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Abstract. Applying metrics to quantify the similarity or dis-
similarity of hydrographs is a central task in hydrological
modelling, used both in model calibration and the evalua-
tion of simulations or forecasts. Motivated by the shortcom-
ings of standard objective metrics such as the Root Mean
Square Error (RMSE) or the Mean Absolute Peak Time Error
(MAPTE) and the advantages of visual inspection as a pow-
erful tool for simultaneous, case-specific and multi-criteria
(yet subjective) evaluation, we propose a new objective met-
ric termed Series Distance, which is in close accordance with
visual evaluation. The Series Distance quantifies the simi-
larity of two hydrographs neither in a time-aggregated nor
in a point-by-point manner, but on the scale of hydrologi-
cal events. It consists of three parts, namely a Threat Score
which evaluates overall agreement of event occurrence, and
the overall distance of matching observed and simulated
events with respect to amplitude and timing. The novelty
of the latter two is the way in which matching point pairs on
the observed and simulated hydrographs are identified: not
by equality in time (as is the case with the RMSE), but by
the same relative position in matching segments (rise or re-
cession) of the event, indicating the same underlying hydro-
logical process. Thus, amplitude and timing errors are cal-
culated simultaneously but separately, from point pairs that
also match visually, considering complete events rather than
only individual points (as is the case with MAPTE). Rela-
tive weights can freely be assigned to each component of the
Series Distance, which allows (subjective) customization of
the metric to various fields of application, but in a traceable
way. Each of the three components of the Series Distance
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can be used in an aggregated or non-aggregated way, which
makes the Series Distance a suitable tool for differentiated,
process-based model diagnostics.

After discussing the applicability of established time series
metrics for hydrographs, we present the Series Distance the-
ory, discuss its properties and compare it to those of standard
metrics used in Hydrology, both at the example of simple,
artificial hydrographs and an ensemble of realistic forecasts.
The results suggest that the Series Distance quantifies the de-
gree of similarity of two hydrographs in a way comparable to
visual inspection, but in an objective, reproducible way.

1 Introduction

Imagine the following situation: after a flood, the hydrolo-
gists responsible for the forecasts and the flood management
personnel meet for post-event analysis. The head of the dike
defence team was not satisfied with the forecasts: the peak
water level was falsely predicted above dike height, so many
people were unnecessarily activated for sandbag piling. The
operator of a large retention basin claims that the event was
not indicated in the long-term forecasts, which would have
been necessary for pre-event waterlevel drawdown. Further
he reports that during the event, the forecast of the flood rise
was correct with respect to timing, so reservoir operation was
started just in time. But, he continues, the recession was pre-
dicted much too long, resulting in valuable reservoir volume
kept free in vain.

This conversation is fictitious, but nonetheless realistic ac-
cording to the author’s experience in operational hydrology.
If we analyze it, several aspects stand out: first, the meet-
ing took place after and was focused on an event. Second,
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in the discussion the event was subdivided into several seg-
ments and points of interest (rising limb, peak, recession),
that were deemed important enough for separate evaluation.
Third, the discussion was mainly based on the comparison
of observed and forecasted hydrographs, not e.g. observed
groundwater levels. Fourth, the different users focused on
completely different aspects of performance such as long-
term event prediction, peak water level, timing etc. and used
different metrics for evaluation (event occurrence Yes/No,
visual comparison of hydrograph shape, water level excee-
dence Yes/No etc.).

These points, based on an example from hydrological fore-
casting also apply to hydrological modeling and the evalua-
tion of hydrological model performance in a more general
sense: be it for parameter estimation during model calibra-
tion, model validation, classification of hydrological systems
or identification of scales at which to separate explicit and
implicit representations of structures and processes: metrics,
measures and objective functions (including subjective visual
inspection) are applied in all disciplines of Hydrology. The
data used for evaluation may vary with the purpose of the
model, however in practice hydrographs from gauge obser-
vations are the most widely used: they are relatively easy to
obtain and still the most meaningful and relevant expression
of integral hydrological behaviour on catchment scale. Also,
historically hydrological modelling was mainly focused on
analysis and reproduction of observed discharge time series
at the catchment scale. Hence the repertoire of metrics in Hy-
drology was, and to a declining degree still is, mainly related
to hydrographs.

Hydrographs possess properties that make them (from a
hydrological point of view) a particular subset of time se-
ries in general. These properties are worth being considered
when evaluating the appropriateness of metrics to quantify
the similarity or dissimilarity of hydrographs and we will
therefore briefly discuss them in the following.

1.1 Hydrograph characteristics

A hydrograph basically is a time series, i.e. a two-dimensio-
nal, time-ordered dataset. This impedes any straightforward
2-dimensional Euclidean distance calculations as it is for in-
stance possible with spatial rainfall observations. Hence met-
rics to quantify the similarity/dissimilarity of hydrographs
can either evaluate the similarity in timing or amplitude, un-
less a relation between errors in timing and amplitude is es-
tablished.

Further, the range of possible values differs among the di-
mensions: while time, loosely spoken, is quasi unbounded
(and, with it, timing errors when comparing hydrographs),
discharge has a lower limit of zero, which also limits the
range of errors: a simulation (please note that henceforth,
we will use the term “simulation” as representative of any
hydrograph produced by a model, be it a simulation or a fore-
cast), may therefore underestimate the observation by 100%

at most (related to the observation), while the range of pos-
sible overestimations is basically unlimited. This may be
an issue in hydrograph evaluation when considering relative
rather than absolute values: to which underestimation does
an overestimation of, say, 150% compare?

Looking at hydrographs from a more process-based point
of view, it can be regarded as result and expression of a hy-
drometeorological process chain. As such it possesses char-
acteristics that strongly influence both objective and subjec-
tive evaluation: firstly, a hydrograph is intermittent, with dis-
tinct rainfall-runoff events separated by periods of low flow.
As indicated by the conversation sketched above, in Hydrol-
ogy often the event is the time scale relevant for evaluation.
Secondly, a hydrograph is not time-symmetrical: the shape
of the rising and falling limbs of an event look different as
they are dominated by different parts of the hydrometeoro-
logical causal chain. The first is mainly shaped by the rainfall
event, the latter is mainly influenced by catchment properties
such as shape, soil and inclination. As a consequence, when
comparing hydrographs with a time offset, any metric eval-
uating amplitude errors at the same points in time possibly
compares “apples with pears”, i.e. rising with falling limbs
(see also Sect. 2.2).

Keeping in mind the key points of the forecaster’s discus-
sion and the hydrograph characteristics outlined above, we
suggest that a metric suitable to quantify the similarity of
two hydrographs should have the right degrees of freedom
to adapt to the user’s subjective and case-specific perspective
on the hydrographs, but in an objective and reproducible way,
and it should take into account the special properties of hy-
drographs based on the knowledge of the underlying physical
processes. As such, hydrological time series should neither
be regarded as one single time series entity nor as individual
records. In our eyes, the best scale of evaluation is the event
scale, which lies in between. Or, as Spate et al. (2003) put it,
“It seems natural to change the granularity of our (hydrolog-
ical) time series from days into peaks or events.”

It is the aim of this study to propose a new metric to quan-
tify the distance of hydrographs which obeys these specifi-
cations. It is termed “Series Distance” and it closely follows
subjective reasoning in visual inspection.

The remainder of the paper is structured as follows: in
Sect. 2, we discuss established distance metrics for time
series from various fields and their applicability to hydro-
graphs. In the same section, we also present standard metrics
for hydrograph comparison including visual inspection. In
Sect. 3, we introduce the Series Distance method, its under-
lying assumptions and output. This is followed by an appli-
cation to both simple synthetic and real-world hydrographs
in Sect. 4, along with a discussion of results. Finally, conclu-
sions are drawn and ways forward are discussed in Sect. 5.
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2 Distance metrics for time series and their
applicability for hydrographs

2.1 Distance metrics for time series – an overview

Time-series analysis has applications in many fields such as
stock market, medicine, ecology, signal processing, etc. and
a multitude of related metrics has been developed. In the
following, we will present some well established methods
and discuss their applicability to quantify the similarity of
two hydrographs.

