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Abstract. The calibration of hydrologic models is a world- 1 Introduction
wide challenge due to the uncertainty involved in the large
number of parameters. The difficulty even increases in aWatershed hydrology and river water quality models are im-
region with high seasonal variation of precipitation, where portant tools for watershed management for both operational
the results exhibit high heteroscedasticity and autocorrelaand research programs (Quilland Rousseau, 2007; Van et
tion. In this study, the Generalized Likelihood Uncertainty al., 2008; Sudheer and Lakshmi, 2011). However, due to spa-
Estimation (GLUE) method was combined with the Soil and tial variability in the processes, many of the physical models
Water Assessment Tool (SWAT) to quantify the parameterare highly complex and generally characterized by a multi-
uncertainty of the stream flow and sediment simulation intude of parameters (Xuan et al., 2009). Technically, the mod-
the Daning River Watershed of the Three Gorges Reserification of parameter values reveals a high degree of uncer-
voir Region (TGRA), China. Based on this study, only a tainty. Overestimation of uncertainty may lead to expendi-
few parameters affected the final simulation output signif-tures in time and money and overdesign of watershed man-
icantly. The results showed that sediment simulation pre-agement. Conversely, underestimation of uncertainty may
sented greater uncertainty than stream flow, and uncertaintyesult in little impact on pollution abatement (Zhang et al.,
was even greater in high precipitation conditions (from May 2009). In order to apply hydrological models in the practical
to September) than during the dry season. The main uncemater resource investigations, careful calibration and uncer-
tainty sources of stream flow came from the catchment protainty analysis are required (Beven and Binley, 1992; Vrugt
cess while a channel process impacts the sediment simulatioget al., 2003; Yang et al., 2008).
greatly. It should be noted that identifiable parameters such Much attention has been paid to uncertainty issues in hy-
as CANMX, ALPHA BNK, SOL K could be obtained with  drological modeling due to their great effects on prediction
an optimal parameter range using calibration method. How-and further on decision-making (Van et al., 2008; Sudheer
ever, equifinality was also observed in hydrologic modelingand Lakshmi, 2011). Uncertainty estimates are routinely
in TGRA. This study demonstrated that care must be takenncorporated into Total Maximum Daily Load (TMDL)
when calibrating the SWAT model with non-identifiable pa- (Quilbé and Rousseau, 2007). Usually, the uncertainty in
rameters because these may lead to equifinality of the panydrological modeling is from model structures, input data
rameter values. It was anticipated this study would provideand parameters (Lindenschmidt et al., 2007). In general,
useful information for hydrology modeling related to policy structural uncertainty could be improved by comparing and
development in the Three Gorges Reservoir Region (TGRA)modifying the diverse model components (Hejberg and Refs-
and other similar areas. guard, 2005). The uncertainty of model input occurs because
of changes in natural conditions, limitations in measurement,
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and lack of data (Berk, 1987). One way to deal with this is- performance of the model focus on the parameter set, not
sue is to use random variables as the input data, rather thaon the individual parameters (Beven and Binley, 1992). The
the conventional form of fixed values (Yulianti et al., 1999). GLUE method can also handle the parameter interactions
Currently, parameter uncertainty is a hot topic in the uncer-and non-linearity implicitly through the likelihood measure
tainty research field (Shen et al., 2008; Sudheer et al., 2011)Vazquz et al., 2009). In addition, GLUE is a simple con-

