Technical note: A significance test for data-sparse zones in scatter plots
Abstract. Data-sparse zones in scatter plots of hydrological variables can be of interest in various contexts. For example, a well-defined data-sparse zone may indicate inhibition of one variable by another. It is of interest therefore to determine whether data-sparse regions in scatter plots are of sufficient extent to be beyond random chance. We consider the specific situation of data-sparse regions defined by a linear internal boundary within a scatter plot defined over a rectangular region. An Excel VBA macro is provided for carrying out a randomisation-based significance test of the data-sparse region, taking into account both the within-region number of data points and the extent of the region. Example applications are given with respect to a rainfall time series from Israel and also to validation scatter plots from a seasonal forecasting model for lake inflows in New Zealand.