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Abstract. The Soil Conservation Service Curve Number
(SCS-CN) approach is widely used as a simple method for
predicting direct runoff volume for a given rainfall event.
The CN parameter values corresponding to various soil, land
cover, and land management conditions can be selected from
tables, but it is preferable to estimate the CN value from mea-
sured rainfall-runoff data if available. However, previous re-
searchers indicated that the CN values calculated from mea-
sured rainfall-runoff data vary systematically with the rain-
fall depth. Hence, they suggested the determination of a
single asymptotic CN value observed for very high rainfall
depths to characterize the watersheds’ runoff response. In
this paper, the hypothesis that the observed correlation be-
tween the calculated CN value and the rainfall depth in a
watershed reflects the effect of soils and land cover spatial
variability on its hydrologic response is being tested. Based
on this hypothesis, the simplified concept of a two-CN het-
erogeneous system is introduced to model the observed CN-
rainfall variation by reducing the CN spatial variability into
two classes. The behaviour of the CN-rainfall function pro-
duced by the simplified two-CN system is approached theo-
retically, it is analysed systematically, and it is found to be
similar to the variation observed in natural watersheds. Syn-
thetic data tests, natural watersheds examples, and detailed
study of two natural experimental watersheds with known
spatial heterogeneity characteristics were used to evaluate
the method. The results indicate that the determination of
CN values from rainfall runoff data using the proposed two-
CN system approach provides reasonable accuracy and it
over performs the previous methods based on the determi-
nation of a single asymptotic CN value. Although the sug-
gested method increases the number of unknown parameters
to three (instead of one), a clear physical reasoning for them
is presented.

1 Introduction

Simple methods for predicting runoff from watersheds are
particularly important in hydrologic engineering and hydro-
logical modelling and they are used in many hydrologic ap-
plications, such as flood design and water balance calcula-
tion models (Abon et al., 2011; Steenhuis et al., 1995; van
Dijk, 2010). The Soil Conservation Service Curve Num-
ber (SCS-CN) method was originally developed by the SCS
(US Department of Agriculture), to predict direct runoff vol-
umes for given rainfall events and it is documented in the Na-
tional Engineering Handbook, Sect. 4: Hydrology (NEH-4)
(SCS, 1956, 1964, 1971, 1985, 1993, 2004). It soon became
one of the most popular techniques among the engineers and
the practitioners, because it is a simple but well-established
method, it features easy to obtain and well-documented en-
vironmental inputs, and it accounts for many of the factors
affecting runoff generation, incorporating them in a single
CN parameter. In contrast, the main weaknesses reported
in the literature are that the SCS-CN method does not con-
sider the impact of rainfall intensity, it does not address
the effects of spatial scale, it is highly sensitive to changes
in values of its single parameter, CN, and it is ambigu-
ous considering the effect of antecedent moisture conditions
(Hawkins, 1993; McCuen, 2002; Michel et al., 2005; Ponce
and Hawkins, 1996).

The SCS-CN method was soon adopted for various re-
gions, land uses and climate conditions (Elhakeem and Pa-
panicolaou, 2009; King and Balogh, 2008; Mishra and
Singh, 1999; Romero et al., 2007). It was also evolved well
beyond its original scope and it became an integral part of
continuous simulation models (e.g. Adornado and Yoshida,
2010; Holman et al., 2003; Mishra and Singh, 2004; Moretti
and Montanari, 2008; Soulis and Dercas, 2007). Many
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studies aiming at finding a theoretical basis for the method,
facilitating its use in regions and for climate conditions not
previously evaluated, and supporting its further improve-
ment, were carried out as well (Hjelmfelt, 1991; Tramblay
et al., 2010; Yu, 1998).

However, in spite of its widespread use, there is not an
agreed methodology to estimate the CN parameter values
from measured rainfall runoff data. Such a method would be
important for two main purposes: (a) it would allow the deter-
mination of the CN parameter values from measured rainfall
runoff data of local or nearby similar watersheds when suit-
able data were available and (b) it would facilitate studies
aiming at the extension of the SCS-CN method documen-
tation for different, soil, land use, and climate conditions.
Though, the main difficulty is that the CN values calculated
from measured rainfall runoff data actually vary significantly
from storm to storm on any watershed. This effect posed in
doubt the adequacy of curve number model itself to predict
runoff. Antecedent Moisture Condition (AMC) was initially
assumed to be the primary cause of storm to storm varia-
tion. However, this effect is of questionable origin and it is
not recommended for use anymore (Hjelmfelt et al., 2001;
McCuen, 2002; Ponce and Hawkins, 1996). In the latest ver-
sion of the NEH-4 the reference to AMC was revised as fol-
lows. Variability is incorporated by considering the CN as a
random variable and the AMC-I and AMC-III categories as
bounds of the distribution. The expressions of AMC-I and
AMC-III were considered as measures of dispersion around
the constant tendency (AMC-II) (Hjelmfelt et al., 2001).

Ponce and Hawkins (1996) reported as possible sources
of this variability the effect of the temporal and spatial vari-
ability of storm and watershed properties, the quality of the
measured data, and the effect of antecedent rainfall and as-
sociated soil moisture. Soulis et al. (2009) and Steenhuis et
al. (1995) also noted that the variation of CN value, accord-
ing to AMC category alone, cannot justify the observed CN
values variability in every case.