The model parameters can be divided into the conceptuatept and is relatively easy to implement. Therefore, GLUE
group and the physical group (Gong et al., 2011). The con-s used in this study for parameter uncertainty analysis.
ceptual parameters such as £M the SCS curve method The Three Gorges Project — the largest hydropower project
are defined as the conceptualization of a non-quantifiablén the world —is situated at Sandoupin in Yichang City, Hubei
process, and determined by the process of model calibraProvince, China. It is composed mainly of the dam, the hy-
tion. Conversely, physical parameters can be measured airopower station, the two-lane, five-stage navigation locks,
estimated based on watershed characteristics when intensiand the single-lane vertical ship lift. While the Three Gorges
data collection is possible (Vertessy et al., 1993; Nandaku-Project provides flood control, power generation, and naviga-
mar and Mein, 1997). Because of the unknown spatial hettion benefits, it also has a profound impact on the hydrology
erogeneity of a studied area and the expensive experimentnd environment, such as river flow interruption and ecosys-
which may be involved, the physical parameters are usuiem degradation. Hydrological models have been used in
ally determined by calibrating the model against the mea-this region to study the impact of the project (Lu and Hig-
sured data (Raat et al., 2004). However, when the numdgitt, 2001; Yang et al., 2002; Wang et al., 2007; Shen et al.,
ber of parameters is large either due to the large number 02010). However, research on the uncertainty of hydrological
sub-processes being considered or due to the model structuraodels in such an important watershed is lacking. Due to the
itself, the calibration process becomes complex and uncervarying geographical locations and water systems (Xu et al.,
tainty issues appear (Rosso, 1994; Sorooshian and Gupt2011), it is of great importance to study the uncertainty of
1995). It has been shown that parameter uncertainty is inmodel parameters that affect the hydrological modeling pro-
evitable in hydrological modeling and a corresponding as-cess. Previously we had conducted a parameter uncertainty
sessment should be conducted before model prediction in thanalysis for nonpoint source pollution modeling in this re-
decision making process. Studies of parameter uncertaintgion. In the present investigation, a further study in hydro-
have been conducted in the area of integrated watershelbgical modeling was developed.
management (Zacharias et al., 2005), peak flow forecasting Hence, the main objective of this study was to identify the
(Jorgeson and Julien, 2005), soil loss prediction (Cochranelegree of uncertainty and uncertainty parameters for predic-
and Flanagan, 2005), nutrient flux analysis (Murdoch et al. tion of stream flow and sediment in a typical watershed of
2005; Miller et al., 2006), assessment of the effect of landthe Three Gorges Reservoir Region, China. In this study, a
use change (Eckhardt et al., 2003; Shen et al., 2010; Xu etemi-distributed hydrological model, Soil and Water Assess-
al., 2011) and climate change impact assessment (Kingstoment tool (SWAT) was combined with the GLUE (Gener-
and Taylor, 2010), among many others. Nevertheless, paalized likelihood uncertainty estimation) method to quantify
rameter identification is a complex, non-linear problem andthe uncertainty of parameters and to provide a necessary ref-
numerous possible solutions might be obtained by optimiza-erence for hydrological modeling in the entire Three Gorges
tion algorithms (Nandakumar and Mein, 1997). Thus, theReservoir region.
parameters cannot be identified easily. Additionally, differ- The paper is organized as follows: (1) a description of the
ent parameter sets may result in similar prediction which isstudy area and a brief introduction of the hydrological model
known as the phenomenon of equifinality (Beven and Binley,and GLUE method; (2) both the impact of parameter uncer-
1992). However, to the best of our knowledge, there are fewtainty on model results and parameter identifiability are ana-
studies about parameter identifiability based on uncertaintylyzed in the result and discussion section; (3) a conclusion is
analysis in hydrological modeling. provided.

Several calibration and uncertainty analysis techniques
have been applied in previous research work, such as .
the first-order error analysis (FOEA) (Melching and Yoon, 2 Methods and materials
1996), the Monte Carlo method (Kao and Hong, 1996) and
the Generalized Likelihood Uncertainty Estimation method
(GLUE) (Bgven and I_3in|ey, 1992). T_he FOEA method is e Daning River Watershed (108/~110°11 E, 31°04—
bgsed on linear-relationships ar_1d fails to deal adequatelyqosy N), lies in the central part of the Three Gorges Reser-
with the complex models (Melching and Yoon, 1996). The \ir Area (TGRA) (Fig. 1), is in Wushan and Wuxi Counties,

Monte Carlo method requires repeating model simulation;, ihe municipality of Chongging, China and covers an area
according to the parameter sampling, resulting in tremen-t 41426 kn?.

