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Abstract. Lake Turkana is one of the largest desert lakes
in the world and is characterized by high degrees of inter-
and intra-annual fluctuations. The hydrology and water bal-
ance of this lake have not been well understood due to its
remote location and unavailability of reliable ground truth
datasets. Managing surface water resources is a great chal-
lenge in areas where in-situ data are either limited or unavail-
able. In this study, multi-source satellite-driven data such
as satellite-based rainfall estimates, modelled runoff, evap-
otranspiration, and a digital elevation dataset were used to
model Lake Turkana water levels from 1998 to 2009. Due to
the unavailability of reliable lake level data, an approach is
presented to calibrate and validate the water balance model
of Lake Turkana using a composite lake level product of
TOPEX/Poseidon, Jason-1, and ENVISAT satellite altime-
try data. Model validation results showed that the satellite-
driven water balance model can satisfactorily capture the pat-
terns and seasonal variations of the Lake Turkana water level
fluctuations with a Pearson’s correlation coefficient of 0.90
and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of
0.80 during the validation period (2004–2009). Model er-
ror estimates were within 10 % of the natural variability of
the lake. Our analysis indicated that fluctuations in Lake
Turkana water levels are mainly driven by lake inflows and
over-the-lake evaporation. Over-the-lake rainfall contributes
only up to 30 % of lake evaporative demand. During the
modelling time period, Lake Turkana showed seasonal vari-
ations of 1–2 m. The lake level fluctuated in the range up
to 4 m between the years 1998–2009. This study demon-
strated the usefulness of satellite altimetry data to calibrate
and validate the satellite-driven hydrological model for Lake
Turkana without using any in-situ data. Furthermore, for
Lake Turkana, we identified and outlined opportunities and

challenges of using a calibrated satellite-driven water balance
model for (i) quantitative assessment of the impact of basin
developmental activities on lake levels and for (ii) forecast-
ing lake level changes and their impact on fisheries. From
this study, we suggest that globally available satellite altime-
try data provide a unique opportunity for calibration and val-
idation of hydrologic models in ungauged basins.

1 Introduction

The Intergovernmental Panel on Climate Change (IPCC)
Technical Paper on Climate Change and Water stressed the
fact that increased demand and reduced availability of fresh
water under global climate change will significantly affect
agriculture and food security in the 21st century (Bates et
al., 2008). Due to increases in population, industrialization,
and irrigated agriculture, several surface water resources are
rapidly depleting (V̈orösmarty et al., 2010). Because of these
consequences, it has become increasingly important to accu-
rately identify, quantify, and monitor freshwater resources.
In most regions of the world, inland lakes provide important
sources of fresh water and influence the local hydrological
budget. Furthermore, monitoring changes in lake water lev-
els is essential because they reflect changes in the seasonal
distribution of river inflows, precipitation, and evapotranspi-
ration (ET); in some cases integrated over many years (Bates
et al., 2008). According to Alsdorf et al. (2007), the measure-
ments required on the variability of surface water are (a) sur-
face water area,A, (b) the elevation of the water surface,h,
(c) temporal change,∂h/∂t , and (d) slope of the water sur-
face,∂h/∂x. However, such measurements over rivers and
lakes/reservoirs are missing in the terrestrial water budget
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Table 1. Challenges and opportunities of using satellite data for estimating components of lake water balance in data limited regions.

SL No. Water balance component Satellite data/model Opportunities Challenges References

1 Over-the-lake TRMM, CMORPH, Rainfall data with high Raw data under- Huffman (1995);
rainfall (Qrain) RFE, PERSIANN, spatial and temporal estimates up to 50 %; Joyce et al., (2004);

NexRAD, or Meteosat, coverage is readily calibration required to Crow and Ryu et al.
Geostationary weather available globally improve accuracies (2009)
satellites, etc.

2 Lake inflows Rainfall-runoff models Established open source Accuracy depends on Abbott et al. (1986);
(Qin) (VIC, SWAT, VegET, models available for direct data and model used. Asante et al. (2007);

USGS GeoSFM, application and estimation Calibration required to Rostamian et al.
TOPMODEL, etc.) improve accuracies (2008); Senay (2008)

3 Over-the-lake GDAS, GLDAS, Usually accuracies are high; Accuracy depends on Mu et al. (2007);
evaporation NLDAS, MODIS, with around 15–30 % relative data scale and resolution Kalma et al. (2008);
(Qevap) Energy balance methods errors of the dataset used Senay et al. (2008)

(SEBAL, METRIC,
SSEB)

4 Groundwater GRACE (to estimate Can be estimated using No direct method to Wahr et al. (2004);
storage (GS) – change in groundwater calibration; recently, GRACE TWS has been estimate GS using Becker et al. (2010)
(Qgwin andQgwout) storage from Total used to estimate GS satellite data

Water Storage (TWS) over small lake basins
estimates)

5 Lake outflows To some extent Can be estimated using No direct method to Allen et al. (2005);
(Qout) (irrigation water use calibration; RS data used estimate using satellite Senay et al. (2007)

estimation from only in lakes where irrigation data
optical/thermal imagery) water use dominates lake

outflows

6 Lake heights (Di ) Satellite altimeter; water Very high accuracies on the Data available over large Birkett (1995); Cretaux
balance models order of 3–5 cm rivers, lakes, and and Birkett (2006)

reservoirs globally

(NASA Science Plan, 2007). Furthermore, while monitoring
of surface water variability is a challenging task in ungauged
basins, many of the greatest human impacts occur in basins
that have no or very limited data (Sivapalan, 2003). More-
over, several forecasts on probability distribution of seasonal
rainfall are now becoming available from Regional Climate
Outlook Forums (RCOF) (Ogallo et al., 2008). However,
process-based models that translate forecasts into variations
in lake levels are not yet available. The assessment of lake
water balance could provide improved knowledge of regional
and global climate change and a quantification of the human
impacts on water resources (Cretaux and Birkett, 2006), in-
cluding capacity to transfer the impacts of climate forecasts
on lake levels.

In this study, we use a water balance approach to model
lake water levels using multi-source satellite-driven data.
Water balance modelling has been widely used in the past
for several lake studies (Tate et al., 2006; Kebede et al., 2006;
Gibson et al., 2006; Li et al., 2007). Lake levels can be mod-
elled using a water balance approach as

D(t) = D(t−1) + Qrain + Qin + Qgwin − Qevap

− Qgwout − Qoutflow − Qhw (1)

whereD(t) andD(t−1) are lake depths for current and pre-
vious time steps andQ represents the fluxes of the variables

[L] for the current time step; “rain” is direct rainfall over
the lake; “in” is incoming runoff contribution into the lake;
“gwin” and “gwout” are groundwater contribution to/from
the lake; “evap” is over-the-lake ET; “outflow” is surface out-
flow from the lake; and “hw” is the component of human wa-
ter withdrawal from the lake. The precision of modelled lake
levels using this approach depends on the accuracy of each
parameter considered in Eq. (1). Ground truth data are either
limited or unavailable in most ungauged basins, but remote
sensing satellites offer reliable estimates of hydrologic vari-
ables required for water balance modelling at shorter time
scales. The opportunities and challenges of using satellite
data to derive parameters in Eq. (1) are described in Table 1.