2.1.1 Frechet distance

The Frechet distance was introduced by Frechet (1906) and
measures the closeness of two time series if stretching and
compression in time is allowed, but temporal succession is to
be preserved. An intuitive explanation of the Frechet distance
is the minimum required length of a leash between a man and
a dog, if both may walk along their predefined paths at vary-
ing speed including standstill, while walking back is prohib-
ited. A variant of the Frechet distance for discrete time se-
ries was presented by Eiter and Mannila (1994). The Frechet
distance is very useful when only the occurring events, not
their occurring times, are determinant for the proximity eval-
uation. This explains the great success of Frechet distance
in the domain of voice processing. However, as Chouakria-
Douzal and Nagabhushan (2006) point out, the Frechet dis-
tance may lead to irrelevant results if the temporal interde-
pendence of values is of importance, which is true in the case
of hydrographs. As an alternative, they propose a dissimilar-
ity index, which is a weighted combination of the Frechet
distance and local temporal trend correlation (mutual rising
or falling). While this is an improvement to the original
Frechet distance, it is essentially a combination of two inde-
pendent steps, where global similarity of shape is evaluated
by the Frechet distance at the cost of giving up temporal in-
terdependence, and temporal similarity is based on a value by
value basis. However, events in a hydrograph are essentially
trends of intermediate length, which are not explicitly cap-
tured by both components. This makes the use of the dissim-
ilarity index a suitable, but not perfect metric for hydrograph
comparison.

2.1.2 Dynamic Time Warping (DTW)

The Dynamic Time Warping (DTW) algorithm (Sakoe and
Chiba, 1978) has been used very successfully in speech
recognition. The basic assumption is that the shape of the
test and the reference series are the same, but one may
be stretched or compressed in time (e.g. a word slowly or
quickly spoken by a test person and a reference word spo-
ken at normal speed). By non-linear warping (stretching and
compression) in time, the amplitude error of the two signals
is minimized. The minimized amplitude error is the met-
ric. Comparable to the Frechet distance, the DTW is a good

metric to evaluate agreement of shape if temporal consider-
ations play no role. Ouyang et al. (2010) have successfully
used it in hydrological data mining to find years with simi-
lar discharge patterns from long discharge time series. Here,
similarity is mainly defined by similarity in shape, not the
timing, which is valid for long-term studies. However, the
authors also state that “... the elastic shifting of the time axis
loses the information regarding the exact time of the flood
peak, which is absolutely critical in flood prediction.” DTW
is therefore not optimal for direct event-by-event based hy-
drograph comparison.

2.1.3 Dominant Mode Analysis

Dominant Mode Analysis approximates a series by decom-
position with basis functions and evaluates agreement of two
time series via agreement of their power spectrum. The two
best known approaches are Fourier and Wavelet analysis.

As Schaefli and Zehe (2009) summarize, “... the idea to
use Fourier analysis in Hydrology is not new; Whittle (1953)
proposed a method for parameter estimation in the Fourier-
domain matching the theoretical power-density spectrum of
the model to the estimated powerdensity spectrum of the
process observations. The Whittle estimator has recently
been applied to rainfall-runoff models by Montanari and
Toth (2007).” ... “However, as shown by Contreras-Cristán
et al. (2006), it can produce unreliable estimates for non-
Gaussian processes or show an important loss of efficiency
if the autocorrelation of the process is high.” Hence the
most important drawback of Fourier analysis is that timing
aspects of the original series are not retained. This is not the
case with Wavelet analysis, which makes it a suitable tool
for rainfall-runoff model calibration and performance analy-
sis (Schaefli and Zehe, 2009). The challenge of this method
lies mainly in the choice of the similarity measure between
the wavelet power spectra and to a lesser degree in the choice
of the base wavelet (Schaefli and Zehe, 2009).

2.1.4 Wasserstein Distance (WD)

The Wasserstein Distance (WD) is a robust and intuitive met-
ric to quantify the distance between two probability density
distributions. Also known as the Earth Mover’s Distance,
the WD is the numerical cost of moving one distribution
onto the other (with the probability being the mass and the
transportation distance in the units of the data). The op-
timal way for this can be found with a transhipment plan
solved by a network simplex algorithm. Among many oth-
ers, it has found applications in the distance-based analysis
of the long-term behaviour of non-linear dynamical systems
on the basis of probability distributions derived from time
series (Moeckel and Murray, 1997; Muskulus and Verduyn-
Lunel, 2011). While this approach is suitable to evaluate if
a model has captured the essential behaviour of a dynami-
cal system, it retains temporal aspects which are important
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in an event-based comparison. However, if one replaces the
pdf’s with an event, the distance between an observed and
simulated event could, after normalization, be calculated in
the same way. To our knowledge, this has not been tried for
hydrographs yet. The drawback of calculating the distance
between two events with the WD is that “apples could be
compared with pears”, when mass (in this case discharge)
would e.g. be moved from a rising to a falling limb.

2.2 Standard metrics for hydrographs

Probably because they were simple, intuitive and straightfor-
ward to compute, the first metrics used to evaluate the sim-
ilarity of hydrographs were either time-aggregated average
measures of amplitude error, e.g. the Root Mean Square Er-
ror or metrics for timing errors of characteristic points, e.g.
the Peak Time Error. A notable recent exception is the Mul-
ticomponent Mapping approach proposed by Pappenberger
and Beven (2004), where the distance of two hydrographs is
measured by the fuzzy degree of membership in boxes placed
around one hydrograph which are intersected by the other.
This allows simultaneous but not separate consideration of
timing and amplitude errors.

As both Root Mean Square Error and Peak Time Error are,
despite their known deficits, still widely used in hydrological
modelling, their characteristics will be briefly discussed in
the following section.

2.2.1 Metrics for errors in amplitude

Arguably the most widely used metrics in hydrograph anal-
ysis are amplitude errors and their derivatives, e.g. the
Mean Square Error, Root Mean Square Error (RMSE), Nash-
Sutcliffe efficiency NSE (Nash and Sutcliffe, 1970) etc.

RMSE =

√√√√ 1

T
·

T∑
t=1

(ot − st )
2 (1)

A formulation of RMSE for discharge [m3 s−1] is given in
Eq. (1), whereT is the number of steps in a time series
[−], ot andst are the observation at time stept , respectively
[m3 s−1]. Its range of values is [0,∞], with zero being the
optimum. The NSE is the RMSE normalized to [−∞, 1]
by division with the deviation of the observations from their
mean – see Eq. (2), witho denoting the mean of (o1, ...,oT ).

NSE = 1 −

T∑
t=1

(ot − St )
2

t∑
t=1

(ot − ot )
2

(2)

Here, the optimum value is one. As these metrics are in
essence the same, we will discuss their properties only with
the example of the RMSE.

Intuitively, amplitude errors and their derivatives are
thought to be sensitive mainly to errors in amplitude. How-
ever, applied on hydrographs, they show interesting and
sometimes non-intuitive characteristics which have been the
subject of many studies. As Murphy (1988) and later Gupta
et al. (2009) discussed, the NSE (or RMSE) can be regarded
as a combination of three criteria, which relate to “... the cor-
relation, the bias, and a measure of relative variability in the
simulated and observed values”. Consequently, “... optimiz-
ing NSE is essentially a search for a balanced solution among
the three components...” (quoted from Gupta et al., 2009).
The point we want to stress here is that the relative weight
of each component is implicitly fixed by the definition of the
NSE (or RMSE) and cannot be adjusted according to user
needs, which would be possible in a true multiple criteria
optimization. Further, using only the NSE (or RMSE) for
evaluation or optimization introduces systematic problems
such as volume balance errors, undersized variability and a
tendency to underestimate large peaks (Gupta et al., 2009).
Further, Weglarczyk (1998) reported on interdependencies of
the RMSE with other metrics, Krause et al. (2005) compared
several, mainly amplitude-based metrics, Legates (1999) de-
scribed the limits of correlation-based measures such as the
RMSE. Along the same lines, Schaefli and Gupta (2007) as
well as Jain and Sudheer (2008) found that NSE is a poor
metric if the test series show strong seasonality. In this case,
even very simple periodical models can produce high val-
ues of NSE. McCuen et al. (2006) investigated the influence
of sample size, outliers, magnitude bias and time offsets on
the NSE, identifying the adverse effect of time offsets and
magnitude bias. Summarizing the findings of the above stud-
ies, the RMSE and related metrics should not be used by
themselves, but only in combination with additional, prefer-
ably orthogonal measures and their results should be put in a
proper context, e.g. by comparison of the evaluated simula-
tions to benchmarks.