dous computational time and human effort (Gong et al.,
2011). However, the GLUE methodology determines the

2.1 Site description
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Fig. 1. Location of Daning River Watershed.

Mountainous terrain makes up 95 % of the total area ands the retention parameter (mm@&). The retention parame-
low hills contribute the other 5%. The average altitude ister varies spatially due to changes in soil, land use, manage-
1197 m. The landuse in the watershed is 22.2% croplandment, and slope and temporally due to changes in soil water
11.4 % grassland, and 65.8 % forest. Zonal yellow soil is thecontent. The retention parameter is defined as:
dominant soil of the watershed. This area is characterized by 25 400
the tropical monsoon and subtropical climates of Northern§ = ——— — 254 (2)
Asia. A humid subtropical monsoon climate covers this area, CN
featuring distinct seasons with adequate sunshine (an annud/here CN is the curve number for the day.
mean temperature of 1606) and abundant precipita’[ion (an The SWAT model uses the Modified Universal Soil Loss
annual mean precipitation of 1124.5mm). A hydrological Equation (MUSLE) to estimate sediment yield at HRU (Hy-
station is located in Wuxi County, and this study focused ondrological Response Units) level. The MUSLE is defined as:
the watershed controlled by the Wuxi hydrological station, 0.56
which has an area of approximately 2027%{fig. 1). Qsed = 118 (Qsurt - gpeak - Anru) - Kusle - Cusle

- Pusle * Lusle - FCcrrG (3)

) ) whereQseqis the sediment yield on a given day (metric tons);
The SWAT model (Arnold et al., 1998) is a hydrologic/water Osurt is the surface runoff volume (mmg® ha 1); dpeakis

qua_lity tool dev_eloped by the United _States Department Ofthe peak runoff rate (As~1); Ay is the area of the HRU
Agriculture-Agriculture Research Service (USDAARS). The (ha); Kuske is the USLE soil erodibility factorCugie is the

SWAT model is also available within the BASINS (Better As- ;5| E cover and management fact®e is the USLE sup-

sessment Science Integrating point & Non-point Sources) a ort practice factorfyse is the USLE topographic factor:
one of the models that the USEPA supports and recommen nd Feregis the coarse fragment factor

for state and federal agencies to use to address point and non-, order to efficiently and effectively apply the SWAT

point source pollution control. The hydrological ProcesseSmadel, different calibration and uncertainty analysis meth-

are divided.into two phases: the land phase and the charn;yg have been developed and applied to improve the predic-
nel/floodplain phase. The SWAT model uses the SCS curvgjq, reliapility and quantify prediction uncertainty of SWAT

number procedure when daily precipitation data is used whilé;r, jations (Arabi et al., 2007). In this study, a parameter
the Green-Ampt infiltration method is chosen when S“b'da'lysensitivity analysis was performed prior to calibrating the

data is used to estimate surface runoff. The SCS curve nuM, 4e|  Based on the sensitivity ranking results provided by

2.2 SWAT model

ber equation is: the Morris Qualitative Screening Method (Morris, 1991), the
(Rday — Ia)2 20 highest ranked parameters affecting stream flow and sedi-
Osurf = (1) ment yield (shown in Table 1) were selected for the following

(Raay — Ia + ) uncertainty analysis using the GLUE method. For model-
where Qgyrif is the accumulated runoff or rainfall excess ing accuracy, parameters were calibrated and validated using
(mm H;0); Ryay is the rainfall depth for the day (mmyi®); the highly efficient Sequential Uncertainty Fitting version-
I, is the initial abstractions, which includes surface storage2 (SUFI-2) procedure (Abbaspour et al., 2007). The initial
interception, and infiltration prior to runoff (mmJ@); andS parameter range was recommended from the SWAT manual.
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Table 1. The range and optimal value of model parameter. 2.3.1 Step 1: definition of likelihood function

The likelihood function was used to evaluate SWAT outputs

Name Ll‘.jw.fr ﬁr‘:]f’ter (\)Izlth;al against observed values. In our study, the Nash-Sutcliffe
mi coefficient Ens) was picked because it was the most fre-