The parametersQrain, Qin, andQevapcan be modelled or
estimated from remotely sensed data; however, it is challeng-
ing to estimate the parametersQgwin, Qgwout, Qoutflow and
Qhw from satellite data sources. Estimates of rainfall, includ-
ing over-the-lake rainfallQrain, can be reliably obtained from
satellite-based rainfall. Because of the increased accuracy
and availability of satellite-based rainfall products, several
studies have recently used satellite-based rainfall estimates
for lake level studies (Awange et al., 2008; Swenson and
Wahr, 2009; Ricko et al., 2011). However, satellite rainfall
estimates often show bias when compared to ground truth ob-
servations and require site specific calibration or bias correc-
tion for improving model accuracies. Lake inflows or runoff
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cannot be directly measured using remote sensing data, but
several indirect ways of modelling runoff (Qin) are available.
Simple lumped rainfall-based runoff models to complex dis-
tributed hydrologic models are available to estimate runoff
(Wagner et al., 2004). Satellite-based estimates of evapotran-
spiration (Qevap) are now becoming increasingly available.
It has been found that in arid and semiarid regions, around
90 % or more of the annual precipitation can be evapotran-
spired; therefore, ET determines the freshwater recharge and
discharge from aquifers in these environments (Huxman et
al., 2005). Hence, accurate estimation of ET is essential for
closing the water balance.

Groundwater fluxes (Qgwin andQgwout) remain as princi-
ple unknowns in most water budget studies. In most regions,
information on groundwater does not exist and gauging net-
works on rivers and lakes have been drastically decreasing
since the early 1980s (Kundzewicz et al., 2004). Even though
groundwater fluxes into large lakes may typically be smaller
than surface water inputs, they may form a significant com-
ponent of the overall water budget in many lakes (Harvey et
al., 2000). Groundwater fluxes are often estimated as a resid-
ual of water balance calculations only when other parameters
are available to close the water balance. Estimates of ground-
water storage have been poorly constrained in most water
balance studies using remote sensing data. Recently, the use
of GRACE total water storage (TWS) for estimating ground-
water storage has been demonstrated by Becker et al. (2010)
for small lake basins in Africa. Estimates of lake outflows
(Qoutflow) are mostly unavailable in ungauged basins. While
ground truth observations are essential for the quantification
of lake outflows, remote sensing offers an indirect estimation
of Qoutflow with reasonable accuracies. Quantifying human
water withdrawal separately from lake outflows is not possi-
ble using satellite data. However, when water abstraction for
irrigation dominates the natural outflows from the lake, rea-
sonable monthly estimates of outflows can be obtained from
remote sensing imagery by quantifying irrigation water use
in the downstream irrigated areas (Allen et al., 2005; Senay
et al., 2007). Information on lake level heights is required to
estimate temporal changes in the lake storage. Recently, lake
levels based on satellite altimetry data are becoming glob-
ally available for large rivers, lakes, and reservoirs. Most
of the data are available from several ungauged basins of
the world. Among all satellite data in Table 1, satellite al-
timetry data are by far the most accurate data available, with
errors as low as 3–5 cm. Based on the review of all the pa-
rameters, one of the common challenges of using satellite-
driven data/models for estimating water balance components
is the need for data/model calibration. However, perform-
ing calibration is especially difficult in basins where reliable
ground truth measurements are unavailable. While ongoing
and future research continues to address the challenges of us-
ing satellite data and improving the accuracy of satellite es-
timates, we present an approach that uses satellite altimetry
data for calibration and validation of a satellite-driven water

balance model for Lake Turkana, which has no reliable in-
situ data.

Justification and objectives of this study

Lake Turkana is one of the largest desert lakes in the world
and is characterized by high degrees of inter- and intra-
annual fluctuations (Rickett and Johnson, 1996). The hydrol-
ogy and water balance of the lake has not been well under-
stood due to its remote location and unavailability of in-situ
datasets. The most recent study on the hydrology of the lake
was carried out by Kallqvist et al. (1988). However, due to
the increase in population and agriculture expansion over the
last two decades, the Lake Turkana basin has been rapidly
undergoing changes with several basin developmental activ-
ities taking place in the upstream river basin. The tallest dam
in Africa (Gibe-III) is currently under construction on the
Omo River, which contributes more than 80 % of the lake
inflows. The impact of such changes on the water balance
of Lake Turkana is not well understood. Hence, there is an
immediate need to understand the relationship between lake
levels and upstream processes occurring in the watershed.
Since availability of reliable in-situ data is a major problem
for the Lake Turkana basin, we present a satellite-driven wa-
ter balance model to study the impact of upstream basin de-
velopmental activities on the Lake Turkana water levels.

The objectives of this study are (a) to demonstrate the use
of satellite altimetry data for model calibration and valida-
tion when reliable in-situ data for calibration is unavailable,
and (b) to establish a calibrated satellite-driven water bal-
ance model for Lake Turkana to better understand the inter-
actions between the lake and its watershed. We present a hy-
drologic modelling approach that integrates digital elevation
data, satellite-based rainfall estimates, modelled ET, runoff,
and satellite altimetry data to produce information on varia-
tions in Lake Turkana levels without relying on in-situ data
sources. Potential applications of the calibrated models are
also identified.

2 Study area and data used

2.1 Description of the study area

This study is conducted over Lake Turkana, one of the lakes
in the Great Rift Valley of East Africa (Fig. 1). The lake
is about 250 km long and 15–30 km wide, with an average
surface area of nearly 6750 km2. The lake catchment is
145 500 km2 and extends over Ethiopia in the north, Kenya
in the south, and Sudan and Uganda in the west. The lake
has a maximum depth of nearly 110 m and an average depth
of 30 m. Three rivers, the Omo, Turkwel, and Kerio, consti-
tute the lake inflows. The Omo River is perennial and mean-
ders nearly 1000 km before emptying into the northern tip of
the lake. It accounts for more than 80 % of the lake inflows
(Ricketts and Johnson, 1996). In contrast, the Turkwel and
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Fig. 1. Map of the study area showing spatial extent of the Lake
Turkana basin in East Africa.

Kerio Rivers are intermittent and contribute little to the total
volume of the lake (Carr, 1998). Lake Turkana basin has four
distinct seasons with two dry periods (December–February
and July–August) and two rainy seasons (March–June and
September–November). Lake Turkana is considered an en-
dorheic lake with no surface outlet and insignificant seepage
(Ricketts and Johnson, 1996). The outflow is dominated only
by evaporation.

2.2 Data used

The data used in this study are summarized in Table 2. The
National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center (CPC) produces satellite-based
rainfall estimates (RFE) for the Famine Early Warning Sys-
tem (FEWS) project of the U.S. Agency for International
Development (USAID). The data have been produced daily
with a spatial resolution of 0.1◦ since June 1995 and are
available to the public in near-real time. The product cov-
ers the entire African continent and a few surrounding re-
gions. RFE data from June 1995 to 31 December 2000,
were produced using the RFE 1.0 algorithm (Herman et al.,
1997), and since 1 January 2001, RFE data have been pro-
duced using the version 2.0 algorithm (Xie and Arkin, 1996).
RFE data from January 1998 to December 2009 are used
in this study. The reference evapotranspiration (ETo) data
used in this study are produced at the USGS Earth Resources
Observation and Science Center from 6-hourly Global Data

