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Abstract. The calibration of hydrologic models is a world-
wide challenge due to the uncertainty involved in the large
number of parameters. The difficulty even increases in a
region with high seasonal variation of precipitation, where
the results exhibit high heteroscedasticity and autocorrela-
tion. In this study, the Generalized Likelihood Uncertainty
Estimation (GLUE) method was combined with the Soil and
Water Assessment Tool (SWAT) to quantify the parameter
uncertainty of the stream flow and sediment simulation in
the Daning River Watershed of the Three Gorges Reser-
voir Region (TGRA), China. Based on this study, only a
few parameters affected the final simulation output signif-
icantly. The results showed that sediment simulation pre-
sented greater uncertainty than stream flow, and uncertainty
was even greater in high precipitation conditions (from May
to September) than during the dry season. The main uncer-
tainty sources of stream flow came from the catchment pro-
cess while a channel process impacts the sediment simulation
greatly. It should be noted that identifiable parameters such
as CANMX, ALPHA BNK, SOL K could be obtained with
an optimal parameter range using calibration method. How-
ever, equifinality was also observed in hydrologic modeling
in TGRA. This study demonstrated that care must be taken
when calibrating the SWAT model with non-identifiable pa-
rameters because these may lead to equifinality of the pa-
rameter values. It was anticipated this study would provide
useful information for hydrology modeling related to policy
development in the Three Gorges Reservoir Region (TGRA)
and other similar areas.

1 Introduction

Watershed hydrology and river water quality models are im-
portant tools for watershed management for both operational
and research programs (Quilbé and Rousseau, 2007; Van et
al., 2008; Sudheer and Lakshmi, 2011). However, due to spa-
tial variability in the processes, many of the physical models
are highly complex and generally characterized by a multi-
tude of parameters (Xuan et al., 2009). Technically, the mod-
ification of parameter values reveals a high degree of uncer-
tainty. Overestimation of uncertainty may lead to expendi-
tures in time and money and overdesign of watershed man-
agement. Conversely, underestimation of uncertainty may
result in little impact on pollution abatement (Zhang et al.,
2009). In order to apply hydrological models in the practical
water resource investigations, careful calibration and uncer-
tainty analysis are required (Beven and Binley, 1992; Vrugt
et al., 2003; Yang et al., 2008).

Much attention has been paid to uncertainty issues in hy-
drological modeling due to their great effects on prediction
and further on decision-making (Van et al., 2008; Sudheer
and Lakshmi, 2011). Uncertainty estimates are routinely
incorporated into Total Maximum Daily Load (TMDL)
(Quilbé and Rousseau, 2007). Usually, the uncertainty in
hydrological modeling is from model structures, input data
and parameters (Lindenschmidt et al., 2007). In general,
structural uncertainty could be improved by comparing and
modifying the diverse model components (Hejberg and Refs-
guard, 2005). The uncertainty of model input occurs because
of changes in natural conditions, limitations in measurement,
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and lack of data (Berk, 1987). One way to deal with this is-
sue is to use random variables as the input data, rather than
the conventional form of fixed values (Yulianti et al., 1999).
Currently, parameter uncertainty is a hot topic in the uncer-
tainty research field (Shen et al., 2008; Sudheer et al., 2011).

The model parameters can be divided into the conceptual
group and the physical group (Gong et al., 2011). The con-
ceptual parameters such as CN2 in the SCS curve method
are defined as the conceptualization of a non-quantifiable
process, and determined by the process of model calibra-
tion. Conversely, physical parameters can be measured or
estimated based on watershed characteristics when intensive
data collection is possible (Vertessy et al., 1993; Nandaku-
mar and Mein, 1997). Because of the unknown spatial het-
erogeneity of a studied area and the expensive experiments
which may be involved, the physical parameters are usu-
ally determined by calibrating the model against the mea-
sured data (Raat et al., 2004). However, when the num-
ber of parameters is large either due to the large number of
sub-processes being considered or due to the model structure
itself, the calibration process becomes complex and uncer-
tainty issues appear (Rosso, 1994; Sorooshian and Gupta,
1995). It has been shown that parameter uncertainty is in-
evitable in hydrological modeling and a corresponding as-
sessment should be conducted before model prediction in the
decision making process. Studies of parameter uncertainty
have been conducted in the area of integrated watershed
management (Zacharias et al., 2005), peak flow forecasting
(Jorgeson and Julien, 2005), soil loss prediction (Cochrane
and Flanagan, 2005), nutrient flux analysis (Murdoch et al.,
2005; Miller et al., 2006), assessment of the effect of land
use change (Eckhardt et al., 2003; Shen et al., 2010; Xu et
al., 2011) and climate change impact assessment (Kingston
and Taylor, 2010), among many others. Nevertheless, pa-
rameter identification is a complex, non-linear problem and
numerous possible solutions might be obtained by optimiza-
tion algorithms (Nandakumar and Mein, 1997). Thus, the
parameters cannot be identified easily. Additionally, differ-
ent parameter sets may result in similar prediction which is
known as the phenomenon of equifinality (Beven and Binley,
1992). However, to the best of our knowledge, there are few
studies about parameter identifiability based on uncertainty
analysis in hydrological modeling.