1 r.CN2.mgt -0.25 0.15 -0.2143 quently used likelihood measure for GLUE based on the lit-
2 VALPHA BF.gw 0 1 0.6075 erature (Beven and Freer, 2001; Freer et al., 1996; Arabi et
3  V.GW.DELAY.gw 1 45  13.4854 al., 2007).
4 Vv_CH_N2.rte 0 0.5 0.2870
5 v_.CH.K2.rte 0 150 36.1563 L 2
6  V.ALPHA_BNK.rte 0 1 0.1572 El (Qsimi — Omeai)
7 V.SOLAWC.sol 0 1 0.0038 Ens=1- — . 4)
8 rSOLK.sol —02 300 251.4728 > (Omeai — Omed)
9 aSOL BD.sol 0.1 0.6 0.4442 i=1
10 v-SFTMP.bsn - > 0.0499 whereQmea; andQsim; are the measured and simulated val-
11  v.CANMX.hru 0 100 2.68 ¢ o=
12 V.ESCO.hru 0.01 1 0.5637 ues for the-th pair, O meals the mean v_alue of the measured
13 V.GWQMN.gw 0 5000 3023.488 values, and: is the total number of paired values. Thfs
14 Vv.REVAPMN.gw 0 500 380.7558 value ranges from-oco to 1, with 1 indicating a perfect fit.
15 v.USLEP.mgt 0.1 1 0.6443 )
16 V.CH.COV.rte 0 1 0.8124 2.3.2 Step 2: sampling parameter sets
17 v.CH.EROD.rte 0 1 0.0350 . o .
18 Vv.SPCON.bsn 0 0.05 0.0210 Due to the lack of a prior distribution of a parameter, uni-
19 Vv.SPEXP.bsn 1 1.5 1.1924 form distribution was chosen due to its simplicity (Muleta
20 r.SLSUBBSN.hru -0.1 0.1 0.0490 and Nicklow, 2005; Lenhart et al., 2007; Migliaccio and

Chaubey, 2008). The range of each parameter was divided
into n overlapping intervals based on equal probability (Ta-
ble 1) and parameters were identically chosen from span-
This calibration method is an inverse optimization approachning the feasible parameter range. The drawback of a typ-
that uses the Latin Hypercube Sampling (LHS) procedureical GLUE approach is its prohibitive computational burden
along with a global search algorithm to examine the behavioimposed by its random sampling strategy.

of objective functions. The procedure has been incorporated Therefore in this study, an improved sampling method was
into the SWAT-CUP software, which can be downloaded forintroduced by combing Latin Hypercube Sampling (LHS)
free from the EAWAG website (Abbaspour et al., 2009). For with GLUE. Compared to random sampling, LHS can reduce
the runoff, the Nash-Sutcliffe coefficients during the calibra- sampling times and provide a 10-fold greater computing effi-
tion period and validation period were 0.94 and 0.78, respeceiency (Vachaud and Chen, 2002). Therefore, LHS was used
tively. For the sediment yield, the Nash-Sutcliffe coefficients for random parameter sampling to enhance the simulation ef-
in the calibration and validation periods were 0.80 and 0.70 ficiency of the GLUE simulation. Values then were randomly
respectively. More details can be found in the study of Sherselected from each interval.

et al. (2008) and Gong et al. (2011). If the initial sampling of the parameter space was not
dense enough, the GLUE sampling scheme probably could
2.3 GLUE method not ensure a sufficient precision of the statistics inferred from