Hawkins (1993) in his study on the asymptotic determina-
tion of runoff curve numbers from measured runoff analysing
a significantly large number of watersheds, where CNs are
calculated from real rainfall-runoff data, concluded that a
secondary systematic correlation almost always emerges in
watersheds between the calculated CN value and the rainfall
depth. In most of the watersheds, these calculated CNs ap-
proach a constant value with increasing rainfall depth that
is assumed to characterize the watershed. The three dif-
ferent behaviours that have been observed are described as
follows: the most common scenario is that at small rainfall
depths correspond larger values of calculated CNs, which de-
cline progressively with increasing storm size, approaching a
stable near constant asymptotic CN value with increasingly
larger storms. This behaviour appears most frequently and
it is characterized as “standard”. An example of this pattern
is given in Fig. 1. Hawkins (1993) suggests the identifica-
tion of a single asymptotic CN value observed for very large
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Figure 1. Two-CN system model curves fitted to the data presented by Hawkins (1993) for the 3 

“Standard” (Coweeta watershed #2, North Carolina) and the “complacent” (West Donaldson 4 

Creek, Oregon) behaviour watersheds. 5 

6 

Fig. 1. Two-CN system model curves fitted to the data presented by
Hawkins (1993) for the “standard” (Coweeta watershed #2, North
Carolina) and the “complacent” (West Donaldson Creek, Oregon)
behaviour watersheds.

storm sizes to characterize such watersheds. In less common
cases of watersheds the observed CN declines steadily with
increasing rainfall with no appreciable tendency to approach
a constant value (“complacent” behaviour, Fig. 1). Accord-
ing to Hawkins (1993), an asymptotic CN cannot be safely
determined from data for this behaviour. In the last case,
concerning also a small number of watersheds, the calculated
CNs have an apparently constant value for all rainfall depths
except very low rainfall depths where CN increases suddenly
(“violent” behaviour).

Additional examples of watersheds featuring similar
behaviours are presented by Hjelmfeld et al. (2001).
Bonta (1997) proposed an improvement to the
Hawkins (1993) method for the asymptotic determina-
tion of CNs from measured data in “violent” and “standard”
watersheds using derived distributions.

All previously developed methodologies for estimating
CNs from measured data focus mainly on the determination
of a single asymptotic CN value characterizing the water-
shed hydrologic response for high rainfall depths. The ob-
served deviations from the asymptotic behaviour for lower
rainfall depths are not essentially taken into consideration
and are rather attributed to various sources of temporal vari-
ability. For this reason, the resulting CN values fail to de-
scribe the watershed response in small and medium rainfall
events, limiting the applicability of the method to its origi-
nal scope, namely the estimation of peak runoff values. Fur-
thermore, the above methods fail to determine a final CN
value in “complacent” watersheds. The CN varies as a func-
tion of the soil infiltration capacity and the land cover of the
watershed, which are two essentially time invariant factors.
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Various sources of temporal variability, such as the effect of
spatio-temporal rainfall intensity variability, the effect of an-
tecedent rainfall, etc., make CN to be considered as a random
variable with bounds of distribution AMC-I and AMC-III.
The SCS-CN method was originally developed as a lumped
model and up to this date it is still primarily used as a lumped
model. In natural watersheds, however, spatial variability (at
lower or higher level) with regard to the soil-cover complex is
inevitable (such spatial heterogeneity in the watershed could
be considered temporally invariant).

In this paper, a novel hypothesis is proposed suggesting
that the intrinsic correlation between calculated CN value
and rainfall depth observed in watersheds corresponding to
the “standard” and “complacent” cases is essentially the nat-
ural consequence of the presence of soils and land cover spa-
tial variability along the watersheds. It is shown that the
presence of spatial variability (at low or high level) in the
watersheds produces a progressive decrease in the calculated
CNs as the storm size decreases and for excessively large
storm sizes the CN tends to stabilize in an asymptotic CN
value. The proposed hypothesis is approached theoretically,
it is analysed systematically using synthetic data, it is studied
in two natural experimental watersheds with known spatial
heterogeneity characteristics and it is evaluated using nat-
ural watersheds examples. The results of the analysis pro-
vide evidence that the spatial variability of the watershed can
influence the CN determination procedure from measured
rainfall-runoff data and that the estimation of more than one
CN values is needed in order to describe the spatial variabil-
ity of the watershed and to facilitate the determination proce-
dure. Based on the above hypothesis, the simplified concept
of an equivalent two-CN heterogeneous system is introduced
to model the CN vs. rainfall depth variation. This new evo-
lution takes into consideration the soil-cover complex spa-
tial variation in the estimation of CN values from measured
rainfall-runoff data, in order to extend the applicability of the
SCS-CN method for a wider range of rainfall depths and to
provide improved simulations in heterogeneous watersheds.

2 Theoretical development

2.1 SCS-CN method

The SCS-CN method is based on the following basic form
calculating runoff from rainfall depth,

Q =
(P −Ia)

2

P −Ia+S
for P >Ia

Q = 0 for P ≤ Ia (1)

whereP is the total rainfall,Ia is the initial abstraction,Q is
the direct runoff andS is the potential maximum retention.
Based on a second assumption, that the amount of initial ab-
straction is a fraction of the potential maximum retention

Ia= λS (2)

Eq. (1) becomes

Q =
(P −λS)2

P +(1−λ)S
(3)

The potential retentionS is expressed in terms of the dimen-
sionless curve number (CN) through the relationship

S =
1000

CN
−10 (4a)

taking values from 0, whenS → ∞, to 100, whenS = 0.
This definition was originally applied to the English metric
system (withS in inches). In the SI units (withS in mm) the
following definition should be used:

S =
25 400

CN
−254 (4b)

The determination of all the NEH-4 SCS-CN values com-
monly used in hydrologic practice, assume the initial ab-
straction rate to be set to the constant value,λ = 0.2, in or-
der thatS (or its transformation CN) remains the only free
unknown parameter of the method. Recently, Woodward et
al. (2003) analysing event rainfall-runoff data from several
hundred plots recommended usingλ = 0.05.

The CN values corresponding to the various soil types,
land cover and land management conditions can be selected
from the NEH-4 tables. However, it is preferable to esti-
mate the CN value from recorded rainfall-runoff data from
local or nearby similar watersheds. When rainfall-runoff data
are available for a watershed,P and Q pairs are used di-
rectly to determine the potential retentionS characterizing
the watershed (Chen, 1982)

S =
P

λ
+

(1−λ)Q−

√
(1−λ)2Q2+4λPQ

2λ2
(5)

Combining Eq. (4b) with Eq. (5), CN value can be directly
calculated from rainfall-runoff data

CN=
25 400

P
λ

+
(1−λ)Q−

√
(1−λ)2Q2+4λPQ

2λ2 +254
(6)

2.2 Runoff prediction errors related to the use of single
composite CN values

Grove et al. (1998) in their study investigated the effect of
using single composite CN values (i.e. the area-weighted av-
erage of the CN values in the watershed) instead of weighted
runoff estimates, indicating that significant errors in runoff
estimates can occur when composited rather than distributed
CNs are used. Lantz and Hawkins (2001) also discussed
the possible errors caused by the use of a single composite
CN value.