Several calibration and uncertainty analysis techniques
have been applied in previous research work, such as
the first-order error analysis (FOEA) (Melching and Yoon,
1996), the Monte Carlo method (Kao and Hong, 1996) and
the Generalized Likelihood Uncertainty Estimation method
(GLUE) (Beven and Binley, 1992). The FOEA method is
based on linear-relationships and fails to deal adequately
with the complex models (Melching and Yoon, 1996). The
Monte Carlo method requires repeating model simulation
according to the parameter sampling, resulting in tremen-
dous computational time and human effort (Gong et al.,
2011). However, the GLUE methodology determines the

performance of the model focus on the parameter set, not
on the individual parameters (Beven and Binley, 1992). The
GLUE method can also handle the parameter interactions
and non-linearity implicitly through the likelihood measure
(Vazquz et al., 2009). In addition, GLUE is a simple con-
cept and is relatively easy to implement. Therefore, GLUE
is used in this study for parameter uncertainty analysis.

The Three Gorges Project – the largest hydropower project
in the world – is situated at Sandoupin in Yichang City, Hubei
Province, China. It is composed mainly of the dam, the hy-
dropower station, the two-lane, five-stage navigation locks,
and the single-lane vertical ship lift. While the Three Gorges
Project provides flood control, power generation, and naviga-
tion benefits, it also has a profound impact on the hydrology
and environment, such as river flow interruption and ecosys-
tem degradation. Hydrological models have been used in
this region to study the impact of the project (Lu and Hig-
gitt, 2001; Yang et al., 2002; Wang et al., 2007; Shen et al.,
2010). However, research on the uncertainty of hydrological
models in such an important watershed is lacking. Due to the
varying geographical locations and water systems (Xu et al.,
2011), it is of great importance to study the uncertainty of
model parameters that affect the hydrological modeling pro-
cess. Previously we had conducted a parameter uncertainty
analysis for nonpoint source pollution modeling in this re-
gion. In the present investigation, a further study in hydro-
logical modeling was developed.

Hence, the main objective of this study was to identify the
degree of uncertainty and uncertainty parameters for predic-
tion of stream flow and sediment in a typical watershed of
the Three Gorges Reservoir Region, China. In this study, a
semi-distributed hydrological model, Soil and Water Assess-
ment tool (SWAT) was combined with the GLUE (Gener-
alized likelihood uncertainty estimation) method to quantify
the uncertainty of parameters and to provide a necessary ref-
erence for hydrological modeling in the entire Three Gorges
Reservoir region.

The paper is organized as follows: (1) a description of the
study area and a brief introduction of the hydrological model
and GLUE method; (2) both the impact of parameter uncer-
tainty on model results and parameter identifiability are ana-
lyzed in the result and discussion section; (3) a conclusion is
provided.

2 Methods and materials

2.1 Site description

The Daning River Watershed (108◦44′–110◦11′ E, 31◦04′–
31◦44′ N), lies in the central part of the Three Gorges Reser-
voir Area (TGRA) (Fig. 1), is in Wushan and Wuxi Counties,
in the municipality of Chongqing, China and covers an area
of 4426 km2.

Hydrol. Earth Syst. Sci., 16, 121–132, 2012 www.hydrol-earth-syst-sci.net/16/121/2012/



Z. Y. Shen et al.: A case study of SWAT model applied to Three Gorges Reservoir Region, China 123Fig.1 Location of Daning River Watershed 1 

 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
23 

 

Fig. 1. Location of Daning River Watershed.