In addition to the findings reported in the literature, we
found more characteristics of RMSE related to the interplay
of errors in timing and amplitude. We will discuss them with
the example of synthetic triangular hydrographs, simple but
roughly realistic in shape, as shown in Fig. 1. The “observed
event” (bold line) is of arbitrary length 17 h and has a peak
of 100 m3 s−1. From it, artificial simulations were derived
by applying all possible combinations of time offsets in the
range [−20, 20] hours and 1-h increments and multiplicative
value offsets in the range [0, 2] in increments of 0.1. In Fig. 1,
three example simulations are shown. For each combination
of time and amplitude offset, we calculated the RMSE and,
for reasons of display and comparison, normalized it by the
maximum RMSE to [0, 1]. The resulting 2-D surface of er-
rors is shown in Fig. 2. Its main characteristics are:

– Starting from the centre (time and value offset zero),
the error increases both with increasing time and value
offset. This is in accordance with intuition.
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Fig. 1. Synthetic, triangular events. “Observation” (bold line) and three example “simulations” (normal lines) derived from the “observation”
by time offsets and multiplicative value offsets.

Fig. 2. Error surface of the Root Mean Square Error (RMSE) for
synthetic, triangular events as shown in Fig. 1. Simulations are
shifted in time (offset range [−20 h, 20 h]) and amplitude (multi-
plier range [0, 2]). The error surface is normalized to [0, 1] by
means of division with the maximum error.

– Considering time offsets, the error surface is symmetri-
cal to time offset zero, rising steeply at first until, be-
yond a time offset of around±10 h, the gradient of
the error surface becomes very small and completely
levels out at time offsets≥ ±18 h. Note that symme-
try occurs only if either at least one of the two hydro-
graphs (observed and simulated) is time-symmetrical or
if they are identical in shape. As can be seen in Fig. 1,

simulation 1, a time offset larger than±18 h completely
separates the observed and simulated hydrograph. This
means that the RMSE, especially for short, steep hydro-
graphs is strongly sensitive to small time offsets, hardly
sensitive to larger offsets and completely insensitive to
time offsets larger than the event duration. Note also
that for all time offsets, the RMSE compares “apples
with pears”: first rising with falling limbs, with increas-
ing offset each “event” is more and more compared to
zero, i.e. “no event”.

– Considering value offsets, the error surface is only sym-
metrical for time offset zero. With increasing time off-
set, the error surface becomes more and more asymmet-
ric. This means that a simulation with a time offset,
which overestimates the observation by 50%, leads to
a much larger RMSE than a simulation with the same
time offset but 50% underestimation.

– As for the relation between RMSE values for time and
value offsets, the triangular hydrograph as used here,
shifted by 3 h (and no value offset), leads to an RMSE
value of 13 m3 s−1. This is comparable to an RMSE of
12 m3 s−1 for a simulation with a value offset of fac-
tor 1.5 and time offset zero (see simulation 2 and 3 in
Fig. 1). This relation may or may not be in accordance
with the user’s subjective weighting, but the point is that
it is fixed by the nature of the RMSE calculation and the
shape of the hydrograph. And in the author’s subjective
view, especially in cases of short events with fast rise
and recession, RMSE puts too much weight on timing
errors compared to errors in amplitude.
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2.2.2 Metrics for errors in timing

When comparing two hydrographs, time offsets are easily
detected by the examiners eye and strongly influence the
process of opinion making. Hence, metrics to quantify tim-
ing errors are, after metrics of amplitude errors, also well-
known, especially the Peak Time Error. This is the time
offset between an observed and the related simulated peak
(e.g. Yilmaz et al., 2005). The Mean Absolute Peak Time
Error (MAPTE) in unit [h] then is the average of all abso-
lute peak time errors in a hydrograph (see Eq. 3, whereN

is the number of matching peaks – observed, simulated – in
the time series andPo andPs are timing of the observed and
simulated peaks, respectively).

MAPTE =
1

N
·

N∑
n=1

∣∣Po,n − Ps,n
∣∣ (3)

However, peak time metrics are much easier verbalized and
applied in visual inspection than formulated and coded, as
it requires automated identification of individual events and
within the events unique peaks, which may be difficult in
case of multi-peak events. Further, once the peaks are found,
matching pairs in the observed and simulated hydrograph
have to be found. This is usually done by temporal prox-
imity, but this may not always be correct. Hence, metrics
for time offsets are less frequently applied than amplitude-
based metrics. An elegant solution to this problem is to find
the average time offset of the complete hydrograph by maxi-
mizing correlation of the observed and the shifted simulated
series (e.g. Fenicia et al., 2008). However, this does not con-
sider the event-based nature of hydrographs, where individ-
ual events may occur too early and others too late.

Some interesting new approaches were proposed by Lerat
et al. (2010), who calculate time offsets not only from event
peaks or centroids, but also from comparison of the cumu-
lative volume of two hydrographs and by the phase differ-
ence in a cross wavelet approach. Liu et al. (2010) also
proposed to estimate timing errors in scale-time space using
cross-wavelet transformations, which provides information
on scale-dependent time offsets.

For reasons of comparison to the RMSE, we also applied
the MAPTE to the synthetic triangular hydrographs and all
possible pairs of time and multiplicative value offsets as de-
scribed in Sect. 2.2.1. The resulting 2-D error surface, again
normalized by division with the maximum error to [0, 1], is
shown in Fig. 3. Its main characteristics are:

– Its shape is rather simple and resembles a turned ridge
roof. As the MAPTE is insensitive to any differences
in peak magnitude, the error along the transect at time
offset zero is always zero.

– Similar to RMSE, the error surface is symmetrical to
time offset zero. But, in contrast, it continuously rises
as a linear function of time offset.

Fig. 3. Error surface of the Mean Absolute Peak Time Er-
ror (MAPTE) for synthetic, triangular events as shown in Fig. 1.
Simulations are shifted in time (offset range [−20 h, 20 h]) and am-
plitude (multiplier range [0, 2]). The error surface is normalized to
[0, 1] by means of division with the maximum error.

When comparing the error surfaces for RMSE and MAPTE,
it becomes apparent that basically, the directions of largest
and smallest gradients are identical. This indicates that when
comparing observed and simulated hydrographs with short
and steep events and small but present time offsets (which is
frequently the case with real-world hydrographs), RMSE and
MAPTE are essentially redundant metrics. We tried this also
for rectangle-shaped synthetic hydrographs (not shown): the
results were less pronounced but essentially the same. This
is on one hand unfavourable as errors in amplitude should be
distinguishable from errors in timing in order to provide use-
ful feedback for model calibration. On the other hand it sup-
ports the findings of Murphy (1988) and Gupta et al. (2009),
stating that NSE evaluates not only amplitude errors, but sev-
eral aspects of a hydrograph.

2.2.3 Visual inspection

Apart from objective metrics, perhaps even more important,
is visual inspection and comparison of hydrographs. Eye and
brain are a powerful expert system for simultaneous, case-
specific multi-criteria evaluation which provides results in
close accordance with the user’s needs. Due to these obvi-
ous advantages, visual inspection is still standard procedure
for calibration and validation in engineering practice.

At this point the reader is, before reading on, encouraged
to rank the set of example simulations displayed in Fig. 4 by
her or his own subjective judgement. The ranking can later
be compared to the author’s subjective ranking and the result
of objective ranking schemes.