The main reason for the errors produced using the compos-
ite CN value instead of weighted-Q is the non-linear form
of the SCS-CN formula. As an example, the case of a vir-
tual watershed divided into two equal sub-areas characterized
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Figure 2. Relative percentage error against the range of CN variation, for various total rainfall 2 

depths and for various average CN values. 3 
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Fig. 2. Relative percentage error against the range of CN variation, for various total rainfall depths and for various average CN values.

by different CN values is illustrated in Fig. 2. In this figure
the relative percentage error of the runoff predictions using
a single composite CN value is plotted against the range of
CN variation, for various total rainfall depths and for vari-
ous average CN values. The above figure clearly illustrates
that the percentage error increases as the range of CN varia-
tion increases and decreases as the average CN value and the
rainfall depth increase. It is also clearly shown that for low
rainfall depths significant errors are observed, even for small
CN variation ranges. These results are in agreement with the
results of Grove et al. (1998).

2.3 The two-CN heterogeneous system

In order to investigate the consequence of spatial variability
on the CN vs.P relationship in a watershed, in a first stage
of the analysis it is assumed the simplified scheme, according
to which the entire area of the watershed under consideration
is composed from relatively homogeneous sub-areas. Each
sub-area is assigned a CN value obtained from a specific set
of two CN values CNa and CNb with CNa> CNb. If a de-
notes the area fraction of the watershed with CN = CNa, then
(1-a) is the area fraction of the watershed with CN = CNb. It
seems obvious that CN must be taken constant for a relatively
homogeneous soil-cover complex. Various temporal effects
such as the effect of the spatiotemporal variability of given
storm, the effect of storm intensity, the effect of antecedent
rainfall and others are considered as random effects on the
CN calculation.

Traditionally the runoff equation for a heterogeneous wa-
tershed is described by using a single composite value of the
different CN-areas, this being an area- weighted CN value.
However, runoff is more accurately estimated using individu-
ally calculated weighted runoff for the array of different sub-
areas as it was shown in the previous section. Therefore, the
runoff, Q responded to the causative rainfall event,P gen-
erated by the two-CN system is described by the following
equation,

Q = 0 for P <λSa (7a)

Q = a
(P −λSa)

2

[P +(1−λ)Sa]
for λSa≤ P <λSb (7b)

Q = a
(P −λSa)

2

[P +(1−λ)Sa]
+(1−a)

(P −λSb)
2

[P +(1−λ)Sb]
for P ≥ λSb (7c)

whereSa andSb are the potential maximum retention val-
ues corresponding to the two homogeneous sub-areas char-
acterized by the CNα and CNb values respectively, andλ is
a constant value (usuallyλ = 0.2 orλ = 0.05). Sa andSb are
calculated from the corresponding CN values using Eq. (4b).

Following, it will be pointed out that such a two-CN het-
erogeneous system is characterized by a secondary relation-
ship that always emerges between calculated CN and rainfall
depth,P. The particular behaviour of this relationship will
be analysed in detail as well.

It is considered that for various rainfall events of depth
P, realized on the two-CN heterogeneous system, the corre-
sponding “actual” observed runoff,Q, is obtained by Eq. (7a,
b, c). Then the CN for this system can be calculated by
Eq. (6) containing onlyP andQ; thus any “realized”P -Q
data pair can be used to calculate what should be the CN
for that particular rainfall-runoff event in the heterogeneous
system.

2.3.1 Large-P behaviour – Asymptotic CN

Equation (7c) can be standardized by using the reduced vari-
ables (P/Sa), and (P/Sb), (Sa< Sb). The resulting relation-
ship becomes:

Q = aSa
(P/Sa−λ)2

[P/Sa+(1−λ)]
+(1−a)Sb

(P/Sb−λ)2

[P/Sb+(1−λ)]
for P ≥ λSb (8)

while using the auxiliary variablesX1 = P/Sa+ (1−λ) and
X2 = P/Sb+(1−λ) Eq. (8) becomes

Q = aSa[X1+1/X1−2] +(1−a)Sb[X2+1/X2−2] (9)
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For asymptotic large values ofP and consequently asymp-
totic large values ofX1 andX2, the corresponding value of
Q∞ approaches asymptotically the value

Q∞ = aSa[P/Sa+(1−λ)] +(1−a)Sb[P/Sb+(1−λ)] (10)

or equivalently

Q∞ = P −(1−λ)[aSa+(1−a)Sb] (11)

By following a similar procedure assuming a perfectly uni-
form watershed characterized by a single CN-value (or its
simple transformedS), the value ofQ∞ for large values of
P approaches asymptotically

Q∞ = P −(1−λ)S (12)

By puttingS∞ = aSa+(1−a)Sb in Eq. (11) the two-CN het-
erogeneous system behave asymptotically for largeP val-
ues as a single CN value system with equivalent potential
retentionS∞ and equivalent CN value

CN∞ =
25 400

aSa+(1−a)Sb+254
(13)

Only for large values ofP the heterogeneous system can be
characterized by a single asymptotic CN value that could be
obtained using the specific “composite” CN value (Eq. 13).
However, even in this case this asymptotic value does not
characterize a single specific soil but it is the superposition
of different complexes.

Systematic analysis indicates that the value of CN∞ given
by Eq. (13) is sufficiently close to the usual composite CN
value

CN∞ = aCNa+(1−a)CNb (14)

Further analysis based on systematic generation ofQ-P syn-
thetic data for various combinations ofa, CNa and CNb in-
put parameters characterizing the two-CN system indicates
that CN approaches the asymptotic value given by Eq. (13)
for unrealistic, extremely large values ofP , P > 3000 mm.
Alternatively the CN approaches the composite asymptotic
value given by Eq. (14) for more realistic large values of
P . Note that the composite value given by Eq. (14) is tra-
ditionally used to characterize an heterogeneous system by a
single-CN value.

