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Abstract. The accuracy of three satellite rainfall products
(TMPA 3B42RT, CMORPH and PERSIANN) was investi-
gated through comparison with grid cell average ground sta-
tion rainfall data in Indonesia, with a focus on their ability
to detect patterns of low rainfall that may lead to drought
conditions. Each of the three products underestimated rain-
fall in dry season months. The CMORPH and PERSIANN
data differed most from ground station data and were also
very different from the TMPA 3B42RT data. It proved possi-
ble to improve TMPA 3B42RT estimates by applying a sin-
gle empirical bias correction equation that was uniform in
space and time. For the six regions investigated, this reduced
the root mean square error for estimates of dry season rain-
fall totals by a mean 9 % (from 44 to 40 mm) and for an-
nual totals by 14 % (from 77 to 66 mm). The resulting er-
rors represent 10 % and 3 % of mean dry season and annual
rainfall, respectively. The accuracy of these bias corrected
TMPA 3B42RT data is considered adequate for use in real-
time drought monitoring in Indonesia. Compared to drought
monitoring with only ground stations, this use of satellite-
based rainfall estimates offers important advantages in terms
of accuracy, spatial coverage, timeliness and cost efficiency.

1 Introduction

Indonesia is a tropical maritime country and most of it re-
ceives abundant annual rainfall; e.g. in excess of 2300 mm
per year across Java (Aldrian and Djamil, 2008). In large
parts of the country, however, rainfall is highly seasonal and
in some areas and seasons erratic. This is the case partic-
ularly in areas furthest south of the Equator including the
densely populated island of Java as well as the southern parts
of Sumatra, Kalimantan and Papua (Aldrian and Susanto,
2003). In these regions, water deficits lasting several months
can occur and cause failures of water supply systems and of
rain fed and irrigated crops (Kirono and Tapper, 1999; Nay-
lor et al., 2001), as well as contribute to enhanced fire risk in
forests and peat land areas (Field et al., 2004). Monitoring
and understanding dry season rainfall patterns, in time and
space, can assist in better preparation for drought conditions.
Outside a few densely populated areas, rainfall monitoring
at ground stations over most of Indonesia does not at present
provide data with the speed, reliability and accuracy required
for early warning of droughts. Moreover, ground stations are
too sparse to achieve the coverage needed for accurate anal-
ysis of rainfall patterns, especially as spatial variability in
rainfall is high in this country, which has thousands of is-
lands and high mountain ranges. It would therefore be useful
if satellite-based sensors could yield rainfall information that
is available with very limited delay, has adequate accuracy,
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and has full coverage over the country, including the more
remote areas. Over the last decade, several remotely sensed
rainfall estimate products have been developed that use data
from several satellites, with different types of instruments.
Remote sensing of precipitation relies on the relationship be-
tween rainfall rate and cloud top temperature as observed by
infrared (IR) satellite instruments, or from the influence of
rain drops and ice particles on microwave (MW) radiation,
or both. In addition, the Tropical Rainfall Measuring Mis-
sion (TRMM) carries a precipitation radar instrument, simi-
lar to radar used on the ground for detecting rain (Huffman et
al., 2007). Although radar and MW-derived estimates of in-
stantaneous rainfall rates are the more accurate, the currently
best performing remote sensing methods all combine MW
and IR observations to deal with the temporally infrequent
MW sampling (MW observations are from instruments on
polar-orbiting satellites and therefore infrequent; high tem-
poral frequency IR observations from geostationary satellites
are needed to interpolate in time).

Several satellite precipitation products exist (see Sapiano
and Arkin, 2009) but three combined MW-IR satellite pre-
cipitation products have for some time been available via
the internet in near real-time, and are therefore of particular
interest for operational early warning systems.

The time series of satellite rainfall data have only re-
cently become long enough for confident analysis of their
usefulness for water resources management (the earliest go-
ing back to 1998). National meteorological organizations are
unlikely to adopt such data as a primary information source
unless they are thoroughly evaluated for the specific con-
ditions in their countries, based on a sufficiently long his-
torical record covering the full range of climate conditions.
A number of comparisons of satellite precipitation products
against (up-scaled) station rainfall observations have been
published, varying from detailed local and short-term com-
parisons (Curtis et al., 2007; Scheel et al., 2011; Villarini
and Krajewski, 2007) to ongoing initiatives providing near-
real time evaluation statistics over large areas (Ebert et al.,
2007). Most quantitative satellite rainfall evaluation studies
focus on northern America, Europe and Australia, and few
have evaluated the accuracy of satellite products in humid
tropical environments outside these continents.