Mountainous terrain makes up 95 % of the total area and
low hills contribute the other 5 %. The average altitude is
1197 m. The landuse in the watershed is 22.2 % cropland,
11.4 % grassland, and 65.8 % forest. Zonal yellow soil is the
dominant soil of the watershed. This area is characterized by
the tropical monsoon and subtropical climates of Northern
Asia. A humid subtropical monsoon climate covers this area,
featuring distinct seasons with adequate sunshine (an annual
mean temperature of 16.6◦C) and abundant precipitation (an
annual mean precipitation of 1124.5 mm). A hydrological
station is located in Wuxi County, and this study focused on
the watershed controlled by the Wuxi hydrological station,
which has an area of approximately 2027 km2 (Fig. 1).

2.2 SWAT model

The SWAT model (Arnold et al., 1998) is a hydrologic/water
quality tool developed by the United States Department of
Agriculture-Agriculture Research Service (USDAARS). The
SWAT model is also available within the BASINS (Better As-
sessment Science Integrating point & Non-point Sources) as
one of the models that the USEPA supports and recommends
for state and federal agencies to use to address point and non-
point source pollution control. The hydrological processes
are divided into two phases: the land phase and the chan-
nel/floodplain phase. The SWAT model uses the SCS curve
number procedure when daily precipitation data is used while
the Green-Ampt infiltration method is chosen when sub-daily
data is used to estimate surface runoff. The SCS curve num-
ber equation is:

Qsurf =

(
Rday − Ia

)2(
Rday − Ia + S

) (1)

where Qsurf is the accumulated runoff or rainfall excess
(mm H2O); Rday is the rainfall depth for the day (mm H2O);
Ia is the initial abstractions, which includes surface storage,
interception, and infiltration prior to runoff (mm H2O); andS

is the retention parameter (mm H2O). The retention parame-
ter varies spatially due to changes in soil, land use, manage-
ment, and slope and temporally due to changes in soil water
content. The retention parameter is defined as:

S =
25 400

CN
− 254 (2)

where CN is the curve number for the day.
The SWAT model uses the Modified Universal Soil Loss

Equation (MUSLE) to estimate sediment yield at HRU (Hy-
drological Response Units) level. The MUSLE is defined as:

Qsed = 11.8
(
Qsurf · qpeak · Ahru

)0.56
· Kusle · Cusle

· Pusle · Lusle · FCFRG (3)

whereQsedis the sediment yield on a given day (metric tons);
Qsurf is the surface runoff volume (mm H2O ha−1); qpeak is
the peak runoff rate (m3 s−1); Ahru is the area of the HRU
(ha); Kusle is the USLE soil erodibility factor;Cusle is the
USLE cover and management factor;Pusle is the USLE sup-
port practice factor;Lusle is the USLE topographic factor;
andFCFEG is the coarse fragment factor.

In order to efficiently and effectively apply the SWAT
model, different calibration and uncertainty analysis meth-
ods have been developed and applied to improve the predic-
tion reliability and quantify prediction uncertainty of SWAT
simulations (Arabi et al., 2007). In this study, a parameter
sensitivity analysis was performed prior to calibrating the
model. Based on the sensitivity ranking results provided by
the Morris Qualitative Screening Method (Morris, 1991), the
20 highest ranked parameters affecting stream flow and sedi-
ment yield (shown in Table 1) were selected for the following
uncertainty analysis using the GLUE method. For model-
ing accuracy, parameters were calibrated and validated using
the highly efficient Sequential Uncertainty Fitting version-
2 (SUFI-2) procedure (Abbaspour et al., 2007). The initial
parameter range was recommended from the SWAT manual.
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Table 1. The range and optimal value of model parameter.