Assimilation System (GDAS) climate parameters using the
standardized Penman-Monteith equation, then downscaled
to 0.1◦ for this study (Senay et al., 2008). Historical aver-
age dekadal (10-day) Normalized Difference Vegetation In-
dex (NDVI) datasets (1982–2006) described by Tucker et
al. (2005) from the Advanced Very High Resolution Ra-
diometer (AVHRR) are used to characterize the land sur-
face phenology (LSP) and to estimate actual evapotranspi-
ration (ETa) on a pixel-by-pixel basis at 0.1◦ resolution. The
canopy interception parameter is estimated using the global
percent tree cover product produced from MODIS Vegetation
Continuous Field (Hansen et al., 2003). The Digital Soil Map
of the World (FAO, 1995) is used to estimate water holding
capacity (WHC) for the dominant soil type for each grid cell.
Shuttle Radar Topography Mission (SRTM) 90-m digital ele-
vation model (DEM) data are obtained from the Consultative
Group on International Agricultural Research (CGIAR) Con-
sortium for Spatial Information (CSI) website. These void-
filled DEM data are used to derive hydrological derivatives
such as (a) streams and river networks and (b) sub-basins and
basins. The DEM are also used to estimate lake surface area
at various depths. Lake Turkana water level obtained from
TOPEX/Posiedon (T/P), Jason-1, 2 and ENVISAT satellite
altimetry data is used for calibration and validation of the
modelled results. T/P is a joint space mission conducted by
the United States and France, primarily designed to measure
sea-surface heights since 1992 (Fu et al., 1994). Jason-1 is
the T/P follow-on mission and has been measuring ocean sur-
face topography since December 2001. Both T/P and Jason-1
data have also been widely used to study inland lake level
variations (Birkett, 1995). Moreover, lake levels derived
from satellite altimetry data are highly reliable, with errors
on the order of a few centimeters (Birkett, 1995; Alsdorf et
al., 2001). Hence, satellite altimetry data are considered as
proxy to in-situ lake level measurements and used for model
calibration and validation. Satellite-based lake levels have a
10-day temporal resolution (Birkett et al., 1999).

3 Methods

3.1 Deriving lake depth-surface area-volume
relationships

Lake Turkana depth-surface area relationship is developed
from seamless lake topo-bathymetry (LTB) data. The
Lake Turkana bathymetry data obtained from Kallqvist et
al. (1988) were draped on the SRTM elevation model to
develop seamless LTB data with 90-m resolution. A sim-
ple GIS-based model was used to extract surface areas at
every 0.5-m interval between the ranges of recent natural
fluctuations of the lake (350 to 366 m). Thus, a relation-
ship that explains the variations in Lake Turkana surface
area with respect to lake level change was obtained. Simi-
larly, using seamless LTB data, changes in lake volumes were
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Table 2. Satellite data and products used in the lake level modelling (LLM) approach.

No Data Satellite sensor/ Frequency Resolution/ References
source Scale

1 Rainfall estimate for Africa SSM/I, AMSU Daily 0.1◦ × 0.1◦ Herman et al. (1997);
Xie and Arkin (1996)

2 Global GDAS reference ET Model assimilated satellite data Daily 0.1◦
× 0.1◦ Senay et al. (2008)

3 Climatological NDVI NOAA AVHRR Dekadal 8 km Tucker et al. (2005)
4 Digital soil map of the world National statistics Single date 1:5 000 000 FAO (1995)
5 Global percent tree cover map MODIS VCF Single date 500 m Hansen et al. (2003)
6 Digital Elevation Model SRTM Single date 90 m Farr and Kobrick (2000)
7 Lake Turkana water levels TOPEX/Poseidon, Jason-1, ENVISAT Daily >200 m Birkett (1995)

derived. First, Lake Turkana was divided into different water
columns. The depth of each column is derived as

CDi = LD − LEBi (2)

where CDi is the depth for water column [L]i, LD is the lake
depth or lake level [L], and LEBi is the height [L] obtained
from the LTB data. Then, volume of each column of water
(CVi) is obtained as

CVi = CDi × CAi (3)

where CAi is the area of the column of water [L2] obtained
from the pixel area of the LTB data. Finally, the total volume
of the lake (TLV) [L3] is obtained by the summation of vol-
ume of water (CVi) from the total number of columns (N )
as

TLV =

N∑
i

CV. (4)

Using Eqs. (2), (3), and (4), lake volumes at every 0.5-m
interval between the ranges of natural fluctuations (350 to
366 m) are extracted and the relationship between lake eleva-
tion and volume is derived.

3.2 Lake Level Modelling (LLM) approach

Based on the principle of water balance, a multi-sensor phys-
ically based hydrologic modelling approach, hereafter called
Lake Level Modelling (LLM), is developed to estimate Lake
Turkana water levels. The LLM approach (Fig. 2) used in
this study can be illustrated in four steps.

3.2.1 Modelling runoff and ET

First, weather data (RFE and GDAS ETo) are used to
estimate runoff [L] on a pixel-by-pixel basis using the
phenology-based ET model called VegET (Senay, 2008;
Senay et al., 2009). The VegET model is based on stan-
dard water balance principles comparable to those outlined in
Allen et al. (1998) and Senay and Verdin (2003). The unique

aspect of the VegET model is the use of remotely sensed land
surface phenology (LSP) to parameterize the spatial and tem-
poral dynamics of ET and runoff on a grid-cell basis. The
modelling approaches in the VegET model can be explained
by Eqs. (5) and (6):

ETa = Kcp × Ks × ETo (5)

SW(t) = SW(t−1) + ((1 − ILCi) × RFEi) − ETai
(6)

where ETa is the actual ET;Kcp is the LSP-based crop co-
efficient; Ks is the soil water stress coefficient; ETo is the
global GDAS reference ET; RFE is the satellite-based rain-
fall estimate; and SW represents soil water content. ILCi

accounts for canopy interception losses interception coeffi-
cient, subscriptt represents the current modelling time step,
and subscriptt − 1 represents the previous time step. As in-
terception losses depend on vegetation cover and rainfall, an
area weighted average interception loss coefficient (ILC) was
estimated for each modelling pixel based on the vegetation
cover distribution obtained (bare, herbaceous, and tree cover
percentage) from the MODIS VCF, which provides the per-
centage of bare, herbaceous, and tree cover for each pixel
(Hansen et al., 2003). ILC varied from a minimum of zero in
bare cover types to a high of 35 % in areas with a dense forest
cover. The ILC used in this study was found to be within the
range of ILC published in the literature (Kelliher et al., 1993;
Tate, 1995; Ḧormann et al., 1996). The VegET model esti-
mates runoff for each time step based on the principle of soil
saturation excess, where soil water content in excess of the
WHC of the soil is considered runoff. Variables ETa, ETo,
RFE, and SW all are in units [L/T]. Further description of
the VegET modelling approach is found in Senay (2008) and
Senay et al. (2009).

3.2.2 Source-to-sink routing algorithm

Modelled runoff is routed using a source-to-sink routing al-
gorithm (Asante, 2000; Olivera et al., 2000). This method
is a simplification of St. Venant equations and incorporates
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Fig. 2. Flowchart showing the lake level modelling (LLM) approach using multi-source satellite data.

translation (advection) and redistribution (dispersion) pro-
cesses in the flow path. We chose this method because
storage-based routing algorithms are computationally inten-
sive, and Gong et al. (2009) reported that when the reproduc-
tion of discharge dynamics at a basin outlet is an important
objective, cell-to-cell methods can be replaced by source-to-
sink methods. First, the Lake Turkana basin was divided into
39 time-area zones using flow length and flow velocity in-
formation such that the value for each zone represents time
spent [in days] by the runoff generated in different time-area
zones before it reaches the lake. The response function or the
first-passage-time distribution for time-area zonej is then es-
timated based on the diffusion equation model (Lettenmaier
and Wood, 1992; Naden et al., 1999; Asante, 2000; Olivera
et al., 2000), which can be written mathematically as

uj =
1

2 (5 D)0.5

x

t1.5
exp

[
−

(c t − x)2

4 D t

]
(7)

whereuj [1/T] is the response function of time-area zonej

at the lake,x [L] is the mean distance for each time-area zone
to the lake,t is the time interval [T],c [L/T] is the celerity or
advective velocity of the river, andD [L2/T] is the diffusion
coefficient.