Within the hydrological community, studies using satellite
rainfall have mostly focused on potential use in river flow
forecasting (Behrangi et al., 2011; Su et al., 2008), often with
an emphasis on the ability to accurately measure high rainfall
rather than low rainfall. Most studies concluded that TRMM
data are usefully accurate at monthly time steps, but less so
at daily time steps (Su et al., 2008), which limits its use for
flood forecasting. Current uses of satellite rainfall products
in water resources monitoring systems early drought warning
systems were reviewed by Van Dijk and Renzullo (2011).
In general, operational systems currently use rainfall esti-
mates produced by weather forecasting systems (which as-
similate satellite observations) and/or gauge-based rainfall

estimates. However, the potential value of satellite precip-
itation products for regions with poor on-ground networks
is well recognised, and TRMM Multi-satellite Precipita-
tion Analysis (TMPA) and PERSIANN (Precipitation Es-
timation from Remotely Sensed Information Using Neural
Networks) rainfall estimates are used in the experimental
African Drought Monitor (Sheffield et al., 2008).

We are not aware of any studies examining the suitability
of satellite rainfall products for water resources or drought
monitoring in seasonal tropical maritime environments such
as found in Indonesia. In this setting, accurate knowledge of
rainfall during dry periods is especially critical. The strong
maritime influence and relief cause very high spatial vari-
ability in rainfall that challenges interpolation on the basis
of on-ground gauges. This means that satellite products may
potentially play a valuable role, but their accuracy too, may
be influenced by topography and coastal influences. In this
study, we investigate the accuracy of three satellite rainfall
products for Indonesia. In addition, we developed a simple
method to correct the products for bias in real-time to achieve
a better agreement with rainfall measured at ground stations.

2 Methods and results

2.1 Satellite rainfall products

We studied the real-time products TMPA 3B42RT (Huffman
et al., 2007), CMORPH (Joyce et al., 2004) and PERSIANN
(Sorooshian et al., 2000). All are available at 0.25◦

× 0.25◦

spatial resolution and 3-h temporal resolution.
Each of the three products evaluated here combines MW

and IR data in somewhat different ways. The real-time
TRMM Multi-satellite Precipitation Analysis 3B42 Real
Time product (TMPA 3B42RT, Huffman et al., 2007) uses
MW-derived precipitation estimates available from various
satellites within the 3 h time step and 0.25◦ grid cell, after
which missing data are estimated using IR estimates cali-
brated against the MW-derived values; in addition, it is the
only product to use the TRMM instrument radar observa-
tions. The Precipitation Estimation from Remotely Sensed
Information Using Neural Networks product (PERSIANN,
Sorooshian et al., 2000) is developed with artificial neural
networks estimating rain rates from IR data, with adjust-
ments in the network parameters based on MW-derived and
on-ground rain rates where available (Hsu et al., 1997). The
Climate Prediction Center Morphing product (CMORPH,
Joyce et al., 2004) product uses IR-based cloud tracking to
interpolate between successive precipitation fields derived
from MW observations.
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Fig. 1. (a) Map of Indonesia (and Malaysia, Brunei, Singapore, Papua New Guinea (PNG) and East Timor, grey areas). The red box is
shown in more detail in(b). (b) TMPA 3B42RT validation areas indicated in different colours. Each square represents one satellite grid cell
of 0.25◦ × 0.25◦. The black dots are the locations of the ground stations.

Table 1. Descriptive characteristics of the validation areas. Ground station data coverage for the period 2003–2008. Elevation determined
from SRTM 90 m resolution (Jarvis et al., 2008). Forest and urban cover determined from GlobCover v2.2 regional land cover map over
Southeast Asia (ESA, 2008).

Avg.
No. of No. of Ground ground Avg. Distance

Validation grid ground station station area from Forest Urban
region cells stations coverage elev. elev. coast cover∗ cover

% time m m km % %
Jakarta 3 10 89 13 8 0–30 2.1 31.8
Bogor 4 10 99 354 331 30–90 25.7 10.6
Bandung 4 13 96 978 1050 30–90 40.1 9.1
East Java 6 15 91 492 619 0–60 29 0.5
Banjar Baru 6 15 83 19 52 90–180 51.2 0
Lampung 5 13 90 83 120 0–60 15.3 0.4

∗ Including degraded forest and plantation forest.