Name Lower Upper Optimal
limit limit value

1 r CN2.mgt −0.25 0.15 −0.2143
2 v ALPHA BF.gw 0 1 0.6075
3 v GW DELAY.gw 1 45 13.4854
4 v CH N2.rte 0 0.5 0.2870
5 v CH K2.rte 0 150 36.1563
6 v ALPHA BNK.rte 0 1 0.1572
7 v SOL AWC.sol 0 1 0.0038
8 r SOL K.sol −0.2 300 251.4728
9 a SOL BD.sol 0.1 0.6 0.4442
10 v SFTMP.bsn −5 5 0.0499
11 v CANMX.hru 0 100 2.68
12 v ESCO.hru 0.01 1 0.5637
13 v GWQMN.gw 0 5000 3023.488
14 v REVAPMN.gw 0 500 380.7558
15 v USLE P.mgt 0.1 1 0.6443
16 v CH COV.rte 0 1 0.8124
17 v CH EROD.rte 0 1 0.0350
18 v SPCON.bsn 0 0.05 0.0210
19 v SPEXP.bsn 1 1.5 1.1924
20 r SLSUBBSN.hru −0.1 0.1 0.0490

This calibration method is an inverse optimization approach
that uses the Latin Hypercube Sampling (LHS) procedure
along with a global search algorithm to examine the behavior
of objective functions. The procedure has been incorporated
into the SWAT-CUP software, which can be downloaded for
free from the EAWAG website (Abbaspour et al., 2009). For
the runoff, the Nash-Sutcliffe coefficients during the calibra-
tion period and validation period were 0.94 and 0.78, respec-
tively. For the sediment yield, the Nash-Sutcliffe coefficients
in the calibration and validation periods were 0.80 and 0.70,
respectively. More details can be found in the study of Shen
et al. (2008) and Gong et al. (2011).

2.3 GLUE method

The GLUE method (Beven and Freer, 2001) is an uncertainty
analysis technique inspired by importance sampling and re-
gional sensitivity analysis (Hornberger and Spear, 1981). In
GLUE, parameter uncertainty accounts for all sources of un-
certainty; i.e. input uncertainty, structural uncertainty, pa-
rameter uncertainty and response uncertainty. Therefore, this
method has been widely used in many areas as an effective
and general strategy for model calibration and uncertainty es-
timation associated with complex models. In this study, the
GLUE analysis process consists of the following three steps:

2.3.1 Step 1: definition of likelihood function

The likelihood function was used to evaluate SWAT outputs
against observed values. In our study, the Nash-Sutcliffe
coefficient (ENS) was picked because it was the most fre-
quently used likelihood measure for GLUE based on the lit-
erature (Beven and Freer, 2001; Freer et al., 1996; Arabi et
al., 2007).

ENS = 1 −

n∑
i=1

(
Qsim,i − Qmea,i

)2

n∑
i=1

(
Qmea,i − Qmea

)2
(4)

whereQmea,i andQsim,i are the measured and simulated val-
ues for thei-th pair,Qmea is the mean value of the measured
values, andn is the total number of paired values. TheENS
value ranges from−∞ to 1, with 1 indicating a perfect fit.

2.3.2 Step 2: sampling parameter sets

Due to the lack of a prior distribution of a parameter, uni-
form distribution was chosen due to its simplicity (Muleta
and Nicklow, 2005; Lenhart et al., 2007; Migliaccio and
Chaubey, 2008). The range of each parameter was divided
into n overlapping intervals based on equal probability (Ta-
ble 1) and parameters were identically chosen from span-
ning the feasible parameter range. The drawback of a typ-
ical GLUE approach is its prohibitive computational burden
imposed by its random sampling strategy.

Therefore in this study, an improved sampling method was
introduced by combing Latin Hypercube Sampling (LHS)
with GLUE. Compared to random sampling, LHS can reduce
sampling times and provide a 10-fold greater computing effi-
ciency (Vachaud and Chen, 2002). Therefore, LHS was used
for random parameter sampling to enhance the simulation ef-
ficiency of the GLUE simulation. Values then were randomly
selected from each interval.

If the initial sampling of the parameter space was not
dense enough, the GLUE sampling scheme probably could
not ensure a sufficient precision of the statistics inferred from
the retained solutions (Bates and Campbell, 2001). Hence,
a large number of sampling sets (10 000 times) were con-
ducted. Because the SWAT module and the SWAT-CUP soft-
ware were in different interfaces, all of the 10 000 simula-
tions were calculated manually. The whole simulation period
lasted six months on a Centrino Duo at 2.8 GHz computer.

