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Abstract. Baseflow is an important component in hydrolog-
ical modeling. The complex streamflow recession process
complicates the baseflow simulation. In order to simulate
the snow and/or glacier melt dominated streamflow reced-
ing quickly during the high-flow period but very slowly dur-
ing the low-flow period in rivers in arid and cold northwest
China, the current one-reservoir baseflow approach in SWAT
(Soil Water Assessment Tool) model was extended by adding
a slow- reacting reservoir and applying it to the Manas River
basin in the Tianshan Mountains. Meanwhile, a digital filter
program was employed to separate baseflow from stream-
flow records for comparisons. Results indicated that the two-
reservoir method yielded much better results than the one-
reservoir one in reproducing streamflow processes, and the
low-flow estimation was improved markedly. Nash-Sutcliff
efficiency values at the calibration and validation stages are
0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69
for the two-reservoir case. The filter-based method estimated
the baseflow index as 0.60, while the model-based as 0.45.
The filter-based baseflow responded almost immediately to
surface runoff occurrence at onset of rising limb, while the
model-based responded with a delay. In consideration of wa-
tershed surface storage retention and soil freezing/thawing
effects on infiltration and recharge during initial snowmelt
season, a delay response is considered to be more reasonable.
However, a more detailed description of freezing/thawing
processes should be included in soil modules so as to deter-
mine recharge to aquifer during these processes, and thus an
accurate onset point of rising limb of the simulated baseflow.

1 Introduction

Baseflow is a streamflow component which reacts slowly
to rainfall and is usually associated with water discharged
from groundwater storage (Eckhardt, 2008). Knowledge
about baseflow is useful in assessing water quality, fore-
casting streamflow, allocating water supply, and designing
hydropower plants (Tallaksen, 1995) under low-flow con-
ditions. When, where, and how much streamflow can
be attributed to groundwater discharge is thus practically
important.

Baseflow is, therefore, an important component in hydro-
logical simulation. Conceptual modeling of baseflow usu-
ally assumes that outflow from the aquifer is linearly propor-
tional to its storage (Aizen et al., 2000; Fenicia et al., 2006;
Eckhardt, 2008; Ferket et al., 2010), sometimes combined
with analytical solutions of the simplified Boussinesq equa-
tion (Paniconi et al., 2003; Troch et al., 2004; Hilberts et al.,
2004). Wittenberg (1999) argued that the unconfined aquifer
is unlikely a linear reservoir, instead, more likely a non-linear
one. However, Fenicia et al. (2006) confirmed that the linear
storage-discharge relationship describes groundwater behav-
ior best. Baseflow itself may be composed of a number of
components, each of which may vary seasonally with dif-
ferent recession constants (Nathan and McMhon, 1990). As
probably a compromise, multi-reservoir algorithms, linear,
non-linear, or combined were used to generate baseflow by
e.g. Tallaksen (1995), Ferket et al. (2010), and Samuel et
al. (2011).
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The Soil and Water Assessment Tool (SWAT, Arnold and
Fohrer, 2005) uses a conceptual linear one-reservoir (shal-
low aquifer storage) approach to simulate baseflow. SWAT
partitions groundwater into two aquifer systems: a shallow
aquifer which contributes baseflow to streams within the wa-
tershed, and a deep aquifer which contributes baseflow to
streams outside the watershed and can be considered lost
from the system (Arnold et al., 1993). While the shallow
aquifer-baseflow was properly reproduced by SWAT (Arnold
et al., 2000; Jha et al., 2007), weaker simulation of baseflow
was found as well (Kalin and Hantush, 2006; Srivastva et
al., 2006). Peterson and Hamlett (1998) found that SWAT
was not able to simulate baseflow due to the presence of
soil fragipans. Chu and Shirmohammadi (2004) found that
the baseflow was not simulated properly for an extremely
wet year. Wu and Johnston (2007) found underestimated
baseflow by SWAT especially during dry years in a Great
Lake watershed and indicated that this is primarily due to the
long temporal lag between winter snowpack accumulation
and spring snow melting events. Luo et al. (this study) found
underestimation of baseflow during the low-flow period in
the Manas River Basin in northern Tianshan Mountains using
SWAT2005. For the glaciated Oigaing River basin in west-
ern Tianshan and the Ala Archa River basin also in north-
ern Tianshan, Aizen et al. (2000) used one linear reservoir to
generate baseflow and found that the discharge was underes-
timated during autumn-winter as well. The steep slopes of
the river basins in Tianshan Mountains, the quick recession
of surface runoff, and the sluggish and stable baseflow pro-
cesses might indicate a quick percolation of rainfall and snow
and glacier melt waters during the summertime to an under-
ground storage which releases slowly during the wintertime.
Nathan and McMhon (1990) indicated that baseflow itself
may be composed of a number of components, each of which
may vary seasonally with different recession constants. Sup-
posedly, an additional slow release pool may improve the
low-flow estimation for rivers in the Tianshan Mountains,
which is not present in both Aizen’s (2000) model and the
SWAT model.