2.3.2 Low-P behaviour – Envelope curve

For a two-CN system, asP decreases the calculated values
of CN increase, as illustrated in Fig. 3. For some threshold
value ofP ,

Po = λSa (15)

the CN value becomes maximum equal to the larger CN-
category, CNa, whereas for any smallerP <Po value the CN
is not defined since it will give no runoffQ = 0. Indeed for
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Figure 3. Calculated CN values against rainfall depth for various values of the a, CNa, and 2 
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Fig. 3. Calculated CN values against rainfall depth for various val-
ues of thea, CNa, and CNb parameters.

P -Q pairs generated by Eq. (7a, b, c), whenP decreases ap-
proaching asymptotically the value ofPo, thenQ → 0 there-
fore the asymptotic threshold value ofS,So, calculated by
Eq. (5) is So = Po/λ. SinceSa is also given bySa = Po/λ,
therefore the threshold value of CN, CNo = CNa. The values
of threshold maximum curve number, CNo as function ofPo
is given as

CNo =
25 400

254+
Po
λ

(16)

The threshold CNo(Po) curve is an envelope curve that could
be interpreted as the intrinsic CN(P ) variation for a two-CN
system with asymptotic characteristics CNa → 100, CNb →

0, anda → 0. It is the curve defining the position of max
CNo = CNa value at the thresholdP = Po=λSa (see Figs. 1
and 3)

2.3.3 Illustration of the two-CN heterogeneous system
behaviour

In order to illustrate the behaviour of the secondary relation-
ship between the calculated CN and the rainfall depth,P in
the above described two-CN heterogeneous system, “actual”
observed runoff values,Q, were obtained by Eq. (7a, b, c)
for various rainfall depthsP, by varying systematically the
a, CNa, and CNb parameters. Then the corresponding CN
values for this system were calculated by Eq. (6) and a series
of CN-P curves were produced. It must be noticed that here-
after, the standard case ofλ=0.2 is examined. However, the
following analysis is also valid for otherλ values, as well.

In Fig. 3 the calculated CN values for the various values of
a, CNa, and CNb parameters are plotted against the rainfall
depthP . In this figure, a significant variation of the esti-
mated CN values for various rainfall depths can be observed.
The variation increases as the difference between CNa and
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Table 1. Characteristics of 21 examples of hypothetical watersheds that are characterized by three CN value categories and best fitted values
of thea, CNa, and CNb parameters.

Actual values Fitted values
(3 CN value categories) (Two-CN model)

no. Area (%) Cor. CN Values a CNα CNb R2

1 10 80 10 30 60 90 0.15 88 56 0.99
2 33 33 33 30 60 90 0.43 88 40 0.99
3 10 10 80 30 60 90 0.83 90 39 0.99
4 80 10 10 30 60 90 0.14 87 32 0.99
5 40 40 20 30 60 90 0.32 86 40 0.99
6 20 40 40 30 60 90 0.49 89 45 0.99
7 40 20 40 30 60 90 0.47 89 36 0.99
8 10 80 10 60 75 90 0.16 89 73 0.99
9 33 33 33 60 75 90 0.41 89 65 0.99
10 10 10 80 60 75 90 0.82 90 65 0.99
11 80 10 10 60 75 90 0.13 89 61 0.99
12 40 40 20 60 75 90 0.29 89 65 0.99
13 20 40 40 60 75 90 0.48 89 68 0.99
14 40 20 40 60 75 90 0.45 90 63 0.99
15 10 80 10 30 45 60 0.15 58 43 0.99
16 33 33 33 30 45 60 0.44 59 35 0.99
17 10 10 80 30 45 60 0.83 60 34 0.99
18 80 10 10 30 45 60 0.14 58 31 0.99
19 40 40 20 30 45 60 0.32 58 35 0.99
20 20 40 40 30 45 60 0.5 59 37 0.99
21 40 20 40 30 45 60 0.47 59 33 0.99

CNb parameters value increases and decreases as the rain-
fall depth and the weighted CN value increase. It is clearly
shown as well that for very high weighted CN values, the
estimated CN value is almost invariable. It can be observed
that the factors associated with significant variation of the
estimated CN values for various rainfall depths, are also as-
sociated with significant errors when runoff estimations are
made using composited rather than distributed CNs, as it was
shown in Sect. 2.2. This observation provides a strong indi-
cation that the observed correlation between the calculated
CN values and the rainfall depth should be associated with
the presence of soil-cover complex spatial variability in the
watershed.

In Fig. 3 can be also observed that the shapes of the
CN-P curves produced by the two-CN heterogeneous sys-
tem are quite similar with the shapes of the “standard” and
“complacent” watersheds correlation curves presented by
Hawkins (1993). WhenQ-P data are available, the two-
CN system can be viewed as a fitting model to the trans-
formed CN-P data with free parametersa, CNa, and CNb
(the equations of the two-CN system fitting model that can
be used in a non-linear least squared procedure, are given
in the Appendix A). Thus, in order to highlight further the
similarity observed in Fig. 3, the two-CN hypothetical wa-
tershed curves were fitted to the CN-P curves presented by

Hawkins (1993) as examples of the “standard” (Coweeta wa-
tershed #2, North Carolina) and of the “complacent” (West
Donaldson Creek, Oregon) behaviour, by adjusting the val-
ues of thea, CNa, and CNb parameters. As it can be clearly
seen in Fig. 1, the CN-P curves are fitted very well by the
two-CN system model in both cases. These results provide
further evidence that the spatial variability of the watershed
can influence the CN determination procedure. In this case
the estimation of more than one CN values is needed in or-
der to describe the spatial variability of the watershed and to
facilitate the determination procedure.

2.4 Generalization

Although the previous analysis is initially restricted for two-
CN idealized watershed examples, generally, in natural wa-
tersheds could appear more than two CN value categories.
However, every added CN category requires the determina-
tion of two more parameters (the corresponding CN value
and the area it covers), giving rise to the overparameteriza-
tion problem. Therefore, in a second stage it is investigated
if a heterogeneous watershed characterized by three different
CN values can be approached with sufficient accuracy using
two CN value categories.