. . the retained solutions (Bates and Campbell, 2001). Hence,
The GLUE method (Beven and Freer, 2001) is an uncertainty, large number of sampling sets (10000 times) were con-

analysis technique inspired by importance sampling and rey, ey Because the SWAT module and the SWAT-CUP soft-
gional sensitivity analysis (Hornberger and Spear, 1981). 46 \yere in different interfaces, all of the 10000 simula-
GLUE, parameter uncertainty accounts for all Sources of Unjons were calculated manually. The whole simulation period

certainty; i.e. input uncertainty, structural uncertainty, pa- lasted six months on a Centrino Duo at 2.8 GHz computer.
rameter uncertainty and response uncertainty. Therefore, this

method has been widely used in many areas as an effective 3.3 Step 3: threshold definition and results analysis

and general strategy for model calibration and uncertainty es-

timation associated with complex models. In this study, theCompared to other applications (Gassman et al., 2007),

GLUE analysis process consists of the following three steps0.5 was judged as a reasonablgs value for SWAT simula-
tion. In this study, we set 0.5 as the threshold valu&g§
and if the acceptability was below a certain subjective thresh-
old, the run was considered to be “non-behavioral” and that
parameter combination was removed from further analysis.

Hydrol. Earth Syst. Sci., 16, 121432, 2012 www.hydrol-earth-syst-sci.net/16/121/2012/



Z.Y. Shen et al.: A case study of SWAT model applied to Three Gorges Reservoir Region, China 125

200

150

3

Flow m /s

100

50

T T T T T T T T T T
2004/1/9 2004/10/9 2005/7/9 2006/4/9 2007/1/9 2007/10/9

Period(2004-2007)

700
600
500
400
300
200

4

Sediment 10 tone

,_\
o
o o
|

T T T T T T T T T
2005/4/21 2005/10/21 2006/4/21 2006/10/21 2007/4/21
Period(2004-2007)
—m— Observation—@—2.5% Percentile—#&—97.5% Percentile—w— Optimal result

Fig. 2. The 95CI for stream flow and sediment period.

In this study, the SWAT model was performed 10 000 timesmay affect only a small portion of the basin, the model as-
with different parameter sample sets. For each output, thesumes it affects the entire basin. This may cause a larger
dotty plot, cumulative parameter frequency and 95 % confi-runoff event to be observed in simulation although little pre-
dence interval (95CI) were analyzed. cipitation was recorded due to the limited local extent of a
certain precipitation event. In the Three Gorges Reservoir
area, the daily stream flow changes frequently and widely,
3 Results and discussion thus the measured value might not represent the actual value
of the daily flow and the discrepancy between the measured
mean value and simulated mean value would be high. How-
- . ever, more precise simulated flow would depend on design-
For the purpose of determmlng the gxtent to which parameing accurate rain-gauge networks and the existence of fewer
te_r uncertainty affects model simulation, the d_egree of un_ce[jneasurement errors (Chang et al., 2007).
tainty of_outputs was expressed by 95C!’ Wh'_Ch_ was derive From Fig. 2, it is clear that most of the observed values
by ordering the 10 000 outputs and then identifying the 2.5 %Were bracketed by the 95CI, 54 % for stream flow outputs

and 97.5% threshold values. The 95CI for both stream flow_ 4 9= o4 for sediment. However, several stream flow ob-

and sediment period were shown_in Fig. 2. Itwas evident thatservations were found to be above the 97.5 % threshold val-
the 95CI for stream flow and sediment was 1-53m and ues (such as March, April, November 2004; March, April,

2000-7 657 800t, respectively. In addition, sediment simu-May, June, July, August and October 2005; February, March,

lation presented greater uncertainty than stream flow, Whicrh fil. Mav and July 2006: March. Mav. June. Julv and Au-
might be due to the fact that sediment was affected and domi P Vay y ' bl Y

ust 2007). Conversely, only one observation (October 2006
inated by both stream flow processes as well as other factor‘% ) y, ony ( )

h as land iability (Sh | 2008 Migliacci d as observed below the 2.5 % threshold of sediment output.
such as land use variability (Shen etal., » MIgHIaccio anty e asyred value was not entirely in the range of 95ClI, in-
Chaubey, 2008).