Snell and Sivapalan (1994) showed that the dispersion co-
efficient depends on the first two moments of the flow path
lengths, with the assumption of a constant flow velocityc,
and longitudinal dispersionD throughout the catchment. Pa-
rametersc andD in Eq. (7) for the Lake Turkana basin were
derived as

c = 3 v/2 and D = Rj

/
2 S B (8)

wherev [L/T] is the average velocity of the river (0.3 m s−1)
obtained as a function of slope and land cover distribution us-
ing the simplified Manning’s equation.Rj [L/T] is the time
series of modelled runoff generated for time-area zonej at
the lake;S [L/L] is the average riverbed slope along the flow
path (0.003 m m−1); andB [L] is the average width of the
river. High resolution Google Earth imagery was used to
measure the width of the river over 100 transects along the
Omo, Turkwel, and Kerio Rivers. The width of the rivers
ranged from 1 m near the head of the rivers to about 210 m
near the Omo river delta, with an average width of 100 m.

By convoluting the time series runoff generated in time-
area zonej with the response functionuj , we get the runoff
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volume contribution of each time-area zone, RVj , expressed
as

RVj = Aj Rj 2 uj (9)

whereAj [L2] is the area of the time-area zonej , and the2
symbol stands for the convolution integral.

Finally, the hydrograph for the lake is calculated as the
sum of contributions of all the time-area zones that drain into
the lake, which is represented as

TRV (t) =

j=n∑
j=1

RVj (10)

where TRV(t) [L3 T−1] is the total runoff volume hydrograph
from all the time-area zonesj for the modelling time stepi,
RVj [L3 T−1] is the contribution of time area zonej , and the
sum applies to all 39 (n) sources or time-area zones that drain
into the lake.

3.2.3 Simulation of Lake Turkana water levels

A water balance model is applied to derive Lake Turkana
water level variations. Total monthly over-the-lake rainfall
Qrain was derived from the RFE data, and the total monthly
runoff contribution to the lakeQrunoff was obtained using
Eq. (10). Total monthly over-the-lake ET was obtained from
GDAS ETo data. Becker et al. (2010) analyzed total wa-
ter storage data from GRACE gravimetry over Lake Turkana
basin and indicated that the TWS is mainly influenced by
the surface water, and that groundwater contribution in the
basin is insignificant. Further, several researchers have con-
cluded that Lake Turkana’s groundwater inflows and out-
flows are considered minimal or insignificant (Yuretich and
Cerling, 1983; Cerling, 1986; Avery, 2010), and because
Lake Turkana is a saline lake and cannot be used directly for
drinking or irrigation,Qhw is considered negligible for Lake
Turkana. Hence, for Lake Turkana, Eq. (1) is simplified as

D(t) = D(t−1) + Qrain + Qrunoff − Qevap ± ε. (11)

The lake level model is formulated to handle Eqs. (5) to (11).
The lake water balance model was run at a monthly time
scale. The model was run from January 1998 to Decem-
ber 2009. Since GDAS ETo data are available from 2001,
long-term monthly mean ETo values were used from 1998 to
2000. GDAS ETo is the sum of evaporation from the soil sur-
face and transpiration from a standardized reference clipped
grass surface (Allen et al., 1998). However, evaporation from
open water bodies like lakes and rivers is lower than the pan
evaporation or reference ETo (Allen and Tasumi, 2005) and
can be represented by ETf . We used an ETf of 0.75 to pro-
duce comparable over-the-lake ET losses obtained from the
literature (Yuretich and Cerling, 1983; Cerling, 1986; Av-
ery, 2010). Initial Lake Turkana water level information for
January 1998 was obtained from the French Space Agency

website. An error term (ε) is introduced in Eq. (11) to com-
pensate for the data and modelling errors. Parameterε is
estimated through model calibration.

3.2.4 Estimation of variations in lake volumes

The lake volume at each time step (t) is computed as

LV (t) = LV (t−1) + 1S(t) (12)

where LV(t) is the volume of the lake at time stept ; LV (t−1)

is the volume of the lake at previous time steps; and1S(t) is
the change in storage, which is obtained as

1S(t) = TRV(t) + Vrain(t)
− VET(t) ± V ε(t). (13)

Here, TRVi is the total runoff volume contribution obtained
from Eq. (10);Vrain(t)

is the volume of rainfall received over
the lake obtained from RFE rainfall; VET(t) is the volume of
ET losses over the lake; andV ε)(t) is the volume contribu-
tion of the error for the time step (t). The initial volume of
the lake is obtained using depth-volume relationship derived
using Eq. (4).

3.3 Uncertainties in LLM approach

In physically based modelling, it is important to distinguish
between the predictive performance of a model and its ability
to explain environmental phenomena (Beven, 2001). Uncer-
tainty in hydrologic models includes uncertainties in (a) the
structure of the model, (b) the model parameters/input data,
and (c) the solution of the model (Addiscott et al., 1995).
In most hydrologic models, when using satellite data such
as the LLM approach, major uncertainties in the model out-
puts can be attributed to the model parameters or input data.
To understand the uncertainty in the LLM model, the im-
pact of the bias in the input data is to be understood. But
it is neither possible nor desirable to evaluate and eliminate
all of the uncertainties associated with data and models be-
cause resources are always limited and must be used effec-
tively (Van Rompaey and Govers, 2002). Hence, parameters
that are likely to contribute most to the uncertainties associ-
ated with the model results were evaluated. In the case of the
LLM model, parameters such as WHC, interception losses,
groundwater fluxes, NDVI, and DEM are static across years
and hence would result in minimal random errors. Errors
in other parameters such as rainfall, runoff, and ET would
critically affect modelling results. Validation of RFE rainfall
over the Ethiopian highlands using gauge data suggested that
RFE can be reliably used for early warning systems to em-
power the decision making (Dinku et al., 2008). However,
RFE underestimates rainfall during peak rainy seasons and
overestimates in other seasons (Laws et al., 2004), with an
average bias of−0.15 mm day−1 (NOAA/CPC, 2002). Few
validation studies indicate estimates of errors for different lo-
cations in Africa and over different time periods (Laws et al.,
2004; Dinku et al., 2008). However, we cannot extrapolate
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these errors for the Lake Turkana basin due to its complexity.
Further studies in this direction are required to determine the
true errors in RFE data over the period 1998–2009 for the
Lake Turkana basin. Even though the relationship between
rainfall and runoff is not linear from individual storms, we
assume a constant rainfall-runoff coefficient to evaluate the
propagation of mean bias in RFE into modelled runoff. Other
important input in the LLM approach is the ET data. Cur-
rently, there is no published evidence of validation of GDAS
reference ET in Africa. However, modelled ET data vali-
dated in the United States showed a mean underestimation
up to 5 % over 16 sites (Senay et al., 2008). Finally, the re-
lationships between the change in the lake levels in relation
to basin rainfall, runoff, and ET were derived and the im-
pact of these errors on the modelled lake water levels was
understood.