Hydrol. Earth Syst. Sci., 16, 1001–1015, 2012 www.hydrol-earth-syst-sci.net/16/1001/2012/
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Figure 4. Two-CN system model curves fitted to the synthetic rainfall–CN data created for the 2 
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Fig. 4. Two-CN system model curves fitted to the synthetic rainfall-CN data created for the 21 examples of hypothetical watersheds that are
characterized by three CN value categories as described in Table 1.

For this purpose, synthetic runoff data for 21 hypotheti-
cal watersheds that are characterized by three CN value cat-
egories have been created. The selected examples cover a
wide variety of possible cases including watersheds with var-
ious ranges of CN variation and watersheds dominated by
the lower, the medium or the higher CN value (Table 1). The
synthetic runoff data were calculated as the weighted average
of the runoff values resulted by the SCS-CN method for the
three CN values characterizing each hypothetical watershed,
for rainfall depths ranging from 0 to 300 mm. Then, the cor-
respondinga, CNa, and CNb parameters were determined by
fitting the two-CN system model to the synthetic CN-P data.
As it can be observed in Fig. 4 and at the results presented
in Table 1, the synthetic CN-P curves are fitted very well by
the two-CN system model in all the examples examined.

In Fig. 5, the synthetic runoff data for six characteristic
examples of hypothetical watersheds comprising three CN
value categories are plotted in comparison to the runoff pre-
dictions of the SCS-CN method using the single compos-
ite CN value, the single asymptotic CN value according to
Hawkins (1993), the best fitted single CN value, and the CN
values determined with the two-CN system model. In this
figure it can be observed that the SCS-CN method using a
single CN value category can provide adequate results only
in the case that one CN category dominates runoff produc-
tion in the watershed (e.g. in case 3). In all other cases the
use of two CN categories provides much better results.

3 Materials and methods

3.1 Case studies

The validity of the above analysis in natural watersheds is
investigated in two representative examples, the Little River
N Experimental Watershed and the Lykorrema Experimen-
tal Watershed. These watersheds were selected because they
have been presented in the literature as examples of the
“standard” and the “complacent” behaviour respectively, and

for both of them, detailed geographical data were available
(Hjelmfelt et al., 2001; Soulis et al., 2009).

3.1.1 Little river subwatershed N

The Little River Experimental Watershed (LREW) (Fig. 6a),
is one of twelve national benchmark watersheds participating
in the Conservation Effects Assessment Project–Watershed
Assessment Studies (CEAP-WAS) (Bosch et al., 2007a). It
is located near Tifton, Georgia, in the western headwaters
area of the Suwannee River Basin, centred at approximately
31.61◦ N and 83.66◦ W. The Suwannee River Basin is com-
pletely contained in the Gulf-Atlantic Coastal Plain physio-
graphic region, which is characterized by low topographic
relief (Sheridan, 1997). Climate in this region is character-
ized as humid subtropical with an average annual precipita-
tion of about 1167 mm. Hydrology, climate and geographical
data at LREW have been monitored by the ARS Southeast
Watershed Research Laboratory (SEWRL) since the 1960s
(Bosch and Sheridan, 2007; Bosch et al., 2007a, b; Sullivan
and Batten, 2007; Sullivan et al., 2007).

The 15.7 km2 Little River subwatershed N (LRN) (Fig. 6a)
was presented by Hjelmfelt et al. (2001) as a characteris-
tic example of a “standard” watershed. The main soil se-
ries in LRN are Tifton loamy sand (48 %), Alapaha loamy
sand (16 %), and Kinston and Osier fine sandy loam (6 %).
The agricultural lands are mostly covered by Tifton series
soils having moderate infiltration rates (hydrologic soil group
B), while the areas around the stream and wetland areas
are covered by Alapaha and Kinston-Osier soils (hydrologic
soil group D). As it is reported by Lowrance et al. (1984),
row crops, pasture, and riparian forests cover approximately
41, 13, and 30 % of LRN, respectively, while the remaining
16 % includes roads, residences, fallow land, and other land
cover types.
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 1 

Figure 5. Synthetic runoff data in comparison to the runoff predictions of the SCS-CN method 2 

using the single composite CN value, the single asymptotic CN value according to Hawkins 3 

(1993), the best fitted CN value, and the proposed two-CN system model, for six 4 

characteristic cases as described in Table 1. 5 

6 

Fig. 5. Synthetic runoff data in comparison to the runoff predictions of the SCS-CN method using the single composite CN value, the single
asymptotic CN value according to Hawkins (1993), the best fitted CN value, and the proposed two-CN system model, for six characteristic
cases as described in Table 1.

 32

 1 

Figure 6. Map of the case study sites: (a) LRN watershed, (b) Lykorrema experimental 2 

watershed. 3 

4 

Fig. 6. Map of the case study sites:(a) LRN watershed,(b) Lykor-
rema experimental watershed.

3.1.2 Lykorrema, Penteli

The small scale experimental watershed of Lykorrema stream
(15.2 km2), situated in the east side of Penteli Mountain, At-
tica, Greece, centred at approximately 38.02◦ N and 23.55◦ E
(Fig. 6b). The watershed is divided in two sub-watersheds.
The Upper Lykorrema watershed (7.84 km2) and the Lower
Lykorrema watershed (7.36 km2). The Upper and Lower
Lykorrema experimental watersheds are operated from the
Agricultural University of Athens, Greece and the National
Technical University of Athens, Greece, respectively.

The region is characterized by a Mediterranean semi-arid
climate with mild, wet winters and hot, dry summers. The
yearly average precipitation value is 595 mm. The water-
shed presents a relatively sharp relief, with elevations rang-
ing between 146 m and 950 m. The watershed is dominated
by sandy loam soils with high infiltration rates (hydrologic
soil group A, 64 %) and a smaller part is covered by sandy
clay loam soils presenting relatively high infiltration rates
(hydrologic soil group B, 29 %). The dominant land cover
type in the watershed is pasture with a few scattered tufts of
trees (93 %). The remaining 7 % includes roads, residences,
bare rock and other land cover types. Detailed description
of the hydrology, climate and physiography of Lykorrema
experimental watershed and of the available geographical
and hydro-meteorological databases are provided by Baltas
et al. (2007), Soulis (2009), and Soulis et al. (2009).