Therefore, the main objective of this paper is to develop
a two-reservoir approach for baseflow simulation in SWAT
and use the model to simulate the streamflow process that
is characterized by combined steep and sluggish recession
stages of the receding limb in an arid and cold inland river
basin in the Tianshan Mountains, northwest China.

2 Materials and methods

2.1 Baseflow modeling in SWAT

In the SWAT model, water routed through channel system
to the gauges consists of four components: direct surface
runoff (Qsf), lateral flow from unsaturated soil profiles (Qlt),
drainage from tiles (Qtl), and baseflow from underground
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Fig. 1. Schematic of streamflow components in the SWAT model.
Note: P is precipitation;Qlt is lateral soil water flow;Ssh andSdp
are water storages of the shallow and deep aquifer, respectively;
other symbols are mentioned within the text.

storage (Qb) (Fig. 1). Modeling of the direct surface runoff,
the lateral soil flow, and the tile drainage are described in de-
tail in theoretical documents of SWAT model (Neitsch et al.,
2005) and thus will not be described repeatedly here. The
baseflow simulation will be focused hereafter.

SWAT differentiates the underground storage into two por-
tions, shallow aquifer and deep aquifer. The shallow aquifer
receives recharge from the unsaturated soil profile percola-
tion. An exponential decay weighting function is utilized to
account for the time delay in aquifer recharge once the wa-
ter exits the soil profile (Neitsch et al., 2005). The delay
function accommodates situations where the recharge from
the soil zone to the aquifer is not instantaneous, i.e. 1 day or
less. The recharge to aquifer on a given day is calculated as
below:

Wrchrg,i =

[
1 − exp

(
−

1

δgw,sh

)]
Wseep

+ exp

(
−

1

δgw,sh

)
Wrchrg,i−1 (1)

whereWrchrg is the amount of recharge entering the aquifers
(mm H2O day−1), δgw,shis the delay time of the overlying ge-
ologic formations (days),Wseepis the total amount of water
exiting the bottom of the soil profile (mm H2O day−1); sub-
scriptions “seep” indicates seepage water exiting bottom of
unsaturated soil profile, “rchrg” indicates recharge,i is the
sequential number of days, and “sh” indicates the shallow
aquifer storage.

A fraction of the total daily recharge can be routed to the
deep aquifer. The amount of water diverted from the shallow
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aquifer due to percolation to the deep aquifer on a given day
is given by:

Wseep,dp,i = βdp Wrchrg,i (2)

whereβdp is a coefficient of shallow aquifer percolation to
deep aquifer, and subscription “dp” indicates deep aquifer.