However, visual inspection has two major drawbacks: it is
subjective and hence irreproducible and it is not applicable
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Fig. 4. Observed discharge at gauge Kempten/Iller (954 km2) for period 21 April 2008 14:00–27 April 2008 00:00 (132 h) and 8 simulations
with hydrological model “Fgmod” (Ludwig, 1982) based on Cosmo-Leps ensemble weather forecasts (Marsigli et al., 2005).
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on large data sets. In order to overcome this, in recent
years several objective metrics were proposed which more
closely resemble subjective reasoning in visual inspection
(Bastidas et al., 1999; Boyle et al., 2000, 2001). One ma-
jor step towards this goal was to change the way of look-
ing at a hydrograph, away from considering it merely as a
sequence of values towards seeing it as the result of a hy-
drometeorological process chain, producing distinguishable
features such as low flow, events, rising and falling limbs
etc. which contain valuable information on both the pro-
cesses and the models to be evaluated. For instance, Pebesma
et al. (2005) evaluated the temporal characteristics of time
series of amplitude errors. This concept was further devel-
oped by Reusser et al. (2009), who analyzed the temporal
dynamics of many metrics applied on hydrographs, clus-
tering them into typical error classes and from this, drew
specific conclusions on structural deficits of the underlying
models. The same trend away from merely amplitude-based
scores towards more intuitive, feature-based comparison can
be noticed in the atmospheric sciences: Ebert (2008) pro-
posed Fuzzy and neighbourhood-based approaches to ac-
count for approximate agreement; Casati et al. (2004) used
scale-decomposition techniques to isolate physical features
such as large-scale frontal systems of small-scale convective
showers. Davis et al. (2006) used object-based techniques
to compare identifiable objects such as rain cells, Keil and
Craig (2009) used field verification techniques for the same
purpose.

These approaches not only represent the trend of looking
at data (in our case hydrographs) in a more process-based
way, but also the move from single- towards multi-objective
evaluation. Much work has been done in this field in re-
cent years, and both new metrics (e.g. Dawson et al., 2007,
2010) as well as ways to jointly evaluate them have been
proposed, e.g. Taylor (2001), Yapo et al. (1998), Gupta et
al. (1998), van Griensven and Bauwen (2003). Applications
of multi-objective calibration are manifold (e.g. Beldring,
2002); however the metrics applied are still mainly of the
amplitude-error type. Recently, Gupta et al. (2008) pro-
posed a step beyond multi-objective evaluation towards di-
agnostic, behavioural evaluation of catchment/process sig-
nature indices. The concept has been applied by Yilmaz et
al. (2008), using three behavioural functions: water balance,
vertical and temporal water redistribution. Other steps to-
wards multi-objective evaluation with hard and soft informa-
tion have been proposed by Winsemius et al. (2009).

3 The metric “Series Distance (SD)”

The Series Distance (SD) was developed with the aim to
closely reflect subjective reasoning in visual hydrograph in-
spection. In our view, this is mainly characterised by the
following points:

– A hydrograph is the result and expression of a hy-
drometeorological process chain and as such, individ-
ual events, separated by periods of low flow are distin-
guished and considered individually.

– Each event is composed of characteristic features,
namely peaks, troughs, and segments of rise or reces-
sion.

– When comparing observed and simulated hydrographs,
only matching events and matching segments within
them are compared. There may be events, simulated
or observed, that have no match.

– Subjective evaluation of an event is typically done by
complete comparison of matching segments, simultane-
ously but separately for errors in amplitude and tim-
ing. A typical linguistic evaluation could be: “The
simulated flood rise is too early and too steep and the
peak too high, the falling limb drops too slowly and
lasts too long”. The resulting synoptic evaluation com-
pares the overall shape of the hydrographs. This is in
our eyes superior to the approach proposed by Perng
et al. (2000), who uses patterns of single characteristic
landmarks such as peaks or troughs for time series com-
parison.

– Each user weighs errors in amplitude and timing dif-
ferently, depending on the intended use of the simula-
tion. For example in flood forecasting, a person oper-
ating a small flood-retention basin is dependent on ac-
curate peak timing, while a person responsible for dike
defence is more interested in maximum water levels.

– The overall comparison of an observed and simulated
hydrograph includes the following components: did the
simulation produce matches of all observed events, or
were there missing or false events? Did the overall
shape of the matching events agree with respect to tim-
ing and amplitude? These individual components may
point towards different sources of error (poor input data,
deficits in different parts of the underlying model struc-
ture, etc.). It is therefore useful to also allow their sepa-
rate, non-aggregate evaluation.

As the SD aims to consider all these points, a precondition
for its use is that the investigated hydrograph pairs (i) contain
events and (ii) have at least something to do with each other
in the sense that they are to a certain degree correlated and
that observed and simulated events can be related. If this is
not the case, e.g. for long spells of low flow, an event-based
comparison is not useful and other measures such as simple
amplitude metrics can and should be applied.

3.1 Procedure

The SD is not a single metric based on a single formula; it is
rather a procedure which allows a combined determination of
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Fig. 5. Example of a matching observed (black) and simulated (grey) event (detail of event 5 in Fig. 4). The hydrological case is shown for
each point: “rise” (filled circle), “peak” (upward triangle), “recession” (empty circle), “trough” (downward triangle), “no event” (no marker).
The “no-event” threshold (thin grey line) separating events from low flow conditions is set to 88 m3 s−1.

how many of the observed and simulated events match and
how the matching events differ with respect to timing and
amplitude. It consists of the following steps:

– Identify events: from the hydrograph, individual events
are identified by applying a user-defined parameter
termed “no-event threshold” [m3 s−1]. In its simplest
form, this is a constant discharge threshold separating
baseflow conditions from an event. More elaborate
baseflow separation techniques are of course possible.
Each event starts with an upward and ends with a down-
ward crossing of the “no-event” threshold. In the exam-
ple hydrograph shown in Fig. 5, the threshold was set to
88 m3 s−1.

– Match events: in order to relate events in the observed
and simulated hydrograph, a parameter termed “match
limit” [h] is applied. This is a time offset separating
matching from non-matching events. Two events are
considered matching, if the end of the earlier and the
start of the later are no longer apart than the match limit.
Hence, in an observed and simulated hydrograph, there
can, following the nomenclature used for contingency
tables, be matching events (“hits”), observed events
with no match (“misses”) and simulated events with no
match (“false events”). Only 1:1 relations are allowed,
i.e. in the case of two simulated events matching one
observed (or vice versa), the relation is only established
between the pair with larger overlap. “Match limit” can
assume negative or positive values, usually it is set to
zero. For more detailed information on the matching
algorithm, see the pseudo code in Appendix A1. In
Fig. 5, with match limit set to zero, the two events were

considered matching. In simulations based on observed
forcing, events usually match. Simulations based on
weather forecasts however, especially long-term fore-
casts in small catchments, may contain misses or false
events.

– Assign hydrological cases: each point of the ob-
served and simulated hydrograph is assigned one of
the following hydrological cases, defined by the se-
quence of gradients from the previous to the cur-
rent and from the current to the next point: “rise”
(positive–positive), “peak” (positive–negative), “reces-
sion” (negative–negative), “trough” (negative-positive).
In addition, all points below the no-event threshold are
labelled “no event”. Ensuring meaningful assignments
usually requires pre-processing of the time series:

– Smoothing: peaks and troughs mark important
turning points in the hydrograph. In order to cap-
ture only the relevant peaks and troughs by the
gradient-based approach, and not just small fluctu-
ations (possibly caused by the manner of observa-
tion), the latter should be removed, e.g. by a moving
average filter.

– Avoid equal values: sequences of equal values
sometimes occur under low-flow conditions, cor-
rupt data or human impact (e.g. weir operation). As
this obviates unique determination of hydrological
cases, we modify them in a very simple manner:
each value in the sequence is raised by 1/1000 of
its precursor. The impact of this modification on
the overall result is in most cases negligible.
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For more detailed information on the algorithm, see the
pseudo code in Appendix A2. In Fig. 5, each point of the
observed and simulated hydrograph is marked with its hy-
drological case. An event invariably consists of the sequence
of components shown in Eq. (4), wherexiε [0, ∞].

start, x1 · rise, x2 · (peak, x3 · decline, through, (4)

x4 · rise), peak, x5 · decline, end

This means that in the simplest case, an event consists of
a start, a peak and an end (x1, x2, x3, x4, x5 = zero). Note
that the sequence of peaks and troughs alternates and that it
always starts and ends with a peak. Hence, there is always
one more peak than the number of troughs.