2.3.3 Step 3: threshold definition and results analysis

Compared to other applications (Gassman et al., 2007),
0.5 was judged as a reasonableENS value for SWAT simula-
tion. In this study, we set 0.5 as the threshold value ofENS
and if the acceptability was below a certain subjective thresh-
old, the run was considered to be “non-behavioral” and that
parameter combination was removed from further analysis.
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Fig. 2. The 95CI for stream flow and sediment period.

In this study, the SWAT model was performed 10 000 times
with different parameter sample sets. For each output, the
dotty plot, cumulative parameter frequency and 95 % confi-
dence interval (95CI) were analyzed.

3 Results and discussion

3.1 Uncertainty of outputs

For the purpose of determining the extent to which parame-
ter uncertainty affects model simulation, the degree of uncer-
tainty of outputs was expressed by 95CI, which was derived
by ordering the 10 000 outputs and then identifying the 2.5 %
and 97.5 % threshold values. The 95CI for both stream flow
and sediment period were shown in Fig. 2. It was evident that
the 95CI for stream flow and sediment was 1–53 m3 s−1 and
2000–7 657 800 t, respectively. In addition, sediment simu-
lation presented greater uncertainty than stream flow, which
might be due to the fact that sediment was affected and dom-
inated by both stream flow processes as well as other factors,
such as land use variability (Shen et al., 2008; Migliaccio and
Chaubey, 2008).

From Fig. 2, the temporal variation of outputs was pre-
sented in which an evidently clear relationship was obtained
between the amount of the rainfall and the width of confi-
dence interval. This result highlighted an increased model
uncertainty in the high precipitation condition. The variabil-
ity in the uncertainty of sediment was the same as that for
runoff, because runoff affects both factors. This could be ex-
plained by the fact that uncertainty was inherent in precipita-
tion due to variability in the time of occurrence, location, in-
tensity, and tempo-spatial distribution (Shen et al., 2008). In
a hydrology model such as SWAT, although a rainfall event

may affect only a small portion of the basin, the model as-
sumes it affects the entire basin. This may cause a larger
runoff event to be observed in simulation although little pre-
cipitation was recorded due to the limited local extent of a
certain precipitation event. In the Three Gorges Reservoir
area, the daily stream flow changes frequently and widely,
thus the measured value might not represent the actual value
of the daily flow and the discrepancy between the measured
mean value and simulated mean value would be high. How-
ever, more precise simulated flow would depend on design-
ing accurate rain-gauge networks and the existence of fewer
measurement errors (Chang et al., 2007).

From Fig. 2, it is clear that most of the observed values
were bracketed by the 95CI, 54 % for stream flow outputs
and 95 % for sediment. However, several stream flow ob-
servations were found to be above the 97.5 % threshold val-
ues (such as March, April, November 2004; March, April,
May, June, July, August and October 2005; February, March,
April, May and July 2006; March, May, June, July and Au-
gust 2007). Conversely, only one observation (October 2006)
was observed below the 2.5 % threshold of sediment output.
Measured value was not entirely in the range of 95CI, in-
dicating that the SWAT model could not fully simulate the
flow and sediment processes. However, it was acknowledged
that for a parameter, model structure and data input can also
cause uncertainty in model simulation (Bates and Campbell,
2001; Yang et al., 2007). Based on the results presented in
this study, it was not possible to tell the extent to which the
errors in the input and model structure contribute on the total
simulation uncertainty. However, as parameter uncertainty
was only able to account for a small part of whole uncer-
tainty in hydrological modeling, this study suggests further
studies are needed on model structure and input in TGRA.
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Table 2. The equifinality of model parameters.