The amount of recharge entering the shallow aquifer is:

Wrchrg,sh,i = Wrchrg,i − Wseep,dp,i . (3)

Baseflow generated from the shallow aquifer on a given dayi

under influence of recharge is given as below (Neitsch et al.,
2005):

Qb,sh,i = Qb,sh,i−1 · exp
(
−αgw,sh · 1t

)
+ Wrchrg,sh,i ·

[
1 − exp

(
−αgw,sh · 1t

)]
(4)

whereQb,sh,i is the baseflow from the shallow aquifer on
day i (mm H2O day−1), and “b” indicates baseflow, and1t

is the step time length. Daily time step is used in this study.
When only one reservoir is used, the baseflow is equal to

that from the shallow aquifer.

Qb,i = Qb,sh,i (5)

SWAT assumes that water entering the deep aquifer is not
considered in the future water budget calculations and can be
considered lost from the system (Neitsch et al., 2005). This
study uses the deep aquifer as a parallel reservoir generating
the baseflow, which enters the channel system eventually, to
improve the streamflow process simulation in the low-flow
period. When the two-reservoir approach is used, baseflow
from the shallow aquifer is expressed as in Eq. (4), and fol-
lowing Eqs. (1) and (2), the recharge to and baseflow from
the deep aquifer are given by Eqs. (6) and (7), respectively.

Wrchrg,dp,i = Wrchrg,dp,i−1 · exp

(
−

1

δgw,dp

)
+ Wseep,dp,i ·

[
1 − exp

(
−

1

δgw,dp

)]
(6)

Qb,dp,i = Qb,dp,i−1 · exp
(
−αgw,dp · 1t

)
+ Wrchrg,dp,i ·

[
1 − exp

(
−αgw,dp · 1t

)]
(7)

whereWrchrg,dp is the amount of recharge entering the deep
aquifer (mm H2O day−1), δgw,dp is the delay time or drainage
time of the deep aquifer geologic formations (days),Wseep,dp
is the total amount of water exiting the bottom of the shallow
aquifer (mm H2O day−1), Qb,dp is baseflow component from
deep aquifer. The total baseflow is then given as below:

Qb,i = Qb,sh,i + Qb,dp,i . (8)

When the shallow storage reservoir is used only to generate
baseflow, recharge to the deep aquifer is disabled. When both
aquifers are used to generate baseflow, the parameterβdp is
determined through calibration. Other parameters to be cal-
ibrated for baseflow modeling include the delay timeδgw,sh,
δgw,dp, the recession constantsαgw,shandαgw,dp.

2.2 Baseflow separation using automated digital filter

In consideration of difficulties in the measurement of base-
flow, a third-party approach, the digital filter-based pro-
gram, is used to separate baseflow from streamflow records
for comparison purposes. This baseflow separation proce-
dure is based on a recursive digital filter commonly used
in signal analysis and processing (Lyne and Hollick, 1979).
It was used by Nathan and McMahon (1990), Arnold and
Allen (1999) and Szilagyi et al. (2003, 2004), among others.
This technique is, in fact, arbitrary and physically unrealistic.
However, it does provide a subjective and repeatable estimate
of baseflow that is easily automated (Nathan and McMahon,
1990). The filter given by Lyne and Hollick (1979) is ex-
pressed as below:

Qsf,i = λQsf,i−1 +
1 + λ

2

(
Qs,i − Qs,i−1

)
(9)

whereQsf and i are defined as before,Qs is the surface
runoff, andλ is the filter parameter. Baseflow is calculated
as below:

Qb,i = Qs,i − Qsf,i (10)

whereQb is defined as before.
An automatic baseflow filter program (Arnold

et al., 1995, http://swatmodel.tamu.edu/software/
baseflow-filter-program,2011) is used to separate base-
flow from the daily streamflow records from 1961 to 1999 in
Manas River Basin (MRB).

2.3 Watershed and data description

Model setup

MRB is located at the northern side of the middle Tianshan
Mountains, northwest China (Fig. 2). MRB originates from
the Yilianhabierga Mountain, runs 160 km to the outlet at
Kenswat Hydrological Station (KHS, 85◦57′ E, 43◦58′), and
runs further 240 km through the oasis and the desert and fi-
nally merges into Manas Lake. The catchment area of the
MRB above the outlet KHS is 5163 km2.