Rainfall estimates derived from the TRMM satellite have
been collected since 1998 and are available as a real time
product since early 2002, whereas CMORPH and PER-
SIANN data are available since 2003 and 2000, respectively.
The algorithm of the TMPA 3B42RT product used in this
study is Version 5. A newer “Version 6” algorithm of TMPA
3B42RT was issued in 2009, with the record beginning in
late 2008. The new version also includes an “uncalibrated”
field that provides continuity with the previous version.

2.2 Selection and screening of ground station rainfall
data

As validation areas, grid cells were selected that had a suffi-
ciently large number of stations observations during the pe-
riod 2003–2008 (Fig. 1). Having a relatively high station
density was necessary to (i) allow station data quality control
by cross-comparison, and (ii) to ensure that several stations
are present in each of the TMPA grid cells covering the area,
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Fig. 2. Monthly ground station rainfall records for the period 2003-2008 in a single satellite2

grid cell, around Bogor.3

Fig. 2. Monthly ground station rainfall records for the period 2003–2008 in a single satellite grid cell, around Bogor.

to provide a larger scale average rainfall estimate. This led
to six clusters of rainfall stations around Jakarta, Bogor, Ban-
dung and East Java (Java), and Banjar Baru (Kalimantan) and
Lampung (Sumatra) (Table 1).

Within the validation areas, monthly station rainfall
records (derived from daily measurements) were selected
that had data coverage for over 75 % of the time during the
study period. The data were checked for consistency by car-
rying out double mass curve analysis. As a result of this
analysis, unreasonable values such as zero-rainfall months
during the wet season were deleted. Data that appeared gap-
filled using data from other stations or years were also ex-
cluded. After screening, a total of 76 stations were found
suitable, having 10 to 15 stations for each of the six areas.
Temporal data coverage was>67 % for individual stations
and 83–99 % for each of the six groups of stations (Table 1).

It was considered important to have more than one ground
station in each satellite grid cell in the comparison because
the gridded satellite data represent a measure of average rain-
fall over the grid cells; an area of 772 km2 (0.25◦ equals
to approximately 27.78 km near the equator). Tropical rain-
storms tend to be localized, with heavy rainfall sometimes
affecting an area of less than 10 km across. This will re-
sult in differences in rainfall rates over short distances within
satellite grid cells. Moreover, in a mountainous island coun-
try like Indonesia many grid cells cover a considerable alti-
tude range, which can cause non-random patterns in rainfall
rate. An example of the differences between rainfall records
from four reliable ground stations within a single satellite
grid cell in the rather mountainous Bogor area is shown in
Fig. 2. Combining data for more than one ground station will
therefore likely be more representative of average rainfall in
an area the size of a satellite grid cell.

Grid cell average monthly ground station time series plots
for each of the six validation areas are shown in Fig. 3. Dif-
ferent rainfall regimes are apparent for different areas, but the
seasonality is largely the same, with June–October usually

being the driest months. Validating and bias correcting satel-
lite data for these six areas, each different in terms of dis-
tance to the coast, elevation, land cover (Table 1) and rainfall
rates (Table 2), builds confidence that the resulting error es-
timates and bias corrections will be appropriate for the range
of conditions found in Indonesia.

2.3 Comparing satellite with ground station rainfall
data

To assess the accuracy of the remote sensing products, com-
parisons were performed with grid cell average rainfall based
on ground measurements. All three satellite products have
been available in near real-time since 2003, and ground sta-
tion data after 2008 are incomplete, therefore the selected
study period was 2003 to 2008 (6 full years). Over this pe-
riod, the daily estimates from satellite were aggregated to
monthly totals, for all grid cells that cover Indonesia’s land
area (as well as the neighbouring countries of Malaysia, Sin-
gapore and Brunei, which are in the same rectangular re-
gion; Fig. 1a). The monthly satellite data for the grid cells
covering the validation areas were then averaged, weighted
for the number of stations in each TMPA grid cell (Fig. 1b).
Figure 4 shows the double mass curves for each of the in-
dividual validation areas, one for each satellite product in-
vestigated. It is evident that most products have a consider-
able bias, although this bias is not always consistent between
the individual validation areas. Overall, PERSIANN has
the highest positive bias (overestimate) whereas CMORPH
has the highest negative bias (underestimate). The TMPA
3B42RT bias is smallest in most cases, being either some-
what positive or somewhat negative in different areas. In
each of the double mass curves a breaking point in the TMPA
3B42RT line is seen at approximately 4000–5000 mm which
coincides with early 2005. This may be explained by the
incorporation of additional rainfall intensity estimates, from
the AMSU-B and AMSR-E satellite instruments from Febru-
ary 2005 onwards (Huffman and Bolvin, 2010). Although
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Fig. 3. Average monthly ground station rainfall for the six validation areas for the period2