; h | variati ¢ dicating that the SWAT model could not fully simulate the
From Fig. 2, the temporal variation of outputs was pre- ¢, and sediment processes. However, it was acknowledged

sented in which an evidently clgar relatlonshlp'was Obta'n?d(hat for a parameter, model structure and data input can also

between the amount of the rainfall and the width of confi- o5 56 ncertainty in model simulation (Bates and Campbell,

dence interval. This result highlighted an increased mOdebOOI Yang et al., 2007). Based on the results presented in
gngertainty in the.high precipitation condition. The variabil- this study, it was not possible to tell the extent to which the

ity in the uncertainty of sediment was the Same as that forerrors in the input and model structure contribute on the total
runoff, because runoff affects both factors. This could be ex-

: : : : . simulation uncertainty. However, as parameter uncertainty
plalned by the'fac.t.thallt unce'rtalnty was inherent in prempna—was only able to account for a small part of whole uncer-
tion glue to variability in '_[he t_|m§ of occurrence, location, in- tainty in hydrological modeling, this study suggests further
tensity, and tempo-spatial distribution (Shen et al., 2008). Instudies are needed on model structure and input in TGRA.

a hydrology model such as SWAT, although a rainfall event

3.1 Uncertainty of outputs
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Table 2. The equifinality of model parameters.

Parameter Flow Sediment

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
r_CN2.mgt 0.0203 -0.1027 —0.0085 0.1363 0.0217 0.0643
v__ALPHA}BF.gw 0.4048 0.0087 0.4896 0.3411 0.0191 0.0324
v__GW_DELAY.gw 36.0475 242712 39.5298 35.3257 13.4576 13.2559
V__CH_N2.rte 0.4176 0.3761 0.2179 0.2947 0.2024 0.2178
v__CH_K2.rte 32.1141 89.7282 16.4653 10.1802 38.9954 18.0410
V__ALPHA BNK.rte 0.3616 0.4323 0.3980 0.4089 0.9418 0.4505
v__SOL AWC(1-2).sol 0.0796 0.0307 0.0006 0.1660 0.3279 0.1196
r__SOLK(1-2).sol 113.3080 137.3520 166.4420 58.4822 2345450  48.3082
a_SOL BD(1-2).sol 0.1476 0.1905 0.2797 0.2512 0.3964 0.3136
V__SFTMP.bsn —1.7443 1.9458 3.7872 —1.3314 -—-3.5880 —0.9027
v__CANMX.hru 2.8527 6.3323 24.4465 22.0842 29.0789 6.0640
v__ESCO.hru 0.9775 0.0217 0.0800 0.2704 0.7215 0.3153
v__GWQMN.gw 1256.920 205.524  913.087 4958.950  372.250 4729.050
v__REVAPMN.gw 137.0420 129.2090 434.2130 390.4860 71.2840  34.4314
v__USLE_P.mgt 0.5067 0.2462 0.4990 0.1085 0.6628 0.6285
r__SLSUBBSN.hru 0.0402 —-0.0759 —0.0946 —0.0771 0.0011 0.0481
v__CH_Cov.rte 0.8376 0.3398 0.1628
v__CH_EROD.rte 0.8894 0.6481 0.5564
v__SPCON.bsn 0.0326 0.0391 0.0358
v__SPEXP.bsn 1.4285 1.2595 1.3446
ENs 0.6915 0.6917 0.6919 0.6997 0.6999 0.7000