Maps of a 1:250 000 DEM, a 1:100 000 land cover, and the
China Glacier Inventory (CGI) were used to setup the Arc-
SWAT2005. The CGI data used as the initial glacier layout
were mainly derived from topographical maps (1:100 000)
based on aerial photos acquired during 1962–1977 (Shang-
guan et al., 2009). Eventually, the watershed is delineated
into 27 subbasins and 163 Hydrological Response Units
(HRUs). Each subbasin is divided into ten bands with equal
elevation increment for simulating the snow and glaciers.

(1) Topography and land cover

Altitude of the MRB ranges from 858 meters above sea
level (m a.s.l.) to 5146 m a.s.l. Differences of elevation
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Fig. 2 The Manas River basin and subbasin delineation map (the upper-left small figure is the 2 
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Fig. 2. The Manas River basin and subbasin delineation map (the
upper-left small figure is the sketch map of China indicating the
location of the study area).

within a subbasin are significant. On average, the difference
is 2561 m, with the biggest at 3876 m for the subbasin 11
and the smallest at 448 m for the subbasin 1. The land
cover types include range grassland of 8.11 % elevation band
2500–3500 m a.s.l., short bushes of 39.1 % within the eleva-
tion band of 1500–2500 m a.s.l., and forest of 5.32 % within
the below the elevation of 1500 m a.s.l., bare land of 33.58 %,
and glaciers. Among the 163 HRUs, there are 28 glacierized
ones with total glacier area of 717 km2. Ratios of glacier
area to subbasin area range from 0.7 % for the subbasin 4
to 51.2 % for the subbasin 22, with a mean ratio of 13.9 %
over the basin. Watershed glacier processes simulation was
detailed in Luo et al. (this study).

(2) Soils

The main soils in the basin include alpine meadow soil,
subalpine meadow soil, subalpine meadow and steppe soil,
mountain chernozem soil, mountain grey cinnamon soil,
mountain chestnut soil, which take account of 36 %, 11 %,

42 %, 1 %, 7 %, and 3 % of the basin area, respectively. Tex-
tures and properties of these soils were derived from the
field-collected and lab- tested data of the publication “Soils
in Xinjiang (technical report)”.

(3) Climate

The Shihezi Weather Station (SWS, 43◦29′ N, 87◦06′ E) is
located below the outlet with an elevation of 444 m a.s.l. The
daily meteorological data include maximum and minimum
temperatures, wind speed at 10 m height, relative humidity,
precipitation, and 20 cm-pan evaporation from 1961 to 1999.
This area displays an alpine climate, very cold winter and
moderate summer temperatures. The mean high temperature
is 39.6◦C, the low−31.7◦C, and the daily average 7.0◦C.
The mean annual precipitation is 196 mm and the pan evap-
oration 1714 mm.

For each subbasin, a virtual weather station (VWS) is de-
fined. For each VWS, the temperature and precipitation data
were derived from the SWS by using the temperature and
precipitation lapse rates. Default value−6◦C km−1 in the
SWAT model was used for the temperature lapse rate,and 45
mmkm−1 was used for the precipitation lapse rate (Luo et al.,
this study).

(4) Streamflow

Daily streamflow records at the KHS from 1961–1999 were
used. The mean daily discharge rate is 39.3 m3 s−1 and the
average annual volume 12.15× 108 m3. The recorded maxi-
mum annual volume is 20.08× 108 m3 in 1999 and the min-
imum 9.39× 108 m3 in 1983. The flow volume from June to
August takes account of 70.5 % of the annual value and of
28.9 % and 25.9 % for July and August, respectively. Dur-
ing the seven months from October to the next April, flow
volume accounts for 15.9 % of the year with the monthly ra-
tio decreasing from 4.2 % in September to 1.2 % in February
and then going up gradually to 2.0 % in April.