Parameter Flow Sediment

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

r CN2.mgt 0.0203 −0.1027 −0.0085 0.1363 0.0217 0.0643
v ALPHA}BF.gw 0.4048 0.0087 0.4896 0.3411 0.0191 0.0324
v GW DELAY.gw 36.0475 24.2712 39.5298 35.3257 13.4576 13.2559
v CH N2.rte 0.4176 0.3761 0.2179 0.2947 0.2024 0.2178
v CH K2.rte 32.1141 89.7282 16.4653 10.1802 38.9954 18.0410
v ALPHA BNK.rte 0.3616 0.4323 0.3980 0.4089 0.9418 0.4505
v SOL AWC(1-2).sol 0.0796 0.0307 0.0006 0.1660 0.3279 0.1196
r SOL K(1-2).sol 113.3080 137.3520 166.4420 58.4822 234.5450 48.3082
a SOL BD(1-2).sol 0.1476 0.1905 0.2797 0.2512 0.3964 0.3136
v SFTMP.bsn −1.7443 1.9458 3.7872 −1.3314 −3.5880 −0.9027
v CANMX.hru 2.8527 6.3323 24.4465 22.0842 29.0789 6.0640
v ESCO.hru 0.9775 0.0217 0.0800 0.2704 0.7215 0.3153
v GWQMN.gw 1256.920 205.524 913.087 4958.950 372.250 4729.050
v REVAPMN.gw 137.0420 129.2090 434.2130 390.4860 71.2840 34.4314
v USLE P.mgt 0.5067 0.2462 0.4990 0.1085 0.6628 0.6285
r SLSUBBSN.hru 0.0402 −0.0759 −0.0946 −0.0771 0.0011 0.0481
v CH Cov.rte 0.8376 0.3398 0.1628
v CH EROD.rte 0.8894 0.6481 0.5564
v SPCON.bsn 0.0326 0.0391 0.0358
v SPEXP.bsn 1.4285 1.2595 1.3446
ENS 0.6915 0.6917 0.6919 0.6997 0.6999 0.7000

Another concern in hydrologic modeling was the equifi-
nality of model parameters (Beven and Binley, 1992; Wa-
gener and Kollat, 2007). Table 2 showed multiple combina-
tions of parameter values yield the sameENS during hydro-
logic modeling in TGRA. The so-called equifinality showed
there was no unique parameter estimation and hence uncer-
tainty in the estimated parameters in TGRA was obvious.
This result agreed well with many other studies (Beven and
Binley, 1992). This may be due to the fact that parame-
ters obtained from calibration were affected by several fac-
tors such as correlations amongst parameters, sensitivity or
insensitivity in parameters, spatial and temporal scales and
statistical features of model residuals (Wagener et al., 2003;
Wagener and Kollat, 2007). It could be inferred that the
identifiability of an optimal parameter obtained from calibra-
tion should also be evaluated. For an already gauged catch-
ment, a virtual study can provide a point of reference for the
minimum uncertainty associated with a model application.
This study highlighted the importance of the monitoring task
for several important physical parameters to determine more
credible results for watershed management.

3.2 Uncertainty of parameters

Figures 3 and 5 illustrate the variation ofENS for the Daing
River watershed as a function of variation of each of the
20 parameters considered in this study. By observing the

dotty plot from Fig. 3, it was evident that the main sources
of streamflow uncertainty were initial SCS CN II value
(CN2), available water capacity of the layer (SOLAWC),
maximum canopy storage (CANMX), base flow alpha factor
for bank storage (ALPHABNK), saturated hydraulic con-
ductivity (SOL K), and soil evaporation compensation fac-
tor (ESCO). Among the above six parameters, SOLAWC
and CANMX were the most identifiable parameters for the
Daing River watershed. This could be explained by the fact
that SOLAWC represented soil moisture characteristics or
plant available water. This parameter plays an important role
in evaporation, which is associated with runoff (Burba and
Verma, 2005). It has also been suggested that the soil wa-
ter capacity has an inverse relationship with various water
balance components (Kannan et al., 2007). Therefore, an in-
crease in the SOLAWC value would result in a decrease in
the estimate of base flow, tile drainage, surface runoff, and
hence, water yield. As shown in Fig. 3, the optimal range of
SOL AWC was between [0, 0.2] and better results could be
obtained in this interval. By using calibration methods, op-
timal parameter ranges could also be obtained without much
difficulty for other identifiable parameters (CANMX [0, 30],
ALPHA BNK [0.3, 1], SOL K [80, 300]). However, pres-
ence of multiple peaks in the Nash-Sutcliffe model efficiency
for CN2 and ESCO indicated that estimation of these param-
eters might not be feasible.
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Fig. 3. The dotty plot map for stream flow simulation.
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Fig.4 The cumulative parameter frequency for stream flow 1 
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Fig. 4. The cumulative parameter frequency for stream flow.