2003-2008.3

Fig. 3. Average monthly ground station rainfall for the six validation areas for the period 2003–2008.

Table 2. Average annual precipitation (P , in mm) and relative bias (%) over the period 2003–2008 for ground stations, and satellite products
TMPA 3B42RT, CMORPH and PERSIANN.

Validation Ground
region stations TMPA CMORPH PERSIANN

P P rel. bias P rel. bias P rel. bias

Jakarta 2010 1865 −7.2 1155 −42.6 2524 25.5
Bogor 3056 2944 −3.7 2246 −26.5 3087 1.0
Bandung 1723 1936 12.3 1690 −1.9 2806 62.9
East Java 2106 1835 −12.8 1417 −32.7 2077 −1.4
Banjar Baru 2208 2217 0.4 2264 2.6 2783 26.1
Lampung 1946 2191 12.6 1695 −12.9 3182 63.5

the validation period is too short to confidently quantify this
change, it appears that TMPA 3B42RT data have become
more accurate since 2005.

The annual and dry season relative bias (Eq. 1) for each
of the products as well as rainfall total is shown in Tables 2
and 3. While different definitions of “dry season” exist in In-
donesia (Wyrtki, 1956; Aldrian and Susanto, 2003), for dif-
ferent regions and purposes, we have defined it here as June–
October, the period over which the validation areas had aver-
age rainfall below that in the remainder of the year, in most
cases below 100 mm per month (except in Bogor where it is
143 mm per month), which defines “dry” conditionssensu
Brünig (1969) and Oldeman et al. (1979, 1980).

Relative bias(bias) =

N∑
i=1

Pgroundst.(i) −Psatellite(i)

N∑
i=1

Pgroundst.(i)

×100 (1)

whereN is the number of months.
Relative bias on an annual basis varies between−12.8 to

12.6 % for TMPA 3B42RT,−42.6 to 2.6 % for CMORPH
and−1.4 to 63.5 % for PERSIANN (Table 2). Dry season

relative bias is greater compared to the annual relative bias,
ranging from−55.1 to 1.0 % for TMPA 3B42RT,−55.6 to
8.7 % for CMORPH and−63.7 to 9.5 % for PERSIANN
(Table 3).

2.4 Spatial comparison of average annual rainfall from
satellite products for Indonesia

Maps of annual rainfall were generated using the three dif-
ferent satellite rainfall products. The relative differences be-
tween these maps are shown in (Fig. 5). Consistent differ-
ence patterns are evident when comparing TMPA 3B42RT
and CMORPH. Compared to TMPA 3B42RT, estimates of
CMORPH are up to 50 % lower along the coast (decreas-
ing with distance from the coast), whereas further inland
CMORPH is up to 50 % higher (especially in the moun-
tainous area of Papua, Fig. 5a). Major differences are also
evident when comparing TMPA 3B42RT and PERSIANN
(Fig. 5b). However, in this case no consistent patterns
are evident. It appears that PERSIANN has much higher
rainfall amounts in Sumatra when compared with TMPA
3B42RT, whereas difference patterns elsewhere appear to be
almost random.
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Fig. 4. Double mass curves showing the accumulated amount of rainfall of the observations2

against  the satellite estimates (TMPA 3B42RT, CMORPH and PERSIANN) for each of the3

six validation areas for 2003-2008.4

Fig. 4. Double mass curves showing the accumulated amount of rainfall of the observations against the satellite estimates (TMPA 3B42RT,
CMORPH and PERSIANN) for each of the six validation areas for 2003–2008.