– Attune matching events: Although the principal order
and relative frequency of peaks and troughs is predeter-
mined, the absolute number can differ between match-
ing observed and simulated events. For example in
Fig. 5, there are 4 peaks and 3 troughs in the observed
event, and only 1 peak and no trough in the simulated.
However, in order to calculate the distance between the
observed and simulated event (explained below), the
number of peaks and troughs in the observed and simu-
lated event must be equal. This is achieved by eliminat-
ing the less relevant peaks and troughs in the event with
the higher number of turning points:

– In the event, find the sequence of peakn/troughn/
peakn+1 where the amplitude difference calculated
as (peakn−troughn) + (peakn+1−troughn) is mini-
mal. In other words, this is the least pronounced
“dent” in the event.

– From this sequence, erase the trough and the
smaller (less important) of the two peaks. “Erase”
here does not mean that the point are removed, but
their hydrological case is changed to “rise” or “re-
cession”, depending on the neighbouring points.

– This is repeated until the number of turning points
in the observed and simulated event is equalized.

– Having thus ensured that each segment of the ob-
served event finds its counterpart in the simulated
event, the distance calculation is done in a loop over
all segments.

– Note that for misses and false events, this procedure
is not required.

For more detailed information on the attuning algorithm, see
the pseudo code in Appendix A3. In the example shown
in Fig. 5, this procedure removes the last three peaks and
troughs from the observed hydrograph. This is in accordance
with visual inspection, as the dominant peak at the beginning
of the event is maintained.

– Distance calculation for matching events: Having en-
sured that the number of peaks and troughs (and with
it, the number of rising and falling segments) is attuned,
the distance between matching segments can be calcu-
lated.This is the core of the Series Distance procedure.
The idea is that the shape of each observed segment,
expressed by the number of points and their respec-
tive time and amplitude values, is the reference, against
which the matching simulated segment is compared. As
the simulated segment may be longer or shorter than the
observed, 1:1 mapping of observed and simulated points
is usually not possible. To overcome this, the simulated
segment is considered as a polygon line. From this,
applying linear interpolation, points are sampled with
equal temporal spacing, the number being equal to the
number of points in the observed segment. With this,
each point in the observed segment can be assigned a
point in the simulated segment. Now for each pair of
points the offset in time and amplitude can be calcu-
lated. For more detailed information on the distance al-
gorithm, see the pseudo code in Appendix A5. The ad-
vantage is thus that (i) only matching segments are com-
pared, (ii) not single points (e.g. peaks) are used to cal-
culate the distance, but complete segments are scanned,
(iii) the relative contribution/importance of each seg-
ment to the overall event is determined by the length
of the observed segment, (iv) matching points are found
in a way comparable to visual inspection and (v) timing
and amplitude errors are calculated between the same
pairs of points, simultaneously but separately. To il-
lustrate this, connecting lines between matching points
are shown in Fig. 6. The small inserted figure reveals
that the observed points in a segment do not necessarily
match with a simulated point, but with a point on the
polygon line representing the simulation, located at the
same fraction of overall segment length.

– Distance calculation for non-matching events: in the
case of misses and false events, there is no matching
event available for comparison. Consequently, there is
neither a timing error nor an amplitude error that can be
calculated from them. This may seem non-intuitive at
first, as misses and false events are most unfavourable
and should therefore strongly affect any metric. In fact,
their influence is accounted for by the third component
of the Series Distance, a contingency table (see also
Sect. 3.2). The advantage of this procedure is that three
basically independent characteristics of agreement be-
tween two hydrographs (do the features match? is the
timing of the matching features correct? is the magni-
tude of the matching features comparable?) are treated
separately. With a suitable weight of the contingency ta-
ble in a final combined evaluation of the three metrics,
misses and false events can be considered appropriately.
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Fig. 6. Example of a matching observed (black) and simulated (grey) event (event 5 in Fig. 4). Connections (thin grey lines) between
matching points of observation and simulation according to the Series Distance procedure are shown. The small inserted figure reveals that
the observed points in a segment (rise or recession) do not necessarily match with a simulated point, but with a point on a polygon line
representing the simulation at the same fraction of overall segment duration.

– Distance calculation for low flow periods: As the Series
Distance focuses on comparison of events, neither time
nor value errors are calculated for values below the no-
event limit.

– Altogether, the SD procedure has three free parameters,
namely the “no-event” threshold [m3 s−1], the match
limit [h] and the manner of the smoothing.

3.2 Output

Based on the identification of events in the observed and sim-
ulated hydrograph and the distances in magnitude and tim-
ing, calculated for all matching point pairs as described in
Sect. 3.1, a number of metrics can be calculated:

– Contingency table: the frequency of matching, missing
and false events can be listed in a contingency table as
shown in Table 1. This provides useful information on
the overall agreement of simulated and observed events.
Note that here the number of correct negatives, i.e. oc-
casions where both the observation and simulation show
no event, cannot be calculated as this would require
the definition of a typical period of time for evaluation
(in weather forecasting, this is typically the aggregation
time of interest, e.g. 12 h). However, as the SD is in-
tended to evaluate the agreement of events, this is in our
eyes no substantial drawback.

– Threat Score: the information in the contingency ta-
ble can be further condensed to the well known Threat
Score or Critical Success Index (Donaldson et al., 1975)
as shown in Eq. (5). Ranging from zero to one, a Threat

Score of one indicates optimal reproduction of events.
For the definition of hits, misses and false alarms see
Table 1.

Threat Score=
hits

hits + misses+ false alarms
(5)

– Mean Absolute Amplitude and Timing error: from the
set of amplitude and timing errors (all point pairs in
all segments in all matching events), standard aggre-
gate metrics such as the mean, mean absolute or mean
squared error can be calculated. In this work, we ap-
plied the Mean Absolute Error both for timing (SDt )
and value (SDv) for the following reasons: firstly, taking
the absolute value avoids cancellation of positive and
negative errors. Secondly, we used the simple (i.e. non-
squared) distance, as the goal of the Series Distance is
to evaluate overall agreement rather than amplifying in-
dividual gross errors. SDt and SDv are also displayed
in Eqs. (6) and (7), respectively, withM being the num-
ber of time steps within all observed events that have
a matching simulated event. Distt and Distv are the
differences between matching observations and simula-
tions, respectively, as explained in Appendix A4.

SDt =
1

M
·

M∑
m=1

|Dist t(m)| (6)

SDv =
1

M
·

M∑
m=1

|Dist v(m)| (7)
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Table 1. Contingency table.

observation

> threshold ≤ threshold

si
m

ul
at

io
n

> threshold hits false alarms
≤ threshold misses correct

negatives

– Many other metrics can be derived from the Series Dis-
tance procedure, e.g. scatter plots of timing error vs. am-
plitude error, which potentially allows insight into typi-
cal error combinations useful for deficit analysis of the
underlying models. This could be further refined by do-
ing the analysis separately for each hydrological case.

Applied in the manner as proposed above, the Series Dis-
tance procedure yields three metrics, namely the Threat
Score, the SDv and the SDt . They are essentially non-
redundant, as the first evaluates agreement in overall event
occurrence, the second agreement in amplitude and the last
agreement in timing and as such, they can be evaluated sepa-
rately. For tasks such as automated model optimization how-
ever, a single metric may be desirable. In this case the three
metrics can be combined to one, using some kind of weighted
combination function. The choice of this function and the
relative metric weights of course introduces a subjective el-
ement in the evaluation procedure. However, as discussed
above, each user weighs errors in event occurrence, ampli-
tude and timing differently, depending on the intended use
of the simulation. In contrast to visual inspection, where
the weighted combination is carried out in an irreproducible
way, the application of a combination function is objective
and reproducible while still giving the user the freedom of
customizing it according to her or his subjective needs.