3.4 Model calibration

Model calibration is an essential step in developing a reliable
and useful hydrologic model. This becomes a necessity es-
pecially when parameters from satellite-driven data are used
for estimating water balance components. We were unable
to obtain reliable in-situ data over the Lake Turkana basin.
The Omo River discharge data obtained from Ethiopia had
numerous data gaps. Discharge data for the Turkwel and Ke-
rio Rivers were also not available. Unavailability of reliable
data is a common problem in most basins. Since ground truth
data were not available, we used lake levels derived from
satellite altimetry data as proxy to ground truth for calibrat-
ing the model. Data from the years 1998 to 2003 were used
for calibration. In this study, magnitude differences in lake
levels were minimized by estimating parameterε to account
for errors. Not accounting forε could lead to errors in mag-
nitude while performing water balance of the lake. Estimate
of ε was assumed to be equal to zero in the initial model run.
Based on the initial model estimates,ε values were varied for
each model run. Lake levels modelled using different com-
binations of varyingε were compared with satellite altimetry
data, and theε parameter that provided the minimum value
of mean absolute error (MAE) was selected.

3.5 Validation of modelled lake water levels using
satellite altimetry data

Ideally, in-situ observations of lake levels are required for
validating modelled estimates. But for Lake Turkana, such
in-situ observations are not available. This is true in most
ungauged basins. Therefore, modelled Lake Turkana wa-
ter levels were validated using satellite altimetry data esti-
mated from TOPEX/Poseidon (T/P), Jason-1, and ENVISAT.
Data from 2004–2009 were used for validation of model
results. Since a mass balance approach is used to derive
Lake Turkana water levels and volumes, validation was per-
formed using both lake levels and lake volumes. However,

satellite altimetry produces only lake level information; thus,
lake volume information was derived from satellite altime-
try data using Eq. (12), where change in storage (1S(t)) was
derived as

1S(t) =
[(

D(t) − D(t−1)

)
× LA (t)

]
. (14)

Here,D(t) andD(t−1) are the depths for current and previous
time steps, and LA(t) is the lake surface area at time stept .

3.6 Model accuracy

Model results (both lake levels and volumes) were compared
with the altimetry data to evaluate the model performance.
Pearson’s correlation coefficient (r) is estimated to observe
the degree of relationship between satellite altimetry data and
the modelled lake level data for calibrated, validation, and
combined time periods. Improvements in r for each dataset
are tested for significance using Fisher’s z-test. Further, to
derive statistical goodness of fit of the modelled lake water
levels, several statistical estimates were computed. First, root
mean square error (RMSE) was computed using the follow-
ing equation:

RMSE =

√√√√√ n∑
i=1

(Pi − Oi)
2

N
(15)

whereP is the modelled lake water level,O is the altimetry
lake water level,N is the total number of observations, andi

represents time step.
Willmott and Matsuura (2005) reported that MAE is more

appropriate over RMSE in assessing average model perfor-
mance because MAE is not influenced by large errors. MAE
was computed using the following equation:

MAE =

n∑
i=1

|Pi − Oi |

N
. (16)

Also, a widely used measure in hydrology, the Nash-Sutcliffe
Coefficient of Efficiency (NSCE), was used to compute the
model efficiency. The advantage of NSCE is that it accounts
for the model errors in estimating the mean of the observed
datasets. The NSCE is an indicator of the model’s ability
to predict the 1:1 line (Nash and Sutcliffe, 1970). A value
of 1 represents a perfect match and a value of 0 or less is no
more accurate than predicting the mean value. NSCE was
computed using the following equation:

NSCE = 1−

n∑
i=1

(Pi − Oi)
2

n∑
i=1

(
Oi − Ō

)2
(17)

whereŌ is the mean value of the observed variable. Finally,
mean bias error (MBE) between the modelled lake water
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levels and satellite measurements is computed using the fol-
lowing equation:

MBE =
1

N

N∑
i=1

Pi − Oi . (18)

To understand the significance of each estimate of error
statistic, percent error with respect to the long-term natu-
ral variability of Lake Turkana water levels was computed.
Modelled lake level data from January 2003 to Decem-
ber 2009 were used for the accuracy assessment.

4 Results and discussion

4.1 Lake level modelling

First, lake level, surface area, and volume relationship are
derived for Lake Turkana (Fig. 3). Modelled Lake Turkana
water levels from January 1998 to December 2009 are shown
in Fig. 4. Visual analyses of patterns observed in modelled
lake levels show that seasonal variations and patterns in lake
water levels are captured reasonably well. Since the end of
1999, lake water levels gradually declined until mid-2006.
However, after mid-2006, the model showed a steep increase
in the lake water levels by the end of 2007 and then a gradual
decrease by the end of 2009. In this section, the patterns ob-
served in the modelled lake levels are compared with rainfall
and climatic patterns observed in the region. For comparison,
the lake water level variations for 1998–2009 are divided into
five time periods. The trends observed in each time period
are compared with general rainfall trends and are supported
by citations from the literature.

– Period 1 (1998):
The model results show an increase in the lake water
level up to 1.5 m until the end of 1998. The 1997–
1998 El Nĩno caused heavy rains over East Africa
(Galvin et al., 2001; Behera et al., 2005). Anyamba et
al. (2001) reported that during this period, East Africa
had above normal NDVI due to excess rainfall, and
southern Africa had below normal NDVI due to a rain-
fall deficit. This trend is captured by the model (Fig. 4).
This increase in the trend up to 1.5 m of lake level shown
by the model is corroborated by Birkett et al. (1999),
who reported a∼2 m increase in Lake Turkana water
levels during this time period.

– Period 2 (1999–2002):
After the heavy El Nĩno rains, there was a prolonged
period of below average rainfall for four consecutive
years until 2003. WFP (2000) reported that drought
in 2000 was estimated as the worst on record for East
Africa. Furthermore, Anyamba et al. (2002) reported
that most of the Horn of Africa had NDVI deficits on
the order of 30 % to 80 % below normal. The model re-
sults show that the lake water levels decreased gradually
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Fig. 3. Relationship between Lake Turkana depth, surface area, and
volume derived from seamless lake elevation bathymetry dataset
and GIS modelling.

until 2003. As a result of dry weather and possibly very
high ET losses, the lake water levels dropped 2 to 3 m
during this period.

– Period 3 (2003–2006):
As the Lake Turkana basin experienced below normal
rainfall during this period, modelled lake water levels
show that water levels declined, and by early 2006, lake
levels reached the minimum observed level during the
1998–2009 time period.

– Period 4 (2006–2007):
The model results for this period show a steep increase
in the lake water levels. This increase is caused by
high runoff generated by heavy rains that occurred in
2006 and 2007. The model shows that the lake wa-
ter levels increased up to 3 m because of the heavy
rainfall and subsequent floods in Ethiopia in 2006 and
early 2007. The Disaster Preparedness and Prevention
Agency (DPPA) of Ethiopia confirmed that the floods in
the southern Omo River Valley caused a few hundreds
of casualties and displaced nearly a thousand people
(IFRC, 2006). Moreover, Moges et al. (2010) reported
that the 2006 floods in Ethiopia were exceptionally se-
vere in intensity, water volume, geographical coverage,
and damage.