Table 3. Average dry season (June–October) precipitation (P , in mm) and relative bias (%) over the period 2003–2008 for ground stations,
and satellite products TMPA 3B42RT, CMORPH and PERSIANN.

Validation Ground
region stations TMPA CMORPH PERSIANN

P P rel. bias P rel. bias P rel. bias

Jakarta 319 276 −13.5 261 −18.1 349 9.5
Bogor 715 539 −24.6 400 −44.1 375 −47.5
Bandung 286 204 −28.7 169 −41.1 207 −27.5
East Java 166 75 −55.1 74 −55.6 60 −63.7
Banjar Baru 462 467 1.0 502 8.7 423 −8.5
Lampung 367 255 −30.3 237 −35.4 377 3.0

2.5 Determining a bias correction equation for TMPA
3B42RT rainfall data

Comparison with ground station measurements showed the
TMPA 3B42RT product to be the most accurate satellite
rainfall product (Tables 2 and 3). Moreover, comparison
with other satellite products revealed large differences. The
TMPA 3B42RT data were identified as the most suitable
source of satellite rainfall information. However, there were
differences with ground station data that may be reduced.

We therefore obtained a bias correction equation to achieve
a closer fit between monthly TMPA 3B42RT and ground sta-
tion averages. To accommodate for the finding that relative
bias varied with total monthly rainfall, a power function was
applied to derive bias corrected rainfall (P ∗):

P ∗
= a∗(P/P0)

b (2)

where the reference monthly rainfall (P0, 1 mm per month)
is introduced to maintain correct dimensions, and the pa-
rametersa (mm) andb (dimensionless) were derived by
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TMPA 3B42RT and PERSIANN (lower panel).

minimizing both the annual and dry season sum of average
monthly differences between bias corrected and ground sta-
tion measurements for all 6 validation areas together. The
generalized reduced gradient algorithm (Fylstra et al., 1998)
was used to obtain an optimized value of 3.20 fora and 0.79
for b. In Fig. 6 a scatter plot of average monthly rainfall for
ground station data for all 6 validation areas and uncorrected
and bias corrected TMPA 3B42RT is shown. This non-linear
bias-correction mitigated the underestimation by TMPA of
rainfall in dry months, without leading to an overestimation
of rainfall during wet months (Fig. 6). The fraction of vari-
ance in log-transformed observed monthly rainfall for the 6
sites combined that was explained by the satellite rainfall
estimates increased from 0.78 to 0.93 after bias correction.
The distribution of average monthly rainfall over the year
for ground station data and uncorrected and bias corrected
TMPA 3B42RT data is shown in Fig. 7, and the monthly
time series in Fig. 8. The average difference, relative bias
and RMSE of the bias corrected TMPA 3B42RT rainfall are
given in Tables 4 and 5 for each of the individual validation
areas. Although relative bias only improved for 2 of the 6
validation areas on an annual basis, RMSE improved in all
cases, by 6 % for Banjar Baru to 24 % for Lampung (Table 4).
For the dry season, relative bias improved for 5 of the 6 val-
idation areas, and RMSE improved for 4 of the 6 validation
areas, by 12 to 26 % (Table 5).

3 Discussion

3.1 Comparison of different satellite rainfall estimates
over Indonesia

All comparisons showed the TMPA 3B42RT data to be
more accurate overall than the two other products evalu-
ated. In terms of daily (rather than monthly) rainfall, Ebert
et al. (2007) found the CMORPH product appeared to be
best overall, followed by PERSIANN in the wet season, and
TMPA in the dry season. This difference may be related to
the different environments considered and the lesser degree
of calibration of the different products for Indonesia. Rainfall
in Indonesia is dominated by convective events, and very few
ground station data will have been available for calibration
for any of the three products.

In almost all validation areas, the (uncorrected) satel-
lite rainfall products underestimated rainfall in dry months
and overestimated rainfall in wet months (shown for TMPA
3B42RT in Fig. 8). These tendencies are consistent with pub-
lished studies. Ebert et al. (2007) compared several satellite
precipitation products for northern Australia (10–25◦ S) and
found that performance was notably less good for dry sea-
son rainfall. This was attributed to the dominance of non-
convective rainfall during this season, brought in from mid-
latitudes by remnant frontal systems or orographic lifting
of most ocean air. Underestimation of low rainfall events
has also been found in other regions, particularly during
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Fig. 6. Average monthly uncorrected TMPA 3B42RT (top panel) and bias corrected TMPA2

3B42RT (lower panel) over 2003-2008 for all 6 validation areas together compared with3

ground station data (both on logarithmic axis).4

Fig. 6. Average monthly uncorrected TMPA 3B42RT (top panel) and bias corrected TMPA 3B42RT (lower panel) over 2003–2008 for all 6
validation areas together compared with ground station data (both on logarithmic axis).