Another concern in hydrologic modeling was the equifi- dotty plot from Fig. 3, it was evident that the main sources
nality of model parameters (Beven and Binley, 1992; Wa-of streamflow uncertainty were initial SCS CN Il value
gener and Kollat, 2007). Table 2 showed multiple combina-(CN2), available water capacity of the layer (S@WC),
tions of parameter values yield the sags during hydro-  maximum canopy storage (CANMX), base flow alpha factor
logic modeling in TGRA. The so-called equifinality showed for bank storage (ALPHABNK), saturated hydraulic con-
there was no unique parameter estimation and hence unceductivity (SOLK), and soil evaporation compensation fac-
tainty in the estimated parameters in TGRA was obvious.tor (ESCO). Among the above six parameters, S@C
This result agreed well with many other studies (Beven andand CANMX were the most identifiable parameters for the
Binley, 1992). This may be due to the fact that parame-Daing River watershed. This could be explained by the fact
ters obtained from calibration were affected by several fac-that SOLAWC represented soil moisture characteristics or
tors such as correlations amongst parameters, sensitivity golant available water. This parameter plays an important role
insensitivity in parameters, spatial and temporal scales anéh evaporation, which is associated with runoff (Burba and
statistical features of model residuals (Wagener et al., 2003yerma, 2005). It has also been suggested that the soil wa-
Wagener and Kollat, 2007). It could be inferred that the ter capacity has an inverse relationship with various water
identifiability of an optimal parameter obtained from calibra- balance components (Kannan et al., 2007). Therefore, an in-
tion should also be evaluated. For an already gauged catclerease in the SOIAWC value would result in a decrease in
ment, a virtual study can provide a point of reference for thethe estimate of base flow, tile drainage, surface runoff, and
minimum uncertainty associated with a model application.hence, water yield. As shown in Fig. 3, the optimal range of
This study highlighted the importance of the monitoring task SOL AWC was between [0, 0.2] and better results could be
for several important physical parameters to determine mor@btained in this interval. By using calibration methods, op-
credible results for watershed management. timal parameter ranges could also be obtained without much
difficulty for other identifiable parameters (CANMX [0, 30],
ALPHA BNK [0.3, 1], SOLK [80, 300]). However, pres-
ence of multiple peaks in the Nash-Sutcliffe model efficiency
Figures 3 and 5 illustrate the variation Bfs for the Daing for CN2_ and ESCO |nd|_cated that estimation of these param-
River watershed as a function of variation of each of the St€rs might not be feasible.

20 parameters considered in this study. By observing the

3.2 Uncertainty of parameters
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Fig. 4. The cumulative parameter frequency for stream flow.

However, it should be noted that non-identifiability of a uniformly or normally distributed, especially SQAWC,
parameter does not indicate that the model is not sensitiv€€ ANMX and ESCO. ESCO represents the influence of cap-
to these parameters. Generally, CN2 was considered as thkarity and soil crannies on soil evaporation in each layer.
primary source of uncertainty when dealing with stream flow Therefore, a change in the ESCO value affected the entire
simulation (Eckhardt and Arnold, 2001; Lenhart et al., 2007).water balance component. When there were higher ESCO
This study showed that CN2 exhibited non-identifiability in values, the estimated base flow, tile drainage and surface
the stream flow simulation. This is similar to the study pro- runoff increased. The greater uncertainty of this parameter
posed by Kannan et al. (2007). The potential cause would béndicated that the soil evaporation probably played a greater
that there was an explicit provision in the SWAT model to up- role in the whole evaporation process, possibly due to the
date the CN2 value for each day of simulation based on availhigh air temperature in rainy seasons in the TGRA. In com-
able water content in the soil profile. Therefore, a change inparison, other parameters such as CN2 and 8Qlwere
the initial CN2 value would not greatly affect water balance close to a uniform distribution while they were also more
components. Estimation of non-identifiable parameters, suclor less skewed. This non-linearity further implies that the
as CN2 and ESCO for the Daning River watershed, woulduncertainty in model input did not translate directly into un-
be difficult as there may be many combinations of these pacertainty in the model outputs, but might rather appear sig-
rameters that would result in a similar model performance.nificantly dampened or magnified in the output (Sohrabi et
Instead of the process calibration, a decision regarding modal., 2003). This result demonstrates the important opinion
eling could deal with these non-identifiable parameters bythat the model output was influenced by the set of param-
setting a confidence interval on model output. eters rather than by a single parameter (Beven and Binley,

Figures 4 and 6 illustrate the cumulative parameter fre-1992).
quency for both stream flow and sediment in the Daing River Similar to the stream flow simulation, even though many
watershed. As shown in Fig. 4, the parameters were nobf the parameters were sensitive and affected the sediment
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Fig. 6. The cumulative parameter frequency for sediment.

