summer groundwa-
ter levels and reductions in the magnitude and frequency of
groundwater discharge to the landscape.

Because climate models predictions are highly vari-
able spatially (Solomon et al., 2007; Hendricks Franssen,
2009) similar research should be done for different
hydro-climatological and hydrogeological type locations
to gain insight into the meteorological and basin char-
acteristics controlling the impacts of climate change on
groundwater systems.
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