3.3 Alternatives

Development of the SD procedure as described in Sects. 3.1
and 3.2 was a matter of trial and error and frequently ended
in dead ends. As we think that much can be learned from
going astray, we will now present a line of thought we tested
and abandoned.

Seeking a way to compare hydrographs in a more holistic
manner, it was tempting to establish a relation between errors
in amplitude and timing at the very beginning of the SD pro-
cedure. This can be done either in a subjective, user-specific
manner by formulating a direct relation (e.g. “an error in
timing of one hour is equivalent to an error in magnitude of
±10%”), or it can be done in the form of an objective rela-
tion based on hydrograph characteristics (e.g. for each event,
the difference of peak and lower threshold is considered as
100% error in amplitude, while a time offset equal to the

event length is considered 100% error in timing). Thus trans-
forming both errors to dimensionless units allows 2-D dis-
tance calculations in the transformed time-amplitude space.
With this, matching points on the observed and simulated
hydrograph are simply those that are closest to each other,
given that they are of the same hydrological case. The 2-D
point distances can then simply be added to the overall Series
Distance. This approach, however, had two major disadvan-
tages. Firstly, it may lead to non-intuitive sets of point pairs
as complete scanning of each segment is not assured. For in-
stance, if a simulated flood rise severely underestimates the
observed rise, for most points on the simulated hydrograph
the closest points will be found in the lower part of the ob-
served hydrograph, leaving the upper part completely uncon-
sidered. Secondly, while on one hand combining errors in
time and amplitude from the beginning is attractive as it al-
lows direct computation of a single metric, on the other hand
it means a loss of information which can be drawn from the
relative contributions and correlations of errors in timing and
amplitude.

Although this line of thought is no longer pursued at the
moment, it may at a later time be interesting to relate (i.e. nor-
malize) the components of the Series Distance to character-
istic features of the hydrograph under consideration, such as
mean event duration, mean event distance, distribution of
discharge values, etc. Thus transforming the errors to di-
mensionless numbers would facilitate combination to a sin-
gle metric and make their relative weighting more objective.
Also, it would facilitate comparison of metrics among hy-
drographs from different sites with different characteristics
(e.g. hydrographs from alpine catchments with short, inten-
sive events or hydrographs from large lowland catchments
with drawn-out, smooth events).

4 Application, results and discussion

In this section, we apply the Series Distance both to artificial
and realistic hydrographs in order to evaluate its behaviour
under different conditions and to compare its results both to
standard metrics (RMSE and Mean Absolute Peak Time Er-
ror) and visual inspection.

4.1 Application on a synthetic hydrograph

Similar to the discussion of the RMSE and MAPTE charac-
teristics in Sects. 2.2.1 and 2.2.2, respectively, we first ap-
plied the SD procedure to the synthetic triangular hydro-
graphs shown in Fig. 1. Each “simulated” event is sim-
ply derived from the “observed” event by an offset in time
and a multiplicative offset in amplitude. As with RMSE
and MAPTE, we calculated the SDv and SDt for all offset
combinations in the range of [−20, 20] hours and multi-
plicative value offsets in the range [0, 2]. The free SD pa-
rameters were set to the following values: match limit = 0 h,
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Fig. 7. Error surface of the value/amplitude error of the Series Dis-
tance (SD) for synthetic, triangular events as shown in Fig. 1. Simu-
lations are shifted in time (offset range [−20 h, 20 h]) and amplitude
(multiplier range [0, 2]). The error surface is normalized to [0, 1]
by means of division with the maximum error.

“no-event” threshold = 1.9 m3 s−1, smoothing = none. With
the “observed” values ranging from 0 to 100 and an event
length of 17 h, time shifts≥18 h lead to non-matching events.
The contingency table here simply contains one “hit” for
time offsets smaller than 18 h and one “miss” and one “false
alarm” beyond. With the event threshold set to a very low
value, even strongly downsized simulations are still above
the threshold and thus considered as events. The resulting
2-D surfaces of error for SDv and SDt are shown in Figs. 7
and 8, respectively, again normalized by division with the
maximum error to [0, 1]. Their main characteristics, espe-
cially in comparison to those of RMSE and MAPTE are:

– Both surfaces resemble a turned ridge roof, but in con-
trast to RMSE and MAPTE, the (turned) ridges point in
different directions: SDv is sensitive to amplitude off-
sets only, while SDt is sensitive to time offsets only.
Both error surfaces are symmetrical to the respective
ridge (amplitude offset one and time offset zero, respec-
tively) and, unlike RMSE, rise linearly. This means that
the two metrics are basically orthogonal, which makes
them suitable for joint, non-redundant evaluation.

– For time offsets beyond the matching limit (≥18 h),
both SDv and SDt drop to zero, as for non-matching
events, no distances are calculated (see Sect. 3.1). The
disagreement of the observed and simulated hydrograph
is in this case captured in the contingency table.

4.2 Application on realistic hydrographs

Finally, we applied the SD procedure to eight realistic pairs
of observed and modelled hydrographs as shown in Fig. 4.

Fig. 8. Error surface of the timing error of the Series Distance (SD)
for synthetic, triangular events as shown in Fig. 1. Simulations are
shifted in time (offset range [−20 h, 20 h]) and amplitude (multi-
plier range [0, 2]). The error surface is normalized to [0, 1] by
means of division with the maximum error.

The observed hydrograph is from the Kempten gauge on the
river Iller (Germany), which drains an alpine catchment of
954 km2. The discharge was observed during a small 5-day
flood event from 21–27 April 2008. The related modelled
hydrographs are based on forecasts from an operational, con-
ceptional flood forecasting model based on Larsim (Ludwig,
1982; Ludwig and Bremicker, 2006), driven by Cosmo-Leps
ensemble weather forecasts (Marsigli et al., 2005), which
are widely used in operational hydrological forecasting . We
chose an ensemble forecast as with this, a number of differ-
ent modelled hydrographs are available which are all related
to the same observed hydrograph. This facilitates perfor-
mance comparisons among the simulations and allows rank-
ing. However, this does not mean that the Series Distance
is only applicable on hydrological forecasts; the hydrograph
ensemble might just as well have been a set of simulations
based on different model parameter sets in a calibration pro-
cedure.

As the model application is not of central interest here,
for the sake of brevity we are not going into greater detail
on the model setup. We also did not use the hydrographs as
produced by the hydrological model directly, but modified
them slightly. We did so because the aim of this study is
to present and analyse the behaviour of SD for a variety of
hydrograph pairs with different characteristics such as over-
estimation, timing errors, matching and missing events, etc.
This is hard to find in a single forecast ensemble. The modi-
fications we carried out were small changes in magnitude (of
the order of±10%) or timing (of the order of±5 h). How-
ever, care was taken that the resulting hydrographs remained
realistic.
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Fig. 9. Example of a matching observed (black) and simulated (grey) event (event 5 in Fig. 4). Connections (thin grey lines) between
matching points of observation and simulation according to the RMSE are shown. Note that connections may exist between non-matching
segments of the hydrographs (rise with recession or vice versa).

In order to apply the Series Distance, its free param-
eters were set to the following values: match limit = 0 h,
“no-event” threshold = 88 m3 s−1 (see e.g. Fig. 5), smooth-
ing = 5 h moving average. Note that we deliberately omitted
the threshold from Fig. 4 to avoid biasing the reader’s own
subjective evaluation and ranking.

For comparison, we also calculated the RMSE and
MAPTE for all eight events. In order to base them on the
same dataset as the Series Distance metrics, RMSE was also
only calculated for values above the “no-event” threshold
(i.e. low flow was omitted) and the Mean Absolute Peak
Time Error was only calculated between peaks of events that
were considered matching by the SD procedure.