MRB is snow and glacier melt dominated. Snowmelt starts
usually in late April or early May, glacier melts as snowpack
depletes, and streamflow starts to rise consistently till peak
discharge in late July. Glacier melt contribution ceases in
late September. As temperature falls below 0◦C, a new snow
season begins, and the direct surface runoff to streamflow
ceases. Steep rising and receding streamflow curve is then
followed with an almost flat low-flow line during the winter
and spring seasons, while the streamflow is very stable and
has quite a long duration (Fig. 3), which is a common feature
for rivers in northwest China.

The daily streamflow dataset was split into two segments
from 1961 to 1980 and from 1981 to 1999 for calibrating
and validating the SWAT model, respectively. The simu-
lated streamflow was compared to the measured values on
a daily basis and the model performance was evaluated using
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Fig. 3 The measured mean streamflow process of Manas River, Tianshan, Northwest China (max, 2 

the maximum daily flow rate; min, the minimum daily flow rate; mean, the mean daily flow rate 3 

from 1961 to 1999)4 
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Fig. 3. The measured mean streamflow process of the Manas River,
Tianshan, Northwest China (max = the maximum daily flow rate;
min = the minimum daily flow rate; mean = the mean daily flow rate
from 1961 to 1999).

both the Nash-Sutcliffe efficiency (NSE) and Percent Bias
(PBIAS) indices (Moriasi et al., 2007).

NSE = 1 −

n∑
1

(
Qobs

i − Qsim
i

)2

n∑
i

(
Qsim

i − Qmean
)2

(11)

PBIAS =

n∑
1

(
Qobs

i − Qsim
i

)
n∑
i

Qobs
i

× 100 (12)

whereQobs
i is thei-th observation for the daily flow,Qsim

i is
the i-th simulation value for the daily flow,mean is the mean
of observed data for the daily flow, andn is the total number
of the daily flow observations.

NSE indicates how well the plot of observed versus simu-
lated data fits the 1:1 line. NSE ranges between−∞ and 1.0
(1 inclusive), with NSE = 1 being the optimal value. PBIAS
measures the average tendency of the simulated data to be
larger or smaller than their observed counterparts. The opti-
mal value of PBIAS is 0.0, with low-magnitude values indi-
cating accurate model simulation (Morasi et al., 2007).

3 Results

Parameters calibrated for baseflow components are listed in
Table 1 for reference. In case one-reservoir was used only, it
was assumed that water exiting the bottom of the unsaturated

Table 1. Baseflow parameter values for one reservoir and two reser-
voir approaches in SWAT and the automated baseflow filter program
for the Manas River basin, Tianshan, China.

Model Parameter unit Initial Calibrated
value value

One δgw,sh day 10–30 15
reservoir αgw,sh – 0–1 0.4

β – 0 0

Two δgw,sh day 10–30 15
reservoirs αgw,sh – 0–1 0.4

δgw.dep day 10–300 127
αgw,dp – 0–1 0.05
β – 0–1 0.4

Filter λ – 0.925
program α – 0.018

baseflow days day 127.9

soil profiles recharged the shallow aquifer only. When the
two-reservoir method was employed, it was found that 40 %
of recharge to the deep aquifer was proper to match the mea-
sured streamflow during low-flow period. The deep aquifer
has a much longer delay time for recharge and a much slower
recession rate than the shallow aquifer. Parameters for the
baseflow filter are also listed in Table 1. It is interesting to
notice that using the baseflow days given by the filter pro-
gram (Arnold et al., 1995; Arnold and Allen, 1999) as the
recharge delay time of the deep aquifer in the two-reservoir
approach simulated the stream flow during low-flow period
very well.