Table 4. Annual ground station and TMPA 3B42RT precipitation (P , in mm per year), average difference, relative bias (%, to observations),
RMSE (in mm per month) and correlation coefficients before and after bias correction of TMPA 3B42RT precipitation estimates over the
period 2003–2008.

Validation Ground TMPA
region stations TMPA bias corr.

P P Avg. rel. RMSE R2 P Avg. rel. bias RMSE R2

diff. bias diff.

Jakarta 2010 1865 −145 −7.2 83.8 0.84 1918 −92 −4.6 78.2 0.84
Bogor 3056 2944 −112 −3.7 94.9 0.83 2845 −211 −6.9 79.8 0.84
Bandung 1723 1936 213 12.3 85.8 0.84 1965 242 14.0 71.6 0.86
East Java 2106 1835 −271 −12.8 56.0 0.95 1819 −287 −13.6 49.3 0.96
Banjar Baru 2208 2217 9 0.4 59.6 0.84 2303 95 4.3 56.0 0.85
Lampung 1946 2190 244 12.6 83.8 0.89 2200 254 13.1 63.6 0.90

Avg. total 2175 2165 −10 0.3 77.3 0.87 2175 0 1.0 66.4 0.88

the cool season (Ebert et al., 2007; Villarini and Krajewski,
2007), (although Scheel et al. (2011) found overestimation
for Cusco in Peru and La Paz in Bolivia). Rainfall detec-
tion in infrared wavelengths relies on sufficiently cooling of
cloud tops, which does not necessarily occur in frontal sys-
tems or moist ocean air inflow. In the Indonesian context,

high cirrus type clouds are important during the dry season
(Franchito et al., 2009). They are also associated with low
rainfall intensities and may cause similar detection problems.
For the three products we examined here, Ebert et al. (2007)
found that they overestimated high rainfall, the TMPA prod-
uct more so than for the other two. Similar overestimates
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Fig. 7. Average monthly bias corrected TMPA 3B42RT data over 2003-2008, compared with2

ground station and uncorrected TMPA 3B42RT data.3

Fig. 7. Average monthly bias corrected TMPA 3B42RT data over 2003–2008, compared with ground station and uncorrected TMPA 3B42RT
data.

Table 5. Dry season (June–October) ground station and TMPA 3B42RT precipitation (P , in mm per season), average difference, relative bias
(%, to observations), RMSE (in mm per month) and correlation coefficients before and after bias correction of TMPA 3B42RT precipitation
estimates over the period 2003–2008.

Validation Ground TMPA
region stations TMPA bias corr.

P P Avg. rel. RMSE R2 P Avg. rel. bias RMSE R2

diff. bias diff.

Jakarta 319 276 −43 −13.5 50.5 0.62 340 21 6.6 51.2 0.65
Bogor 715 539 −176 −24.6 72.9 0.78 604 −111 −15.5 64.1 0.79
Bandung 286 204 −82 −28.7 33.9 0.87 265 −21 −7.3 29.7 0.87
East Java 166 75 −91 −55.1 31.8 0.91 114 −52 −31.3 23.6 0.92
Banjar Baru 462 467 5 1.0 36.0 0.85 551 89 19.3 40.2 0.85
Lampung 367 255 −121 −30.3 39.9 0.71 336 −31 −8.4 32.2 0.77

Avg. total 386 303 −83 −25.2 44.2 0.79 368 −18 −6.1 40.2 0.81

have also been reported in other studies (e.g. Behrangi et
al., 2011; Curtis et al., 2007; Katsanos et al., 2004; Su et
al., 2008; but not Scheel et al., 2011). In the present study,
dry season rainfall underestimates and wet season overesti-
mates led, on average, to unbiased estimates of annual rain-
fall. It seems plausible that this reflects compensation in
the three remote sensing methods, that is, calibration against

ground-measured data may have led to an overestimation of
rainfall from larger, detected events (mainly occurring dur-
ing the wet season) in order to compensate for undetected or
underestimated small events.