However, it should be noted that non-identifiability of a
parameter does not indicate that the model is not sensitive
to these parameters. Generally, CN2 was considered as the
primary source of uncertainty when dealing with stream flow
simulation (Eckhardt and Arnold, 2001; Lenhart et al., 2007).
This study showed that CN2 exhibited non-identifiability in
the stream flow simulation. This is similar to the study pro-
posed by Kannan et al. (2007). The potential cause would be
that there was an explicit provision in the SWAT model to up-
date the CN2 value for each day of simulation based on avail-
able water content in the soil profile. Therefore, a change in
the initial CN2 value would not greatly affect water balance
components. Estimation of non-identifiable parameters, such
as CN2 and ESCO for the Daning River watershed, would
be difficult as there may be many combinations of these pa-
rameters that would result in a similar model performance.
Instead of the process calibration, a decision regarding mod-
eling could deal with these non-identifiable parameters by
setting a confidence interval on model output.

Figures 4 and 6 illustrate the cumulative parameter fre-
quency for both stream flow and sediment in the Daing River
watershed. As shown in Fig. 4, the parameters were not

uniformly or normally distributed, especially SOLAWC,
CANMX and ESCO. ESCO represents the influence of cap-
illarity and soil crannies on soil evaporation in each layer.
Therefore, a change in the ESCO value affected the entire
water balance component. When there were higher ESCO
values, the estimated base flow, tile drainage and surface
runoff increased. The greater uncertainty of this parameter
indicated that the soil evaporation probably played a greater
role in the whole evaporation process, possibly due to the
high air temperature in rainy seasons in the TGRA. In com-
parison, other parameters such as CN2 and SOLK, were
close to a uniform distribution while they were also more
or less skewed. This non-linearity further implies that the
uncertainty in model input did not translate directly into un-
certainty in the model outputs, but might rather appear sig-
nificantly dampened or magnified in the output (Sohrabi et
al., 2003). This result demonstrates the important opinion
that the model output was influenced by the set of param-
eters rather than by a single parameter (Beven and Binley,
1992).

Similar to the stream flow simulation, even though many
of the parameters were sensitive and affected the sediment
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Fig. 5. The dotty plot map for sediment simulation.
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Fig. 6. The cumulative parameter frequency for sediment.

simulation, only a small number of the sensitive parameters
were identifiable. As shown in Fig. 5, the factors of uncer-
tainty for sediment were CN2, Manning’s value for main
channel (CHN2), maximum canopy storage (CANMX),
base flow alpha factor for bank storage (ALPHABNK),
exp.Re-entrainment parameter for channel sediment routing
(SPEXP), lin.re-entrainment parameter for channel sediment
routing (SPCON), channel cover factor (CHCOV) and chan-
nel erodibility factor (CHEROD). Clearly, the parameter
samples were very dense around the maximum limit (Fig. 6).
Summarizing the information in Figs. 3–6, it can be said
that the parameters with greater uncertainty of stream flow

mainly come from the surface corresponding process and the
parameters with greater uncertainty of sediment focused on
the channel response process. The results matched well with
those of Yang et al. (2011) and Shen et al. (2010).

4 Conclusions

In this study, the GLUE method was employed to assess
the parameter uncertainty in the SWAT model applied in the
Daning River Watershed of the Three Gorges Reservoir Re-
gion (TGRA), China. The results indicate that only a few pa-
rameters were sensitive and had a great impact on the stream
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flow and sediment simulation. CANMX, ALPHABNK and
SOL K were identified as identifiable parameters. The val-
ues of these parameters could be obtained by using the cali-
bration process without much difficulties. Conversely, there
were multiple possible values for CN2 and ESCO. This indi-
cates that calibration of these parameters might be infeasible.
These non-identifiabiable parameters even led to equifinality
in hydrologic and NPS modeling in the TGRA. It was antici-
pated that the parameter uncertainties are systematically cor-
related to the non-identifiable parameters. Under such cases,
a user should check if any information related to the water-
shed characteristics and its underlying hydrologic processes
could be used to provide a more precise range for the model
parameter. It was anticipated that this study would provide
some useful information for hydrological modeling related
to policy development in the Three Gorges Reservoir Region
(TGRA) and other similar areas.

It is suggested that more detailed measurement data and
more precipitation stations should be established in the future
for hydrological modeling in the TGRA. In addition, further
studies should be continued in the field of model structure
and input to quantify hydrological model uncertainty in the
TGRA.
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