– Period 5 (2008–2009):
During this period, modelled lake levels show a gradual
decrease, with lake levels dropping up to 2 m because of
normal to below normal rainfall in 2008 and 2009.

4.2 Uncertainties in LLM approach

The relationships between rainfall, runoff, and ET on
changes in Lake Turkana water levels are shown in Fig. 5.
The monthly data are classified into wet and dry months with
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Fig. 4. Lake Turkana water levels modelled using the lake level modelling (LLM) approach and multi-source satellite data. Estimated errors
with respect to the modelled runoff and ET data are too small to be visible with respect to the data points.

Fig. 5. Relationship between key model parameters and change in Lake Turkana water levels:(a) relationship between mean basin monthly
RFE rainfall and change in lake water levels (Y = 0.0023X − 0.0863);(b) relationship between mean monthly runoff and change in lake water
levels (Y = 0.0273X − 0.2205); and(c) effect of ET on change in lake water (Y =−0.1236X + 0.6231). All the trend lines and equations are
derived using combined data (wet + dry months). Monthly data from 1998–2009 are used in this analysis.

respect to the lake, where wet and dry months correspond to
the months when the lake level increased and decreased, re-
spectively. In Fig. 5a, the relationship between rainfall and
lake level changes is not always linear, as rainfall has to meet
the soil moisture and other storage demands in the basin be-
fore generating runoff. On the other hand, once the runoff
is generated and reaches the lake, it shows a linear relation-
ship with the lake level changes (Fig. 5b). However, basin
runoff/inflows have to be more than the evaporative demand
of the lake to cause a net increase in lake levels. Figure 5c
shows that ET over wet months does not show any relation.
However, it shows a strong relation over the dry months,
when the effect of ET on the lake level changes is substantial.

Using relationships derived in Fig. 5, the impact of the er-
rors on the lake water levels is estimated. It is found that
the bias in RFE data (−0.15 mm/day) would translate to up
to 1 cm month−1 of error in the modelled lake levels during
peak rainy seasons (March to June and September to Novem-
ber). The runoff coefficient of 0.21 is obtained from monthly
analysis between rainfall and modelled runoff data. Using
this coefficient, the error in monthly runoff data is estimated
to be up to 0.3 mm month−1, which would further introduce
up to 2.5 cm month−1 of error in the modelled lake level data
over peak rainy seasons. Together, rainfall and runoff would
result in an error of up to 3.5 cm month−1. The magnitude

of error during other months would be less as the number of
days of rainfall would be low. Assuming consistent errors
globally, errors in the ET data (up to 5 % underestimation)
are introduced in the model, and their impact on the mod-
elled lake levels is estimated using the relationship obtained
in Fig. 5c. Our results indicate that errors in ET data would
translate to up to 4 to 5 cm month−1 of error in lake levels.
More evaluation is needed to understand the impact of these
errors on lake level dynamics. Total errors in the modelled
lake levels would be compensated by the constant parameter
ε in Eq. (11), which is estimated by the calibration process.

4.3 Model calibration

Figure 6a shows the comparison of un-calibrated modelled
lake levels and volumes with altimetry-based lake levels.
Figure 6a shows that the patterns and seasonal variations
in water level fluctuations are captured reasonably by the
model. However, the un-calibrated model shows an over-
estimation with a difference in magnitude when compared
to the altimetry data, with an MAE of 0.96 m. During the
calibration process, and since un-calibrated lake levels were
showing overestimation when compared to satellite altimetry
data, the value forε was considered negative and varied from
−0.1 to 0 m per month (with an increment of 0.01 m). The
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Fig. 6. Comparison of Lake Turkana water levels modelled using the LLM approach and satellite altimetry data:(a) un-calibrated lake levels
[ε = 0]; (b) calibrated lake levels for magnitude [ε = 0.06 m day−1]. The calibration is performed on data from 1998 to 2003 and the model
is validated using data from 2004 to 2009.

MAE for different combinations of varyingε ranged from
0.31 to 3.4 m. An ETf value of 0.75 and anε value of 0.06 m
per month provided the least MAE (0.31 m) when compared
to the satellite altimetry data. To validate the ETf fraction,
total actual ET losses over the lake were estimated and com-
pared with the published ET losses for Lake Turkana. Using
ETf of 0.75, an average rate of ET from Lake Turkana is es-
timated as 2.3 m yr−1, and this estimate is found to be within
the range of ET losses reported in the literature (Yuretich and
Cerling, 1983; Cerling, 1986, Avery, 2010). Hence, these
parameter estimates of ETf andε obtained by calibration are
considered for further modelling.

4.4 Model validation using satellite altimetry data

Modelled lake levels are validated using lake levels estimated
from satellite altimetry data (Fig. 6a and b). After con-
sideringε of 0.06 m month−1, the error in modelled vs. al-
timetry was reduced with MAE of 0.31, 0.27, and 0.29 m
over the calibration, validation, and combined periods. To-
tal monthly over-the-lake rainfall, over-the-lake ET, and total
monthly runoff into the lake are shown in Fig. 7a–c. Mod-
elled monthly lake water levels from January 1998 to De-
cember 2009 are illustrated against altimetry data in Fig. 7d.
Possible reasons for the errors observed between the model
and altimetry-based lake level estimates are listed here.

In the LLM approach, the model-based Lake Turkana wa-
ter levels are primarily driven by runoff and ET. The increase
in the lake water levels is driven by the runoff derived from
the rainfall estimates. The differences seen while the lake
water levels are increasing could be attributed to inaccuracies
in the satellite rainfall estimates or the modelling errors. On
the other hand, the decline in the lake water levels is mostly

dependent on the over-the-lake ET andε. The slope of the
declining trend as seen in modelled lake levels matches rea-
sonably well with the altimetry data, which means that the
error contributed from ET could be minimal.

The wetland complex located in the Omo River Delta
could act as a temporary reservoir and possibly reduce the
flow rate, which could result in the errors in the modelled es-
timates. Another reason for the difference could be caused by
a small percentage of subsurface groundwater drainage oc-
curring in the basin. Information on the subsurface drainage
occurring in the upper Lake Turkana basin is not available.
Other sources of discrepancy in modelled lake levels could
also be due to (a) changes in lake surface pressure, (b) wind-
driven events or tides, or (c) fluctuations in the volume of
the column due to an alternating temperature or composition,
which could also influence lake water levels (Mercier et al.,
2002).

During 2002, 2003, and 2004, the peaks of modelled lake
levels tend to show some discrepancy with the peaks seen
in satellite altimetry estimates. This could be due to the oc-
currence of low flows, as the basin received below average
rainfall during these years. Further investigation is required
to understand the differences in peak flows during a low flow
year.

The use of the constantε could result in differences be-
tween the modelled and the satellite altimetry data. In real-
ity, ε would vary with time of the year. However, accurate
estimates ofε for unit time step is a challenging task unless
the uncertainty in the data and model is clearly understood.