3.2 Identification of spatial distribution of CN along
watersheds from measured data using the two-CN
system

In a first attempt a simplified identification procedure is pro-
posed for spatially distribute along the watershed the two-
CN categories using the measuredP -Q data. The simplified
procedure includes the following steps:
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 1 

Figure 7. Two-CN system model fitted to the data presented by Hjelmfelt et al. (2001) for the 2 

LRN watershed. 3 

4 

Fig. 7. Two-CN system model fitted to the data presented by Hjelm-
felt et al. (2001) for the LRN watershed.

1. The measuredP andQ values are sorted separately and
then realigned on a rank order basis to formP -Q pairs
of equal return period following the frequency match-
ing technique (Hawkins, 1993; Hjelmfelt et al., 1980,
2001). Then the measuredP -Q data are transformed in
the equivalentP -CN data using Eq. (6).

2. The two-CN system model (Eq. A1, A2, A3) is fitted to
the transformed CN-P measured data curve yielding a
first set of best estimates of parametersa(◦), CN(◦)

a , and
CN(◦)

b of the model.

3. The watershed is divided in a set ofn relatively uni-
form subareas with constant soil-cover complex. The
subareas are clearly spatially identified along the water-
shed. For each subarea characterized by a specific soil-
cover complex an initial approximate CN(table) value is
attributed based on the NEH-4 tables. The areas of all
subareas characterized by each specific CN(table) value
are also determined. Them different CN(table) obtained
values (m≥2) are put in decreasing order as CN(table)

1 ,

CN(table)
2 , . . . CN(table)

m with CN(table)
1 > CN(table)

2 . . .

CN(table)
m−1 > CN(table)

m and the corresponding cumula-
tive fractions of the watershed,Ai , characterized by a
curve number such as CN≥ CN(table)

i are also deter-

mined. At each CN(table)
1 , CN(table)

2 , . . . CN(table)
m values

correspondA1,A2, . . . ,Am cumulative fractions area.

4. TheA(i=1,m) values are compared to the best estimate
fraction parametera(◦) and theAi value closer to the
a(◦) (e.g.Aj ) is selected.

5. The two-CN system model is once again fitted to the
CN-P measured data curve by fixing the parameter
a = Aj and treating CNa and CNb as free parameters

leading to CN(distr)
a ,and CN(distr)

b best estimate values.
It is assumed that all the spatially distributed subareas
characterized by CN≥CNj occupyingAj cumulative
area fraction, are characterized by CN value identical
to the best estimate CN(distr)

a . The remaining area of the
watershed is characterized by the CN(distr)

b value.

In order to more closely describe the real conditions of
natural watersheds it could be proposed using as free pa-
rameters three or even four CN categories to be spatially
distributed along the watershed, however such a proce-
dure has an additional risk to appear non-convergence and
non-unique solution problems when the inverse solution
procedure is applied.

4 Results

4.1 Little River subwatershed N

Hjelmfelt et al. (2001), using the measuredP -Q data ob-
tained the transformed CN-P measured data curve for the
LRN watershed, in a similar way to the first step of the pro-
posed methodology (Fig. 7). Applying the second step of the
proposed methodology, the two-CN system model (Eq. A1,
A2, A3) was fitted to the above mentioned CN-P measured
data curve presented by Hjelmfelt et al. (2001) (Fig. 7) yield-
ing the best estimates of the three fitting parameters:a(◦)

=

0.151, CN(◦)
a = 86, and CN(◦)

b = 63.
At the next step, the approximate values of curve num-

bers and their spatial distribution along the watershed were
initially estimated by selecting them according to the ta-
bles and the methodology provided in NEH-4, based on the
soil and land cover data contained in the LREW geograph-
ical database (Sullivan et al., 2007). Each subarea charac-
terized by different CN(table) (as selected from the NEH-4
tables) was spatially identified along the watershed. Fig-
ure 8a presents the CN(table) categories spatial distribution
along the watershed. Then the cumulative fraction area for
each CN(table) category was determined. The cumulative area
fractions distribution curve for the various approximate CN
values is presented in Fig. 9. The single composite CN value

was also determined equal toCN
(table)

= 71.
From the cumulative area fraction distribution curve

(Fig. 9) the value ofA = 0.137 was selected as the closest
value to the value ofa(◦)

= 0.151 obtained using theP -Q
measured data, as it is described in the fourth step of the
proposed methodology. Then, the two-CN system model
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 1 

Figure 8. LRN watershed CN value spatial distribution a) as selected from the NEH-4 tables 2 

b) two-CN system. 3 

4 

Fig. 8. LRN watershed CN value spatial distribution(a) as selected
from the NEH-4 tables(b) two-CN system.

(Eq. A1, A2, A3) was once again fitted to the transformed
CN-P measured data leading to the parameters CN(distr)

a =

87, and CN(distr)
b = 64 and the spatial distribution of the two

CN values was identified (step 5). Figure 8b presents the
spatial distribution of the estimated CN(distr)

a and CN(distr)
b

parameters.
For comparison reasons, the two composite CN values cor-

responding to the area fractions of the watershed equal toa

and 1-a were also calculated according to the tables and the
methodology provided in NEH-4, and based on the available
soil and land cover data. The resulted CN values were equal
to 83 and 69 respectively. These values are comparable to
the best estimates of CNa, and CNb parameters’ values ob-
tained from the measuredP -Q data. The LRN watershed is
clearly a heterogeneous watershed with CN varying between
100 and 55 according to the tables and the methodology pro-
vided in NEH-4. The above results provide strong indica-
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Figure 9. LRN watershed cumulative area fraction distribution curve. 2 

3 

Fig. 9. LRN watershed cumulative area fraction distribution curve.

tions that the observed correlation between the CN values
and the rainfall depths presented in Fig. 7 is essentially re-
lated to the spatial variability of the watershed. Additionally,
it can be noticed that the estimation of two CN values can
sufficiently describe the spatial variability of the watershed.