Figure 4 demonstrates the comparison of stream flows
among those measured and simulated. A five-year clip was
taken from the whole simulation period of 39 yr to give a
clearer picture. The two-reservoir method improved the low-
flow simulation remarkably in vision. Statistical indices NSE
and PBIAS indicate that the two-reservoir method yielded
“good” or even “very good” results in the sense of either
NSE or PBIAS following the rating rules given by Moriasi
et al. (2007), which are better than the one-reservoir method,
Table 2.

Table 3 lists the summary statistics of measured and sim-
ulated streamflow volumes. Annual flow volumes simulated
by SWAT using one-reservoir and two-reservoir methods are
approximated with only minor differences. The simulated
mean annual flow volumes are slightly larger than those
measured, and the simulation was rated as very good, Ta-
ble 2. However, significant differences were found between
the simulated and the measured maximum flow volume. The
maximum flow volume was observed in 1999, while sim-
ulated in 1988. The difference might be due to the uncer-
tainty of meteorological input in mountain areas, which was
derived from records of the base station at the foot of the
mountain using a single precipitation lapse rate.

www.hydrol-earth-syst-sci.net/16/1259/2012/ Hydrol. Earth Syst. Sci., 16, 1259–1267, 2012
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Fig. 4. Comparison of simulated to measured streamflow processes at validation stage, the simulation started in 1961 (ROF = runoff;
m = measured; 1R, = one-reservoir method; 2R = two-reservoir method).

Table 2. The NSE and PBIAS for the simulated discharge by SWAT
using the one-reservoir and two-reservoir baseflow approaches in
the Manas River basin, Tianshan, China.

NSE Rating∗ PBIAS(%) Rating∗

One-reservoir

calibration 0.68 Good −4.0 Very
validation 0.62 Satisfactory −3.5 good
overall 0.65 Good −3.7

Two-reservoir

calibration 0.76 Very good −2.6 Very
validation 0.69 Good −3.6 good
overall 0.72 Good −3.2

∗ The rating is based on rules given by Moriasi et al. (2007).

4 Discussion

The annually averaged baseflow volumes given by different
approaches were listed in Table 4. The one-reservoir and
two-reservoir approaches produced similar results in annual
baseflow volumes. The digital filter program gave a much
larger baseflow volume than the model-based methods. The
model-based baseflow volume accounted for 45 % of the an-
nual flow volume, while the filter-based 60 %. Among the
model-based baseflow, shallow aquifer contributed 58 %, and
the deep aquifer 42 %. According to the recharge partition
coefficient, these should be 60 % and 40 %, respectively. The
minor difference was attributed to a portion of the shallow
aquifer storage depleted during the simulation period. For
the deep aquifer, its storage fluctuated seasonally while equi-
librium was maintained, as the simulation revealed.

The observed streamflow flattened out with delayed flow
supply from deeper subsurface stores and eventually became
nearly constant, which is sustained by outflow from ground-
water storage (Fig. 3). Figure 4 illustrates the baseflow

Table 3. Statistical analysis for the baseflow components and index
for Manas River basin, Tianshan, northwest China.

max min mean stdev

Flow volumes (109 m3)

Runoff (M) 2.020 0.936 1.214 0.220
Runoff (S)-1R 1.764 0.900 1.251 0.183
Runoff (S)-2R 1.755 0.926 1.252 0.174

processes. When only one-reservoir was used, the base
flow was underestimated as shown in Fig. 4. The ob-
served mean daily flow rate was 9.8 m3 s−1 and the volume
of 1.88× 108 m3 during the period from October to April,
while the simulated value was 3.0 m3 s−1 and the volume
of 0.58× 108 m3 for the same period. Similar results were
also found for Oigaing River basin in western Tianshan and
the Ala Archa River basin in northern Tianshan when a one-
reservoir baseflow approach was used (Aizen et al., 2000).
The steep slopes of the MRB (Luo et al., this study), the
quick recession of surface runoff, and the sluggish and sta-
ble baseflow processes during late autumn and late spring
(Fig. 1) indicate a quick percolation of rainfall and snow
and glacier melt waters during the summertime to an under-
ground storage which releases slowly during the wintertime,
as found by isotopic measurements in the Wind River Range
of Wyoming of US (Cable et al., 2011). When the deep
aquifer was employed as an additional slow release pool, the
baseflow simulation was improved remarkably, as demon-
strated in Figs. 5 and 6a and b.