Minor discrepancies seen after 2003 can be also explained
by the Gilgel Gibe hydroelectric dam-I on the lower Omo
River, commissioned in 2004. The impact of the dam on the
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Fig. 7. (a) Total average basin rainfall (m month−1) modelled using satellite rainfall estimates;(b) total over-the-lake ETo (m month−1)
estimated from GDAS ETo; (c) total average basin runoff (m month−1) modelled for the Lake Turkana basin;(d) Lake Turkana water levels
for 1998–2009. Modelled daily lake levels (in blue) and lake level estimates from TOPEX/Poseidon (T/P), Jason-1, and ENVISAT satellite
altimetry data (in dark red).

lake water levels is not clearly understood. Further, ET losses
from the reservoir would also decrease the total volume of
water that would end up in the lake and could subsequently
lead to the delay in the lake level hydrograph. The effect of
the Gibe-I dam on the lake levels is not modelled, as informa-
tion on the operational strategies for the dam is unavailable.

4.5 Model accuracy

Accuracy assessment is performed by comparing both mod-
elled lake water levels and lake volumes with the estimates
from satellite altimetry data. The Pearson’s correlation coef-
ficients and percentage of errors were similar for both cases
(lake levels and lake volumes). Hence, we only presented

accuracy results of lake levels in Table 3. The un-calibrated
modelled lake water levels and the satellite measurements
yielded a high degree of correlation with Pearson’s corre-
lation coefficient (r) values of 0.87, 0.92, and 0.86 for cal-
ibration, validation, and combined periods. Although the
accuracy of un-calibrated modelled estimates are high, this
method can only be used to study the long-term trends in lake
level variations when ground truth data are not available. On
the other hand, model accuracy was significantly improved
when calibrated with limited ground truth data. Calibrated
lake levels showed a higher degree of correlation with corre-
lation coefficient (r) values of 0.89, 0.90, and 0.93 for cali-
bration, validation, and combined time periods, respectively.
The improvement inr value for the combined period was
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Table 3. Results of calibration and accuracy assessment of mod-
elled lake water levels using satellite altimetry data.

Dataset Calibration Validation Combined
period period period
(1998–2003) (2004–2009) (1998–2009)

Pearson’s correlation coefficient (r):

Un-calibrated 0.87∗ 0.92∗ 0.86∗

Calibrated 0.89∗ 0.90∗ 0.93∗

Error statistic∗∗
[units]

RMSE[m] 0.36 (7 %) 0.35 (10 %) 0.36 (9 %)
MAE [m] 0.31 (6 %) 0.27 (7 %) 0.29(7 %)
Bias[m] −0.08 (−2 %) 0.00 (0 %) −0.04 (−1 %)
NCSE[no units] 0.87 0.80 0.87

∗ p-value≤ 0.001;∗∗ error statistic estimates are made using calibrated data.

Note: Value next to each error statistic estimate denotes percent error with respect to

the natural lake level variability of 4.8 m.

found to be significant with the Fisher’s statistic at 95 % sig-
nificance level. Error statistics in Table 3 were estimated
using calibrated lake levels for calibration, validation, and
combined time periods. The model efficiency estimated us-
ing NSCE is found to be 0.87, 0.80, and 0.87 for calibration,
validation, and combined periods, respectively. For the vali-
dation period, the RMSE and MAE were found to be 0.35 m
and 0.27 m, respectively, and the model showed no mean bias
error. The MAE and RMSE are found to be 10 %, respec-
tively, and 7 % of the long-term natural variability observed
for Lake Turkana (4.8 m). As a result, the LLM approach
can be used to model lake levels with confidence. Figure 8
illustrates a scatterplot between the modelled and the satel-
lite altimetry measurements. The modelled versus satellite
altimetry data lie reasonably on the 1:1 line.

4.6 Variations in Lake Turkana water levels

Lake Turkana shows a high degree of seasonal variability.
Based on our modelling results, we found that the annual ET
losses from the lake were between 2.1 and 2.3 m. Over-the-
lake rainfall contributes only up to 30 % of the lake evapora-
tive demand. Lake inflows and evaporation losses are the two
key factors affecting lake water levels. Since over-the-lake
precipitation amounts to only up to one-tenth of the evapo-
ration losses, the increase in lake level is mainly caused by
inflows from the Omo River. A decline in lake level is highly
influenced by the ET losses from the lake. On average, Lake
Turkana water levels would start to rise from July and reach
a peak level by October–November. Thereafter, due to the
reduction in the inflows from the Omo River, the lake would
decline gradually until the end of summer. During the mod-
elling time period, Lake Turkana showed seasonal variations
of 1–2 m. The lake level fluctuated up to 4 m between the
years 1998–2009.
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Fig. 8. Scatterplot of modelled water levels vs. satellite altimetry-
based lake level data. Also shown is the scatterplot of modelled
lake volumes vs. altimetry-based lake volumes. Each point repre-
sents mean monthly modelled (calibrated) lake water levels or cor-
responding lake volume over the combined period (January 1998
through December 2009). 1:1 line is shown as dotted line.

4.7 Lake Turkana water level modelling: opportunities
and challenges

4.7.1 Use of satellite altimetry data for model
calibration

Satellite data/models for lake level studies are subject to
high errors. Hence, one of the challenges of using satellite-
driven data/models for estimating water balance components
is the need for data/model calibration. But calibration is
especially difficult in areas where reliable gauge measure-
ments are unavailable. However, accurate and consistent
satellite altimetry-based lake level data are available for over
150 large lakes and reservoirs globally (Cretaux et al., 2011).
Altimetry data on river height are also available for large
river basins around the world. So far, satellite altimetry-
based lake level data have not been used for calibration or
validation of hydrologic models, especially over lakes in data
scarce regions. Recently, Getirana et al. (2010) used altime-
try data on river height to validate a hydrologic model for the
Negro River basin. In this study, we demonstrate an approach
using satellite altimetry data for model calibration and vali-
dation. Enhanced accuracy due to calibration and validation
of hydrologic modelling enables the use of satellite-driven
data for understanding the interaction between lakes and wa-
tersheds. However, calibration of the model could be a chal-
lenging task where satellite altimetry data or gauge data are
unavailable.
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4.7.2 Towards quantification of upstream impacts on
lake water levels

The assessment of lake water balance would provide im-
proved knowledge of regional and global climate change and
a quantification of the human impacts on water resources
(Cretaux and Birkett, 2006). The use of a multi-source satel-
lite data approach offers a unique advantage to understand
the upstream impacts on Lake Turkana water levels. Up-
stream basin processes such as changes in LCLU, ground-
water abstraction, irrigation water use, construction of dams,
or any newly imposed water regulations influence the Lake
Turkana inflows. Gathering such data could be a challeng-
ing task using remote sensing datasets. However, in this
study, the use of phenology information based on climato-
logical NDVI for runoff modelling (Senay et al., 2009) has
provided satisfactory results for Lake Turkana. However, fu-
ture research should focus on the use of current NDVI for
runoff modelling to capture the upstream impacts on lake
water levels. Furthermore, the Ethiopian government is cur-
rently building a series of dams on the Omo River. Setting
up a well calibrated and validated water balance model is a
first step towards understanding the interaction and potential
impacts of the dams on the hydrology of Lake Turkana.

4.7.3 Use of satellite rainfall data for Lake Turkana
water level modelling

Recently, satellite-based rainfall estimates are being created
by combining data from a combination of sensors and from
different sources to improve accuracy, coverage, and reso-
lution. The usability of RFE-assimilated products demon-
strated in this study would enhance the efforts towards mon-
itoring surface water bodies, especially in ungauged basins.
The RFE dataset has been successfully used as an early warn-
ing tool in several parts of the world by the USA’s Famine
Early Warning Systems (FEWS) Network. However, consid-
ering the accuracies of RFE, modelling results from the LLM
approach should be thoroughly calibrated and validated. As
pointed out by Artan et al. (2007), our study also demon-
strated that calibrated and validated model results could only
be used for monitoring lake levels, whereas un-calibrated re-
sults could only be used to infer relative year-to-year lake
level changes.