The spatial differences between the different satellite rain-
fall products are striking, in particular in coastal areas and
at higher altitudes (Fig. 5). PERSIANN showed lower
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1

Fig. 8. Comparison of average monthly ground station rainfall with bias corrected and2

uncorrected TMPA 3B42RT for the individual validation areas.3

Fig. 8. Comparison of average monthly ground station rainfall with bias corrected and uncorrected TMPA 3B42RT for the individual
validation areas.

estimates in high altitude areas than the other two products.
On the basis of the physics of rainfall remote sensing, most
authors predict that satellite rainfall products are more likely
to underestimate than overestimate rainfall in high altitude
areas (Hirpa et al., 2009), and therefore the PERSIANN es-
timates may be the less realistic. Artifacts in satellite rain-
fall estimates can arise in coastal areas because different re-
trieval methods are required over land and sea, respectively.
In this case it would appear that the TMPA and PERSIANN
products show more consistency, but we cannot assess which
estimates are the more accurate.

3.2 Suitability of bias corrected TMPA 3B42RT data for
monthly rainfall monitoring

Although patterns in uncorrected TMPA 3B42RT rainfall
closely resemble patterns in ground station rainfall in Indone-
sia, they consistently underestimate rainfall in dry periods

(Table 3). When uncorrected TMPA 3B42RT data would
be used for water resources management purposes, this un-
derestimation of rainfall would introduce an overestimation
of water deficits. After bias correction on a monthly ba-
sis, rainfall difference in ground station measurements and
TMPA 3B42RT data over the dry season was reduced for 5
out of 6 areas, evident from an improved RMSE (Table 5).
The bias correction reduced the station-average difference
between ground station and TMPA 3B42RT rainfall over the
June–October “dry season” period from 83 to 18 mm, or only
3.6 mm month−1 on an average monthly rainfall amount of
77 mm (Table 5). This is a distinct improvement, although
greater deviations remain for individual areas: from 111 mm
in Bogor to−89 mm for Banjar Baru. However on a monthly
basis the latter deviations are still within 25 mm month−1.
We consider this to be a useful accuracy for many water
resources management applications.
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1

Fig. 9. Bias ratio vs. elevation for the individual ground stations in the six validation areas (R22

= 0.0001, n = 73; of the 76 available stations (Table 1), 3 did not have any full year of3

validated observations).4

5

Fig. 9. Bias ratio vs. elevation for the individual ground stations
in the six validation areas (R2

= 0.0001,n = 73; of the 76 avail-
able stations (Table 1), 3 did not have any full year of validated
observations).

On an annual basis, the bias correction removed the dif-
ference between ground station and TMPA 3B42RT rainfall
averaged over all areas. However, significant differences re-
main for individual areas, ranging from 287 mm yr−1 in East
Java to−254 mm yr−1 in Lampung (Table 4). This is up to
15 % of the∼2000 mm yr−1 rainfall that these locations re-
ceive. A smaller deviation would be preferable, but it should
be considered that for much of Indonesia, the low spatial cov-
erage and variable quality of ground station records will not
allow a better measurement of average rainfall over large ar-
eas. Moreover, there was some evidence that TMPA 3B42RT
rainfall estimates in the wet season improved since 2005.

It is noted that the ground stations used in this validation
do not cover all climatic regions of Indonesia (Aldrian and
Susanto, 2003) and there is a systematic under-sampling in
higher altitude and forested areas. The latter is due to the
simple fact that rainfall in Indonesia (and indeed many coun-
tries) is mainly measured in densely populated and defor-
ested lowlands and valleys. For six river basins of Ethiopia,
Romilly and Gebremichael (2011) found that the accuracy
of TMPA satellite rainfall estimates depended on elevation.
Using a similar analysis approach we found no apparent re-
lationship between the bias ratio (TMPA 3B42RT precipita-
tion estimate divided by average annual gauge precipitation,
calculated for each individual measurement station) and el-
evation (Fig. 9,R2

= 0.0001). An independent test using
measurements from the Southeast Asian Climate Assessment
(SACA) dataset (Klein Tank et al., 2011) in Northern Terri-
tory, Australia, shows that our bias correction also improved
monthly (and annual) precipitation estimates (Fig. 10) in
that region. This provides more confidence that the derived
bias correction may help remove bias in TMPA estimates for
other tropical regions.