simulation, only a small number of the sensitive parameteranainly come from the surface corresponding process and the
were identifiable. As shown in Fig. 5, the factors of uncer- parameters with greater uncertainty of sediment focused on
tainty for sediment were CN2, Manning’s value for main the channel response process. The results matched well with
channel (CHN2), maximum canopy storage (CANMX), those of Yang et al. (2011) and Shen et al. (2010).

base flow alpha factor for bank storage (ALPHBAIK),

exp.Re-entrainment parameter for channel sediment routing

(SPEXP), lin.re-entrainment parameter for channel sedimen# Conclusions

routing (SPCON), channel cover factor (GEDV) and chan-

nel erodibility factor (CHEROD). Clearly, the parameter In this study, the GLUE method was employed to assess
samples were very dense around the maximum limit (Fig. 6) the parameter uncertainty in the SWAT model applied in the
Summarizing the information in Figs. 3-6, it can be said Daning River Watershed of the Three Gorges Reservoir Re-

that the parameters with greater uncertainty of stream flongion (TGRA), China. The results indicate that only a few pa-
rameters were sensitive and had a great impact on the stream
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flow and sediment simulation. CANMX, ALPHABNK and Beven, K. J. and Freer, J.: Equifinality, data assimilation, and un-
SOLK were identified as identifiable parameters. The val- certainty estimation in mechanistic modeling of complex envi-
ues of these parameters could be obtained by using the cali- ronmental systems, J. Hydrol., 249, 11-29, 2001.

bration process without much difficulties. Conversely, thereBurba, G. G. and Verma, S. B.: Seasonal and interannual variabil-
were multiple possible values for CN2 and ESCO. This indi- ity in evapotranspiration of native tallgrass prairie and cultivated
cates that calibration of these parameters might be infeasible, 12t cosystems, Agr. Forest Meteorol., 135, 190-201, 2005.
These non-identifiabiable parameters even led to equifinalitycata”‘ G., Latron, J., and Gallart, F.: Assessing the sources
. . o . of uncertainty associated with the calculation of rainfall ki-
in hydrologic and NPS modeling in t_he TGRA. Itwas' antici- | aotic energy and erosivity — application to the Upper Llobre-
pated that the parameter uncertainties are systematically cor- gat Basin, NE Spain, Hydrol. Earth Syst. Sci., 15, 679-688,
related to the non-identifiable parameters. Under such cases, 4oj:10.5194/hess-15-679-2012011.

a user should check if any information related to the water-Chang, C. L., Lo, S. L., and Chen, M. Y.: Uncertainty in watershed
shed characteristics and its underlying hydrologic processes response predictions induced by spatial variability of precipita-
could be used to provide a more precise range for the model tion, Environ. Monitor. Assess., 127, 147-153, 2007.
parameter. It was anticipated that this study would provideCochrane, T. A. and Flanagan, D. C.: Effect of DEM resolutions
some useful information for hydrological modeling related in the runoff and soil loss predictions of the WEPP watershed

to policy development in the Three Gorges Reservoir RegionE rl?hOdzL T}'(ASAdEA‘lS’ l%jog‘]_léoj i?os‘ ic calibrati ¢ ad
(TGRA) and other similar areas. ckhardt, K. an rnoid, J. G.: utomatic calibration of a dis-

. . tributed catchment model, J. Hydrol., 251, 103-109, 2001.
It is suggested that more detailed measurement data anlgckhardt, K., Breue, L., and Frede, H. G.: parameter uncertainty

more precipitation stations should be established in the future 4n4 the significance of simulated land use change effects, J. Hy-

for hydrological modeling in the TGRA. In addition, further oI, 273, 164-176, 2003.

studies should be continued in the field of model structurerreer, J., Beven, K., and Ambroise, B.: Bayesian estimation of un-

and input to quantify hydrological model uncertainty in the certainty in runoff prediction and the value of data: an applica-

TGRA. tion of the GLUE approach, Water Resour. Res., 32, 2161-2173,
1996.

Gassman, P. W., Reyes, M., Green, C. H., and Arnold, J. G.: The
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