4.2 Lykorrema, Penteli

Following the first step of the proposed methodology, the
measuredQ-P data presented by Soulis et al. (2009), were
sorted separately and then realigned on a rank order basis to
form P -Q pairs of equal return period and then were trans-
formed in the equivalentP -CN data curve using Eq. (6)
(Fig. 10). At the next step, the two-CN system model
(Eq. A1, A2, A3) was fitted to the produced CN-P data
curve (Fig. 10) yielding the best estimates of the three fit-
ting parameters:a(◦)

= 0.068, CN(◦)
a = 97, and CN(◦)

b = 30

anda(◦)
= 0.10, CN(◦)

a = 97, and CN(◦)
b = 34 for the Upper

and the Entire Lykorrema watershed respectively.
Then, in the same way as in the previous case study, the

approximate values of curve numbers and their spatial distri-
bution along the watershed were initially estimated by se-
lecting them according to the tables and the methodology
provided in NEH-4, based on the available soil and land
cover data (Soulis, 2009; Soulis et al., 2009). Each sub-
area characterized by different CN(table) (as selected from the
NEH-4 tables) was spatially identified along the watershed.
Figure 11a presents the CN(table)categories spatial distribu-
tion along the watershed. Then the cumulative fraction area
for each CN(table) category was determined. The cumula-
tive area fractions distribution curve for the various approxi-
mate CN values is presented in Fig. 12. The single composite

CN values were also determined equal toCN
(table)

= 51 and

CN
(table)

= 55 for the Upper Lykorrema watershed and for
the entire watershed, respectively.

From the cumulative area fraction distribution curve
(Fig. 12) the values ofA = 0.052 andA = 0.075 are selected
as the closest values to the correspondinga(◦) values for the
Upper and the Entire Lykorrema watershed respectively, as it
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(a) (b)

 1 

Figure 10. Two-CN system model fitted to the rainfall–CN data presented by Soulis et al. 2 

(2009) for the (a) Upper and (b) Entire Lykorrema watersheds. 3 
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(a) (b)

 1 

Figure 10. Two-CN system model fitted to the rainfall–CN data presented by Soulis et al. 2 

(2009) for the (a) Upper and (b) Entire Lykorrema watersheds. 3 

4 

Fig. 10. Two-CN system model fitted to the rainfall–CN data pre-
sented by Soulis et al. (2009) for the(a) Upper and(b) Entire
Lykorrema watersheds.

is described in the fourth step of the proposed methodology.
Then, the two-CN system model (Eq. A1, A2, A3) was once
again fitted to the transformed CN-P measured data lead-
ing to the parameters CN(distr)

a = 99 and CN(distr)
b = 37, and

CN(distr)
a = 100 and CN(distr)

b = 40 for the Upper and the En-
tire Lykorrema watershed respectively (step 5). The resulted
spatial distribution of the estimated CN(distr)

a and CN(distr)
b

parameters is presented in Fig. 11b.
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 1 

Figure 11. Lykorrema experimental watershed CN value spatial distribution a) as selected 2 

from the NEH-4 tables b) two-CN system. 3 

4 

Fig. 11. Lykorrema experimental watershed CN value spatial dis-
tribution (a) as selected from the NEH-4 tables(b) two-CN system.

The Lykorrema watershed is also a heterogeneous water-
shed with CN varying between 100 and 45 according to the
tables and the methodology provided in NEH-4. Further-
more, it can be observed that the area fractions of the wa-
tershed corresponding to the higher best estimate CN value
(CNa) are comparable to the area fractions of the water-
sheds covered with impervious or nearly impervious surfaces
(e.g. roads, buildings, bare rock and stream beds), which
are equal to 0.051 and 0.075 for the Upper and the Entire
Lykorrema watershed respectively.

In an analogous way as in the LRN case study, the obtained
results provide strong indications that the observed correla-
tion between the CN values and the rainfall depths presented
in Fig. 10 is essentially related to the spatial variability of
the watersheds and that the estimation of two CN values can
sufficiently describe the spatial variability in both cases.

5 Discussion

In this work it is assumed that the specific behaviour in wa-
tersheds, according to which CN systematically varies with
rainfall size (Hawkins, 1979, 1993), reflects the effect of the
inevitable presence of spatial variability of the soil – cover
complexes of watersheds. Since this characteristic of the wa-
tershed can be considered invariant in time, therefore in all
statistical studies concerning the variation of CN in a water-
shed, the produced effect of heterogeneity (e.g. the CN-P

relationship) should be included as a deterministic part of
the analysis. Other, temporally variant, causes of variabil-
ity (e.g. rainfall intensity and duration, soil moisture condi-
tions, cover density, stage of growth, and temperature) can
explain the remaining scatter around the main rainfall-CN
correlation curve.
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Figure 12. Lykorrema experimental watershed cumulative area fraction distribution curve. 2 

3 

Fig. 12. Lykorrema experimental watershed cumulative area frac-
tion distribution curve.

The concept of a simplified idealized heterogeneous sys-
tem composed by two different CN values is introduced. The
behaviour of the CN-P function produced by such a system
was analysed systematically and it was found similar to the
CN-P variation observed in natural watersheds (Fig. 1, 7,
10). MeasuredP -Q data can be used to identify the two dif-
ferent CN values and the corresponding area fractions of the
simplified two-CN system. Then the initial threshold value
CNo and the asymptotic largeS value of CN∞ are also ob-
tained and the characteristics of the CN(P ) as well asQ(P )

functions are determined.
The proposed method is advantageous over previous meth-

ods suggesting the determination of a single asymptotic
CN∞ value to characterize the watershed runoff behaviour as
it permits the accurate prediction of runoff for a wider range
of rainfall depths (including low and medium rainfall depths)
and not for excessively large storms only (it must be noticed
that the asymptotic CN∞ value is essentially observed for
excessively largeP > 3000 mm). Therefore, the proposed
method can be also used in continuous hydrological models.