32

1

Fig. 10. Average monthly corrected TMPA 3B42RT data over 2003-2008, compared with2

ground  station  and  uncorrected  TMPA  3B42RT  data  for  a  TMPA  grid  cell  in  the  Northern3

Territory (Darwin), Australia. Average annual precipitation 4 ground stations (Darwin airport,4

Karama, Leanyer and Shoal Bay) = 1797 mm, average annual uncorrected TMPA 3B42RT =5

1926 mm and average annual bias corrected TMPA 3B42RT = 1801 mm. R2 uncorrected6

TMPA 3B42RT = 0.90; R2 bias corrected TMPA 3B42RT = 0.91; RMSE uncorrected TMPA7

3B42RT = 94.8 mm per month; RMSE bias corrected TMPA 3B42RT = 85.6 mm per month.8

Fig. 10. Average monthly corrected TMPA 3B42RT data over
2003–2008, compared with ground station and uncorrected TMPA
3B42RT data for a TMPA grid cell in the Northern Territory
(Darwin), Australia. Average annual precipitation 4 ground sta-
tions (Darwin airport, Karama, Leanyer and Shoal Bay) = 1797 mm,
average annual uncorrected TMPA 3B42RT = 1926 mm and av-
erage annual bias corrected TMPA 3B42RT = 1801 mm.R2

uncorrected TMPA 3B42RT = 0.90;R2 bias corrected TMPA
3B42RT = 0.91; RMSE uncorrected TMPA 3B42RT = 94.8 mm per
month; RMSE bias corrected TMPA 3B42RT = 85.6 mm per month.

Maps of average annual and dry season rainfall, generated
using bias corrected TMPA 3B42RT data, are presented in
Fig. 11. This clearly shows the large spatial and temporal
variation in rainfall that exists in Indonesia, with annual rain-
fall rates varying from above 3000 to below 1500 mm yr−1,
and with even greater relative differences in the dry season.
The latter is even more apparent when comparing a relative
wet dry season month (October 2007) with the same month
in the 2006 El Nĩno year (Fig. 11c, d).

Clearly such major variations necessitate the use of ac-
curate and real time rainfall information in water resources
management and crop planning. The availability of up-to-
date maps of rainfall patterns may also allow better planning
of reservoir dimensions and the location of agricultural ac-
tivities that are very sensitive to drought. The limited spatial
coverage of ground stations and climate change mean that
rainfall distribution maps based on historical ground station
rainfall data are not necessarily always accurate. It would
be best to enhance such maps using up-to-date and accurate
satellite data.

In addition to the bias correction of the TMPA 3B42RT
data, there are other avenues to produce better estimates of
rainfall. Inter-comparison studies such as those by Ebert et
al. (2007) clearly show the complementary performance of
precipitation estimates derived from weather prediction mod-
els and precipitation remote sensing, with the two performing
best for non-convective and convective rainfall conditions,
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Fig. 11. (a)Average annual and(b) dry season (June–October) rainfall as determined from monthly bias corrected TMPA 3B42RT over
2003–2008 as well as(c) October 2006 and(d) October 2007 bias corrected TMPA 3B42RT rainfall.

respectively. In addition, early research suggests it may be
possible to constrain satellite precipitation estimates using
remotely sensed soil moisture estimates to filter out any addi-
tional errors (Crow and Ryu, 2009). Finally, further improve-
ments in satellite rainfall estimates may be expected with the
new missions, in particular the Global Precipitation Measure-
ment mission planned for launch in 2014 (Smith et al., 2007).

4 Conclusions

TMPA 3B42RT satellite rainfall data appeared to have
greater accuracy than two other products (PERSIANN,
CMORPH) and bias correction on a monthly basis further
improved accuracy. We consider the resulting estimates to

be sufficiently accurate for use in near real-time monitoring
of rainfall and the development of drought conditions in In-
donesia, in support of water resources management, agricul-
ture and fire prevention. A Drought Early Warning System
(DEWS) for Indonesia using the bias corrected TMPA rain-
fall estimates is currently being developed. Further research
is recommended to determine whether this or a similar bias
correction may also produce better rainfall estimates in other
regions prone to periodic water shortages where high spa-
tial variation in rainfall and lack of telemetered on-ground
networks challenges drought early monitoring using ground
stations alone.
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