The observed and simulated hydrographs for event 5 are
shown in Figs. 6 and 9. In addition, connection lines between
related points (i.e. the point pairs used for distance calcula-
tions) on the two time series are shown in Fig. 6 according to
the SD procedure and in Fig. 9 as used by the RMSE. While
in both cases points below the “no-event” threshold are ne-
glected, there are obvious differences for the points above:
RMSE relates points with equal position in time, while SD
relates points at equal relative position in matching segments
of matching events. In our view, the latter is in closer accor-
dance with intuition than the first. For example, the detailed
subplot in Fig. 9 reveals that between time steps 88 and 99,
RMSE is calculated between non-matching parts of the hy-
drographs: the simulation already recedes while the observa-
tion still rises. Another example is the first steep flood rise at
time steps 15 to 20. Here, the simulated hydrograph closely
resembles the observed one, but runs ahead for about two
hours. The resulting point pairs for RMSE are far apart with
respect to amplitude, which results in large values of RMSE,

Table 2. Metrics for 8 pairs of simulated and observed hydro-
graphs as shown in Fig. 4. RMSE = Root Mean Square Error,
MAPTE = Mean Absolute Peak Time Error, SDv = Amplitude Er-
ror of Series Distance, SDt = Timing Error of Series Distance.

Sim # RMSE MAPTE Threat Score SDv SDt

[m3 s−1
] [h] [−] [m3 s−1

] [h]

1 22.2 13.0 1.0 6.7 13.8
2 15.5 2.0 0.5 18.1 12.1
3 15.2 0.0 0.3 7.5 4.6
4 14.0 1.0 0.5 10.3 5.5
5 17.9 7.5 1.0 5.8 8.4
6 15.8 6.5 1.0 6.8 6.5
7 24.1 6.0 0.5 10.6 15.5
8 25.8 8.0 0.5 5.0 15.6

while a user might consider the simulation as relatively good,
despite the time offset. In our opinion, the distance between
the hydrographs is in this case better represented by the point
pairs of SD as shown in Fig. 6. They also have the advantage
that both the errors in amplitude and timing are calculated
on the same point pairs, simultaneously but separately. In
contrast, the MAPTE is calculated only on a single pair of
points.

All metrics (RMSE, MAPTE, Threat Score, SDv and SDt )
for each of the eight simulations are shown in Table 2. Irre-
spective of whether the eight simulations stand for a set of
ensemble forecasts or a set of simulations in a parameter op-
timization process, the task is the same: to evaluate them ac-
cording to their performance and then select the best (or the
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Table 3. Ranked metrics from Table 2 for 8 pairs of simulated and observed hydrographs as shown in Fig. 4. Ranks are determined
separately for each column. Highest ranks are shaded grey. RMSE = Root Mean Square Error, MAPTE = Mean Absolute Peak Time Error,
I and II = ranks of columns I and II added and ranked, SDv = Amplitude Error of Series Distance, SDt = Timing Error of Series Distance,
V and VI = ranks of columns V and VI added and ranked, IV and VII = ranks of columns IV and VII added and ranked, Subjective = subjective
classification by the authors, Rank Diff = Accumulated rank difference between subjective ranking (column IX) and the ranks in the respective
column.

Sim # RMSE MAP-TE I and II Threat Score SDv SDt V and VI IV and VII Subjective
I II III IV V VI VII VIII IX

1 6 8 7 2 3 6 5.5 3 3
2 3 3 3 5.5 8 5 7 7 6
3 2 1 1.5 8 5 1 1.5 4.5 4
4 1 2 1.5 5.5 6 2 4 4.5 5
5 5 6 5.5 2 2 4 1.5 1 1
6 4 5 4 2 4 3 3 2 2
7 7 4 5.5 5.5 7 7 8 8 8
8 8 7 8 5.5 1 8 5.5 6 7

Rank Diff 20 26 23 11 14 16 10 3 0

best few). This is no problem if single metrics are used, but
if several metrics with different units are jointly considered
the problem of unit mixing and of assigning relative weights
to individual metrics occurs. The first can, for example, be
overcome by transforming values to relative ranks within the
set while the latter requires a (subjective) fixing of weights
by the user. With respect to the first problem, in this study
we used a simple ranking transformation: for each metric,
the relative rank of each simulation is shown in Table 3.

In addition to ranking the individual metrics (columns I, II,
IV, V, and VI), we also calculated the ranks of combined met-
rics. First, we combined RMSE and MAPTE, giving equal
weights to each of them. To this end, the ranks of RMSE and
MAPTE for each simulation were added and the resulting
sums ranked again (see column III). It is noteworthy that for
the set of simulations presented in this study, both RMSE and
MAPTE lead to rather similar ranking orders: hydrographs
three and four (both with small timing errors for the main
event, but almost completely missing the secondary event)
were placed at the top, hydrograph five (both events repro-
duced in the correct order of magnitude but with a timing
error) was placed in the lower half. As a consequence of
the similar ranks, the combined ranking is comparable to the
ranking of the individual metrics.

Moreover, we merged the two SD distance metrics: in col-
umn VII, the ranks of SDv and SDt were combined in the
same manner as RMSE and MAPTE. In contrast to RMSE
and MAPTE, however, the rankings of the two SD distances
are dissimilar. For example, hydrograph eight was ranked
best by the SDv and worst by the SDt . In that case, the
matching simulated and observed hydrographs were similar
in shape and amplitude, but offset by a large time shift. Note
that for hydrograph eight, SD identified only one match-
ing event: the secondary observed event found no match.

Consequently, the Threat Score was low (rank 5.5 in column
IV, row “8”). In contrast to this, in hydrograph one (where
simulation and observation of the main event are also simi-
lar in amplitude and offset in time), the secondary observed
event matches a simulated one. This results in a high rank for
the Threat Score. Ranks for SDv were lower, though, as the
matching simulation underestimated the observed secondary
event.

Also, all three SD metrics were combined in column VIII
by adding the (weighted) ranks of Threat Score, SDv and
SDt . We (subjectively) chose the following relative weights:
as principal agreement of the hydrographs (expressed by
the Threat Score) was considered to be most important, we
gave it a weight of 50%. SDv and SDt ranks were equally
weighted with 25%, respectively.

Finally, the author’s subjective ranking of the eight test
hydrographs is also shown in Table 3, column IX. During
the underlying visual hydrograph inspection, we followed the
general guidelines discussed in Sect. 3. The resulting ranks
are of course highly subjective and may or may not be in
accordance with the reader’s ranking, nevertheless we com-
pared the agreement of the rankings based on the objective
metrics (columns I–VIII) with the subjective ranking by cal-
culating the Sum of Absolute Rank Errors. This is simply
the sum of absolute deviations from the subjective ranks, ac-
cumulated for all eight hydrographs, separately for each ob-
jective metric. The magnitude of the Rank Error expresses
the degree of agreement between the objective and the sub-
jective ranking scheme: the smaller it is, the better the agree-
ment. The results are shown in the last line of Table 3 (“Rank
Diff”). Comparing the Rank Errors for the different metrics
reveals several interesting points:
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– Combining RMSE and MAPTE results in a Rank Er-
ror of 23. This is in between those of the two metrics
evaluated separately. It seems that in the example pre-
sented here, combining the two did not improve much
the overall closeness to subjective classification.

– The Threat Score seems to be a good metric to mimic
visual inspection: without combination with other met-
rics it has a Rank Error of only 11, which is the third-
best from the tested eight metrics. It should be noted,
though, that it is only useful for simulations or forecasts,
where substantial numbers of false alarms or misses re-
ally occur (see also Sect. 3.1).

– In contrast to RMSE and MAPTE, combination of the
SD metrics continually improves the agreement with
subjective classification: while SDv and SDt taken sep-
arately still show relatively weak agreement (although
better than for RMSE or MAPTE), a combination of the
two leads to a Rank Error of only 10 (column VII).

– Finally, combining the Threat Score, SDv and SDt (col-
umn VIII) leads to the smallest Rank Error of only 3.
This suggests that this final combination constitutes
a metric reflecting visual inspection relatively closely.
Further, it seems that the Threat Score and the combined
SDv and SDt are essentially non-redundant information,
as their combination decreased the Rank Error substan-
tially.