To illustrate if the proposed method of CN determination
in heterogeneous watersheds provides improved runoff pre-
dictions over a wider range of rainfall depths than the tra-
ditional method that is based on the determination of a sin-
gle asymptotic CN value, in Fig. 13, the measured runoff is
plotted against the rainfall depth for two “standard” and two
“complacent” watersheds’ examples presented in the litera-
ture. At the same figure the runoff predictions of the SCS-
CN method using the CN values obtained by the proposed
CN determination methodology assuming a two-CN system
as well as the runoff predictions of the SCS-CN method
based on the determination of a single asymptotic CN value
proposed by Hawkins (1993), are also plotted.

In Fig. 13a can be observed that the proposed method-
ology over performs the previous original CN determina-

tion method even if the “Coweeta” watershed was selected
as a characteristic example of the “standard” behaviour in
the study of Hawkins (1993) concerning the asymptotic CN
determination method. Furthermore, significant errors are
observed for low and medium runoff predictions (forP <

100 mm) when the traditional asymptotic method is used.
Similar observations can be made in Fig. 13b for the LRN
watershed, which was also presented as a characteristic ex-
ample of the “standard” behaviour by Hjelmfelt et al. (2001)
even if the difference in this case is small.

The advantages of the proposed method are more ev-
ident in Fig. 13c and d, where two characteristic exam-
ples of “complacent” behaviour watersheds presented by
Hawkins (1993) and Soulis et al. (2009), respectively, are
demonstrated. As it can be clearly seen, satisfactory runoff
predictions can be obtained using the CN values determined
by the proposed methodology. In contrast, the CN val-
ues determined with the asymptotic method completely fail
to predict runoff. It must be noticed that according to
Hawkins (1993) and Hjelmfelt et al. (2001), an asymptotic
CN cannot be determined from data for “complacent” wa-
tersheds. For this reason, the runoff predictions obtained
based on the best fitted single CN values were also plotted in
Fig. 13c and d. It can be seen once again that the runoff pre-
dictions obtained are very poor in both cases as well. These
results are in agreement with the results of the detailed analy-
sis based on synthetic data (Fig. 5) presented in the Sect. 2.4.

In previous analysis it is demonstrated that the presence
of heterogeneity produces CN-P correlations that stabilize
to a steady state regime (asymptotic value) for large val-
ues ofP . Therefore the “complacent” behaviour could be
considered as a specific case, in which the available range
of rainfall measurements dataset is restricted in such a way
that the steady state regime is not yet established and thus an
asymptotic CN value cannot be determined from this dataset.

In Figs. 7b and 11b the spatial distribution of the estimated
CN values in the two case studies is presented. In these fig-
ures, the association of thea, CNa, and CNb parameters to
the actual characteristics of the watersheds is highlighted.
The ability of the proposed methodology to provide infor-
mation on the spatial distribution of the estimated CN values
is also demonstrated.

6 Conclusions

Considering the theoretical analysis, the systematic analysis
using synthetic data and the detailed case studies it can be
concluded that the observed correlation between the calcu-
lated CN value and the rainfall depth in a watershed can be
attributed to the soils and land cover spatial variability of the
watershed and that the proposed two-CN system can suffi-
ciently describe the CN-rainfall variation observed in natural
watersheds. The results of the synthetic data analysis (Fig. 5)
and the results of the real watersheds examples (Fig. 13)
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Detail Detail

Coweeta watershed #2, North Carolina Little River subwatershed N, Tifton, Georgia

West Donaldson Creek, Oregon Lykorrema experimental watershed, Athens

 1 

Figure 13. Measured runoff against the rainfall depth in comparison to the runoff predictions 2 

of the various CN value determination methods for two “Standard” (a, b) and two 3 

“Complacent” (c, d) watersheds’ examples. 4 

Fig. 13. Measured runoff against the rainfall depth in comparison to the runoff predictions of the various CN value determination methods
for two “standard”(a, b) and two “complacent”(c, d) watersheds’ examples.

indicate that the SCS-CN method using the CN values ob-
tained by the proposed CN determination methodology pro-
vides superior runoff predictions in most cases and extends
the applicability of the original SCS-CN method for a wider
range of rainfall depths in heterogeneous watersheds. Fur-
thermore, the proposed methodology allows the CN deter-
mination in “complacent” watersheds. Although the sug-

gested method increases the number of unknown parame-
ters to three, a clear physical reasoning for them is pre-
sented. A simplified procedure to identify the spatial dis-
tribution of the two different CN values along the water-
sheds (Fig. 8b, 11b) is also presented. Taking into con-
sideration this additional capability, i.e. to provide infor-
mation on CN values spatial distribution and thus spatially
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distributed runoff estimations, the proposed method can be
used in other environmental applications e.g. water quality
studies or estimation of erosion hazard.

The next step of this approach could be the validation of
the proposed methodology to additional experimental water-
sheds with known characteristics. This is needed for a more
definitive validation, and might lead to some adaptations of
the proposed conceptual model for explaining the intrinsic
correlation of CN-P data. However, despite these reserva-
tions, it is quite interesting that the observed CN-P correla-
tion in watersheds can be the effect of an intrinsic charac-
teristic of the natural watersheds, which is the spatial het-
erogeneity. This observation may facilitate future studies
aiming at the extension of the SCS-CN method documen-
tation for different regions and different soil, land use, and
climate conditions.

Appendix A

Two-CN system fitting model

Equations of the two-CN system fitting model to the trans-
formed CN-P data with free parametersa, CNa, and CNb.
The initial abstraction rate was set to the standard value of
λ=0.2.

CN=
25 400

5
(
P +2(Qa+Qb)−

√
4(Qa+Qb)

2
+5P (Qa+Qb)

)
+254

(A1)

where:

Qa= 0 if 0.2P <
25 400

CNa
−254

Qa= α

(
P −0.2

(
25 400
CNa

−254
))2

P +0.8
(

25 400
CNa

−254
)

if 0.2P ≥
25 400

CNa
−254 (A2)

and

Qb = 0 if 0.2P <
25 400

CNb
−254

Qb = (1−a)

(
P −0.2

(
25 400
CNb

−254
))2

P +0.8
(

25 400
CNb

−254
)

if 0.2P ≥
25 400

CNb
−254 (A3)
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