4.7.4 Seasonal forecasting of lake level variations

The Intergovernmental Authority on Development (IGAD)
Climate Prediction and Applications Center (ICPAC) re-
leases a seasonal climate outlook statement for every three
months for the Greater Horn of Africa (GHA) region, which
includes the Lake Turkana basin. This seasonal climate
outlook provides information on probability of rainfall in
terms of percentage of above-normal, near-normal, and
below-normal rainfall occurrences summarized from model
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Fig. 9. Lake Turkana water levels at various depths. The shallow
regions along the lake shoreline show the most productive fishing
zones.

forecasts provided by the Global Producing Centres (GPCs),
statistical modelling, and expert analysis and interpretation
(Ogallo et al., 2008). Currently, no model is available to
operationally translate seasonal rainfall forecast information
into useful applications. We suggest that a satellite-driven
water balance model can be integrated to translate seasonal
rainfall forecast information in Lake Turkana water level
forecasts. However, more research and application develop-
ment is required in this direction.

4.7.5 Impact of lake level change on Lake Turkana
fisheries

Lake Turkana water levels are very critical for fisheries pro-
duction. Small changes in Lake Turkana levels often result
in large changes in fish yields for Lake Turkana (Kolding,
1992). The most productive fishing zones in Lake Turkana
are found along the shallow areas of the lake, as shown in
Fig. 9. The most significant fish producing area, Fergu-
son’s Gulf on the western side of the lake, is vulnerable
to lake level changes because it dries when the lake level
falls below 362 m (Avery et al., 2010). This gulf remained
dry during 2005–2006. During this period, the fish catch
records dropped from 9000 to 2500 t (Avery et al., 2010).
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Furthermore, fish availability and extent are also dependent
on the changes in littoral/inshore habitat distribution, ex-
tent of turbidity, and nutrient availability, which are directly
linked to lake inflows. Because of this, continuous monitor-
ing of lake inflows, apart from lake levels, should be under-
taken (Kolding, 1992). The use of satellite altimetry data for
model calibration would enable us to reliably understand and
simulate the impact of individual components of lake water
balance. This approach can also be used to generate possi-
ble changes in the lake levels based on the short-term climate
forecasts.

4.7.6 Operational monitoring of Lake Turkana level
variations

Application of this approach over other complex basins could
be a challenging task, especially due to the complexity and
poor constraining of certain water balance components such
asQgwin, Qgwout andQoutflow. However, the water balance
of Lake Turkana using multi-source satellite data can be sat-
isfactorily used to model lake water level variations. Re-
sults indicated that calibrated lake levels captured the ob-
served trends reasonably well (Fig. 6). Therefore, the multi-
sensor-driven physical hydrologic model presented here can
be used for operational monitoring of Lake Turkana. The
satellite data used in this study are available for download
from different sources in near-real time. RFE rainfall data,
GDAS ETo, and NDVI data are available for download in
near-real time with a few days of lag. Other static datasets,
such as SRTM DEM, the Digital Soil Map of the World, and
MODIS VCF are also available for download at no cost. Fu-
ture NASA missions, such as the Global Precipitation Mea-
surement (GPM) and the Visible Infrared Imager Radiome-
ter Suite sensor on board the National Polar Orbiting Oper-
ational Environmental Satellite System (NPOESS), will en-
able reliable estimation of climate variables and improve the
accuracy of rainfall and ET products, making the LLM ap-
proach more useful.

5 Conclusions

The objectives of this study are (a) to demonstrate the use
of satellite altimetry data for model calibration and valida-
tion when reliable in-situ data are unavailable and (b) to es-
tablish a calibrated satellite data-driven water balance model
for Lake Turkana to improve understanding of the interac-
tions between the Lake Turkana and its watershed. Since
most satellite-driven data/models require calibration, we pre-
sented an approach to calibrate and validate the water bal-
ance model for Lake Turkana using a composite lake level
product of TOPEX/Poseidon, Jason-1, and ENVISAT satel-
lite altimetry data. The use of satellite altimetry data made
it possible to calibrate a satellite-driven hydrologic model
without using any in-situ data. The model results showed

that the satellite-driven lake level modelling approach could
satisfactorily capture the patterns and seasonal variations of
the lake water level fluctuations, including the effect of El
Niño/floods in 1998 and 2006, and the effect of drought in
2000. Validation results showed that model-based lake lev-
els are in good agreement with observed satellite altimetry
data with a Pearson’s correlation coefficient of 0.90 and with
model efficiency of 0.80 during the validation period. Fur-
ther, error estimates were found to be within 10 % of the nat-
ural variability of Lake Turkana, giving high confidence on
the modelled lake level estimates.

It was found that the lake inflows and over-the-lake ET
are the two main driving forces of Lake Turkana water lev-
els. Over-the-lake rainfall contributes only up to 30 % of the
lake evaporative demand. During the modelling time period,
Lake Turkana showed seasonal variations of 1–2 m. The lake
level fluctuated up to 4 m between 1998 and 2009. This study
demonstrated the usefulness of satellite altimetry data (a) to
calibrate and validate the hydrologic model, especially in
ungauged basins, and (b) to establish a reliable water bal-
ance model for understanding the interactions between the
lake and its watershed. Furthermore, for Lake Turkana, we
identified opportunities and challenges of using a calibrated
satellite-driven water balance model for (i) quantitative as-
sessment of the impact of upstream basin developmental ac-
tivities on lake levels and (ii) the use of seasonal rainfall fore-
casts for assessing lake level changes and their impact on
fisheries. From this study, we suggest that globally available
satellite altimetry data provide a unique opportunity to study
similar ungauged basins in different parts of the world.
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Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D.,
Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C.
A., Reidy Liermann, C., and Davies, P. M.: Global threats to
human water security and river biodiversity, Nature, 467, 555–
561, 2010.

Wagener, T., Wheater, H. S., and Gupta, H. V.: Rainfall-Runoff
Modeling in Gauged and Ungauged Catchments, Imperial Col-
lege Press, London, UK, 300, 2004.

Wahr, J., Swenson, S., Zlotnicki, V., and Velicogna, I.: Time-
variable gravity from GRACE: First results, Geophys. Res. Lett.,
31, 1–4, 2004.

Willmott, C. J. and Matsuura, K.: Advantages of the mean absolute
error (MAE) over the root mean square error in assessing average
model performance, Clim. Res., 30, 79–82, 2005.

World Food Program (WFP): Kenya’s drought: No sign of any let
up, WFP, Rome, Italy,http://reliefweb.int/node/70268(last ac-
cess: 9 November 2011), 2000.

Xie, P. and Arkin, P. A.: Analysis of Global Monthly Precipitation
Using Gauge Observations, Satellite Estimates, and Numeric al
Model Prediction, J. Climate, 9, 840–858, 1996.

Yuretich, R. F. and Cerling, T. E.: Hydrogeochemistry of Lake
Turkana, Kenya: mass balance and mineral reactions in an al-
kaline lake, Geochim. Cosmochim. Acta, 47, 1099–1109, 1983.

Hydrol. Earth Syst. Sci., 16, 1–18, 2012 www.hydrol-earth-syst-sci.net/16/1/2012/

http://reliefweb.int/node/70268