The model- and filter-based daily baseflow processes were
averaged over the period from 1966 to 1999 (Fig. 6). The
simulated streamflow peak time seemed to shift a little ear-
lier. Nevertheless, the simulated rising receding limbs match
the measured ones well.

During the low-flow period (from November to April),
it was noticed that the one-reservoir method gave a serious
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Fig. 5 Clip illustration of the seasonal baseflow processes generated by model- and filter-based approaches, the whole period covered 1961-1999, 2 

1961 as the year 1 (BFL, baseflow; filter, filter-based baseflow separation program; 1R, one-reservoir approach; 2R, two-reservoir approach; 3 

Shallow reservoir, the shallow aquifer reservoir generated baseflow; Deep reservoir, the deep aquifer reservoir generated baseflow) 4 

Fig. 5. Clip illustration of the seasonal baseflow processes generated by model- and filter-based approaches, the whole period covered
1961–1999, 1961 as the year 1 (BFL = baseflow; filter = filter-based baseflow separation program; 1R = one-reservoir approach; 2R = two-
reservoir approach; Shallow reservoir = the shallow aquifer reservoir generated baseflow; Deep reservoir = the deep aquifer reservoir gener-
ated baseflow).
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(b) 

Fig. 6 Comparison of the simulated and measured monthly averaged low-flow discharge rates. 

(a), the one-reservoir approach was used; (b), the two-reservoir approach was used. 
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(b) 

Fig. 6 Comparison of the simulated and measured monthly averaged low-flow discharge rates. 

(a), the one-reservoir approach was used; (b), the two-reservoir approach was used. 

(b)

Fig. 6. Comparison of the simulated and measured monthly averaged low-flow discharge rates.(a) The one-reservoir approach was used;
(b) the two-reservoir approach was used.

underestimation of streamflow, while the two-reservoir
method reproduced the streamflow properly. Combination
of the quick release reservoir and the slow release reservoir
matched both the quick ad sluggish receding stages of re-
cession limb of the streamflow very well. During the quick
receding stage, the quick-release pool played a more impor-
tant part than the slow-release pool and vice-versa during the
sluggish stage (Figs. 3 and 7).

The filter-based baseflow started to rise earlier, reached its
peak later, and turned to low-flow stage earlier again than the
model-based (Fig. 6). The earlier peak time of the model-
based baseflow might be attributed to streamflow peak time
shift.

Onset points of rising limbs are worth noting (Figs. 4
and 6). The filter-based baseflow responds to runoff oc-
currence immediately at the onset of rising limb. The

model-based baseflow responds with a delay. The Manas
River basin is snow and glacier melt dominated. Snowmelt
starts usually in the middle of April. Infiltration in frozen
soils is affected by soil permeability, water content, re-
peated thawing and refreezing, and many other factors and
their complex interactions (French and Binley, 2004; Stahli,
2005). Experimental (Hayashi et al., 2003; Iwata et al., 2010)
and mathematical (Flerchinger and Saxton, 1989; Zhao and
Gray, 1999) investigations revealed the impeding effects of
frozen soil layer to snowmelt infiltration, and hence the po-
tential recharge to aquifers. As a matter of fact, baseflow
should respond with a delay to the snowmelt, other than im-
mediately, as given by the filter-based approach (Fig. 6). This
is achieved by the SWAT model through a simple assumption
of no water flow during the frozen season. An issue remain-
ing to be addressed is infiltration to and recharge from the
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Fig. 7 Comparison of the averaged daily baseflow processes generated by different baseflow 
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filter-based baseflow separation approach)  

Fig. 7. Comparison of the averaged daily baseflow processes gener-
ated by different baseflow approaches (BFL = baseflow; 1R = one-
reservoir approach; 2R = two-reservoir approach; filter = filter-
based baseflow separation approach).

soil profile during freezing and thawing, and eventual deter-
mination of the onset point of rising limb (Eqs. 4 and 7). This
needs more detailed description of soil freezing/thawing pro-
cesses, which are described insufficiently in most watershed
hydrological models.