5 Summary and conclusions

In this paper, we proposed a new metric to quantify the sim-
ilarity of hydrographs. Termed Series Distance, it is aimed
to reproduce the advantages of visual inspection, namely si-
multaneous, case-specific multi-criteria evaluation, but in an
objective manner. The Series Distance quantifies the similar-
ity of two hydrographs on the scale of hydrological events.
It consists of three parts, namely a Threat Score which eval-
uates overall agreement of event occurrence, and the over-
all distance of matching observed and simulated events with
respect to amplitude and timing. Within matching events,
point pairs on the observed and simulated hydrographs for
distance calculation are identified by the same relative posi-
tion in matching segments (rise or recession) of the event, in-
dicating the same underlying hydrological condition. Thus,
amplitude and timing errors are calculated simultaneously
but separately, from point pairs that also match visually, con-
sidering complete events rather than only individual points
(as is the case with Peak Time Errors). Relative weights can
be freely assigned to each component of the Series Distance,
which allows (subjective) customization of the metric to var-
ious fields of application in a traceable way. Each of the
three components of the Series Distance components can be
used in an aggregated or non-aggregated way, which makes

the Series Distance a suitable tool for differentiated, process-
based model diagnostics.

For the example of simple, triangular hydrographs we
demonstrated that the resulting Mean Absolute Errors in
Timing and Amplitude are less redundant than the Root
Mean Square Error and the Mean Absolute Peak Time Er-
ror, two metrics commonly used in hydrograph evaluation.
Applied on an ensemble of real hydrographs, the three Series
Distance metrics lead to different rankings, but in combina-
tion came close to the author’s subjective ranking, at least
closer than single or combined rankings based on the Root
Mean Square Error and the Mean Absolute Peak Time Error.
Although this reasoning is partly based on strongly subjec-
tive components, namely the ranking by the authors and the
way of combining the three metrics, the results seem to sug-
gest that the Series Distance jointly evaluates several hydro-
graph characteristics in a way similar to visual inspection.

The Series Distance currently requires the selection of
three parameters: a discharge threshold separating events
from low flow conditions, a minimum time overlap to con-
sider two events as matching, and the way of hydrograph
smoothing to remove minor peaks and troughs. In order to
facilitate and standardize selection of these parameters and
also the weighting of the three components, it could be help-
ful to relate them to general hydrograph properties such as
the mean event duration and distance or the distribution of
discharge values. This could also facilitate the intercompar-
ison of metrics based on hydrographs from different sites
with different characteristics. Also, the Series Distance as
presented makes two events comparable by equalizing their
number of segments, but does not consider the degree of at-
tunement necessary to achieve this. We propose to count
the number and magnitude of peak/trough removals neces-
sary to achieve attunement and to include this information
of disagreement in the overall Series Distance metric. This
remains to be done in the future.

Recalling the fictitious post-flood conversation of hydrol-
ogists and flood managers from the introduction, we hope
to contribute with the Series Distance to a better (i.e. non-
redundant and traceable) evaluation of hydrological models
adaptable to a range of user-specific needs.

The Series Distance is available as Matlab code from the
corresponding author.

Appendix A

Pseudocode

A1 Match events

Algorithm to find matching events in an observed and
simulated hydrograph. A match occurs when two events are
closer to each other than the distance defined by “limitfor-
match”. Matches are unique, i.e. only one event can match
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another. If several simulated events match one observed (or
vice versa), the pair with the largest overlap is used.

functionMatchEvents

input
O= (o1, ..., on): all observed events, each represented by an
object with properties start time (o.ts), end time (o.te), and
number of the matching simulated event (o.match)

S= (s1, ..., sn): all simulated events, each represented
by an object with properties start time (s.ts), end time (s.te),
and number of the matching observed event (s.match)

limitformatch: maximum time gap between end of the
first event (obs or sim) and start of the second (sim or obs) to
be still considered matching

returns: for eacho in O and s in S the number of the
matching event or−999 (if no match was found)

begin
dimoverlap (1, ...,n, 1, ...,m)
for i = 1 to n

for j = 1 to m

overlap (oi , sj ) = min (oi .te, sj .te) – max (oi .ts,
sj .ts) + 1
if overlap (n, m) < limitformatch thenoverlap (n,
m) =−999

nextj
nexti

whilemax (overlap)> −999
i, j = index (max(overlap))
oi .match =j ; sj .match =i
overlap (i,*) = −999; overlap (*,j ) =−999;

end

end

A2 Hydrological cases

Algorithm to find the hydrological case for each time step of
a hydrograph.

Possible cases are:−2 = valley,−1 = drop, 0 = not within
an event, 1 = rise, 2 = peak.

functionHydCase

input
Q= (q1, ..., qn): hydrograph with n observations or simu-
lations, each represented by an object with property value
(q.v) and hydrological case (q.hydcase)

lolim = discharge threshold; any values below are considered
as not within an event

returns: for each q Q the hydrological case in prop-
ertyq.hydcase

begin
q1.hydcase = 0;qn.hydcase = 0;
for i = 2 to n−1

if qi > lolim then
if (qi .v − qi−1.v) < 0 and (qi+1.v − qi .v) > 0 then
qi .hydcase =−2; end
if (qi .v − qi−1.v) < 0 and (qi+1.v − qi .v) < 0 then
qi .hydcase =−1; end
if (qi .v − qi−1.v) > 0 and (qi+1.v − qi .v) > 0 then
qi .hydcase = 1; end
if (qi .v − qi−1.v) > 0 and (qi+1.v − qi .v) < 0 then
qi .hydcase = 2; end
else

qi .hydcase = 0
end

nexti
end

A3 Equalize events

Algorithm to equalize the number of peaks and valleys in
matching observed and simulated events by erasing the least
pronounced pairs of peaks and troughs.

functionEqualize Events

input
O= observed event, represented by an object with property
.P = (p1, ..., pn) containing all peak values and property
.T = (t1, ..., tn−1) containing all trough values, both ordered
by time.

S= simulated event matching the observed, represented
by an object with property .P = (p1, ..., pm) containing all
peak values and property .T = (t1, ..., tm−1) containing all
trough values, both ordered by time.

returns: O and S, with the number of peaks and troughs
equalized

begin

for i = 1 to abs (n−m)
if (n−m) > 0 then
dimdiff (1, ..., n−1)
for j = 1 to n−1

diff (j ) = (O.P (j)−O.T (j))+(O.P (j

+1)−O.T (j))

nextj
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j = index (min (diff))
O.T (j) = nothing; min (O.T (j), O.T (j

+1)) = nothing
elseif (n−m) < 0 then
dimdiff (1, ..., m−1)
for j = 1 to m−1

diff (j ) = (S.P (j)−S.T (j))+(S.P (j +1)

−S.T (j))
nextj
j = index (min (diff))
S.T (j) = nothing; min (S.T (j), S.T (j +1)) = nothing
end

nexti
end

A4 Segment distance

Algorithm to calculate the time and amplitude distance
between matching segments in an observed and simulated
event. The simulated segment is approximated by a polygon
line. The polygon is sampled with n equally spaced points (n

being the number of points in the observed segment). These
are used to calculate the distance from then observed points
in the segment.

functionSegment Distance

input

O= segment (rise or decline) of length n in an observed
event, represented by an object with property .V = (v1, ...,vn)
containing the amplitude of all segment points and property
.T = (t1, ..., tn) containing the timing of all segment points.
The elements are ordered in time.

S= segment (rise or decline) of length m in a simu-
lated event matching the observed segment. It is represented
by an object with property .V = (v1, ..., vm) containing the
amplitude of all segment points and property .T = (t1, ..., tm)
containing the timing of all segment points. The elements
are ordered in time.

returns
Dist v = (d v1, ..., d vn) containing n amplitude differences
betweenO andS

Dist t = (d t1, ..., d tn) containing n timing differences
betweenO andS

begin dimpoly t = (1, ...,n); dimpoly v = (1, ...,n)
poly t = linspace (S.T , n) rem: create n equally spaced
points within [S.T (1), S.T (m)]
poly v = linintpol (S.T , poly t) rem: find point values by
linear interpolation

for i = 1 to n

Dist t(i) = poly t(i)−O.T (i)

Dist v(i) = poly v(i)−O.V (i)

nexti
end
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