Both the model-based and the filter-based approaches cap-
tured the reflection point of recession limb in late Septem-
ber, when direct surface runoff usually ceases to discharge
the aquifers.

Compared to the one-reservoir method, the two-reservoir
method requires three extra parameters to calibrate. This case
study revealed that the extra parameters will not provide too
much extra work for calibration if proper steps are followed.
Firstly, calibrate the parameters with recharge to deep aquifer
disabled, and optimize parameters with the quick rising and
receding limbs as target. Then, activate the recharge to the
deep aquifer and optimize the three parameters for the slow
release pool. An important reminder is that the slow-release
pool has a longer recharge delay time and smaller reces-
sion constant than the quick-release pool. And, as aforemen-
tioned, the baseflow days given by the filter-based program
can be a tip for calibrating the delay time. The recession
constant given by the filter program can also be an initial es-
timation of the recession constant of the slow-release pool.

5 Conclusions

In this study we presented a methodology to simulate base-
flow processes by adding a slow-reacting linear reservoir to
the available quick-reacting reservoir of baseflow generation
in the SWAT model. The baseflow-enhanced SWAT model

Table 4. Statistical analysis for the baseflow components and base-
flow index for Manas River basin, Tianshan, northwest China.

max min mean stdev

Flow volumes (109 m3)

BFL-filter 1.071 0.5.82 0.720 0.111
BFL-1R 0.810 0.3.57 0.563 0.087
BFL-2R 0.802 0.3.81 0.564 0.080
BFL-sh 0.471 0.1.94 0.325 0.054
BFL-dp 0.332 0.1.87 0.239 0.030

Baseflow index
BFI-Filter 0.64 0.52 0.60 0.03
BFI-1R 0.51 0.39 0.45 0.03
BFI-2R 0.50 0.38 0.45 0.03

note: Runoff = streamflow; BFL = baseflow; sh = shallow aquifer reservoir; dp = deep
aquifer reservoir; filter = filter-based baseflow separation program; 1R = one-reservoir
approach; 2R = two-reservoir approach; baseflow index = proportion of baseflow
components of the runoff; SRF = direct surface runoff.

was used to simulate the streamflow process in the snow and
glacier melt-dominated Manas River basin in the Tianshan
Mountains, where the streamflow process is featured with
steeper rising and receding limbs from May to September,
and a quite flatter recession from October to April. The fol-
lowing conclusions were achieved.

Combination of two linear reservoirs lead to the best re-
sults in reproducing the streamflow processes. The Nash-
Sutcliff efficiency values at the calibration and validation
stages are 0.68 and 0.62 for the one-reservoir case, and 0.76
and 0.69 for the two-reservoir case; the percent bias for both
cases is better than−4 %. The two-reservoir approach im-
proved the streamflow flow remarkably, especially the low-
flow.

The filter-based approach responds immediately to sur-
face runoff occurrence at the onset of rising limb, while the
model-based approaches respond with a delay. In consider-
ation of retention of surface storage and impeding effects of
frozen soil layers on infiltration during the initial snowmelt
stage, a delay response is believed more reasonable. Mean-
while, it is suggested that freezing/thawing processes be in-
cluded in soil modules to determine recharge to the aquifers
and hence, the proper timing of baseflow response. The filter-
and model-based methods gave similar surface runoff cessa-
tion points which are in late September.

The filter-based method estimated the baseflow index
as 0.60, while the model-based as 0.45 in the Manas River
basin. it cannot be decided which is more representative due
to the unavailability of baseflow measurements.
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